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Abstract: The sudden increase in the concentration of carbon dioxide (CO2) in the atmosphere due
to the high dependency on fossil products has created the need for an urgent solution to mitigate this
challenge. Global warming, which is a direct result of excessive CO2 emissions into the atmosphere,
is one major issue that the world is trying to curb, especially in the 21st Century where most energy
generation mediums operate using fossil products. This investigation considered a number of ma‑
terials ideal for the capturing of CO2 in the post‑combustion process. The application of aqueous
ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable
challenges are impeding their advancement, which are clearly expatiated in the report. Some merits
and demerits of these technologies are also presented. Future research directions for each of these
technologies are also analyzed and explained in detail. Furthermore, the impact of post‑combustion
CO2 capture on the circular economy is also presented.

Keywords: post combustion; aqueous ammonia; activated carbons; ionic liquids; hydrogen gas (H2);
integrated gasification combined cycle (ICGC); circular economy

1. Introduction
The population growth and the need for clean sources of energy in the 20th Cen‑

tury has surged tremendously in the last few decades. The sudden rise in industrializa‑
tion in the 21st century has yielded increases in the population and demand for energy
as well. Currently, nearly 90% of world energy demand is highly dependent on fossil
products [1–3]. In spite of the fact that fossil‑based products have contributed tremen‑
dously to industrialization, their effects on the environment cannot be ignored. The last
few years have seen a sharp increase in the average temperature from the acceptable value
of 0.6 to 1 ◦C [4]. For instance in 2014, 23% of carbon emissions into the atmosphere em‑
anated from power plants fueled using fossil commodities [5]. It is being projected that by
2035 these values will further increase [6]. Renewable energy is considered as a possible
replacement for fossil products; hence, the last few decades have seen the world earnestly
encouraging its application in the electricity/power industry. Even though these apprecia‑
ble increments are being encouraged, natural gas is projected to dominate the supply of
power globally till 2030 [7]. These statistics are attributed to the fact that the capital costs
involved in electricity produced from natural gas are low. Again, the carbon produced
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from the natural gas combined cycle is also very low as well [7]. It must be stated that the
highest producers of CO2 emissions often come from stationary plants powered using fos‑
sil commodities [8–12]. In terms of statistics, 60% of these carbon emissions are attributed
to operations of thermoelectric power plants, steel mills, refineries, etc. [7]. Most thermal
plants around the world are powered using coal. Coal is one of the largest contributing fac‑
tors of global emissions. The distribution of greenhouse gas emissions by various sectors
around the world is captured in Figure 1.

A sudden increase in anthropogenic activities based on the findings of the Interna‑
tional Panel on Climate Change has caused the melting down of polar ice due to the ozone
layer being depleted causing global warming as well as changes in climate [13]. The re‑
lease of CO2, nitrous oxide, methane, as well as water vapor has serious implications on
the survival of the human race [11,14–16]. The major source of greenhouse gases originates
from CO2 which forms 76% of greenhouse gases in the atmosphere. These high values are
attributed to the burning of fossil products in power plants [17]. Most data published in
2013 showed a surge in the CO2 concentration into the atmosphere from 120 to 400 ppm
volume. This shows clearly the need to find a lasting solution to this problem [18]. As a
way to face the challenge relating to the global warming, the world formulated policies
such as the Kyoto Protocol in 2005. The main idea behind this was to reduce the green‑
house gases, particularly CO2, from 7 giga tons. This protocol was geared towards achiev‑
ing these targets within some few decades from the day it was passed [19,20]. This urgent
clarion call by the world in general has led to several academic studies being conducted
to lessen the total gaseous release into the air globally. The pragmatic approach to reduc‑
ing carbon emissions is to reduce the burning of the fossil commodities, rely on renewable
energies that are sustainable and have low or no environmental impacts [21,22], consider
efficient energy generation mediums [23–25] and/or alternatively consider energy sources
with CO2 capture and storage units [26]. Mitigation of CO2 emissions from energy plants
is one of the feasible routes for reducing toxic gaseous release based on a report by the
United Nations Framework Convention on Climate Change. It therefore becomes impera‑
tive to consider strategies in which these carbon dioxide emissions could be captured from
power plants [27–30]. From studies conducted by the International Energy Agency (IEA)
and Organization for Economic Co‑operation and Development (OECD), integration of
carbon capture and storage (CCS) technology will aid in reducing overall CO2 emissions
by 14% [20].

CCS technology is perceived as the only solution for mitigating overall emissions into
the atmosphere especially given fossil products continue to be the dominant source of en‑
ergy generation. The idea is to absorb the carbon emissions from industry or other sources
of energy generation. This can be orchestrated prior to the burning of the fossil product
or after the burning of the product. This strategy again is normally followed by the com‑
pression of the carbon dioxide, transporting it to a safe place to store the gas and finally
depositing it into the ground via a process called sequestration. This approach prevents
the gas from mixing into the atmosphere [31]. The capturing of carbon dioxide is catego‑
rized into pre‑combustion, post‑combustion and oxyfuel combustion [2,32]. The possible
alternative to the capturing of emissions from large power sources is via post‑combustion
capture technology. Capturing carbon dioxide from plants powered by fossil commodities
contributed to 3/4th of the overall market price of the CO2 capture. This method is energy
intensive. The remaining 1/4th is attributed to the transportation as well as storage [33,34].
CCS technology can aid in the reduction in the cost of carbon capture as well as achiev‑
ing the main objective of reducing emissions into the atmosphere [35]. Due to technolog‑
ical advancements, several strategies for post‑combustion capture have emerged. These
include membrane‑based separation, cryogenic separation and physical and chemical ab‑
sorption [36,37]. Chemical absorption is described as a proactive method of absorbing
carbon dioxide because the process is very efficient and it has been applied in a number of
industries over the last 60 years [38].



Energies 2022, 15, 8639 3 of 38

Figure 1. Carbon dioxide emissions by (a) various sectors (https://ourworldindata.org/emissions‑by‑sector, accessed on 1 September 2022) and (b) economic sectors
(https://www.epa.gov/ghgemissions/global‑greenhouse‑gas‑emissions‑data, accessed on 1 September 2022).

https://ourworldindata.org/emissions-by-sector
https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data
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For decades, most carbon capture technologies have utilized an amine‑based chem‑
ical absorption method using mono ethanol amine in the elimination of CO2 that is dis‑
charged from natural gas processing as well as power plants powered using fossil fuel.
The cost of solvent regeneration for this technology is very high coupled with issues re‑
lating to corrosion of the equipment. There are also issues sometimes associated with the
degradation of the absorbent. This implies that the major limitation with carbon dioxide
capture using this technology is the energy penalty. Cryogenic distillation which is an
equal alternative has some limitations because of the cost involved. These limitations have
led to adsorption being investigated as the future of CCS technologies. It involves the
application of solid sorbents made from cheap and abundant material making the entire
capture process very affordable [39,40]. The research conducted in this area is primarily
to develop solid sorbents that are durable by means of adding foreign particles in the sep‑
aration process as well as carbon dioxide absorption via the application of activated car‑
bon [41], zeolites [42], metal organic frameworks [43] and microporous polymers enriched
with nitrogen [44,45]. Activated carbons have large surface areas, good thermal stability
and excellent chemical resistance; hence, they considered as an efficient absorbent in car‑
bon dioxide capture [46]. This investigation will therefore focus on some of the technolo‑
gies used in the post‑combustion capture of carbon dioxide as well as their impact on the
circular economy, as seen in Figure 2.

