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Abstract. Multiple sequence alignment plays a key role in the computational analysis of biological data. Different programs 
are developed to analyze the sequence similarity. This paper highlights the algorithmic techniques of the most popular 
multiple sequence alignment programs. These programs are then evaluated on the basis of execution time and scalability. The 
overall performance of these programs is assessed to highlight their strengths and weaknesses with reference to their 
algorithmic techniques. In terms of overall alignment quality, T-Coffee and Mafft attain the highest average scores, whereas 
K-align has the minimum computation time.
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1. Introduction

The idea that the construction of evolutionary relationships between organisms can be interpreted 
using DNA based sequences, proposed by Crick, laid the foundation of modern evolution and 
comparative genomics [1]. Nowadays, biological databases contain a huge amount of DNA and 
protein sequence data collected from high throughput experiments in biotechnology. One of the 
challenging tasks is to analyze these sequences and extract biologically significant but hidden 
information [2]. Construction and analysis of multiple sequence alignment (MSA) is a prerequisite in 
these studies and in post-genomic biological research [3].

MSA construction is a way of aligning more than two sequences, either DNA or protein, and 
identifying homologous positions in columns by placing gaps. These gaps indicate insertion or 
deletion of residues (amino acids or nucleotides). The sequences are then aligned after identification of 
similarities between two sequences [4]. Next, a substitution matrix is used to assign a score to each 
column on the basis of matches, mismatches and gaps. The substitution matrix contains a score for 
each amino acid substitution [5].
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Fig. 1. Types of alignment. (A) Sequence-sequence alignment. (B) Profile-profile alignment. A profile is formed by aligning 
sequence with another sequence (or profile).

The primary aim of MSA is to detect similarities between sequences and evolve evolutionary 
relationships between these sequences. Construction of a phylogenetic tree from MSA leads to 
structure and functional predictions of sequences as well. Many sequences remain conserved 
throughout evolution. By highlighting these conserved regions, the motif, domain and catalytic sites of 
proteins can be obtained [3].

Biological modeling methods are extensively dependent on MSA. A number of different 
algorithmic techniques have been proposed in the past, but none of these programs are capable of 
delivering 100% accurate results. The computational complexity to calculate an exact optimal solution 
of MSA for N different sequences, each having length L, is O (LN). However, with this complexity, 
even the computation of small sequences takes more time than desired. To achieve maximal accuracy, 
heuristic methods are commonly used [6].

2. Literature review

Different methods adopt different algorithmic techniques to compute MSA. In this paper, the 
algorithmic techniques of five different MSA programs that are the most popular are discussed.

2.1. ClustalW

The most common method to construct MSA is progressive alignment. In this method, two 
sequences are aligned first, and then the remaining sequences are added one by one. ClustalW is the 
most common program that uses the progressive alignment technique [7]. In ClustalW, the first step is 
the computation of the distance matrix, which represents the similarity between all the input sequences 
in the form of floating point values. These values are computed by performing pair-wise alignment of 
all sequences and counting the number of identical residues between two sequences. In the second 
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step, a guide tree is constructed from the distance matrix using the neighbor-joining algorithm. In the 
last step, sequences are added one by one in the alignment on the basis of branching order in the tree 
to construct MSA. In the beginning, a sequence is aligned with another sequence, but later, at each 
subsequent step, one of the following conditions arises: profile-profile alignment or sequence-profile 
alignment, as shown in Figure 1 [8].

2.2. MUSCLE

In MUSCLE, progressive alignment is used, and MSA results are refined by continuous iteration. In 
the first step, the similarity of each sequence is calculated using k-mer. On the basis of pair-wise 
similarities, the distance matrix is computed and then a tree is constructed, using either UPGMA or the 
tree joining algorithm. The tree is traverse in postfix order, and MSA is produced at the root. In the 
second step, the similarity of each pair of sequences is calculated, using fractional identity from the 
already-constructed MSA, and another tree is constructed using the clustering method. Both of these 
trees are compared, and the alignment of only the different nodes is reconstructed. When the root is 
approached, the algorithm either loops to the second step or jumps to the third step. In the third step, 
alignment is refined iteratively. Firstly, an edge is deleted from the tree, dividing it into two unique 
subsets. The columns containing no residues are then deleted from the two profiles extracted in the 
previous step. The two profiles are then realigned using profile alignment, and the score of this new 
alignment is evaluated. The score is calculated using the sum-of-pairs (SP) score. In SP, scores are 
calculated by adding the substitution matrix score for each aligned pair, and a penalty is assigned to 
the gap. If the score is greater than the previous alignment, it is retained; otherwise, this alignment is 
discarded. Although the iterative approach yields more accurate results, the iterations increase the 
execution time.

