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Abstract
This paper presents a new accurate method to compute the mechanical response of pavement structures using an Artificial 
Neural Network (ANN) model coupled with Multi-Layer Elastic Analysis (MLEA). The ANN model is used to improve the 
numerical integration of the response function used in the MLEA method. It requires four inputs: total pavement thickness, 
the diameter of the contact area, radial distance, and depth of the response point; and it was trained on one million hypotheti-
cal pavement structures. The developed method has been validated by a comparative analysis against boundary conditions, 
finite element analysis, and available MLEA solutions using various hypothetical pavement structures. The results demon-
strate that the developed solution gives excellent response in the vicinity of the pavement surface together with a significant 
improvement in computational efficiency.

Keywords Pavement response · Multi-layer elastic analysis · Numerical integration · Artificial neural network

1 Introduction

The structural response of pavement layers to traffic loading 
plays a critical role in the design, analysis, and modelling 
of the pavement performance [1, 2]. Generally, pavement 
response modelling can be performed in two principal 
methods. The first is the Finite Element Analysis (FEA) 
[3–6], which can accurately model complex problems such 
as the mechanism of interaction between pavement surface 
and tyre [7–9]. The main drawback of this approach, how-
ever, is the computational time required to solve a single 
problem, it is, therefore, not considered suitable for rou-
tine pavement analysis and design problems. The second 
approach is Multi-Layer Elastic Analysis (MLEA). This 
analysis technique was first introduced by Burmister as a 
solution for two-layer systems [10], later extended to three-
layer systems [11]. Over time, MLEA has expanded to 
allow analysis of greater numbers of layers and it has been 

implemented in widely used pavement analysis programmes 
such as JULEA [12], KenLayer [13], MnLayer [14], and 
others [15–17]; more details about these programmes are 
presented in Sect. 2.1. The advantage of this approach is 
that it provides a practically instant pavement response solu-
tion, which makes it suitable for routine pavement design, 
and also for probabilistic pavement design based on the 
Monte Carlo Simulation method, which requires repeated 
solving of pavement response [18–20]. This approach, how-
ever, has one main drawback which is the trade-off between 
response accuracy and computational speed near pavement 
surface [12, 13, 17].

Furthermore, there have been various advances in the 
analysis of pavement response such as analysis of multi-
layer pavement structures with and viscoelastic media sub-
jected under dynamic loads [21, 22] or impact loads [23, 
24]. However, similar solutions may not be practical for 
everyday pavement analysis and design problems due to 
the advance knowledge required to implement these solu-
tions. In fact, MLEA is still widely used by many pavement 
consultants and implemented in well-known pavement 
design methods such as the Mechanistic Empirical Pave-
ment Design Guide [25] and the British design method 
[1] to solve pavement analysis and design problems. The 
accuracy of MLEA method, however, still requires further 
improvement especially in the vicinity of pavement surface, 

 * Ahmed Abed 
 abeda@aston.ac.uk

1 Department of Civil Engineering, Aston University, Aston 
Triangle, Birmingham B4 7ET, UK

2 Nottingham Transportation Engineering Centre, 
The University of Nottingham, University Park, 
Nottingham NG7 2RD, UK

http://orcid.org/0000-0002-6822-5519
http://crossmark.crossref.org/dialog/?doi=10.1007/s42947-022-00255-x&domain=pdf


 A. Abed et al.

1 3

as demonstrated in this work. Accordingly, the main aim 
of this study is to develop a flexible pavement response 
model capable of enhancing both precision and computa-
tional speed especially in the vicinity of the pavement sur-
face where the pavement surface distress initiates. The new 
model involves application of MLEA together with a neural 
network model to enhance the numerical integration process 
involved in response calculation. The suggested solution 
has been coded in MATLAB, and the model results have 
been validated against boundary conditions at the pavement 
surface, FEA model, and available MLEA programmes. 
The validation process shows that the proposed model has 
enhanced response near the pavement surface with a more 
than doubling of computational efficiency compared to pub-
lished data.