Figure 2. Scheme summarizes the main topics covered.

2. Existing Technologies for Capturing CO2

CCS technologies are designed to absorb emissions from the atmosphere. The captur‑
ing process is often centered on the design of the power plant fueled using fossil products.
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There are presently three main strategies as stated earlier and these include pre‑combustion
(PRC), post‑combustion (PC) and oxy combustion (OC) capture technologies [47]. PRC im‑
plies the capturing of CO2 in synthetic gas or fossil products before combustion takes place.
The fuel is transformed to syngas which is composed of H2 and CO. The separation process
in this technology employs cheap physical solvents such as rectisol [48]. The OC method
involves the fuel being ignited among highly purified O2 and flue gas that is recycled pro‑
ducing CO2 as well as water vapor. The CO2 as well as the water vapor are then seques‑
trated [39]. In order to separate oxygen from air, more energy is required. The PC tech‑
nology is considered as an optimum capture route because there is no need to modify the
existent emission technology without any major changes. Figure 3 shows the processes in‑
volved in the three main carbon dioxide capturing technologies [49] while Table 1 defines
the contrasts among these three categories of CCS technology.
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Figure 3. Carbon dioxide capture technology for:(a) PRC [50], reproduced with permission No. 5402050329104, (b) OC [51], open access, (c) PC [17], reproduced
with permission No. 5402050963073.
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Table 1. Comparison of various CO2 capture approaches in terms of merits as well as demerits.

Technologies Merits Demerits Ref.

Pre combustion
(PRC)

• The capturing of carbon dioxide occurs
at higher pressures enabling the
production of carbon‑free fuel.

• Several hydrocarbon fuels such as
natural gas, biomass, coal and petroleum
can be utilized.

• The dominant product of PRC capture is
syngas which is ideal for the
combined cycle.

• The establishment of full‑scale plants is
under progress.

• Energy conservation owing to a higher
CO2 load, a higher pressure and a lower
volume implemented.

• It consumes less water than
post‑combustion technology.

• This method is capital‑intensive with a
high level of risk involved.

• It is a complicated process because it
involves fuel conversion before the
burning of the fuel into syngas.

• Lower efficiency of the hydrogen‑based
gas turbine plant of the integrated
gasification combined cycle.

[52]

Oxy fuel
combustion (OC)

• The approach allows pure carbon
dioxide to be produced.

• The purification of the gas stream is easy.
• There is also a drop in the release of

nitrous oxide during the OC process.
Reducing NOx will also support
reducing the exit gas flow rate and this
will lead to a reduction in the market
price of all equipment used.

• Storing energy is easy using
cryogenic liquids.

• Minimum hazardous emissions.
• High efficiency.
• Reduced size of

equipment implemented.
• Compatibility with different steam

cycles without major modifications.
• Reduced net power output.

• Management of the oxygen is the major
challenge relating to this carbon
dioxide capturing technology.

• No full‑scale plants are in
operation yet.

• Some technical challenges.
• Possibility of corrosion.
• Requirement for specialized

installation to avoid leakage of air.

[53,54]

3. Capturing CO2 Using the PC Approach
The ideal method for the capture of CO2 from flue gas is via PC technology. The pro‑

cessing industry usually prefers this method. It is possible to reconstruct PC technologies
to power plants operated using fossil commodities. Post‑combustion technology also uses
wet/dry adsorbents in the capturing of CO2. The exhaust stream is treated before the burn‑
ing process to limit the composition of other species such as sulfur oxide, nitrogen oxide as
well as water vapor under the post‑combustion capture technology [38]. These secondary
species have a detrimental effect on the operation if untreated. Flue gases are kept un‑
der atmospheric conditions as well as between 50 and 150 ◦C [55]. This represents 10%
as well as 15% of the carbon dioxide concentration [56]. For most thermoelectric power
plants, post‑combustion techniques are used in the capture of CO2 from these plants. It
involves the burning of the fuel in the production of flue gas as well as compression, trans‑
port as well as sequestration to obtain the carbon dioxide [57]. Figure 3c shows that gas
from a power plant powered using coal undergoes a treatment process via PC technology.
These gases at high temperatures flow via electrostatic precipitator (ESP) before exiting
the boiler. Most material particulates in nature are removed at the electrostatic precipi‑
tator. From the electrostatic precipitator, the gas flows to the flue gas desulphurization



Energies 2022, 15, 8639 8 of 38

(FGD). In the FGD, lime stones are utilized to trap the sulfur oxide gas. Adsorptions, ab‑
sorption and membrane separation are used in the treatment of the flue gas to eliminate
the carbon dioxide [58]. In spite of all the merits associated with this technology, there are
some technical issues that must be surmounted before they can become commercialized
on larger scale. The academic community is currently carrying out several investigations
to enhance the entire capturing approach including technology and cost. Table 2 shows
some merits and demerits for the specific methods used for capturing CO2 using the post‑
combustion approach.
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Table 2. Merits and demerits of CO2 capture via the PC capture approach and its techniques.

Post Combustion CO2 Capture Strategies for Post Combustion Carbon Dioxide Capturing

Merits Demerits Ref. Strategy (Efficiency) Merits Demerits Ref.

• Best approach applicable
to gaseous toxic emissions.

• It is also very economical.
• This method supports the

reduction in
greenhouse gases.

• The sorbents are suitable for
concentrated streams to make
the system efficient.

• Ideal sorbent for PC for the
capture of CO2 is very limited.

[59–61]
Chemical solvent
scrubbing
(90%)

• Oldest approach.
• High capturing

efficiency (75–95%).
• Possibility of

solvent regeneration.

• Solvent regeneration
requires high
thermal energy.

• Solvent is expensive
• Equipment used

undergoes corrosion.
• Solvent degradation leads to

toxic emissions.

[62]

• Easy to retrofit
combustion technology
without making any
significant changes.

• During maintenance, the
plant can still be in
operation and can still
be regulated.

• Higher thermal efficiency
for the electricity
conversion process.

• More energy is needed for the
compression of the
captured CO2.

[63–67] Physical adsorption
(55–92%)

• Process is reversible.
• Possible to recycle

the adsorbent.
• Adsorption efficiency

is very high.
• Resistant for long

term use.

• Cooling and drying of the
flue gas.

• Carbon dioxide desorption
requires a high amount
of energy.

• Some adsorbents require
high temperatures.

• Sorbent performances are
influenced by NOx and SOx.

[68,69]

• The system efficiency is
dependent on adsorbent design.

• In the capture of CO2 using the
PC capture technique, the gas is
normally made up of CO2/H2
and CO2/N2. There are
secondary species present that
have an effect on the
separation process.

[70–72] Calcium looping
(>75%)

• Energy efficiency loss
is low.

• Ideal for the
cement industry.

• Attrition dependent on how
hard the limestone is. [73,74]
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Table 2. Cont.