In order to find similarity, MUSCLE used two different similarity measure methods: k-mer and 
fractional identity. K-mer is a sequence of substrings, and it is acknowledged that related or 
homologous sequences contain more frequent k-mer as compared to divergent sequences. The basic 
motivation of k-mer is to avoid pair-wise alignment of all the sequences and reduce the algorithm’s 
complexity. K-mer enhances speed in computing the distance matrix by three times, compared to 
dynamic programming. In fractional identity, the sum of the columns that contain similar residues are 
calculated and then divided by total number of columns (it neglects the columns that contain only 
gaps) [9].

2.3. K-align

K-align computes the distance between sequences using the Wu-Manber approximate string-
matching algorithm. In terms of computational speed, this method is as fast as the k-mer similarity 
measure with improved accuracy. Take two sequences—‘XXYXXY’ and ‘XXXXXX’—that are 66% 
identical and aligning these sequences using k-mer with window size 3 does not yield any matching 
within the string. In K-align, a dynamic programming matrix is constructed, and a score is assigned to 
each column. The sequence similarity is then calculated on the basis of the highly scored diagonals. 
After finding the similarity scores and constructing a guide tree, sequences are aligned in similar 
fashion as the above two programs. K-align provides the users with another option for incorporating
the dynamic matrix score of the pattern matching from previous steps to improve the quality of the 
alignment. For this purpose, two extra steps are included in the algorithm: a consistency check and 
updating of the pattern match position. In the consistency check, the number of matching patterns is 

U. Manzoor et al. / A comparative analysis of multiple sequence alignments for biological data S1783



identified in both sequences A and B involved in the current alignment. Updating patterns matches the
position deals with the profile; when a sequence is aligned with a profile, the similarity score is 
disturbed because of already-inserting gaps in the profile. In this step, the position of residues in a 
profile is adjusted, although it matches with a sequence [10].

2.4. T-Coffee

Almost all the programs using progressive alignment for the construction of MSA, including 
ClustalW and MUSCLE, are based on the greedy approach. When a tree is constructed, the program 
assumes that the branching order of the tree will give optimal results, but this is not always true. For 
example, consider four sequences S1, S2, S3 and S4, such that S1 and S2 are similar, whereas S3 and 
S4 are closely related. While aligning S1 and S2, sequences S3 and S4 are not considered. In this way, 
an important part of the sequence, such as motif, can sometimes be neglected. This is because the 
motif is not considered important while pair-wise alignment of two sequences is performed; however, 
it has significant importance in final MSA. Although the greedy approach aligns sequences 
progressively, it does give the best possible results while avoiding the expensive computation of 
comparing all the other sequences with the target sequence.

T-Coffee is a consistency-based MSA program that provides more accurate results compared to the 
other two methods, but with a slight compromise in computational time. In T-Coffee, at each step of 
progressively aligning the sequences, all the query sequences are considered, thus reducing the chance 
of errors in the final MSA. In the first step, a library is formed that includes the weighted global and 
local pair-wise alignment information of all the input sequences; in global pair-wise alignment, the 
whole length of the sequences is aligned; in local alignment, the top ten scoring segments that are 
identical within both the sequences are computed. The final step extends the previous library and 
utilizes the weights to get optimal results. In this step, S1 and S2 are first aligned through S3 and then 
through S4, and the weight for each residue pair is calculated. In this way, while aligning sequence S1

and S2, information from S3 and S4 is utilized as well. This eliminates the possibility of missing 
important information in the final MSA [11, 12].