2  Methodology

2.1  MLEA

Considering a multi-layer linear elastic system with an axi-
ally symmetrical stress distribution subjected to a vertical 
load, such as the pavement structure shown in Fig. 1, stresses 
and displacements in polar coordinates at any point (r, z) can 
be calculated using the following equations [13]:
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where r is radial distance from the load centre, z is the depth 
below the surface, �z , �r , and �t are vertical, radial, and tan-
gential stresses respectively, �rz is shear stress, w and u are 
vertical and horizontal displacement, respectively, J0 is a 
Bessel function of the first kind and order of 0, J1 is a Bes-
sel function of the first kind and order of 1, m is a param-
eter, A, B, C, and D are integration constants, � is Poisson’s 
ratio, E is modulus of elasticity, i is the layer number defined 
based on the depth of the analysis, � is r/H, λ is z/H, λi is 
the total thickness from the surface to the bottom of layer i 
divided by H which is the total thickness of the pavement 
from the surface to the top of subgrade. The assumptions of 
this system are that all layers are linear elastic, fully bonded, 
weightless, and the continuity condition applies for the verti-
cal stress, shear stress and displacements at layer interfaces. 
Thus, these responses at the bottom of every layer are equal 
to those at the top of the next layer.

Equations 1 through 6, however, give stresses and dis-
placements when the pavement is loaded with a concentrated 
vertical load of value −mJ0(m� ). To convert this load into a 
distributed load over a circular area, the contact load must be 
accumulated over the contact area by performing a Hankel 
transform which takes the following form [13, 14]:

where � = a∕H , a is the load radius, and q is the contact 
load. Accordingly, the pavement response due to a distrib-
uted load can be determined by introducing Eq. 7 into the 
response due to the concentrated load (Eqs. 1–6) and inte-
grating the resulting functions with respect to m over the 
range 0-∞, as follows:
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The capital subscripts in this equation are used to 
denote that the response is due to a distributed load q . 
The numerical solution of this system requires the deter-
mination of the integration constants A, B, C, and D for 
all layers and over all m values considered to reach a 
converged solution.

The integrat ion constants  can be determined 
from boundary and continuity conditions. Over the 
contact area, z = 0 and r < a, and the vertical stress 
�z1 = −mJ0(m�) ; also, the shear stress at the pavement 
surface equals zero, thus �rz(z = 0) = 0 . At pavement 
layer interfaces, the vertical and shear stresses are 
equal based on the continuity condition. Similarly, the 
vertical and horizontal displacements at the interfaces 
are equal. Further, an infinite depth, z = ∞, the stresses 
should vanish, which means An and Cn must equal zero 
to meet this condition. To determine the integration 
constants, Huang [13] developed a method to calcu-
late the constants of the last layer using the boundary 
conditions at the pavement surface then using these 
to calculate constants of the above layers one by one 
using the continuity conditions at the layer interfaces. 
Erlingsson and Ahmed [17] calculated the integration 
constants by arranging the equations resulting from 
the boundary and continuity conditions of a system of 
n layers into one master matrix, as follows:
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The detailed derivation of this equation can be found 
in the cited study. Equation 9 can be rewritten as [E] × 
{X} = {I} where matrix [E] is a matrix of linear equations 
derived from the boundary and continuity conditions; {X} 
is the unknown integration constant vector, and {I} is the 
input vector. It can be seen in Eq. 9 that An and Cn are not 
included; this is because their values are zero, which leads to 
the exclusion of two equations. This system of equations is a 
typical mathematical problem that can be solved by various 
methods; in this study, the Lower–Upper (LU) factorisation 
method was implemented. This method involves decom-
posing matrix [E] into lower and upper triangle matrices, 
which are used in forward and backward substitution pro-
cesses to find the values of the unknowns. This method has 
been implemented in this study since it requires solving one 
matrix to determine the integration constants.

