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Aqueous biphasic systems based on ethyl lactate: Molecular interactions
and modelling

Stephen D. Worrall, Jiawei Wang, and Vesna Najdanovic-Visak

Chemical Engineering and Applied Chemistry, Energy & Bioproducts Research Institute, Aston University, Birmingham, UK

ABSTRACT
Aqueous biphasic systems (ABS) based on ethyl lactate are novel green solvent systems that
are biorenewable and biodegradable with the potential to replace currently used hazardous
organic solvents. Models to correlate and predict binodal curves of these systems are crucial
for the design of separation processes but are currently nonexistent. Here, we report the
development of two empirical models based on Merchuk’s equation and the Effective
Excluded Volume model for ABS composed of ethyl lactate, water and a salt (K3PO4,
K2HPO4, K2CO3, Na3C6H5O7, Na2C4H4O6, Na2C4H4O4, K2S2O3, Na2S2O3 and (NH4)2S2O3).
Additionally, the use of Artificial Neural Networks (ANN) as a tool to predict binodal curves
was explored. An ANN composed of tansig transfer function and five neurons was built
using three inputs: mole fraction of salt, molar Gibbs energy of hydration of the salt cation
and anion. Furthermore, Fourier-transform infrared-attenuated total reflection spectroscopy
was used to reveal the molecular interactions which were used to explain binodal data.

KEYWORDS
Aqueous two-phase system
(ATPS); biorenewable
solvent; binodal curves;
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Introduction

In the last decade, biopharmaceuticals such as
therapeutic proteins, drugs and antibodies have
been increasingly used to improve the treatment
of many diseases thanks to remarkable advances
in their production technologies (upstream proc-
esses). Although the global biopharmaceutical
market was valued at approximately USD 325 bil-
lion in 2020 and is expected to rise to USD 497
billion in 2026 (Biopharmaceuticals market 2021),
their production costs remain much higher than
those of traditional pharmaceuticals because of
the high costs of purification methods (down-
stream processes). Due to their very low concen-
trations in aqueous solutions, biopharmaceuticals
are predominately purified by packed-bed chro-
matography, but their utilization at a large scale
is limited due to the high cost of resins, buffers
and other consumables. In addition, the method
suffers from long cycle times, hysteresis, resin
compression and edge effects, which results in

unpredictable flow distribution, low separation
efficiency and pressure drops (Rosa et al. 2010).
Several alternatives have been suggested in the lit-
erature, including flocculation, precipitation,
membrane filtration and solvent extraction. As a
form of solvent extraction, aqueous biphasic sys-
tems have attracted particular attention due to
their easy scalability, capacity for continuous
operation, and high extraction yields (Iqbal
et al. 2016).

Most reported aqueous biphasic systems (ABS)
are formed by adding a phase-forming solvent to
an aqueous solution of organic or inorganic salt.
A phase-forming solvent can be a polymer [e.g.,
polyethylene glycol (PEG)], various ionic liquids,
short-chain alcohol (e.g., ethanol, propanol, buta-
nol), etc. ABSs can also be formed with two poly-
mers, such as PEG and dextran. In addition, the
presence of surfactants was reported to enhance
the formation of two phases (Batista et al. 2021).
Compared to traditional organic solvent/water
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extractions, both phases in ABS are rich in water,
providing a suitable environment for biologically
active substances (Banik et al. 2003; Sun et al.
2012) and extraction of different compounds
such as metals (Khayati and Mohamadian 2016;
Ferreira et al. 2021), alkaloids (Pereira et al.
2013], dyes and pesticides (Oke and Ijardar
2021), phenolic compounds (Xu et al. 2021], etc.

Recently, new ABS based on ethyl lactate and
salts emerged as an efficient tool to recover bio-
molecules such as antibiotics (Zakrzewska et al.
2021], amino acids (Kamalanathan et al. 2018a),
antioxidants and flavonoids (Velho et al. 2020)
from their aqueous solutions. Ethyl lactate is an
environmentally friendly solvent produced from
biorenewable chemicals, ethanol and lactic acid.
Thus, it is identified as a green solvent in the
GlaxoSmithKline (GSK) solvent selection guide
(Henderson et al. 2011) with many attractive
properties. It possesses low volatility and viscos-
ity, is biodegradable and is not corrosive or car-
cinogenic. Due to its very low toxicity, ethyl
lactate has been approved by the U.S. Food and
Drug Administration (FDA) as generally recog-
nized as safe for direct addition to food for
human consumption (FDA, Title 21, 2020).