Post Combustion CO2 Capture Strategies for Post Combustion Carbon Dioxide Capturing

Merits Demerits Ref. Strategy (Efficiency) Merits Demerits Ref.

• The application of
activated carbon makes
the entire process
environmentally friendly.

• Post‑combustion
technologies can be
attached to industry
emitters to support the
reduction in
carbon emissions.

• The operating conditions in
terms of temperature are very
low; hence, the sorbents are
limited to only activated
carbons and zeolites.

• The carbon dioxide is absorbed
from low pressure and low
carbon dioxide content gas
streams at elevated operating
conditions between 120 and
180 ◦C containing impurities.

[41,75–79]
Membrane
separation
(Up to 90%)

• Separation of
other gases.

• Efficiency of the
separating process
is high.

• Water and SO2 have an
impact on the easy flow of
the gas.

• Compression equipment is
expensive and requires a lot
of energy.

• Reduced carbon
dioxide purity.

• For larger facilities, the area
of the membrane must be
large enough.

[8]

• The application of
activated carbon makes
the entire process
environmentally friendly.

• The operating conditions in
terms of temperature are very
low; hence, the sorbents are
limited to only activated
carbons and zeolites.

[75–77]
Captured using
Algae and other
living species

• Oil production via this
medium can
replace coal.

• Competitive
economically.

• Production of algae’s
products and markets

• Method meets
industrial requirements.

[80,81]
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3.1. Research Activities in Post‑Combustion Capture Technologies
There are presently many research activities being considered on global warming with

the main focus on absorbing carbon dioxide from flue streams. These separation strate‑
gies are categorized into wet absorption, dry absorption, membrane separation, cryogenic
distillation, dry adsorption, centrifugal separation as well as cryogenic distillation [41,82].
Most industries consider carbon dioxide separation as a giant step in the fight against
global warming. The petroleum‑based industries usually employ PC systems for CO2
scrubbing. The capturing of CO2 involves a physical or chemical adsorption strategy as
shown in Figure 4.

Figure 4. Post‑combustion capture technologies.

Amine‑based regenerative chemical adsorption is considered as a viable chemical ad‑
sorption method for large emission volumes from combustion producing concentrated car‑
bon dioxide. It is also described as an optimum method for changing the density of the
CO2 from the literature [83,84]. Solvent regeneration in relation to the capturing of carbon
dioxide using amine‑based solvents is the major obstacle as the energy utilized is huge.
This means that the entire process consumes more auxiliary power, making the system
very expensive [47,65,85]. There are other challenges such as using heated absorbents, ma‑
terial erosion, slow solid–gas reactions, energy intensity and oxidative degradation of the
amine [86]. Carbon dioxide absorption capacity is reduced when the amine compound de‑
grades and accumulates. Injection of a new absorbent is required to salvage the situation
but this increases the total cost of the technology. Again, the fact that the amine compound
is volatile in nature also results in the chemical as well as the water evaporating and this
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often enters the flue gas which is clean. The process leads to amine gas being released and
this eventually affects the ecosystem. The research community, in order to mitigate the
challenges relating to chemical adsorption, has performed several studies by considering
different materials.

Carbon dioxide separation using membranes utilizes ceramic‑based materials and
mixed matrix membranes for the capturing of CO2. Poly ethylene oxide ceramics are also
used to support the permeation of the carbon dioxide [87,88]. The physical as well as chem‑
ical behavior of the membrane affects the separation of these gases. Other factors such as
the diffusion of the molecules of the gas in the membrane as well as the gradient in the pres‑
sures of the gases also have an effect on the gas separation [89]. The consumption of energy
is very low in membrane‑based separation. Cryogenic carbon dioxide separation involves
the cooling of the CO2 as well as the condensation of the gases. CO2 is therefore elimi‑
nated due to this approach. The initial capital costs for this technology are very low and it
is considered as an ideal PC technology, though its application on a larger scale remains
a challenge. The amount of impurities using cryogenic separation makes them unattrac‑
tive in its application in PC technology [90,91]. Again, the pressure of the CO2 at exhausts
from boilers powered using coal or natural gas is reduced. More energy is needed for re‑
frigeration during cryogenic separation; hence, the method is not viable for larger plants
economically. Today the world has made progress through research activities and has
been able to develop a post‑combustion capture process that is cheap with fewer technical
issues in separating the CO2 from the flue gas [92]. PC carbon capture techniques through
a solid adsorbent using the pressure or thermal swing approach in separating carbon diox‑
ide has been described in the literature as a replacement for the amine scrubbing process,
as shown in Figure 5 [93]. By means of thermal or pressure modulation, there is a reduc‑
tion in the regeneration energy requirement when the adsorption technique is used. The
adsorption method tends to reduce the entire maintenance required [94,95]. Factors such
as the adsorption capacity, stability and durability of the adsorbents and the regeneration
of the adsorbed carbon dioxide have an effect on this method.

Figure 5. Amine‑based scrubbing process [93], reproduced with permission No. 5402051268283.
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The techno‑economic evaluation of a single‑stage pressure–vacuum swing adsorption
(PVSA) cycle for post‑combustion CO2 capture assuming zero‑cost sorbent was applied. At
the optimized sorbent properties, the CO2‑avoided cost for PVSA varied from USD 86.8
(inlet CO2 3.5 mol%) to USD 10.36 (30 mol%) for each ton of CO2 avoided. The costs of the
MEA‑based absorption process, utilizing heat froma natural gas plant, wereUSD 76.53 and
USD 54.61 per ton of CO2 avoided, respectively, showing that PVSA is more economical
for flue gas streams containing higher concentrations of CO2 [96].

3.1.1. Adsorption Mechanisms for CO2 Capture Using Activated Carbons
The best approach for the capture of CO2 under atmospheric pressure as well as tem‑

perature is using activated carbons. A material that is carbonaceous with a high energy
content but low in ash is utilized in the manufacturing of numerous activated carbons.
The raw precursors utilized must be activated and must also have a low rate of degrada‑
tion [97,98]. This means that material selection is very important during the production of
activated carbon. Carbons, H2 and O2 have a direct impact on the physiochemical charac‑
teristics of the material. According to the literature, the kind of the precursor used has an
impact on the adsorptive characteristics of activated carbon. The properties of the synthe‑
sized activated carbons are affected when carpet wastes are used as precursors. This is due
to the fact that these wastes vary in terms of chemical composition. Pre‑consumer waste
tends to have a higher volatile matter, but the carbon yield is very low compared to post‑
consumer waste. The material structures are often rearranged during the devolatilization
stage. This results in mass loss as well as the shrinking of the precursors because of mois‑
ture contents released via convection and diffusion [99,100]. The high incombustible ash
content accounts for the high yield. Waste generated from the domestic environment as
well as the street usually has an area ranging from 326 to 466 m2/g [101,102]. The conditions
surrounding the production of activated carbons have an impact on the kind of activated
carbon developed. The activation process is categorized into two processes, i.e., physical
and chemical activation.