The determined integration constants can then be used in 
Eq. 8 to calculate pavement response at any point of inter-
est. However, solving this equation is not straightforward 
since it involves solving a convolution integral of the product 
of two oscillating Bessel functions, which is a complicated 
mathematical problem. This problem has traditionally been 
solved by performing numerical integration in the range 
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Fig. 1  A typical multi-layer 
pavement structure in polar 
coordinates
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between m equals zero and an m value that gives a converged 
solution allowing for certain integration error. This solution, 
however, can be computationally expensive, especially near 
pavement surface where the response function behaviour 
becomes complex and unpredictable. In this regard, different 
numerical integration techniques and ‘tricks’ have been sug-
gested to improve the accuracy and convergence speed of the 
numerical integration process. Maina and Matsui [15] used 
a double exponential numerical integration formula in their 
work. They also implemented Richardson’s extrapolation to 
improve the computational speed near the pavement surface. 
They demonstrated that this method improved the numeri-
cal integration accuracy, but they also stated that there was 
a problem in the response accuracy near the load edge. In 
KenLayer, Huang [13] used a four-point Gaussian formula 
to integrate numerically between the zeros of both Bessel 
functions (J0 and J1). And to improve integration accuracy, 
he subdivided the first cycle of  J0 into six intervals and the 
first cycle of  J1 into two intervals and integrated these using 
the four-point Gaussian formula. This approach obviously 
depends on the number of points taken between the zeros 
of the Bessel functions, and subdividing the first two cycles 
only into finer areas may lead to an error in the integration 
process as the entire response function should be integrated 
accurately. A similar approach was followed in MnLayer 
by Khazanovich and Wang [14] who also used a Gaussian 
formula to solve the numerical integration, but to improve 
the computation efficiency they calculated the integration 
constants at key m values then interpolated these to calculate 
them at required m values. Similarly, the monotonic part 
of the response function was also calculated at the key m 
values then interpolated that part to all m values. To further 
improve the response convergence speed near the surface, 
they calculated the response as a difference between two 
solutions; the first was for an elastic half space system hav-
ing properties of the surface layer of the multi-layer system, 
the second was the difference in the response between the 
multi-layer system and the half space. They mentioned that 
this approached improved the convergence speed near the 
surface which is why it is implemented in MnLayer program. 
In JULEA and BISAR, Gaussian integration formulas are 
also employed [14, 17]. Cauwelaert [26] however, explained 
that the drawback of the Gaussian formula is that a differ-
ent set of m values will be required for every combination 
of a and r. Therefore, he implemented the Newton–Coates 
integration method to provide as general and fast a solution 
as possible. Zhao et al. [16, 27] implemented two methods 
to improve the accuracy and speed of convergence near the 
pavement surface; the Lucas algorithm, which converts com-
plicated oscillating behaviours such as the product of two 
Bessel functions into regular high and low-frequency com-
ponents, and Richardson’s extrapolation to speed up the inte-
gration process. They reported that this method improved 

near-surface pavement response and computational speed in 
comparison with other pavement response programs such as 
KenLayer and BISAR.

2.2  Methodology of the Proposed Model

In most of the solutions reviewed, there was a common fac-
tor, which is the indetermination of the maximum Hankel 
parameter value that results in a converged solution. This 
means that the numerical integration process will continue 
slice by slice until the integration error reaches a predeter-
mined tolerance, and this can slow down the integration 
process speed. In this study, however, it is suggested to 
predetermine the m value that gives a converged solution 
before attempting the numerical integration; this limit is 
designated as “m max”. Therefore, the infinity term in Eq. 8 
will be replaced by m max and the integration process will be 
between m = 0 and m = m max. To achieve that, the relation-
ship between the analysis inputs and m max was investigated. 
Equation 8 indicates that the response is a result of three 
functions, an exponential one which is a monotonic function 
depending on z∕H and the integration constants, and two 
oscillating Bessel functions that depend on  m × r∕H and 

Fig. 2  r/H vs m 

Fig. 3  a/H vs m 
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m × a∕H . Accordingly, the relationships between m max and 
z, r, a and H were analysed as presented in Figs. 2, 3, 4 and 
5. From these figures the following trends can be observed:

1. The larger the value of r/H, the faster the function con-
verges, as shown in Fig. 2; but this pattern is associated 
with significantly higher oscillations. Since H is usu-
ally assumed a constant value, then it can be concluded 
that the larger r becomes the lower m max will be but 

the more the function oscillates, which means it will be 
complex to integrate.