The ability to correlate and predict the phase
equilibria behavior is important for the design of
ABS based on ethyl lactate. Previously, various
empirical equations have been proposed to math-
ematically describe experimental binodal data of
aqueous biphasic systems based on polymers and
ionic liquids.

The most widely used correlation for aqueous
two-phase systems based on polymers and ionic
liquids is Merchuk’s equation (Merchuk et al.
1998):

wsol ¼ A � exp B � wD
salt � C � wE

salt

� �
(1)

where wsol and wsalt are the mass fractions of
phase-forming solvent (such as polymer, ionic
liquid, alcohol, ethyl lactate) and salt, respectively,
while A, B and C are adjustable parameters and
D and E are exponents. For biphasic systems
based on polymers and ionic liquids, exponents
D and E widely used in the literature are 0.50
and 3, respectively (Alvarez-Guerra et al. 2016).
Recently, Velho et al. 2021 have used Merchuk’s
equation with these exponents to fit experimental

binodal data for the ternary mixtures composed
of ethyl lactate, water and three inorganic salts
(NH4)2SO4, K2HPO4 and NaH2PO4. The authors
concluded that these exponents were unsuitable
for describing the experimental data for any of
the studied systems. Therefore, optimizing expo-
nents D and E for aqueous biphasic systems
based on ethyl lactate is important.

Various other versions of Merchuk’s equation
have been proposed in the literature (Li et al.
2014; Alvarez-Guerra et al. 2016). As an example,
one of them uses only two adjustable parameters
(A and B):

wsol ¼ A � exp B � wsaltð Þ (2)

Guan et al. 1993 proposed a binodal curve
model based on statistical geometry using the
concept of the effective excluded volume (EEV)
for aqueous biphasic systems based on two poly-
mers:

ln V�
213

wsalt

Msalt
þ f213

� �
þ V�

213
wsol

Msol
¼ 0 (3)

where V�
213, f213, Msalt and Msol, are the scaled

EEV of the salt, the volume fraction of unfilled
available volume after tight packing of the salt
molecules into the network of an aqueous solu-
tion and the molar masses of phase forming solv-
ent (polymer, ionic liquid, alcohol, ethyl lactate,
etc.) and salt, respectively. This is the only bino-
dal equation that has theoretical support but, to
the best of our knowledge, has never been used
to describe ABS based on ethyl lactate.

The use of the aforementioned models is
important in the design of extraction processes to
accurately interpolate compositions of phases
when such data are not available. However, these
models are not predictive and cannot be extrapo-
lated to ABS systems containing other salts for
which experimental data are not available.
Furthermore, the development of predictive mod-
els is challenging because the formation of aque-
ous biphasic systems is governed by various
intermolecular interactions, including the hydra-
tion ability of salts in the aqueous solutions as
well as complex hydrogen-bonding competition
between different compounds (Kamalanathan
et al. 2018b).
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One solution is the use of artificial neural net-
works (ANN) that have emerged as a simple
modeling tool capable of predicting complex phe-
nomena. Recently, Panerati et al. 2019 have
reviewed the use of ANNs in various chemical
engineering fields such as polymerization, oil
production, battery heating, modeling, process
control and catalysis. The physical and chemical
properties of complex mixtures such as biodiesel
were efficiently predicted using ANN (Arce et al.
2019). They have also been used for aqueous
biphasic systems based on polymers–polyethylene
glycols (Kan and Lee 1996) and ethylene oxide
propylene oxide copolymer (Leong et al. 2018)
with potassium phosphate. Similarly, Shahriari
and Shahriari (2014) employed an artificial neural
network with the batch backpropagation (BBP)
learning algorithm for a three-layer feed-forward
network to model the formation of the ABS
based on 1-butyl-3-methylimidazolium trifluoro-
methanesulfonate ionic liquid with a broad range
of salts. A good agreement between the experi-
mental and predicted values was achieved, with
the squared correlation coefficient (r2) ranging
from 0.9624 to 0.9978 for the testing data set. A
much wider study involving 17449 experimental
binodal data points of 171 ABS systems based on
different ionic liquids and salts at different tem-
peratures was carried out by Chen et al. (2022).
The authors developed the nonlinear ANN model
based on group contributions, resulting in r2 of
0.9316 for the training data points.

