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Abstract 
The study of land use land cover has become increasingly significant with the availability of remote sensing data. The 
main objective of this study is to delineate geohazard-prone areas using semi-automatic classification technique and 
Sentinel-2 satellite imagery in Bhutan. An open-source, semi-automatic classification plugin tools in QGIS software 
enabled efficient and rapid conduct of land cover classification. Band sets 2-8, 8A, and 11-12 are utilized and the virtual 
colour composites have been used for the clustering and creation of training samples or regions of interest. An iterative 
self-organizing data analysis technique is used for clustering and the image is classified by a minimum distance algo-
rithm in the unsupervised classification. The Random Forest (RF) classifier is used for the supervised classification. The 
unsupervised classification shows an overall accuracy of 85.47% (Kappa coefficient = 0.71) and the RF classifier resulted 
in an accuracy of 92.62% (Kappa coefficient = 0.86). A comparison of the classification shows a higher overall accuracy 
of the RF classifier with an improvement of 7.15%. The study highlights 35.59% (512,100  m2) of the study area under the 
geohazard-prone area. The study also overlaid the major landslide polygons to roughly validate the landslide hazards.

Article highlights 

(a) Semi-automatic classification technique was applied 
to delineate the geohazard-prone area in the hetero-
geneous region of Bhutan Himalaya.

(b) Unsupervised and supervised classification technique 
were used to perform land cover classification using 
the semi-automatic classification plugin (SCP).

(c) The Random Forest classifier predicted higher accu-
racy and the application is rapid and efficient com-
pared to the unsupervised classification.
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1 Introduction

Geohazard disasters such as landslides, riverine floods, 
and flash floods accompanied by debris and mudflow 
are common in the Bhutan Himalayan regions. Landslide 
disaster incidents predominantly cause land degradation 
and socio-economic impacts around the world [1]. Simi-
larly, many research studies have identified flood as one of 
the most destructive and costliest natural disasters [2, 3]. 
There is undoubtedly a great demand for geohazard stud-
ies using the RS technique as it is recognized as a powerful 
tool for extracting information about the earth’s surface 
with spatiotemporal resolution [4]. Hence, geohazard 
studies are extensively carried out through remote sensing 
and GIS techniques globally. GIS-based landslide studies 
are widely undertaken using environmental factors under 
different regional settings at different scales for landslide 
susceptibility mapping [5–9]. In recent times, artificial 
intelligence (AI)-based machine learning and deep learn-
ing have become the state-of-the-art technology in deliv-
ering high-level performance, especially in developing 
landslide susceptibility maps [10–12]. More recently, there 
has been significant focus on the methodological pro-
cess to accurately perform the image classification under 
the domain of AI [13]. The machine learning algorithms 
(MLAs), a sub-domain of AI is also widely used, through 
statistical or non-probabilistic approaches in various clas-
sification techniques to automatically extract information 
from RS data [14]. In particular, classification mapping has 
become an area of interest in light of the availability of 
medium to high resolution multispectral remote sensing 
imagery, which has relatively contributed to the delinea-
tion of disaster-prone areas [15]. The present study uses 
freely available Sentinel-2A imagery. Since 2015, Sentinel-
2A multispectral Imager (MSI) has been providing 13 spec-
tral bands: four bands at 10 m spatial resolution, six bands 
at 20 m spatial resolution, and three bands at 60 m spatial 
resolution. Among these, the spatial resolution of 10 m can 
be used to improve the spatial resolution of other 20 or 
60 m bands [16, 17]. The Sentinel-2 spatial and temporal 
resolution offers new potential for generating accurate 
datasets in ready-to-use vector format [18]. RS data con-
tain valuable knowledge on the earth’s surface that can 
be coupled with image classification techniques to extract 
the LULC information [19]. In addition, with the advent of 
image processing technologies using GIS, image classifica-
tion methods have made a significant advancement in the 
conduct of LULC mapping [20, 21] including assessment 
and identification of LULC change [22]. Undoubtedly, the 
LULC maps are some of the most important documents 
that provide information for various applications in land 
use policy development, agricultural monitoring, urban 

planning, ecosystem services, conservation, and LULC 
dynamic assessment [23]. It has been also used for an inte-
grated risk and vulnerability assessment in many parts of 
the world.