2. Figure 3 demonstrates that the smaller the contact radius, 
the larger the m max and the lower the oscillations.

3. The analysis depth is a critical parameter in the analysis 
process. Figures 4 and 5 indicate that the closer the anal-
ysis depth to the pavement surface, the more complex 
the response function will be. Although both Figures 
show that z is an important parameter, z/H did not show 
a critical effect on the results, as shown in Fig. 4. This 
figure indicates that small z/H leads to a higher oscilla-
tion, but the response function shape is still predictable 
with limited oscillations. On the other hand, despite it 
not being directly included in the analysis, the param-
eter z/a is found to be much more critical than z/H and 
it significantly affects both m max and the strength of 
oscillations, especially in the zone z/a < 0.2. Since a is 
usually a constant value, it can be concluded that the 
smaller the z the larger the m max and the greater the 
oscillations.

It can be seen that there are several conditions that can 
significantly affect m max and the extent of oscillations, and 
thus the complexity of the numerical integration process. 
To understand the underlaying relationship between m max 
and z, r, a and H, ANN method [28] was used. To apply this 
method, a lot of data are required to successfully train the 
model and detect the underlaying relationship between the 
inputs and the output. Accordingly, a MATLAB code was 
developed to collect the required data; the code firstly gener-
ates random input parameters with varying pavement struc-
ture thickness between 50 and 1500 mm, varying contact 
load radius between 50 and 170 mm, and random computa-
tional point coordinates with r between 0.1 and 10000 mm 
and z between 0.1 and 5000 mm. These conditions are suffi-
cient to analyse all pavement structures and load geometries 
currently in practice. The randomness of the generated data 
was checked by running a Runs test at a level of significance 

Fig. 4  z/H vs m 

Fig. 5  z/a vs m 

Fig. 6  ANN diagram
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of 5% [29]. Secondly, it calculates the numerical integration 
constants based on the properties of the generated structure. 
Third, it applies Eq. 8 which involves conducting numeri-
cal integration that stops when the predetermined numerical 
error is reached; lastly, it stores the r/H, a/H, z/a and m max 
parameters resulting from every iteration. By implementing 
this procedure, a total of one million combinations of data-
sets were collected, covering most possible multi-layer pave-
ment structures. The collected data were used then to train 
the ANN model to drive the relationship between m max 
and the r/H, a/H, z/a parameters. Figure 6 shows the setup 
of the model which consists of an input layer, a hidden layer 
of five neurons, and an output layer. The number of neurons 
was optimised by a trial-and-error process; varying number 
of neurons between 3 and 10 was simultaneously tried and 
the corresponding  R2 values were registered, then the lowest 
number of neurons that gave the best fit was selected; this 
process showed that five neurons give the best fit for this 
model. The data were divided into three sections, 70% to 
derive the model, 15% to validate the model, and 15% to test 
the model. The ANN model was developed using the Lev-
enberg–Marquardt backpropagation algorithm. The model 
results are shown in Fig. 7; these results show that there is 
a wide range of m max, approximately from 25 to ~ 5000. 
This depends on the analysed pavement geometry, applied 
load, and response point coordinates with respect to the 
load centre. Generally, the closer the response point to the 
load centre, the larger the m max value, and the closer the 
response point to the surface, the larger the extent of the 
oscillations. Accordingly, it can be concluded that the most 
difficult point to analyse is the one located at the surface 
and at the centre of the applied load, which is associated 
with large m max values and oscillations. However, Fig. 7 
indicates that with these conditions, the ANN model tends 
to overestimate m max values. This can slightly increase the 
computational time, but it will not decrease the accuracy of 
the numerical integration. Moreover, it can be seen that the 

model can accurately predict m max with a coefficient of 
regression (R2) of 0.996 for the various pavement geometries 
and load inputs included in the analysis. The R2 values of 
the training, validation, and testing data were at least 0.996, 
which indicates the successfulness of the model in fitting 
the data. It must be stated here that the μ, q, andE were not 
considered as inputs in the ANN model since varying these 
factors changes the amplitude of the response function rather 
than its extent or complexity. This means that changing the 
magnitudes of these factors would not change the value of 
m max as long as the geometry of the pavement under con-
sideration and the load contact radius were kept the same. 
Figure 8 presents an example of the relationship between E, 
µ and m max; in this figure it can be noticed that changing 
the values of E and μ does not affect to the minimum integra-
tion boundary, m_max, to reach the predetermined tolerance 
in the numerical integration of Eq. 8.