This paper presents the development of two
empirical models (Equation 1 and 2), the effective
excluded volume model (Equation 3) as well as
an artificial neural network to describe the for-
mation of ABS composed of ethyl lactate, water
and salt (either K3PO4, K2HPO4, K2CO3,
Na3C6H5O7, Na2C4H4O6, Na2C4H4O4, K2S2O3,

Na2S2O3 and (NH4)2S2O3). These salts were
selected due to their ability to form aqueous
biphasic systems. Furthermore, Fourier-transform
infrared-attenuated total reflection (FTIR-ATR)
spectroscopy was used to elucidate the molecular
interactions.

Materials and methods

Materials

Chemicals used in this study, their molecular for-
mulas, purity, CAS numbers and source are listed
in Table 1. They are all used without further
purification. Millipore’s Milli-Q water filtration
system distilled and deionized the water used to
make solutions.

An analytical balance (Mettler AT201) with
stated repeatability of ± 4� 10�2mg was used to
prepare liquid mixtures. All compositions are
given in terms of anhydrous salts.

Fourier-transform infrared—attenuated total
reflection spectroscopy (FTIR-ATR)

FTIR-ATR was used to study molecular interac-
tions in the mixtures containing ethyl lactate,
water and either potassium phosphate (K3PO4),
dipotassium phosphate (K2HPO4), potassium car-
bonate (K2CO3), trisodium citrate (Na3C6H5O7),
disodium tartrate (Na2C4H4O6), disodium succin-
ate (Na2C4H4O4), potassium thiosulfate (K2S2O3),
sodium thiosulfate (Na2S2O3) or ammonium
thiosulfate ((NH4)2S2O3), at 298.2 K. For each salt
system, approximately 10 g of the following solu-
tions were made gravimetrically (in mass frac-
tions): (1) ternary solutions containing 0.004 salt,
0.681 ethyl lactate and 0.315 water (ethyl lactate-
rich solutions); (2) ternary solutions containing
0.216 salt, 0.033 ethyl lactate and 0.751 water

Table 1. Chemicals used in this study.
Chemical Molecular formula Manufacturers’ stated purity (mass %) CAS no. Source

Ethyl lactate C5H10O3 98 687-47-8 Sigma-Aldrich
Potassium triphosphate K3PO4 � 99 7778-53-2 Sigma-Aldrich
Potassium diphosphate K2HPO4 � 99 7758-11-4 Sigma-Aldrich
Potassium carbonate K2CO3 � 99 584-08-7 Sigma-Aldrich
Trisodium citrate Na3C6H5O7 � 99 6132-04-3 Sigma-Aldrich
Disodium tartrate dihydrate Na2C4H4O6�2H2O � 99 6106-24-7 Sigma-Aldrich
Disodium succinate Na2C4H4O4 � 98 150-90-3 Sigma-Aldrich
Potassium thiosulfate K2S2O3 > 95 10294-66-3 Sigma-Aldrich
Sodium thiosulfate Na2S2O3 99 10102-17-7 Sigma-Aldrich
Ammonium thiosulfate (NH4)2S2O3 96 7783-18-8 Fisher Scientific
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(salt-rich solutions); (3) ternary solutions con-
taining 0.045 salt, 0.247 ethyl lactate and 0.708
water (“middle” solutions); (4) binary solutions
containing 0.061 salt and 0.939 water; and, (5)
binary solution containing 0.257 ethyl lactate and
0.743 water.