Automated or semi-automated methods of remote 
sensing analysis, such as pixel-based and object-based 
image analysis, differ in the way they depend on individual 
pixels or the way homogeneous pixels are converted into 
objects [16, 24, 25]. The performance of these remote sens-
ing techniques often depends on the geographical charac-
teristics of the study area [26]. The automated approaches 
are simple [27, 28], and cost-effective without the need for 
physical interventions [29]. Some of the research studies 
used the SCP for application in various land cover clas-
sification, e.g., [24, 30]. The SCP is a Python tool for down-
loading and processing remote sensing images [31], 
which was developed in the QGIS environment [32]. The 
SCP plugin works semi-automatically allowing the user to 
download multiple RS products associated with satellite 
imagery pre-processing and perform unsupervised and 
supervised classification automatically by setting some 
parameters in the user interface. Minimum distance, maxi-
mum likelihood, and spectral angle mapping classification 
algorithms are available in the SCP. The SCP plugin uses 
a traditional pixel-based image classification approach 
that computes the spectral signatures and compares the 
random nearest neighbour-hood pixels. The unsupervised 
classification implements the ISODATA or K-means algo-
rithms for clustering of the band sets. RF, a machine learn-
ing algorithm is also available to perform supervised clas-
sification. RF classifier use a similar but improved method 
of bootstrapping as bagging with ensembles of tree-type 
classifiers of potentially high accuracies and are compu-
tationally less intensive [33]. Hence, the SCP provides an 
efficient platform to be used by a wide range of profes-
sionals who could benefit from remote sensing analysis.

At present, use of RS data on studies of geohazards by 
LULC mapping in the Bhutanese Himalayas is rare, and 
notably an assessment of exposure and vulnerability to 
geohazards associated with multiple natural hazards is 
lacking. Prior to this study, relatively few studies on land-
slide hazard based on causal factors were conducted [34, 
35]. Therefore, in the present study, an attempt was made 
to apply the semi-automatic classification technique to the 
heterogeneous geographical settings of different land use 
compositions characterized by active geohazard activi-
ties. The geohazards exposed in the study area are mainly 
the result of landslides and, flood associated activities 
resulting in debris and mudslides, and subsequent sedi-
ment deposition. Therefore, this paper accomplishes the 
geohazard delineation mapping using the GIS-based SCP 
plugin and the Sentinel-2 satellite imagery. Application 
of the SCP first performed rapid land cover classification 
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using unsupervised and supervised classification methods, 
followed by an advanced accuracy assessment and valida-
tion. A comparison between the classification algorithms 
and their accuracy is also conducted.

The main features of this study consist of six main 
sections, beginning with an introduction that provides 
information on literature research and describes the 
aim and motivation of the work. In Sect. 2, we introduce 
the study area located in Phuentsholing, Bhutan. Sec-
tion 3 provides details on Sentinel-2 satellite imagery 
and describes the various processes associated with the 

SCP plugin, including implementation of the classifica-
tion methods. In Sect. 4, we present the detailed image 
classification results and the quantitative comparison 
of the accuracy assessment results for the unsupervised 
and the FR classifier. Section 5 discusses the importance 
of the spectral signatures of the materials (land classes) 
for LULC classification and the challenges associated 
with the heterogeneous land composition. Finally, we 
conclude how the SCP plugin can be used efficiently for 
image classification in the context of geohazard-prone 

Fig. 1  Geographical location of the study area: a Bhutan administrative units, b Location of the Phuentsholing area under Chhukha district, 
c Study area location, an extended Phuentsholing township area
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area delineation and outlined suggestions for future 
work.