2.5. MAFFT

MAFFT adopts an iterative progressive approach, like MUSCLE, and efficiently finds the 
homologous segments using Fast Fourier Transform (FFT). The distance matrix is computed using the 
6-mer method. The major technique used by MAFFT is the FFT based group-to-group alignment 
algorithm. The sequences are progressively aligned using the iterative approach. However, to balance 
computational time and accuracy, two cycles are executed mostly for longer sequences. In the FFT 
group-to-group alignment algorithm, amino acids and sequences are represented in the form of 
vectors, and the correlation coefficient is then calculated. Homologous positions can be determined by 
correlation. There are three different steps in MAFFT. In the first step, namely FFT-NS-1, the distance 
matrix using the 6-mer method is computed. In the second step, namely FFT-NS-2, the quality of this 
guide tree is improved by constructing another guide tree from FFT-NS-1, along with the alignment of 
all the sequences. In the final step, FFT-NS-i, the iterative approach is used to improve quality. This 
process is repeated until no further improved results are obtained [13, 14].

3. MSA program evaluation and benchmark
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Fig. 2. Overall performance evaluations of MSA programs.

In order to evaluate the performance of the above programs, reference alignments of BAliBASE 
2.01 are used in this paper. This benchmark consists of 142 reference alignments divided into five 
different categories. All the alignments in this benchmark are manually constructed and properly 
tested. In [1], equidistant sequences are included that have similar lengths. In [2], families are included 
that are aligned with highly distant sequences. [3] contains sequences from four different families,
such that the similarity between two sequences that belong to different families is less than 25%. [4] is 
with N/C terminal extension, and [5] contains sequences with internal insertions [15]. The CPU 
execution time of the different programs is evaluated on the basis of this benchmark. In order to 
evaluate the overall performance of these programs, the above-mentioned test case is extended, and 
more reference sets are added. The new test case contains 10 reference sets with different MSA 
problems. This reference set of BAliBASE consists of 218 reference alignments and 17892 protein 
sequences [3].

The performance of MSA programs is evaluated on the basis of three aspects: CPU time, 
performance percentage and scalability. CPU time calculates the total amount of time required to align 
all the sequences in the benchmark, as shown in Figure 2. In the overall performance test, the 
sequences are ranked on the basis of correctness of the results of all the alignments, as shown in 
Figure 3. With advancements in the field of biotechnology, a huge amount of data is produced. So to 

Fig. 3. Impact of number of sequences on the quality of MSA.
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Fig. 4. Execution time of all the alignments in the benchmark.

handle and analyze this data properly and meet the current challenges, scalability is the major issue. 
To analyze whether the programs are scalable or not, quality of alignment is accessed with the number 
of sequences. An increase in the number of sequences decreases the quality of alignment, as shown in 
Figure 4. For the evaluation of MSA programs, data is extracted from [3, 10].

In order to find out the scalability of different programs, the MSAs of sequences with different 
lengths are computed. The overall performance of the alignment obtained is analyzed on the basis of 
the column score. The column score of an alignment is calculated by the summation of all the residue 
scores within a column, divided by total number of sequences for each column. For each position, if 
the sequence is properly aligned, a score of 1 is assigned; if otherwise, a score of 0 is assigned. The 
maximum a column score can be is 1, which represents perfect alignment [3]. 

In the last few years, different papers have been written to evaluate the performance of different 
MSA programs on the basis of different benchmarks. The main focus of this paper is to gather those 
results and evaluate their performances with reference to the algorithmic techniques they are using. 
This paper provides in-depth information of the five most popular programs amongst users. With 
different MSA programs available, the user has to choose the best possible solution (option). Their 
algorithmic techniques, along with the performance evaluation of these programs, will help a user 
choose a specific program on the basis of his objective behind performing MSA.

4. Discussion

Performance evaluation of the programs highlights many of the limitations and strengths of the 
different programs. The performance of most of the programs is dependent on various factors,
including length of the sequences and the similarity percentage between the sequences. Even after the 
development of different programs, ClustalW is still one of the most-used programs. The basic reason 
is that it is one of the most trusted algorithms amongst users because of its consistent accuracy. After 
ClustalW, many programs were proposed with better speed and accuracy, however, ClustalW is still
the standard program to construct MSA. The major issue in ClustalW is that errors evolved during 
initial alignment cannot be modified afterward. To overcome this major issue, different algorithms
with iterated approaches were proposed, e.g. MUSCLE. In MUSCLE, the results are refined when 
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continuously iterating the MSA. In most cases, when sequences increase in length or number, the 
number of iterations is reduced by the user to lessen the computational complexity of the program. In 
MUSCLE, the value of the k-mer is of real importance. If the value of the k-mer is large in the 
divergent sequences, it will lead to inaccurate results; and if the value of the k-mer is very small in 
identical sequences, then the similarity results can be ambiguous.