The solution masses (total 10 g) were large
enough to give reproducible mass fractions of less
than ± 0.0002. All the solutions were homogeneous
(one-phase) systems at 298.2K, freshly prepared and
kept tightly sealed. The FTIR-ATR spectra of all sol-
utions were recorded in the range 700–4000 cm�1

on a Perkin Elmer FTIR Frontier equipped with an
ATR diamond stage. Each solution was pipetted in
turn onto the ATR diamond stage for analysis, with
methanol used to clean the stage between each sam-
ple. All spectra were recorded at room temperature
by co-addition of 16 interferograms at a resolution
of 2 cm�1 with a data point spacing of 0.964 cm�1.
The spectra were corrected for the wavelength
dependence of the penetration depth of the evanes-
cent wave in ATR by using the instrument
Spectrum software. The spectra were then baseline
corrected at zero level and converted from transmis-
sion to absorbance using the same software. Using
Origin software, all spectra were normalized to unity
at the peak wavenumber of the water O–H stretch-
ing band. The peak position and full-width half
maxima (FWHM) of the water O–H stretching
band were determined using the Peak Analyzer fea-
ture in Origin software.

Analytical models

Binodal data of nine ternary systems containing
ethyl lactate, water and salt were compiled from

the literature (Kamalanathan et al. 2018a, 2018b;
Zakrzewska et al. 2021) at 298.2 K and at atmos-
pheric pressure, where salt is either potassium
phosphate (K3PO4), dipotassium phosphate
(K2HPO4), potassium carbonate (K2CO3), triso-
dium citrate (Na3C6H5O7), disodium tartrate
(Na2C4H4O6), disodium succinate (Na2C4H4O4),
potassium thiosulfate (K2S2O3), sodium thiosul-
fate (Na2S2O3) or ammonium thiosulfate
((NH4)2S2O3). The corresponding binodal data-
sets are included in Table S1 in
Supplementary Material.

Binodal data for each ternary mixture were fit-
ted with three analytical models, Merchuk’s equa-
tion (Equation 1), the two-parameter equation
(Equation 2) and the effective excluded volume
model (Equation 3). Different values of the expo-
nents D and E in Merchuck’s equations
(Equation 1), ranging from 0.01 to 0.90 for D
and 1 to 4 for E, were tested. Adjustable parame-
ters (A, B and C) were obtained by regression of
the experimental data. To compare the experi-
mental data and data predicted by models, root
mean square deviation (RMSD) and coefficient of
determination (r2) were used according to
Equations (4) and (5).

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i wcalc
EL � wexp

EL

� �2
N

s
(4)

r2 ¼ 1�
P

i wexp
EL � wcalc

EL

� �2P
i wexp

EL � wmean
EL

� �2 (5)

where wexp
EL , wcalc

EL and wmean
EL are the experimental,

calculated and mean values of the mass fraction
of ethyl lactate, respectively, while N is the num-
ber of data points.

Artificial neural networks (ANN)

An artificial neural network is a modeling tool
that analyses datasets, trains itself to recognize
patterns in the datasets, and then establishes non-
linear relationships between the inputs and out-
puts. As shown in Figure 1, the structure of
ANN consists of three layers: input, hidden and
output. The hidden layer containing several neu-
rons is connected to inputs and outputs by
adjustable weights (w), while bias (b) is used as a
constant used to achieve the best fit for the given

Figure 1. The architecture of an artificial neural network with
three layers: input, hidden and output. Letters w and b stand
for adjustable weights and bias, respectively.
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data. The nonlinearity is introduced by the trans-
fer function in the hidden layer.

In this study, MATLAB R2020b was used to
develop the ANN model to determine the input
and output relationship. Its structure was opti-
mized regarding the number of neurons and the
transfer function in the hidden layer. The experi-
mental data were split into two groups: the train-
ing and validation datasets. The training dataset
included the experimental data from seven salts
(K3PO4, K2HPO4, K2CO3, Na3C6H5O7,
Na2C4H4O6, Na2S2O3 and (NH4)2S2O3) and 95
data points, while the validation dataset included
the experimental data from two salts (K2S2O3

and Na2C4H4O4) and 23 data points. The data
was split up in the way that all cations and
anions were included in the training dataset.
Levenberg-Marquardt Backpropagation was used
as the training algorithm and a random division
of 70:15:15 was used for the respective training:-
testing:validation. The inputs in the ANN model
were the mole fraction of the salt and the molar
Gibbs free energy of hydration of the salt cation
and anion (DhydG�), which were calculated by the
model developed by Marcus 1991. The detailed
calculations of DhydG� can be found in the
Supplementary material. The mole fraction of
ethyl lactate was considered as the output in the
ANN model. The inputs were normalized into a
range between �1 to 1 before the network train-
ing to avoid numerical overflow due to exces-
sively large or small weights (Equation 6):