2  Study area

The study area (Fig. 1) covers an area of 1,438,800  m2 in 
the southern belt of Bhutan (east of Phuentsholing). The 
area was selected in the current study to complement the 
application of SCP and predict the outstanding geohazard 
scenario. The city of Phuentsholing (Fig. 1b) covers an area 
of 15.6  km2 and is located at 26.86° E and 89.39° N. The 
city has a population of 27,658 and consists of a total of 
2263 residential and commercial buildings (http:/ /www. 
pcc. bt/ index. php/). The altitude of Phuentsholing ranges 
between 183 and 2500 m above sea level [35]. Land at 
downstream of the study area, 2 km from the core city of 
Phuentsholing (Fig. 1c) has been allocated for the devel-
opment of the new township of the extended municipal-
ity and is important to Phuentsholing, which will serve as 
one of the largest trading centres in the country. When 

complete, the expanded new community will house 
planned educational, commercial and residential build-
ings with modern amenities.

Geohazards, particularly landslides and floods accom-
panied by large debris flows and sediment deposits in the 
mountainous regions of the Himalayas, are widespread 
[36]. The majority of the landslides in the Bhutan Hima-
layas are mainly rainfall-induced phenomena [37] with 
consequences similar to flooding every monsoon. Geo-
logically, Bhutan Himalayas is characterized by fragile geo-
logical settings over complex topographical features [38]. 
The study area falls within the Phuentsholing Formation 
under the Buxa Group of the Lesser Himalayas [39]. The 
proximity of the Main (or Himalayan) Frontal Thrust (MFT) 
and the Main Boundary Thrust (MBT) and the presence of 
shear zones in the region reveals a weak geological setting 
[40]. In addition, the lithological composition of the area 
consisting of fractured and weathered rocks of grey and 
dark coloured phyllite strata, slate, and schist that contain 
high amounts of disintegrated clay indicates the study 
area to be highly susceptible to the geohazards [35].

Fig. 2  The aerial view of the geohazard-prone area, a Part of upstream of the study area, b Extended new township development area

Fig. 3  Phuentsholing monthly 
rainfall record from 1996–2021

0

300

600

900

1200

1500

1800

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
ai

nf
al

l (
m

m
)

Month

1996-2019 (Average)
2020
2021

http://www.pcc.bt/index.php/
http://www.pcc.bt/index.php/


Vol.:(0123456789)

SN Applied Sciences           (2022) 4:141  | https://doi.org/10.1007/s42452-022-05028-6 Research Article

The landslide and flood hazards in the study area have 
been complex phenomena usually triggered by extreme 
temporal rainfall events and the landforms have been 
consequently changing with substantial subsidence of 
landmass every monsoon [41] (Fig. 2). Recent geohaz-
ards in the study area include the 2016 Amochhu flood, 
which had devastating and enormous social and economic 
impacts. The landslides, debris flows and flash floods from 
the upstream tributaries and the sedimentation of the 
Amochhu River are very frequent and recurring events 
in each monsoon. According to Bhutan state of climate 
change 2020 [42], the study area usually receives one of 
the highest rainfalls. Historical precipitation records from 
1996 show an increase in precipitation patterns in recent 
years (Fig. 3). The average cumulative annual rainfall from 
1996 to 2019 is 4406 mm and in the last two years 2020 
and 2021 the cumulative annual rainfall was 5070 and 
5508.3 mm respectively, with more rainfall recorded in 
the month between May and August.