Furthermore, it must be highlighted here that predeter-
mining m max is critical for two purposes. First, it is used 
to determine an optimum m max for every computational 
point which can speed up the numerical integration process 
eventually the response at that point. Second, it is utilised 
to calculate optimised integration intervals over m = 0 and 
m = max. The latter significantly improves the accuracy of 
the integration process since it is performed over equal inter-
vals in this case. It also improves the response computational 
efficiency in general by optimising the number of the inte-
gration constants, Ai, Bi, Ci, and Di which must be calculated 
over all intervals of integration domain.

After determining m max, the next step is to evaluate the 
response function at a sufficient number of points between 
zero and m max in order to perform an accurate numerical 
integration. Bear in mind that the space between these points 
must be carefully estimated to capture the actual shape of 
the response. If the number of integration points is overes-
timated then the computational efficiency will decrease, but 
if it is underestimated then the accuracy of the numerical 

Fig. 7  Validation of the neural network model m max results
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integration will decrease. To overcome this issue, the num-
ber of zeros of Bessel functions is considered to optimise 
the required number of integration points. Since signs of the 
response function fluctuate from zero to zero over the x axis, 
and the zeros of the response function match with the zeros 
of the Bessel functions, then the number of points is calcu-
lated in this study as the number of zeros of Bessel functions 
of order zero that are smaller or equal to m max plus four 
points between each two successive zeros, and the number 
of zeros of Bessel functions of order one that are smaller or 
equal to m max plus four points between each two successive 
zeros. Calculating the number of evaluation points by this 
method has been found to satisfy the boundary conditions 
( �z equals applied load when r < a, and �z = 0 when r > a); it 
has also been found satisfactory when the results of the cur-
rent work were validated against other software, as discussed 
in the following sections.

Having determined the values of the Hankel param-
eter, it is now required to evaluate the response function 
at all of these points and fit a suitable function to match 

its behaviour. In this study, a cubic smoothing spline func-
tion embedded with Matlab has been utilised [30]. This 
function can provide a smooth fitting to a given dataset 
in a piecewise form; it was chosen due to its flexibility 
and superiority in fitting different complex patterns, which 
makes it suitable for the current application. Figure 9 pre-
sents an example of the fitting process results. This figure 
shows a dataset that was used in the fitting process denoted 
by the blue circles and the fitted spline. It also shows 
another set of validation data, calculated with a denser set 
of m values than the one used in the fitting data, which is 
taken to represent the exact solution of the response func-
tion. It can be seen that there is an excellent agreement 
between the fitted spline and the exact solution. Please 
note that the selected example in this figure demonstrates a 
complex response function shape with variable frequency 
and amplitude values. This means that the selected spline 
function gives excellent results even in complex situations 
such as the one shown in Fig. 9.

Fig. 9  An example of the 
matching between response 
functions calculated using fitted 
data and validation data

Fig. 10  Flowchart illustrating 
the logical steps of the proposed 
solution
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The last point is to calculate the response by numerically 
integrating the fitted spline function between zero and m 
max; this has been performed by utilising the “integral” 
function embedded in MATLAB which involves using 
global adaptive quadrature integration. It is important to 
mention that calculating the integration constants at m = 0 
leads to a singularity of the matrix in Eq. 9. To overcome 
this issue, a very low initial m value of 1E-5 has been used in 
this study; this value has been used to calculate the integra-
tion constants and to evaluate response functions at m ~ 0. 
This approach has been found to be accurate and does not 
have any effect on the analysis results as shown in the next 
section.

To sum up, the suggested pavement response calculation 
process goes through the following main steps which are 
graphically explained in Fig. 10:

1. Calculate the integration constants for the pavement 
being analysed by solving Eq. 9. It must be mentioned 
here that this step requires solving the linear system 
for all Hankel parameters required to perform the 
numerical integration, which can be computation-
ally expensive. To speed up this step, the concept 
described by Erlingsson and Ahmed [17] has been 
implemented. In this concept, the integration con-
stants of all layers are calculated for a typical set of 
m values; a suitable model is then fitted to all con-
stants of all layers; finally, the fitted model is used to 
interpolate the integration constants at all required m 
values, which are calculated after determining m max 
in step two. An example of this procedure is presented 
in Fig. 11. This Figure shows that the interpolated 
data fall exactly on the fitted spline which means the 
interpolation process is quite accurate. This step can 
decrease the computational time since the interpola-
tion process is much faster than the process of solv-
ing the linear system. Also, the integration constants 

are functions of layer thickness and properties, which 
means one typical set of integration constants can be 
calculated for the multi-layer system being analysed; 
then for every z and r domain, a new set of integration 
constants is interpolated from the typical set of inte-
gration constants at the required m values for those 
particular coordinates.