Np ¼ 2
Ap �minApð Þ

ðmaxAp �minApÞ � 1 (6)

where Np is the normalized parameter, Ap is the
actual parameter, minAp is the minimum value

of the actual parameter and maxAp is the max-
imum value of the actual parameter. The outputs
were not normalized.

Similar to the analytical models in Section 2.3,
RMSD (Equation 4) and r2 (Equation 5) were
used to evaluate the quality of agreement between
the experimental data and model using ANN.

Results and discussions

Modeling binodal data using analytical models

Marchuk’s equation with exponents D¼ 0.5 and
E¼ 3.0 is widely applied to fit the binodal data of
many different polymer-salt and ionic liquid-salt
systems. This work aimed to determine more
suitable exponents capable of fitting various
aqueous biphasic systems based on ethyl lactate
by testing a wider range of exponents and their
combinations.

Tables S2 to S10 in the Supplementary materi-
als present obtained root mean square deviation
(RMSD) and coefficient of determination (r2)
from fitting Merchuk’s equation (Equation 1) for
each set of exponents D (0.01 to 0.90) and E
(1 to 4). The exponents that gave the best fittings
for each system are summarized in Table 2. It
can be noted that for the ternary system contain-
ing Na3citrate, the quality of the fitting is the
same for the whole range of exponent D. The

Table 2. Exponents D and E that gave the best fitting and
corresponding root mean square deviations, RMSD (Equation
4) and r2 (Equation 5), obtained by fitting Equation (1) to
binodal data of systems containing ethyl lactate, water
and salt.
Salt D E r2 RMSD

K3PO4 0.20 2.5 0.9987 0.0084
K2HPO4 0.20 2.0 0.9984 0.0102
K2CO3 0.20 2.5 0.9992 0.0074
Na3citrate 0.50 2.0 0.9994 0.0055
Na2tartrate 0.01�0.9 1.0 0.9984 0.0073
Na2succinate 0.01�0.02 1.0 0.9993 0.0058
K2S2O3 0.50 1.5 0.9983 0.0089
Na2S2O3 0.05 1.5 0.9983 0.0107
(NH4)2S2O3 0.05�0.20 1.5 0.9945 0.0166

Figure 2. Average coefficient of determination (r2) obtained
using different exponents of Merchuk’s equation (Equation 1),
fitted to binodal data given in Table S1 for the systems con-
taining ethyl lactate, water and various salts at 298 K.
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same trend can be observed when D values are
from 0.01 to 0.02 and 0.05 to 0.20 for systems
containing Na2succinate and (NH4)2S2O3,
respectively.

The results in Table 2 reveal that the best-per-
forming exponents for the ethyl lactate-salt sys-
tems are different from those used for polymer-salt
and ionic liquid-salt systems.

To find a set of exponents that are more suit-
able for different ethyl lactate-salt systems, the
obtained average values of r2 as a function of D
and E are also considered (Figure 2).

It can be concluded that the maximum value
of average r2 was obtained for D¼ 0.05 and
E¼ 1.5 for the nine ABS systems tested. These
values are quite different from the usually used
exponents of D¼ 0.5 and E¼ 3 that are widely
reported in the literature for aqueous biphasic
systems (ABS) based on polymers and ionic
liquids. Figure 3 compares obtained r2 using each
of these exponent sets. The average value for r2

improved from 0.9958 to 0.9971 when using the
optimized exponents. However, the value for r2

was worst for ABS containing K3PO4 and a
more-pronounced decrease was observed for
K2CO3 when optimized exponents were used. For
the other seven ABS, optimized exponents
increased the r2 with the most noticeable positive
effects for ABS containing Na2 tartrate, Na2 suc-
cinate and K2S2O3.