3  Materials and methods

3.1  The semi‑automatic classification plugin

The open-source, semi-automatic classification plugin 
(SCP) developed by Congedo [31], primarily provides a 
means to perform an unsupervised and supervised classi-
fication through an image processing technique that aims 
to classify the land cover by training an algorithm with 
the samples of the spectral signature of the material (In 
particular, minimum distance, maximum likelihood, and 
spectral angle mapping algorithms). The SCP is also ena-
bled with the machine learning algorithm hosted with the 
Sentinel application platform (SNAP). Creation of training 
inputs (ROIs) in the form of polygons, manually or by a 
region growing, and computation of spectral signatures is 
available with the SCP dock interface. The SCP plugin cur-
rently allows downloading of seven satellite datasets and 
provides a full suite of processing tools that facilitate the 
pre-processing and post-processing phases for image clas-
sification. Basically, the SCP provides an advanced remote 
sensing techniques for non-remote sensing experts 
through standard step-by-step procedures that can be 
applied to urban planning, agriculture, environmental 
monitoring, etc. In essence, the approach offers fast com-
putation by encoding the context information through 
clustering and machine learning algorithms. The SCP 
interface can be sketched as follows to give an overview:

(i) Platform to download remote sensing images
(ii) Pre-processing: clipping, conversion to reflectance, 

and other tools

(iii) Processing: classification and analysis
(iv) Postprocessing: refinement of the classification and 

interpretation of data
(v) Tools for training input creation (ROIs), computation 

of spectral signatures, and accuracy assessment.

3.2  Multispectral satellite imagery

The satellite remote-sensing images and GIS datasets are 
widely used for event-based spatial analysis and multi-
temporal assessment of various applications at different 
regional settings and scales [43]. Sentinel-2 is a multispec-
tral satellite sensor developed by the European Space 
Agency (ESA) as part of the Copernicus land monitoring 
services. The Sentinel-2 multispectral instrument (MSI) 
consists of two satellites that observe the Earth at 10, 20, 
and 60 m spatial resolutions [20] and the three red-edge 
bands can capture the strong reflectance of the vegeta-
tion in the near-infrared region of the electromagnetic 
spectrum.

The basic criteria for the selection of satellite imagery 
for geospatial analysis, in particular for the land cover 
classification, is that the imagery must contain little or no 
cloud cover or haze. Sentinel-2A images from October 11, 
2021, with less than 0.1% cloud cover, were downloaded 
from the ESA website (https:// scihub. coper nicus. eu), 
showing an approximate 20 km radius of the study area. 
These can be also downloaded with integrated SCP fea-
tures. The virtual band sets are created from the converted 
reflectance images, which enabled the visualization of col-
our composites of the study area. The colour composites 
of the various band set combinations provided essential 
information and guidance for designing training samples 
(ROIs). This technique complements the analysis process 
and improve the overall performance. Figure  4 shows 
four different colour composites used during land cover 
classification post-processing to create training samples. 
(Table 1).

The unique aspect of the Sentinel level 2A satellite 
products is that the multispectral bands are atmospheri-
cally corrected [45] and can be used directly for pre-pro-
cessing in SCP. In remote sensing analysis, the spectral 
reflectance is the basic common parameter that charac-
terizes the spectral reflectance curves of the objects and 
allows them to be distinguish from each other [46, 47]. 
Mostly, remote sensing products are available as calibrated 
digital numbers (DN) and the conversion to radiance or 
reflectance is necessary. The pre-processing procedure in 
SCP includes clipping the band sets using geographical 
coordinates or vector shapefile for the study area and con-
verting them from discrete values in DN to decimal values 
of reflectance. The Sentinal-2A satellite images has been 

https://scihub.copernicus.eu
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projected onto the Coordinate Reference System (CRS) of 
EPSG: 32,645-WGS 84/UTM Zone 45 N.

3.3  Unsupervised classification

Unsupervised classification refers to the process of iden-
tifying a large number of unknown pixels of the inherent 
categories from the dataset of the particular image to 
group into classes (i.e., cluster) without the use of analyst-
specified or labeled training samples [48, 49]. Unsuper-
vised image classification relies upon the implementation 
of various clustering algorithms needed for the catego-
rization of pixels. To device this, the ISODATA algorithm 
was implemented in SCP using band processing tools. 
Furthermore, ISODATA introduced an additional feature 
of merging clusters of similar spectral signatures com-
pared to the k-means method. The algorithm splits clus-
ters with too high variability of spectral signatures based 
on the standard deviation, since many spectral signatures 