Physical‑Activated Carbons
Physical‑activated carbons are manufactured through carbonization, which is often

called pyrolysis, followed by activation [103–105]. Volatile matters as well as foreign mate‑
rials are eliminated during the carbonization stage which involves the process being con‑
ducted in the presence of nitrogen. The operating temperature that leads to carbonization
is nearly 800 ◦C and this according to the research is ideal for the devolatilization. The char
that is produced after this process then undergoes the activation stage via an oxidizing gas
around 800–1000 ◦C [106]. Other investigations that have explored the capture of carbon
dioxide at a pressure of 1 bar are captured in Table 3.
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Table 3. Investigations on activated carbon produced purposely for carbon dioxide purification under atmospheric conditions.

Precursors
Carbonization Approach Activation Stage Total Area

(m2/g)
Adsorption
(mmol/g) Ref.

Flow Rate
(mL/min)

Temp.
(◦C)

Retention
Time (min) Oxidant Flow Rate

(mL/min)
Temperature
(◦C)

Retention
Time (min) 0 ◦C 25 ◦C 100 ◦C

Tobacco stem ‑ 180 600 KOH ‑

500
600
700
800

240

786
1086
1922
2399

4.76–7.98 3.31–4.84 ‑ [107]

Bamboo ‑ 500 90 KOH ‑ 603 90 528 4.5 ‑ [108]

Shell of almond

‑ ‑ ‑ Carbon dioxide 100 750 240 862 2.7 0.9 [109]

‑ 600 ‑

Carbon dioxide

50

400
600
800
900

120

8
91
326
350

0.16
0.15
0.20
0.08

[110]

Olive stone ‑ ‑ ‑ 100 800 360 1215 3.1 0.8 [109]

Shell of coconut ‑ ‑ ‑ 140 800 210 1327 3.9 ‑ [111]

Coffee 50 600 ‑ 15 800 ‑ 590 2.35 ‑ [112]

Nut 500 600 60 500 900 61 570 3.49 ‑ [49]

Cotton ‑ 600 ‑ ‑ 900 ‑ 610 2.30 0.5 [113]

Tobacco stem ‑ 180 600 Zn(NO3)2.6H2O ‑ 910 120 340–998 92–209 mg/g 66–145 mg/g ‑ [114]
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From the literature, it is clear that investigations using activated carbons for CO2 cap‑
ture have gained much attention in recent times. Equations (1) and (2) show the endother‑
mic reactions between oxidizing gases and carbonaceous materials [115].

C+CO2 → 2CO ∆H = +173
kJ

mole
(1)

C+H2O → CO+H2 ∆H = +132
kJ

mole
(2)

The formation of micro‑pores that are narrow often occurs when CO2 is utilized as an
activation agent. This is good for the adsorption of CO2 [116] compared to steam. Steam
has a high reactivity rate and can perform better within a low temperature range and a
varying operational time. When the reactivity rate of steam is high, the steam will usually
have small molecules compared to carbon dioxide. The carbon dioxide which is large in
terms of molecular size aids in the rapid diffusivity to the micro‑pores which results in an
increase in the size of the micro‑pores to form meso‑pores as well as macro‑pores [117].
This implies that carbon dioxide is therefore ideal for gas adsorption. The importance of
using narrow micro‑pores has also been investigated in the literature for adsorbing car‑
bon dioxide because CO2 creates spaces for the carbon dioxide molecules. Carbon dioxide
activation is simple as well as cheap because the CO2 flow is often regulated from a cylin‑
der without any steam generator required [108]. There are a few challenges regarding the
application of physical activation in terms of energy penalties because of the dual thermal–
cooling routes as well the additional time is needed to finish the entire process [118]. The
activation process occurs at higher temperatures around 1000 ◦C and this results in the car‑
bon yield being reduced and not ideal for industrial purposes [119]. It therefore becomes
necessary for an alternative to physical activation to be considered [120]. From the litera‑
ture, it is clear that the use of single step carbon dioxide activation can lead to issues relat‑
ing to longer operating hours and reduce the amount of energy being consumed. Nearly
1.79 mmol/g is adsorbed when the synthesized carbon produced from one activation step
is used [121–123].

Chemically Activated Carbons
Chemical activation methods occur via the impregnation of precursors using a de‑

hydrating agent before the carbonization or activation process. Salt mediums, acidic and
alkaline are some commonly used dehydrating agents for this process. The sudden rise
of research activities in this area is due to the fact that the amount of energy consumed
is low when this method is used. The activation temperature for chemical‑activated car‑
bons is between 600 and 800 ◦C. Again, the operational time is very low and this tends to
increase the carbon yield. The chemical activation process is executed usually as a single
stage and this indicates that carbonization and activation are conducted in the presence of
an activator. Porosity is created via dehydration and oxidation reactions [124]. Chemically
activated carbons also go through some washing processes in order to eliminate any resid‑
ual chemicals present as well as foreign matters in the form of carbon structures. These
impurities usually result in secondary pollution due to the dehydration of the chemical
agents [125,126]. In spite of chemical activation being a single step, investigations involv‑
ing two stages are also being conducted. The dehydrating chemicals form a mixture with
synthesized char [127]. Mixing the activating agents using raw precursors is not enough to
produce activated carbon due to challenges in the penetration of the activator to the struc‑
tures interiorly. When char is utilized, there is a development of pores during carboniza‑
tion [128]. In order for the entire process to be cheap, the one stage activation process is
considered the best compared to the two‑stage process. Chemical activation also comes as
solid–solid physical mixing or the wet impregnated method [129–131]. Three main reac‑
tors are used for PC carbon capture using adsorption: fixed bed, fluidized bed and moving
bed. A comparison of the three main reactors is illustrated in Figure 6. Table 4 shows that
Chemical‑activated carbon produced for CO2 capture under atmospheric conditions.
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Figure 6. The merits and demerits of the fixed bed, fluidized bed and moving bed reactors.
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Table 4. Chemical‑activated carbon produced for CO2 capture under atmospheric conditions.

Precursors Stages Activation Stages Area Adsorption Capacity (mmol/g) Ref.

Activator Impregnation
ratio (wt/wt)

Temperature
(◦C)

Heating rate
(◦C/min)

Time
(hour)

Flow rate
(mL/min) (m2/g) 0 ◦C 25 ◦C 50 ◦C 75 ◦C

Wood 1 H3PO4
2:1 450 4 1 N/A 1889 ‑ 2.9 ‑ ‑ [132]

Palm stone 1 2:1 450 1 2 80 1320 3.1 ‑ ‑ ‑ [133]

Palm stone 1 ZnCl2
2:1 500 1 2 80 924 2.7 ‑ ‑ ‑ [133]

Rice 1 1:1 501 15 2 101 928 ‑ 2.3 ‑ 0.5 [134]

Bagasse 1

KOH

1:1 500 10 1 100 923 ‑ 1.7 ‑ 0.6 [134]

Ash 2 5:1 700 5 2 N/A 161 ‑ 0.6 ‑ ‑ [135]

Saw dust 2 4:1 700 5 1 N/A 1643 8.0 4.8 ‑ ‑ [136]

Yeast 2 1:1 600, 700, 750 N/A 1 50 1348 ‑ 1.3–4.77 0.94–3.4 0.77–2.4 [137]

Shell of peanut 2 1:1 700 5 1.5 120 956 5.2 4.0 ‑ ‑ [138]

Cellulose 2 2:1/4:1
600–800 3 1 ‑

2370 5.8 3.5 2.2 ‑
[139,140]

Starch 2190 5.6 3.5 1.8 ‑

Microalgae and glucose 1:1, 2:1 or 4:1 650 and 750 ‑ 24 ‑ 1940 5.9–6.4 3.5–4.5 2.2–2.8 ‑ [141]
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3.1.2. Chemical Absorption Using Aqueous Ammonia
Chemical absorption involves capturing carbon dioxide using an alkali solution [38,142].