The two-parameter model given in Equation
(2) was used to fit experimental binodal lines.

The obtained parameters A and B for each sys-
tem are presented in Table 3, showing an average
r2 of 0.9934 and RMSD of 0.0182. Comparing
these results with the ones achieved with
Merchuk’s equation, it is clear that reducing the
number of parameters to 2 slightly decreases the
accuracy of the fitting but maintains it at an
acceptable level.

Table 4 shows values for the effective excluded
volumes (EEV) of the salt and volume fractions
of unfilled available volume after tight packing of
the salt molecules into the network of an aqueous
solution obtained from the correlation of binodal
data using Eq. (3), along with the corresponding
r2 and RMSD. Based on average r2 (0.9869) and
RMSD (0.0264), we can conclude that the EEV
model satisfactorily correlates with the experi-
mental binodal data, although slightly lesser than
the previous two models. These results are com-
parable with the reported r2 of 0.9686 and RMSD
of 0.0165 for ATS based on ionic liquids
(Alvarez-Guerra et al. 2016) and r2 ¼ 0.9829 and
RMSD¼ 0.022 for PEG600 (Silverio et al. 2013).

It can be noted from Table 4 that the volume
fraction of available unfilled effective volume
(f213) is very small, suggesting a very tight pack-
ing of the salt molecules into the ethyl lactate
aqueous solutions. Therefore, Equation (3) can be
fitted using only one parameter, V�

213: This possi-
bility was tested in this work, as demonstrated in
Table 5. The obtained average r2 and RMSD were
0.9415 and 0.0503, respectively. The quality of
these fittings is slightly better than reported by
Taghi Zafarani-Moattar and Hamzehzadeh 2005
for PEG6000-salt (average r2 ¼ 0.94 and
RMSD¼ 0.068) and for PEG2000-salt reported by
Huddleston et al. 2003 (average r2 ¼ 0.94) but

Figure 3. Comparison of coefficient of determination (r2)
obtained by fitting Merchuk’s equation (Equation 1) for the
systems containing ethyl lactate, water and various salts sys-
tem at 298 K, using two different sets of exponents: D¼ 0.05
and E¼ 1.5 (black bars) and D¼ 0.5 and E¼ 3 (white bars).

Table 3. Summary of root mean square deviations (RMSD
from Equation 4) and coefficient of determination (r2 from
Equation 5) obtained using Equation (2).

NP� A B RMSD r2

K3PO4 22 0.8046 �10.17 0.0289 0.9849
K2HPO4 13 0.7852 �10.89 0.0238 0.9915
K2CO3 13 0.7877 �7.876 0.0343 0.9835
Na3citrate 11 0.7423 �9.790 0.0141 0.9960
Na2tartrate 11 0.7534 �9.317 0.0074 0.9984
Na2succinate 10 0.8641 �10.36 0.0077 0.9989
K2S2O3 13 0.8352 �7.703 0.0101 0.9978
Na2S2O3 13 0.8616 �11.64 0.0197 0.9944
(NH4)2S2O3 12 0.8777 �8.005 0.0180 0.9952
Average 0.0182 0.9932
�NP – Number of data points

6 S. D. WORRALL ET AL.



worst than the average r2 of 0.985 observed for
various polymer-polymer (PEG-Dextran) ABS
(Guan et al. 1993).

Figure 4 links the effectiveness of the salt in
forming aqueous biphasic systems (salting-out
strength of the salts) with the obtained values of
V�
213 from Table 4. As it can be observed, the

salting-out strength of the salts follows the order:
Na3citrate>K3PO4 > Na2tartrate>K2HPO4 >

Na2S2O3 > Na2succinate>K2S2O3 > K2CO3 >

(NH4)2S2O3. Except for the system containing
(NH4)2S2O3, the same order is observed for V�

213,
where a higher V�

213 value is associated with the
higher salting-out ability of the salt to provoke
phase splitting. This trend is also observed in the
literature for ATS based on polymers (Taghi
Zafarani-Moattar and Hamzehzadeh 2005;
Huddleston et al. 2003; Heaton 2008) and ionic
liquids (Alvarez-Guerra et al. 2016).