Fig. 4  Application of different 
colour composites of Sentinel-
2A images used to perform 
clustering and create a ROI of 
different land classes to design 
training samples: a RGB = 4-3-2 
b RGB = 3-2-1, c RGB = 7-3-2, d 
RGB = 8-4-3

Table 1  Sentinel-2 multispectral bands [44]

Band Central wave-
length (μm)

Resolution 
(m)

Description

B1 0.443 60 Coastal aerosol
B2 0.490 10 Blue (B)
B3 0.560 10 Green (G)
B4 0.665 10 Red (R)
B5 0.705 20 Near Infrared (NIR)
B6 0.740 20 NIR
B7 0.783 20 NIR
B8 0.842 10 NIR 
B8A 0.865 20 NIR
B9 0.945 60 Water vapour
B10 1.375 60 Cirrus
B11 1.610 20 Short Wave Infrared (SWIR)
B12 2.190 20 SWIR
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(i.e., seed) can be defined in the initial pre-processing 
phase to capture the number of clusters expected in the 
image. Hence, the initial parameters provided by the 
users in SCP implementation are C = number of desired 
clusters, Nmin = minimum number of pixels for a cluster, 
σt = maximum standard deviation threshold for splitting 
and, Dt = distance threshold for merging. The algorithm 
proceeds with the iterative procedure by calculating 
Euclidean distance (minimum distance algorithm), and 
the pixels are assigned to produce clusters according to 
the most similar spectral signature. With several trials of 
clustering, where the number of classes = 10, maximum 
standard deviation = 0.02, minimum class size in pixel = 10, 
20 iterations applying minimum distance seed signatures 
at a distance threshold of 0.01 were used to produce the 
initial image cluster (Fig. 5a). Then, the image cluster was 
converted to unique values raster under each cluster using 
a postprocessing tool and reclassification was carried out 
to produce a single-band (grey) land cover classification 
map (Fig. 5b) of the study area.

3.4  The Random Forest classifier

Random Forest is a supervised machine learning algorithm 
composed of many decision trees. The random forest con-
sists of a large number of individual decision trees that 
operate as an ensemble. Each tree in the random forest 
spits out a class prediction and the class with the most 

votes become our model’s prediction. The technique is 
used to solve regression and classification and is capa-
ble of combining many classifiers to provide a solution 
to complex problems through ensemble learning [50, 
51]. The resulting decision trees (i.e., the forest) gener-
ated by the RF algorithm are trained by bagging or boot-
strap aggregation using an ensemble meta-algorithm 
that improves the accuracy of the algorithm [52]. The RF 
algorithm predicts the decision trees and produces the 
result, and the prediction takes into account the average 
or mean of the output of various trees [53]. The accuracy 
of the result can be increased by increasing the number of 
trees [50]. Figure 6 shows the generalized implementation 
of the RF decision tree model.

The reflectance images are uploaded in the SCP, which 
is a common procedure for executing all algorithms 
available in the SCP plugin. These band sets are defined 
as the reference band set to which the wavelength has 
been assigned by the quick-wavelength setting tool. The 
RF classifier allows for image classification from the set 
of bands using the ROI polygons in the training sam-
ple input. The ROIs were then used to create classes and 
macro classes identified by a class ID (i.e., CID) and each 
ROI was assigned a land cover class. The ROI polygons 
cover pixels (training data) randomly for each land class, 
and the number of pixels covered depends largely on the 
size of each polygon. Hence, the number of maximum 
training pixels in the SCP was set to 5000 to provision 

Fig. 5  Prepossessing of Sentinel-2 band sets in SCP: a Clustered pixels, b Reclassified cluster
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and accommodate the pixel counts generated inside the 
ROI polygons. A total of 1863 pixels (training samples) 
considering all the ROI polygons of different classes was 
trained in the current RF model. The performance of the 
RF classifier depends on the number of decision trees 
and the higher number allows for more accurate models, 
albeit in exchange for a longer execution time to run the 
classification. In this study, we employed 100 decision 
trees to run the RF classifier.