The second most important factor is the number of sequences. As the number of sequence increases, 
the performance of the programs decreases. To obtain an optimal MSA for N sequences, each of 
length L has a complexity of O(LN). The optimal solution is obtained using the dynamic programming 
algorithm, but exponential time and space scaling issues arise. In the case of progressive alignment, 
complexity is reduced to O(N2), and a few 1000 sequences can be aligned because of this reduced 
complexity. Today, many of the genome sequencing projects demand MSA of protein families 
containing sequence lengths greater than 50,000. Therefore, it is really challenging to obtain results in 
reasonable time without compromising accuracy. Therefore, scalability is a major issue in these cases. 
Some of the faster algorithms, including K-align, have to compromise their complexity in order to 
align large sequences. Although it can be extremely fast while aligning small datasets, it is not 
scalable. In MUSCLE, after performing MSA on 3000 sequences, the program becomes extremely 
slow. Most of the time, the iteration cycle is reduced to a value of 2 in order to reduce time 
complexity. K-align is considered one of the fastest algorithms, as it reduces the computational time 
required to evaluate large sequences; however, accuracy is compromised [16, 17].

The performance of all five programs is badly affected when sequences start exceeding 80, which 
indicates that the performance of MSA is inversely proportional to the number of sequences. This 
paper concludes that quality of alignment is compromised as the number of sequences increase.

The overall performance evaluation of different algorithms yields the expected results. T-Coffee 
takes the most time to complete the alignments, but the results obtained have a high level of accuracy. 
The major objective of this program is to achieve accuracy, even at the cost of computational time. 
Mafft offers the optimal solution of all the given sequences, which gives the most accurate solution 
without taking much computational time. If the main objective of a user is to find the best possible 
solution in minimum time, then K-align is the best option out of the five programs. When compared 
with other programs, Mafft works efficiently, as it generates results from huge data in a shorter period 
of time. On the other hand, in order to construct MSA for sensitive data, the best solution is T-Coffee 
or Mafft, as both of them give the most accurate results. So the reason a user is performing MSA 
decides the best available program based on their objectives. Table 1 summarizes the key 
characteristics of all the MSA programs.

Table 1 
Characteristic comparison of MSA programs

MSA program Key algorithmic technique Alignment quality Computation time

ClustalW Progressive method Least accurate when compared 
with other 5 programs Less as compared to T-Coffee

K-align
Wu-Manber string 
matching for distance 
estimation

Some loss of accuracy as 
compared to Mafft and T-
Coffee

Lowest

Mafft Fast Fourier transform Highest alignment quality Higher than K-align but produce 
more accurate results

MUSCLE Iterative method More accurate than ClustalW 
because of iterative approach

Can be reduced by reducing the 
number of iterations.

T-Coffee Progressive method with 
extended library High alignment quality Highest
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The quality of MSA programs is continuously improving with time. The main goal of all the 
programs is to achieve optimum similarity in the best time and to positively deal with scalability 
issues. To deal with huge amounts of data in minimum time, parallel MSA with the concept of parallel 
computer architecture is encouraged to decrease computational time. Another challenge in 
constructing MSA is the identification of noise in the data. All the programs construct MSA on the 
basis of sequence similarities, but with the possibility that the sequence is erroneous. So the future of 
MSA must deal with all these issues, and improvements in programs are essential in order to acquire 
the best computational analysis results.

5. Conclusion

The MSA construction is the cornerstone for all subsequent computational biological analysis. An 
erroneous result evolved from MSA ultimately leads to false results in all subsequent analysis 
methods. To improve the quality of computational results, the quality of MSA programs has to be 
improved. Each of the different algorithmic techniques adopted to construct MSA all have strengths 
and limitations. None of the programs are capable of providing the best results for all the test cases. 
ClustalW is a well-known and credible tool, but is less accurate and scalable compared to other 
programs. To improve accuracy, MUSCLE uses an iterative approach, but in the case of a large 
number of sequences, iterations are reduced to attain results in reasonable time. T-Coffee is used when 
high accuracy is required, with a compromise in computation time. Mafft achieves the highest 
alignment quality scores, whereas K-align alignment quality is reduced to attain results in the best 
computational time. A user can choose the program on the basis of his objective for performing MSA. 
At the present time, the strengths of different programs can be integrated to find a better optimal 
solution.
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