2. Using pavement geometry, the coordinates of the 
required computational point, and the developed ANN 
model, the m max value is predicted. With this value, 
� , and � are then used to determine suitable m data-
set between m ~ 0 and m max which will be used in the 
evaluation of the response functions.

3. Calculate the integration constants for all m values 
developed in step two by interpolation using the fitted 
model in step one.

4. Evaluate all response functions in Eq. 8 using the m val-
ues calculated in step two and the integration constants 
calculated in step three.

5. Fit a spline to every response function and numerically 
integrate to calculate the required response.

Fig. 11  Sample of the spline 
fitting and interpolation process 
results (Left: constant A results 
for layer 1 of a five-layer sys-
tem. Right: constant D for layer 
1 of a ten-layer system)

Fig. 12  �
Z
 at surface of a two-layer system
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3  Results and Discussion

3.1  Validation Against Boundary Conditions

The solution derived in the previous sections was coded 
using MATLAB. To validate the developed code, two meth-
ods have been followed. Firstly, the vertical stress results of 
different multi-layer flexible pavements have been validated 
against boundary conditions at the surface ( �Z = q when 
r < a, and �Z = 0 when r > a). Figures 12, 13, 14 and 15 
present the vertical stress results at the surface for two to 
six layer pavements with different loads and layer proper-
ties. It can be seen that the vertical stress equals the applied 
pressure under the contact area and equals zero outside the 
contact area, even when large radial distances are tested such 
as ten meters away from the load centre as shown in Fig. 15. 
Moreover, all of these figures show that at the edge of the 
contact area where r = a and � = � , the vertical stress equals 
half of that applied; this is because the integration result 
of the vertical stress response function equals q x 0.5 as 
explained by Zhao et al. [16]. Hence, the vertical stress at 
the pavement surface and the edge of the applied load can be 
considered as another validation of the analysis.

3.2  Validation of the Vertical Stress Near 
the Contact Area

In this section, a comparative analysis of the near-surface 
pavement response is presented. For this purpose, a 2D FEA 
model that was built using Abaqus CAE 2021 software, and 
three MLEA programs namely MnLayer, KenLayer and 
JULEA were selected to validate the results of the developed 

Fig. 13  �
Z
 at surface of a three-layer system

Fig. 14  �
Z
 at surface of a four-layer system

Fig. 15  �
Z
 at surface of a five-layer system

Table 1  Properties of the pavement structures implemented in the 
validation process

System 2 layers 3 layers 4 layers 5 layers 6 layers

a mm 100 100 110 120 150
Q MPa 0.6 0.8 0.6 0.65 0.75
H mm 100 100 20 30 40

inf 200 100 120 100
inf 300 200 100

inf 250 50
inf 50

Inf
E MPa 500 5000 10,000 7000 3500

60 300 7000 10,000 8000
100 200 500 500

60 150 200
50 100

50
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solution. The FEA model compromised a geometry of 10 m 
width by 10m height in total; it was modelled using triangu-
lar linear elastic elements (3 nodes elements named CAX3). 
At the bottom and lateral boundaries, special infinite linear 
elastic elements has been included to extend the infinite half 
hemispace (4 nodes one-way infinite linear elastic elements 
named CINAX4). The mesh size of the model ranges from 
0.5 mm on the load edge near the pavement surface, up to 
0.5 m on the infinite half hemispace with a total of 112,655 
to 245,959 elements for the varying pavement structures 
implemented in this study.