4  Results

4.1  Land cover classification maps

The coverage of the land classes (Table 2) of the study 
area using the two classification algorithms is shown 
in Fig.  7a, b. The unsupervised classification of the 
Sentinel-2 image resulted in 38,200  m2 of water cover, 
967,200  m2 of vegetation, 147,900  m2 of the landslide 
area, and 285,500  m2 of sedimental deposits within the 
study area.

Within the study area, vegetation forms the largest 
land cover type with 67.22%, and water forms the small-
est, with 2.65%. The landslide and the sediment deposit 
areas consist of 10.28 and 19.84% respectively. Similarly, 
RF classifier results show 53,100  m2 (3.69%) for water, 
926,700  m2 (12.88%) for vegetation, 135,700  m2 (9.43%) 
as landslide, and 323,300  m2 (22.47%) as the area cov-
ered by the sediment deposits of riverine flood and 
debris flow due to flash floods and landslides. The land 
cover classification map produced from unsupervised 
classification and RF classifier is presented in Fig. 7.

The land cover classification map produced using the 
RF classifier is reclassified to map the geohazard-prone 

Fig. 6  Implementation of 
generalized RF decision tree 
models on the training data 
sets (ROIs)

Training input/ROIs

Decision tree-1 Decision tree-2 Decision tree-N

Class A Class B Class N

Majority voting

Classification

Table 2  Land class coverage for the two algorithms

Method/Class Land class coverage (%)

Water Vegetation Landslide Sediments

Unsupervised 2.65 67.22 10.28 19.84
Supervised 3.69 64.41 9.43 22.47
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areas (Fig. 8). The geohazard attributes in the map include 
the Amochhu River (3.69%) and the landslide and flood 
area (31.90%) and in total, 35.59% of the area is indicative 
of the geohazard-prone area. The non-hazard area covers 
64.41%. Further, we used high-resolution satellite imagery 

of Google Earth to create polygons to demonstrate the 
extent of major landslides. The polygon of the landslides 
was georeferenced in QGIS software to produce a land-
slide inventory map of the study area and roughly validate 
this on the geohazard map.

4.2  Accuracy assessment

Accuracy assessment is necessary to assess the reliability 
of the results [54]. Consequently, producer (PA) and user 
accuracies (UA) are computed based on an error matrix 
resulting from accuracy assessment [55, 56]. In this study, 
an advance accuracy assessment using SCP functions for 
both unsupervised classification and RF classifier was 
performed and the results compared. Using the gener-
ated landcover classification map, the next analytical 
step was to run a post-processing tool to obtain each 
classifier’s classification report, which provided the pixel 
sum and area coverage of each landcover class (Tables 3 
and 4). Accuracy evaluation requires these parameters to 
calculate the total number of training samples required 
for the classified image using Eq. 1.

(1)N =

(

c
∑

i=1

(

W
i
S
i

)

∕S
o

)2

,

Fig. 7  Land classification map of the study area produced using SCP, a Unsupervised classification map using ISODATA, b Supervised clas-
sification map using RF algorithm. Geohazard attributes in consideration: Amochhu River, sediments/debris, and landslides

Fig. 8  Delineated geohazard map from land cover classification (FR 
classifier)
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where Wi is the mapped area portion of class i, Si is the 
standard deviation of stratum i, So is the expected standard 
deviation of overall accuracy (0.01) and c is the total num-
ber of classes. The classification raster must be defined in 
the band set whose accuracy must be assessed based on 
the vector or the raster training samples created. In addi-
tion, the sample stratification method corresponding to 
the signature of each class was used to develop a sample 
design by creating multiple ROIs with basic tool options 
in SCP. In an accuracy assessment, to stratify the samples, 

we conjectured user accuracy and standard deviations of 
strata such that the user’s accuracy is lower and standard 
deviations Si is higher for the classes possessing low area 
proportion and evaluated to arrive at adequate accuracy 
[54] as shown in Tables  3 and 4. After that, each pixel 
sample was listed as point coordinates of the respective 
classes and the total stratified samples were aggregated. 
The final step involved verifying the training pixel sam-
ples by performing photo interpretation to resample 
the training datasets. In the current study, we employed 