The process involves a neutralization reaction where an alkaline solution is utilized as an
absorbent in order to go into a reaction with the CO2 as well as forming carbonate or bi‑
carbonate [143,144]. Alkaline solutions that are very strong as well as weak are commonly
used as absorbents. Some alkaline solutions include potassium hydroxide and sodium
hydroxide as well as alkaline solution [145,146]. Strong alkaline solutions are very cor‑
rosive to equipment. Some common alcohol amines such as diethanolamine (DEA), tri‑
ethanolamine (TEA), N–methyldiethanolamine and monoethanolamine (MEA) have some
demerits of requiring high energy for regeneration [147]. These alcohol amines also un‑
dergo degradation [148]. Today, aqueous ammonia is considered as the best replacement
for alcohol amine because it has a high absorption efficiency. It also has a high absorp‑
tion capacity but the energy required for absorbent regeneration is very low. Aqueous
ammonia is also ideal for the production of fertilizer to enrich the soil. However, it is easy
to eliminate other contaminants that may be present such as SO2, NOX and mercury, as
shown in Figure 7.

Figure 7. Capturing of carbon dioxide using aqueous ammonia [149], reproduced with Permission
No. 5402051461114.

The sudden increase in CO2 capture using aqueous ammonia can be attributed to its
advantages over other CO2‑capturing techniques. Most research conducted in this area
is quite limited [149,150]. The method for absorbing CO2 via aqueous ammonia involves
several physiochemical stages that are quite complex and usually involve temperature,
pressure and turbulent conditions [151]. The reactions leading to the capturing of CO2 via
aqueous ammonia are illustrated in Equations (3)–(6).

2NH3 +CO2 ↔ NH2COONH4 (3)

The next stage involves the hydrolysis of NH2COONH4

NH2COONH4 +H2O ↔ NH4HCO3 +NH3 (4)
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NH3 undergoes hydrolysis

NH3 +H2O ↔ NH4OH (5)

NH4HCO3 +NH4OH ↔ (NH4)2CO3 +H2O (6)

(NH4)2CO3 +CO2 +H2O ↔ 2NH4HCO3 (7)

NH3 +CO2 +H2O → NH4HC (8)

Reaction Leading to the Capture of CO2 Using Aqueous Ammonia
Figure 8 explains the chemical species as well as the phase equilibrium in NH3 −

CO2 − H2O. From the reaction mechanism, NH2COO−, HCO−
3 and CO2−

3 must coexist,
implying that theproducts from the reactionwill beNH2COONH4, (NH4)2CO3, NH4HCO3.
Reaction time and operational conditions such as time and pressure have a direct effect
on the carbon dioxide absorption using ammonia [152]. Ammonia in excess at the early
stage of the reaction leads to carbamate formation. The final stage of the reaction results
in bicarbonate being formed as the main species.

Figure 8. Three phase system for the chemical species leading to CO2 absorption using aqueous
ammonia [149], reproduced with permission No. 5402060371835.

Once the critical reaction time is reached, carbamate transforms to bicarbonate.
Throughout the entire process, carbamate in terms of concentration is usually higher than
that of the carbonate [153,154]. According to an investigation conducted, during the initial
stage of the reaction, the formation of carbamate dominated the overall process. Bicarbon‑
ate only comes in after some time [38,155]. The stages leading to the capture of carbon
dioxide using ammonia include the formation of carbamate as well as the transformation
of carbonate [156–158].

The techno‑economic evaluation of alkali–metal carbonates, chilled ammonia, calcium
looping and membranes was compared to MEA as the post‑combustion CO2 capture tech‑
nologies in a pulverized‑coal power plant, concerning the cost indicators and efficiency
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penalty (cost of electricity, net CO2 capture rate, net plant efficiency, net power output,
capital costs, and cost of CO2 avoided). Calcium looping technology recorded the lowest
efficiency penalty (4.6%‑points) and cost of PCC (36.3% increase in levelized cost of electric‑
ity). Moreover, employing calcium looping for post‑combustion CO2 capture lowered the
cost of CO2 avoided up to 29 USD2010/tCO2. Hence, the performance of calcium looping
is superior to the MEA process [159]. The techno‑economic performances of magnesium
and calcium‑based sorbents utilized for post‑combustion CO2 capture in high temperature
solid looping cycles located in a fossil power production plant with a total electrical capac‑
ity of 1000 MW and CO2 capture rate 90% were studied. The net power efficiency of the
calcium looping cycle was 1–1.4 net percentage points higher than that of magnesium and
both of them were lower than that of natural gas combined system by 4–6% points. Ac‑
cording to the key economic indicators (CO2 capture cost and electricity production cost,
etc.), it was found that the carbonate‑based systems performance was higher than that of
the amine‑based system [160].

3.1.3. Post‑Combustion CO2 Capture Using Nano Materials
Materials with dimensions less than 100 nm are considered nano materials [161]. Dur‑

ing the synthesis of the material into a nano scale regime, several size‑dependent properties
such as adsorptive property also become affected [162]. Nano materials usually have a low
density and are smaller in size and have a good surface area, hence making them suitable
materials for carbon dioxide adsorption [162].

Nano Porous Materials
Materials with pores between 1 and 100 mm are classified as nano porous materi‑

als [163]. They tend to have a higher area compared to materials that are not porous.
Nano materials are usually preferred because their pore size as well as structure can be
designed to support the adsorption process [164]. Activated carbons as well as zeolites
which are non‑porous have been used for the capture of CO2 over a period of time in the
last decade. A molecular basket was designed via grafting polyethylenimine (PEI) evenly
on MCM–41 [165]. The wet impregnation method was adopted in the preparation of the
sorbent and this involved mixing MCM–41 and PEI in a methanol medium. The next stage
involved the drying of the mixture. The molecules of the carbon dioxide were trapped by
the polyethylenimine doped in MCM–41 mesopores. The adsorption process was geared
towards the carbon dioxide but there was some form of stability throughout the adsorp‑
tion/desorption cycles. The size of the pores of MCM–41 was also enhanced by another
group of researchers during the grafting of an amine‑based functional group [166,167].