The six-layer pavement structure shown in Table 1 was 
used in this analysis since the exact solution for the vertical 
stress at the pavement surface can be determined from the 
boundary conditions, this stress was used in the analysis. 
Figure 16 presents the vertical stress results of all solutions 
at 1 mm depth below the surface. Results from the method 
described here are designated as “Multi-layer Pavement 
Analyser” (MPA) in the figure. This figure indicates that 
MnLayer resulted in a relative deviation from the boundary 
conditions around the load edge. KenLayer showed some 
increase in the vertical stress under the load next to the edge, 
followed by a decrease to about − 50 kPa at approximately 
5 mm distance outside the load edge. Meanwhile JULEA 
zeroed the vertical stress at the load edge and even at 2 mm 
inside the edge, which constitutes to a critical error at this 
location. MPA, on the other hand, showed closer results to 
the boundary conditions with an excellent agreement with 
the FEA results. At the load edge, MPA and FEA obtained 
the exact result, which is half of the applied load as men-
tioned earlier. At 1 mm distance from either side the load 

edge, both solutions showed a minimal error of about 8% 
which can be attributed to the complexity of the numerical 
integration process at this location. At all other investigated 
points, MPA as well as FEA showed excellent agreement 
with the boundary conditions.

Furthermore, to quantify the computation error in MPA 
and the other programs, two indicators were investigated. 
The first indicator is the Root Mean Square Error (RMSE) 
which can be calculated as follows:

where x1 and x2 refer to the first and second set of data, 
and n is the number of data points. The second is the coef-
ficient of regression. The results are shown in Table 2; this 
table reports RMSE and R2 results for MPA and the other 
programs as compared with the ideal response calculated 
from the boundary conditions. Based on 27 computational 
points, the RMSE of MPA is the lowest compared to the 
other programs. This means that its solution has the lowest 

(10)RMSE =

√√√√ n∑
i=1

(x1,i − x2,i)
2
∕n,

Fig. 16  Vertical stress profile at 
pavement surface and varying 
distances from load centre
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Table 2  Statistical analysis results of the vertical stress response near 
the surface

Indicator MPA FEA KenLayer MnLayer JULEA

RMSE 18.386 22.645 62.802 136.578 154.008
R2 0.997 0.996 0.966 0.874 0.804
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error in terms of the vertical stress at the pavement surface. 
The Table also shows that  R2 is largest for MPA, which con-
firms the previous conclusion.

3.3  Validation of MPA Results Against Available 
Solutions

Apart from validating the vertical stress results against the 
boundary conditions at the pavement surface, the only way 
to validate pavement response is to compare the results 
against other approved pavement analysis programmes. 
To achieve that, the results of 2 to 6-layer pavements with 
varying thicknesses, contact loads, and contact radii were 
compared against the three other selected programs. The 
properties of the pavement structures are presented in 
Table 1. These structures are intended to cover a wide range 
of different possible pavement types; moduli are based on 

the authors’ experience with back-calculated FWD measure-
ments (at different temperatures). Since, strains are func-
tions of stresses, then only stresses in x, y and z directions 
and vertical displacements were compared in this work. 
Figures 17, 18, 19 and 20 present comparative results of 
MPA against the other solutions for the x, y, and z stresses, 
respectively. Figures 21, 22, 23 and 24 present comparative 
results for vertical displacement. In general, these results 
show that there is an excellent agreement between MPA, 
MnLayer, FEA and KenLayer in all responses. There is also 
relatively good agreement between MPA and JULEA but to 
a lesser extent. Figures 17, 18, 19 and 20 show that most of 
the disagreements between MPA and JULEA are at points 
located near to the surface (i.e., high stresses). This agrees 
with observations from the literature that JULEA does not 
return an accurate response in the vicinity of the surface.

To further analyse these results and quantify the level of 
agreement between solutions, RMSE and R2 were calcu-
lated, as shown in Table 3. This table indicates that there 
are small differences and high correlation between MPA, 
FEA, MnLayer, and KenLayer; it also indicates that there 
is a larger difference and poorer correlation between MPA 
and JULEA. Nevertheless, the absolute level of agreement 
is shown by fairly R2 values amongst all solutions (> 0.987).