Table 3  Classification report 
and sampling attributes of 
unsupervised classification

Land class cover Area  (m2) Pixel sum Wi Si Wi x Si Weighted Equal Mean

Water 38,200 382 0.0266 0.5 0.0133 17.6978 166.3326 92.015
Vegetation 967,200 9672 0.6722 0.2 0.13444 447.2351 166.3326 306.784
Landslides 147,900 1779 0.1028 0.3 0.03084 68.3960 166.3326 117.364
Sediments 285,500 2855 0.1984 0.4 0.07936 132.0016 166.3326 149.167

Table 4  Classification report 
and sampling attributes for the 
RF classifier

Land class cover Area  (m2) Pixel sum Wi Si Wi x Si Weighted Equal Mean

Water 53,100 531 0.0369 0.5 0.01845 25.9991 176.146 101.073
Vegetation 926,700 9267 0.6441 0.2 0.12882 453.8225 176.146 314.984
Landslides 135,700 1357 0.0943 0.3 0.02829 66.4423 176.146 121.294
Sediments 323,300 3233 0.2247 0.4 0.08988 158.3200 176.146 167.233
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high-resolution Google Earth and virtual composite 
images to resample the training samples (test samples). 
Finally, an accuracy assessment between the land cover 
classification map and the resampled training input was 
performed. The SCP plugin also provided a first predictive 
assessment of the classifier model. The current RF deci-
sion tree model represents 96.99% of the prediction, with 
0.26 root mean square error (RMSE) and 0.02 bias from 
1863 training samples. The accuracy assessment of the 
land cover classification is compared in Fig. 9, between 
the two algorithms (unsupervised and supervised classi-
fication). In general, both the PA and UA for water class 
resulted in a lower percentage of accuracy compared to 
other classes. The unsupervised classification for water 
class shows 47.15% and 44.44% of PA and UA respectively, 
while the FR classifier indicates slightly higher accuracy of 
58.27% and 50% with a difference of accuracy in the range 
of 11.12–5.56%.

The vegetation land class dominates the classification 
accuracy with 95.64% PA and 93.55% UA. The level of accu-
racy is even higher when the RF classifier is employed, 
with PA at 98.79% and 100% of UA. The improvement in 
accuracy of the land cover classification is in the range of 
3.15–6.45% with the supervised classification using the RF 
algorithm.

The most essential part of the study is to delineate 
the geohazard-prone area using the SCP technique and 
to adequately assess the accuracy of the outcomes. The 
unsupervised classification indicates poor delineation of 
geohazard areas compared to the supervised RF classi-
fier, in particular, delineation of landslides and sediment 
deposit areas. The accuracy results demonstrate 45.21% 

and 66.67% of PA and UA respectively. On the contrary, 
the application of the FR algorithm shows a substantial 
improvement in accuracy, of 74.83% and 83.33% in PA 
and UA respectively. The improvement is in the range 
of 29.62–16.66%. Similarly, a notable difference in the 
accuracy of classification for sediment land class can be 
observed. The PA of 73.33% by unsupervised learning and 
87.55% by supervised learning has been achieved indicat-
ing an improvement of classification accuracy by 14.22%. 
For UA, we saw an increase in accuracy by 9.02% resulting 
from 73.33% to 82.35%, through unsupervised classifica-
tion and RF classifier respectively.

The diagnosis of the accuracy assessment indicates 
overall accuracies of 85.47 and 92.62% for unsupervised 
classification and RF algorithm, respectively. The study 
shows that the image classification model using RF clas-
sifier, a supervised machine-learning algorithm, demon-
strates higher accurate classification results which pro-
vide a reliable geohazard map of the study area. In the 
current study, the supervised classification model (RF) 
is 7.15% superior in terms of overall classification accu-
racy. According to the results of the statistical error matrix 
(confusion matrix) of unsupervised and supervised algo-
rithms, a Kappa coefficient of 0.71 and 0.86, respectively, 
is achieved.