Nano Structured Hollow Materials
Some materials have a shell and a core; hence, they are referred to as hollow struc‑

tured materials [168]. Materials that are synthesized in a nano regime form nano hollow
structured materials. These materials are characterized by changes in the chemical proper‑
ties of the compounds [168]. The commonly used type of hollow structured materials are
carbon nano tubes (CNTs) and their diameter falls within the ranges of 1–10 nm. Again, in
terms of length, they fall within 200–500 nm [169,170]. CNTs have been used in the capture
of carbon dioxide. The investigation analyzed the interaction between molecules of CO2 as
well as CNTs [171]. The walls of the CNTs were carbon dioxide–philic compounds where
the carbon dioxide established a strong attraction with the walls of the CNTs instead of
with other carbon dioxide molecules. A concentrated carbon dioxide environment was de‑
veloped in the hollow core of the CNTs. Carbon dioxide capture using single‑walled CNTs
were also investigated by Cinke et al. [172]. Physical adsorption was the main activity car‑
ried out and the capacity of the adsorption decreased. It was also established that purified
single‑walled CNTs had a better adsorbing rate of carbon dioxide compared to unpurified
single‑walled CNTs. The use of multi‑walled CNTs for CO2 adsorption from a flue gas
stream has also been investigated [173,174]. Desorption was carried out via thermal re‑
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generation because the carbon dioxide adsorption process was considered an exothermic
process. Performing the regeneration in vacuum conditions reduced the desorption du‑
ration. Multi‑walled CNTs exhibited stability for 20 cycles of adsorption. Calcium oxide
is also another material that has been designed in nano hollow structured form. The ma‑
jor challenge is that the sorbent tends to decay throughout multiple absorption as well as
desorption cycles. This set back is attributed to the sintering effect [175], the increase in
reactant absorbent and high temperatures [176]. From the literature, a novel structure of
pod‑like nano‑sized calcium oxide hollow particles for the capture of carbon dioxide has
already been developed [177]. This design strategy enhanced the stability of the calcium
oxide from decay‑related challenges. The method involved the preparation of calcium car‑
bonate nanopods via a precipitation method as carbon dioxide was bubbling via calcium
hydroxide slurry in a polymer block. Calcination of the produced calcium carbonate re‑
sulted in calcium oxide being formed.

Nanocrystalline Particles
Crystalline particles synthesized under the nano regime are nanocrystalline particles.

Materials in the nano region are able to chemically absorb more molecules, particularly
organic molecules [178]. The capturing capacity for carbon dioxide using a sorbent with
varying particle sizes has also been investigated. The outcome of the investigation was
that the tetragonal phase as well as the small size particle showed good characteristics
in terms of absorption [178]. Li2ZrO3 is a tetragonal nanocrystalline material used in an
investigation from the literature. The carbon dioxide captured during this process also in‑
creased [179]. Within a period of 5 min, the Li2ZrO3 exhibited a 27 wt% absorption capacity
in comparison to commercialized Li2ZrO3 which requires 1440 min to support 18 wt% ab‑
sorption capacity. Other researchers showed similar outcomes of their investigation using
lithium silicate nanoparticles via sol–gel approach [180]. The synthesis of lithium silicate
nanoparticles produced nanoparticles with size between 4 and 12 nm. The carbon dioxide
absorption was stated as being 5.77 mol CO2/kg sorbent around 610 ◦C. Removal of flue
gas using packed bed lithium silicate pellets was also investigated in the literature. The
investigation showed an absorption capacity of 5.0 mol CO2/kg at 600 ◦C which was less
than the lithium silicate nanoparticles [181]. Addition of inert MgAl2O4 to calcium oxide
improved the stability as well as the sustainability of the calcium oxide [77,182,183].

4. Comparing Various Types of Sorbents for Post‑Combustion CO2 Capture
Corrosion, foaming, etc., continue to pose a threat to a number of industries in terms of

carbon dioxide post combustion capture; hence, dry‑based sorbents are being considered
as suitable options to salvage this situation. These types of sorbents are very easy to han‑
dle and come with very limited challenges during operation. Investigations into this field
are classified as inorganic or organic sorbents. Metal compounds are classified as organic.
Alkali metal compounds as well as alkaline earth metals have all been studied [184–189]
and their reactions are shown in Equations (9)–(11). This also shows that when the solvent is
dry, it tends to have a higher affinity for carbon dioxide capture compared to liquid sorbents.

Li4SiO4 +CO2 ↔ Li2SiO3 + Li2CO3 (9)

Li2ZrO3 +CO2 ↔ Li2CO3 + ZrO2 (10)

XO+CO2 ↔ XCO3 (11)

5. Impact of Post‑Combustion CO2 Capture on the Circular Economy
The term circular economy refers to the transformation of wastes or products at the

end of their lifetime into new resources for other purposes which minimizes the devel‑
oped wastes and closes the loops in the different ecosystems. This occurs via different
routes including reuse, recycle, repair and remanufacture. Shifting to a circular economy
will simultaneously reduce greenhouse gas emissions by up to 70%. The circular economy
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obeys two main business models: promoting the extension of the lifetime of the materials
via reuse, repair, and remanufacture, and the second model which focus on transforming
wastes and old products into new resources via recycling [190]. Recently, the carbon circu‑
lar economy has gained much interest owning to climate change which is a major global
challenge. The reported change in climate has caused increases in the average temperature
worldwide, elevation of the sea level, erosion of coastal region, acidification of oceans, dis‑
ruption of water cycle as well as negative impacts on ecosystems, human welfare, etc. [191].
On the other hand, the reduction in CO2 emissions or de‑carbonization of the energy sec‑
tor needs a significant transformation that will ensure the introduction of post‑combustion
CO2 capture and increase the share of renewable energy. Several investigations have in‑
vestigated the implementation of captured CO2 in biorefineries for biofuel production as
well as the transformation of the emitted CO2 to valuable materials and chemicals.

Although the PC route has a positive impact on climate change, the overall perfor‑
mance is still not satisfactory. This, owing to the recycling process, has a negative impact
on human toxicity, freshwater eutrophication and ozone depletion potentials because of
the generation of secondary waste streams and the extra fossil fuels utilized in the recy‑
cling processes. Life‑cycle assessment (LCA) is a common methodology that explores the
various environmental impacts of targeted technologies. It also has the advantages of com‑
paring potential scenarios regarding to environmental effects [192]. Although, there are
environmental and economic assessments of a wide range of CO2 capture processes. How‑
ever, there is a research gap in this area related to the environmental impact assessment of
carbon recycling.

The reutilization of emitted carbon dioxide from post‑combustion carbon capture and
utilization techniques contributes to the achievement of the circular economy. The main
challenge here is that some PC carbon capture technologies still may not be economically
profitable. To overcome this challenge, sustainable strategies could be adopted by devel‑
oping technologies, marketing, increasing carbon taxes development of products and in‑
dustrial processes and accessing emission reduction benefits. Figure 9 summarizes the
main parameters in the carbon circular economy. Still, the chemical absorption of CO2 is
the most preferable technique for PC carbon capture technologies followed by membrane
separation and adsorption processes. As mentioned before, the three main processes are
suitable for post‑combustion CO2 capturing. There are different routes are used to attain
carbon circular economy such as [193]:
• Mineralization: it refers to the reaction of alkaline earth oxides –based materials (such

as MgO and CaO) with of CO2, yielding valuable carbonate‑based products can be
developed from industrial wastes;

• Another route for this strategy is the biofixation where CO2 is fixed by microalgae
yielding numerous biological organic products, chemicals and biofuels via biorefin‑
ing technologies. The biofixation has several merits such as the production of lipids,
which the main feedstock for the production of green monomers, such as ethylene,
as well as it can be transformed into bioethanol via some commercial reaction routes.
The process needs large volumes of water, light intensity and land as well as the main
nutrients such as carbon, nitrogen and phosphorus at specific concentrations and con‑
trolled pH and temperature (<45 ◦C). Additionally, purification of the flue gas stream
from SOx, NOx, and heavy metals is essential to protect the microalgae. Future stud‑
ies should focus on developing of the biorefineries, i.e., lowering the required area,
conserve energy, improving the cell growth, the impact of the flue gas composition
and load on the yield of the biomass and reducing the overall cost. Investigating the
integration of renewable energy in these biorefineries is preferable;

• The third route is the adsorption of CO2 onto efficient sorbents which are useful for high‑
pressure applications if the capacities and rates of these sorbents are being enhanced;

• Other routes for the post‑combustion CO2 capture such as cryogenic separation are
investigated, however, this is process is not economic from circular economy view
owning to its high energy demand.
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Figure 9. Schematic representation optimization of carbon circular and the leading companies in
this area.