3.4  Computational Efficiency of MPA

One of the important aspects of computer applications or 
algorithms is the processing speed or the “computational 
efficiency”. In computer sciences, this topic is critical and 
can have various definitions. With respect to the current 
work, the computational efficiency is defined as the amount 
of time required to read the inputs, run the analysis, and 
return the results which are in this case pavement stresses, 
displacements and strains. The computational efficiency of 
the code was measured using the “tic-toc” function embed-
ded in MATLAB, and it was then compared against other 
published computational time results [16]. In this study, 
the authors analysed a ten-layer system and measured the 
time required to calculate responses at twenty points near 
the pavement surface; the computational time for their code 
was 3.1 s. The authors also reported computational times for 
the same pavement system measured using two other pro-
grammes, BISAR and KenLayer, and the processing times 
for these programmes as reported by the authors were 6.4 
and 5.4 s, respectively. In this work, the computation time 
for twenty points 1 mm below the surface of a ten-layer 
pavement structure and at different radial distances was 1.4 s 
as an average of twenty consecutive readings measured on 
a computer with Intel Core i3 CPU of 3.50 GHz. This con-
stitutes a more than doubling of computational efficiency 
compared to the solution in [16] and around a four times 
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Fig. 24  W validation against FEA

Table 3  Statistical analysis of MPA response results with other pro-
grams

RMSE

Solution Sigma x Sigma y Sigma z W

MnLayer 0.4888915 0.3794238 0.2119101 0.0000834
KenLayer 0.5173122 0.6543924 1.5390469 0.0007299
JULEA 55.7784196 50.3681348 29.2026109 0.0030642
FEA 1.2835471 1.5676654 0.3636570 0.0381466
R2

Solution Sigma x Sigma y Sigma z W
MnLayer 0.9999992 0.9999997 0.9999992 0.9999947
KenLayer 0.9999991 0.9999986 0.9999543 0.9999937
JULEA 0.9871832 0.9923115 0.9879420 0.9998649
FEA 0.9999961 0.9999946 0.9999975 0.9928050
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increase in efficiency against BISAR and KenLayer, yet with 
improved accuracy of results close the edge of the loaded 
area.

4  Conclusions

In this study, an innovative approach to calculate structural 
response of multi-layer pavements has been developed. The 
approach has involved developing an ANN model to predict 
the maximum value of Hankel parameter, m max, at which 
the numerical integration process of pavement response 
functions gives a converged solution. The main advantage of 
this solution is that it allows for the optimisation of the num-
ber of Hankel parameters and integration constants which 
significantly enhances the accuracy and computational 
efficiency of the response calculation process. The results 
of this approach have been validated against the boundary 
conditions, a FEA model and available MLEA solutions. 
Based on the results of this study, the following conclusions 
can be drawn:

1. Pavement geometry, contact radius, and coordinates of 
the response point have critical effects on the complexity 
and extent of the response function.

2. The response function was found to be very sensitive to 
the depth of the analysis, distance of the analysis, load 
radius, and total thickness of the pavement.

3. Comparisons of MPA results of various multilayer pave-
ments against MnLayer, FEA, and KenLayer demon-
strated excellent agreement associated with significant 
improvement in the response accuracy of MPA near the 
pavement surface, particularly at the edge of the loaded 
area.

4. Large m-max values are mostly required near the pave-
ment surface. These values, however, may vary substan-
tially depending on r/H, a/H, z/a parameters. Hence, the 
ANN model is used to optimise m-max based on the 
input parameters, which has significantly improved the 
numerical integration efficiency eventually the response 
calculation speed. This solution is therefore suitable for 
applications require quick response such instant back-
calculation of pavement layer properties, or in pavement 
performance simulations that involve using the Monte 
Carlo simulation method which requires hundreds or 
thousands of iterations and pavement response calcula-
tions.

5. Multilayer elastic analysis represents a great deal of 
simplification to the actual behaviour of asphalt and 
unbound materials. In order to establish a relationship 
between the simplified model and the actual behaviour, 
one can consider calculating moduli of asphalt layers 

under certain temperatures and frequencies then con-
sider the calculated moduli in the MLEA model. Simi-
larly, equivalent moduli of the unbound layers can be 
derived under various humidity levels for instance, 
which can be used in the MLEA model. These measures 
could reduce the gap between the MLEA results and the 
actual response of the materials.

6. Future research will focus on expanding the developed 
approach to analyse viscoelastic material behaviour, 
pavement response to dynamic loading, and implemen-
tation in pavement management systems.
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