5  Discussion

The current SCP framework of image classification is tra-
ditionally a pixel-based classification method that imple-
ments a grouping of pixels that are made up of them or 

Fig. 10  The spectral signature 
plot of land classification by RF 
classifier

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Water
Vegetation
Landslide
Sediments

R
ef

le
ct

an
ce

 v
al

ue
s

Wavelength (µm)



Vol:.(1234567890)

Research Article SN Applied Sciences           (2022) 4:141  | https://doi.org/10.1007/s42452-022-05028-6

categorization within the range of thresholds (or statisti-
cally) defined by the type of algorithms used. The signa-
ture curve of land classes in the study area shown in Fig. 10 
presents the spectral reflectance value distribution corre-
sponding to the wavelength. The spectral characteristics of 
water, vegetation, and soil are evident in three categories 
of visible region (0.4–0.7 µm), near-infrared (0.7–1.3 µm), 
and shortwave infrared region (beyond 1.3 µm).

Although the study area is not very large and is rather a 
localized region, the resulting accuracy for water class indi-
cated a lower forecast in both methods (47.15 and 58.27%, 
respectively). This challenge is usually observed when 
the pixel-wise approaches are applied to heterogeneous 
regions where the surface futures such as colour, struc-
ture, and texture play important roles. Usually, this limita-
tion also happens when the object’s size is much smaller 
than the size of the pixel [57]. The relief of the study area 
indicated a close alignment to such observations since 
the angle of incidence of the sunlight has a high potential 
to differentiate the spectral reflectance pattern of similar 
signatures. Photo interpretation of high-resolution satel-
lite imagery shows that the east-facing slopes in the study 
area fall under shadows (dark) and have a similar spec-
tral signature to water bodies, and this effect is likely due 
to the water class resulting in low accuracy compared to 
others classes. Soil types of different colours and textures 
show unique reflectance values and similar classification 
issues can be expected which can lead to over or underes-
timation, especially when dealing with landslide applica-
tions. Often open construction sites, unpaved farm roads, 
concrete surfaces, and barren land resembles the spectral 
signature of landslide soils. In such cases, image classifica-
tion for a larger area may be extremely challenging.

6  Conclusions

The image classification was performed using the SCP 
plugin and Sentinel-2 imagery in QGIS software to create 
land cover classification maps. The map produced by the 
RF classifier, with an overall accuracy of 92.62%, was fur-
ther reclassified to delineate the geohazard-prone areas of 
the study area (512,100  m2). The pre-processing and basic 
tools in SCP are able to download the RS images, crop 
them and convert them to reflectance. The SCP plugin is 
equipped with multiple classification algorithms for image 
classification including a machine learning algorithm (RF 
classifier). The presented methodology and semi-auto-
matic classification technique using the SCP plugin show 
a high potential for performing a land cover classification 

in the heterogeneous mountainous region. The SCP plugin 
enabled quick image classification using clustering and 
machine learning algorithms, which proved to be less 
computationally intensive. The RF classifier proved to be 
more efficient compared to unsupervised classification. 
Implementing unsupervised classification requires mul-
tiple attempts at clustering with appropriate user input 
parameters related to the algorithm attributes and achiev-
ing reasonable accuracy. The accuracy rating indicates 
higher accuracy of land cover classification using the RF 
classifier. However, the study also found some anomalies 
in the accuracy results related to the terrain relief and 
topography, depicting near spectral signatures for some of 
the materials (e.g., water class). To address the anomalies, 
the flexibility to define the parameters of the algorithms 
(thresholds) in the SCP plugin with an increasing number 
of macro-classes and subclasses could be a possible solu-
tion. With this scope, the potential of the semi-automatic 
classification technology can be more precisely exploited 
for any geographical environment.
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