Catalyzed chemical absorption is a new technology which is based mainly on enzyme
carbonic anhydrase. In this route, CO2 is transformed directly to bicarbonate at high rates,
slightly reducing the heat of desorption. Although the overall efficiency of this hybrid
technique is high, the sensitivity to contaminants and temperature variation affects the
lifetime of the enzyme. Hence, more research is needed to improve the activity and stability
of the enzyme on the long run.

The main processes involved in the transformation of CO2 into valuable products are
polymer synthesis, CO2 hydrogenation, electrochemistry, photo‑electrochemistry, dry re‑
forming of methane and oxidative dehydrogenation of light alkanes to alkenes. These main
processes have some limitations. For example, the endothermic nature of the hydrogena‑
tion reaction yields low conversions at lower temperatures. Hence, future work should
focus on optimization of these processes to increase their productivity. However, the car‑
bon circular economy can give the recycling process the strength to expand towards new
or modified value chains such as the production of secondary feedstock as well as valoriza‑
tion of other wastes developed during the material recycling [192].

A business model based on the integration of renewable energy and carbon capture and
utilization in power2methanol plants was economically assessed. The proposal showed that
this integration introduced a promising solution in the energy market [194]. Another study
investigates the introduction of CO2 in the manufacturing of polymers and co‑polymers.
However, such technologies are under development and it could be implemented in the
processing of plastic wastes in different area around the world [195]. An environmental im‑
pact assessment of 27 studies based on carbon capture storage, carbon capture utilization
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and carbon capture and utilization has been reported. The results showed that the global
warming reduction potential of CCU is much higher than CCUS and CCS. As well as the
negative impacts of CCUS and CCS on the environmental (eutrophication, acidification,
and toxicity potential) are much greater than that of CCU technologies [196].

The economic and ecological assessment of onshore‑ and offshore‑ CCS and CCUS‑
enhanced coal bed methane plants showed that the success of such projects is significantly
attributed to the experience of targeted countries in this area, in addition to other chal‑
lenges such as high cost of investment, renewable energy competition, implementation
time on the long run [197]. Another study stated that the successful deployment of carbon
capture utilization and storage with enhanced gas or oil recovery is depends on govern‑
mental support, in addition to the enhancement of CO2 storage [198]. The valuation of
CCUS reported that such projects still have low competitiveness in the energy market even
with the governmental support and the considerable pace of development [1]. Transition
from liner to circular economy yields development of the carbon utilization technologies
as illustrated in Figure 10. In the past, companies were focused in the reduction in carbon
tax expenditures rather than on CO2 utilization [199].

There is a considerable interest in cost‑effective processing of CO2 which may be at‑
tributed to that CO2 forms a precursor for new products or even current one. Hence, it
already contributes in the existence markets and the potential to enter new markets is a key
parameter that controls the interest of the investors in CCU technologies. Subsequently,
improvement of current or new CO2 utilization technologies will increase the number and
deployment rate of these projects which has a positive impact in the context of circular econ‑
omy and sustainable development [200]. The consumption of CO2 in sequestration projects
has been increased from 1.2 Mt in 1972 to 432.9 Mt in 2018 in carbon capture utilization and
storage projects, from 1 Mt in 1996 to 68.7 Mt in 2018 carbon capture and storage and from
0.1 Mt in 1991 to 75.6 Mt in 2018 in carbon capture and utilization projects [201]. There is a
main challenge for investigations and case studies related to this topic owning to the lack
of database for such CO2 sequestration projects. Despite this, we believe that this review
could be helpful for investigations related to this area as a base for further discussion on
the significance of carbon circular economy.

Figure 10. The impact of carbon sequestration projects on the transition from linear to circular [201],
open access.
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6. Prospects of Post Combustion Carbon Capture Technology
There are many research activities being conducted in the search for good sorbents for

capturing carbon dioxide. Ammonia which is considered as a novel liquid sorbent has low
energy consumption compared to monoethanolamine (MEA). An investigation conducted
shows that 5 wt% ammonia applications in carbon dioxide absorption has the same con‑
sumption of energy as 30 wt% monoethanolamine functioning at lower temperatures [202].
Some factors are considered in the selection of ammonia as a suitable solvent absorbent
includes ammonium salt precipitate as well as the solvent being volatile. A number of
projects in recent times have utilized chilled ammonia in capturing of CO2 [203–205]. There
are other types of amines also investigated in other to enhance their carbon dioxide ab‑
sorption capacity during monoethanolamine absorption. Methyldiethanolamine (MDEA)
which is considered a secondary amine‑based solvent has been investigated by several re‑
searchers around the world. This is simply because they tend to have higher carbon diox‑
ide absorption capacity, higher stability thermally, low alkalinity, low volatility, low con‑
sumption of energy as well as not being susceptible to corrosion [206,207]. Despite all these
advantages, MDEA has some limitations as well. They have slow absorption rate [207,208].
The addition of piperazine which is an activator caused the carbon dioxide absorption per‑
formance of the amine‑based solvent to increase. Through research activities, there have
been improvements in terms of thermal and oxidative degradation of MDEA [209]. The
application of different blenders improved the performance of the amine based liquid sor‑
bent. Blending MDEA and triethylene tetramine improve CO2 absorption capacity of the
MDEA [180,210]. Moreover, a blend between 2–amino–2–methyl–1–propanol and MDEA
enhanced CO2 capture as well as absorption rate of the MDEA [211]. Other research activi‑
ties have also been conducted using ionic liquids as solvent sorbents. They usually come in
a liquid state below temperature of 100 ◦C [177]. They also referred to as organic salt [183].
Selection of varied combination pair of the anion and cation changes their properties. Some
advantages of ionic liquids for the capturing of carbon dioxide include wide liquid range,
thermal stability, vapour pressure can be neglected, high carbon dioxide solubility and
physiochemical characteristics being tuneable [212]. The major setback is the high viscos‑
ity of liquid solvent [213]. Table 5 shows some research activities being conducted using
liquid sorbents.

A techno‑economic analysis of where amine‑functionalized solid sorbent (e.g., SiO2/
0.37 EB‑PEI) in four configurations (fluidized bed (FLB), moving bed (MB), fixed bed (FB),
and rapid thermal swing (RTS)) based on mathematical modeling has utilized in post‑
combustion CO2 capture combined with internal heat integration has been investigated.
The CO2 capture cost of the four solid sorbent‑based processes was approximately
48.1–75.2 $/tCO2, with a sensible heat recovery ranged from 45% to 58%. The CO2 capture
cost is lower than that of amine‑based absorption unit which is equivalent to 62.8 $/t‑CO2.
This is attributed to the combined effect of internal heat integration and improved CO2
cyclic capacity which suggest the feasibility of this 4 solid sorbent‑based processes for post‑
combustion CO2 capture. The technical performance was evaluated based on costs of elec‑
tricity, CO2 avoidance and CO2 capture. The CO2 capture costs of RTS, FB, MB, and FLB
were 52.1, 48.1, 51.8, and 75.2 $/tCO2, respectively. The RTS, FB, and MB recorded CO2 cap‑
ture cost lower than that of MEA 30 wt% (62.8 $/tCO2) and higher than that of water‑lean
solvent (46.6 $/tCO2). Concerning the energy performance, the system was much better
than that of the current CO2 capture processes [214]. A model “Aspen Plus” was used to
stimulate and optimize the CO2 (148.25 Nm3/h) capture from air using MEA absorption to
generate methane. A sensitivity analysis has been conducted to investigate the technical
performance of the overall process based on capture rate, CO2 loading of rich and lean
absorption liquids, reboiler temperature, the consumed energy consumption and overall
cost. At higher capture rates, the needed energy per ton of captured CO2 increases due to
a higher steam stripping rate, needed in the desorber, and at lower capture rates, the size
of equipment (blowers and absorber) increases owning to the significantly larger volume
of air applied. An electrical energy of 1.4 MWh/tCO2 were obtained and a reboiler duty of
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10.7 GJ/tCO2. For the MEA base scenario, the capital cost increased by around 60% yielding
CO2 capture costs of 1691 $/tCO2. Based on the techno‑economic evaluation, the calculated
cost lowered to 676 $/tCO2. The overall cost varied from 273 to 1227 $/tCO2 based on var‑
ied economic factors such as heat price (2–$20 $/GJ), electricity (20–200 $/MWh) and capital
expenditure (±30%), and plant life (15–25 years) [215].
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Table 5. Merits and demerits of liquid sorbents.

Type of Solvent Sorbents Merit Challenges Ref.

Amine based solvent

Ammonia

• Formation of salt with carbon dioxide ideal for the
fertilizer industry.

• There is the possibility of the energy consumption
being reduced.

• Ammonia salt precipitating.
• Solvent volatility [216,217]

Monoethanolamine
• Process efficiency is high
• The rate of reaction with CO2 is also high.

• Energy incentive
• Volatility being high as well as corrosion [218,219]

Methyldiethanolamine

• Low volatility
• Thermal stability
• Less alkalinity
• High carbon dioxide load
• The cost of regeneration is also low

• Rate of reaction is slow [207,220,221]

Amine mixture

Monoethanolamine +
2–Amino–2–methyl–1–propanol

• It performs better in terms of absorption capacity
compared to Monoethanolamine

• Combining with monoethanolamine produced a
final product that has the characteristics of both

• Reduced absorption capacity
• Efficiency is less than Monoethanolamine [211,222]

Methyldiethanolamine + Piperazine

• Higher stability compared to Monoethanolamine.
• The presence of the piperazine helps reduce the

possibility of thermal break down of
the Methyldiethanolamine.

• The final product also has lesser heat of absorption
compared to Monoethanolamine.

• Piperazine activities reduced
with temperature [209,223]
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Table 5. Cont.

Type of Solvent Sorbents Merit Challenges Ref.

Ionic liquid

Conventional ILs
• High CO2 selectivity
• Consume less energy than traditional solvents • High viscosity [224]

Functionalized ionic liquids

• Improvement in the CO2 absorption compared to
normal ionic liquids.

• They also have low surface tension compared to
aqueous amine solution.

• High storage capacity owning to the presence of
functionalized group in their surfaces

• Viscosity is high compared to ionic liquids.
• Performance reduces after regeneration
• Complicated synthesis processes

[212,224,225]

IL‑alkanolamine‑water mixture
• Higher CO2 dissolution and Lower viscosities

than conventional ILs

• Higher negative impacts on the environment
than conventional ILs

• Loss in amine are higher than
conventional ILs

• Consume less energy than amine but higher
than conventional ILs

[224]

Amine based ionic liquid +
Methyldiethanolamine

• Presence of ionic liquid supports carbon dioxide
absorption on the Methyldiethanolamine solution

• The regeneration efficiency is high.
• Stability of sorbent is unknown [226,227]
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The use of carbonaceous materials for capturing CO2 is also on the increase with sev‑
eral research activities also being performed in this area. For activated carbons, their sur‑
faces chemistry is defined by heteroatoms and also managed by the characteristics of the
raw precursors [228]. Today there are several groups of activated carbon being used in CO2
capture because of technological advancement. Nano materials as explained earlier have
high carbon dioxide capture capacities and sustainable in in multiple sorption and des‑
orption cycles. The energy requirement for some of these materials is relatively low. The
major limitations for this approach are that the process is expensive and is quite compli‑
cated. Controlling the size and dimension of these materials implies that specific materials
will be needed to meet the required dimension. Subsequently, increasing the cost of the
process is a result of the very complicated methodology involved. Screening and selec‑
tion of ideal nanomaterial is also an issue but more research investigation must be geared
towards developing cheap production route for these nanomaterials.

7. Conclusions
As the world continues to strive for the most effective approach in reducing toxic emis‑

sions, there has been a sudden rise in the different materials being used as sorbents for PC
carbon capture technique. This investigation explored some of these materials and con‑
sidered current and future research activities being performed in order to enhance their
absorption capacity. The use of nano materials in spite of their high potential in carbon
dioxide capture, area of their surfaces and adjustable characteristics still have some lim‑
itations in terms of market price for production as well as complexity. These two major
limitations create a future research direction that must be critically explored to improve
the commercialization of the technology.

Other capturing materials discussed in this investigation include activated carbons
which is a carbonaceous material with high benefits when utilized in PC capture of CO2.
They have high stability, simple to manufacture and the manufacturing cost is cheap com‑
pared to others. The major limitations in the application of activated carbon for CO2 cap‑
ture are their stability, regeneration abilities, kinetics analysis, energy input, and environ‑
mental impacts. These limitations related to activated carbon also create a clear cut re‑
search direction that must be considered in the future investigations. Surface chemistry
for carbonaceous materials is also important area that requires intensified investigation.

Using aqueous ammonia for capturing carbon dioxide is also another area that was
discussed in this investigation. There is the urgent need for a novel reactor as well as
additive development to enhance the absorption process. Pressure, temperature and the
ammonia and carbon dioxide characteristics are some key parameters that define the CO2
capturing process but the configuration of the reactor will also actively determine the mass
transport characteristics between the liquid and the gas. Optimization of reaction condi‑
tions is also important as they determine the cost of the entire capturing process using
ammonia. Future research must consider optimization of the entire reaction process that
will yield the best results. A number of research activities carried out relating to ammo‑
nia are performed in micro field. There is the urgent need for micro reaction kinetics to
be explored. A thorough investigation to reduce ammonia loses due to its volatility will
improve the entire capturing process. A pragmatic way of reducing these loses is to apply
low ammonia concentrations at lower reaction temperatures.
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