Figure 5 shows the V�
213 values from Table 4 as

a function of the molecular mass of the salts
examined, showing a close relationship. Other
authors observed the same trend for PEG2000-
salt (Huddleston et al. 2003) and polymer-

polymer ABS (Alvarez-Guerra et al. 2016) but
not for PEG600-salt ABS (Silverio et al. 2013).

Modeling binodal data using artificial
neural networks

Optimization of ANN architecture
The optimum ANN model was determined by
varying the number of neurons and the transfer
function in the hidden layer. Fifteen transfer func-
tions provided in MATLAB were tested in this
work, namely: competitive (compet), Elliot sig-
moid (elliotsig), positive hard limit (hardlim),
symmetric hard limit (hardlims), logarithmic sig-
moid (logsig), inverse (netinv), positive linear
(poslin), linear (purelin), radial basis (radbas),
radial basis normalized (radbasn), positive saturat-
ing linear (satlin), symmetric saturating linear

Table 4. Summary of root mean square deviations (RMSD
from Equation 4) and coefficient of determination (r2 from
Equation (5)) obtained using Equation (3).

NP� V�
213/ g mol�1 f213 RMSD r2

K3PO4 22 533 0.010 0.0262 0.9876
K2HPO4 13 506 0.017 0.0244 0.9910
K2CO3 13 347 0.096 0.0321 0.9844
Na3citrate 11 606 0.010 0.0343 0.9763
Na2tartrate 11 512 0.018 0.0235 0.9837
Na2succinate 10 459 0.018 0.0264 0.9866
K2S2O3 13 441 0.016 0.0194 0.9919
Na2S2O3 13 474 0.014 0.0288 0.9880
(NH4)2S2O3 12 362 0.057 0.0222 0.9927
Average 0.0264 0.9869
�NP – Number of data points

Table 5. Summary of root mean square deviations (RMSD
from Equation 4) and coefficient of determination (r2 from
Equation 5) obtained using Equation (3), assuming that f213
¼ 0.

NP� V�
213/ g mol�1 f213 RMSD r2

K3PO4 22 559 0 0.0330 0.9804
K2HPO4 13 547 0 0.0359 0.9805
K2CO3 13 513 0 0.1334 0.7300
Na3citrate 11 642 0 0.0425 0.9636
Na2tartrate 11 539 0 0.0295 0.9742
Na2succinate 10 491 0 0.0397 0.9696
K2S2O3 13 459 0 0.0228 0.9888
Na2S2O3 13 502 0 0.0363 0.9810
(NH4)2S2O3 12 443 0 0.0801 0.9052
Average 0.0503 0.9415
�NP – Number of data points

Figure 4. Binodal lines for the nine ABS containing ethyl lac-
tate, water and salt (Na3citrate—black, K3PO4—grey,
Na2tartrate—bark blue, K2HPO4—red, Na2S2O3—yellow,
Na2succinate—green, K2S2O3—brown, (NH4)2S2O3—pink and
K2CO3—light blue) obtained by fitting Equation (3) using con-
stants given in Table 4, expressed in molalities (m). The insert
shows the obtained values for V�213 for each system (the same
color code applies).

Figure 5. Effective excluded volume, V�213 (Table 4), as a func-
tion of molecular masse of salt.
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(satlins), soft max (softmax), symmetric sigmoid
(tansig), and triangular basis (tribas). These fifteen
transfer functions with the number of neurons
between 1 and 12 were evaluated for r2 and RMSD
values. Figure 6 shows the average RMSD for dif-
ferent transfer functions in the hidden layer.

Comparing the training-test-overall perform-
ance, the ANN model with tansig as the transfer
function provided the lowest RMSD values of
0.024, 0.035 and 0.028 for training, test and over-
all, respectively.

With tansig confirmed as the transfer function,
the performance of the number of neurons in the
hidden layer was evaluated. The relationship between
RMSD and the number of neurons in the hidden
layer is shown in Figure 7. Five neurons in the hid-
den layer were chosen in the optimum architecture
as it gave the lowest RMSD values of 0.011, 0.021
and 0.014 for training, test and overall, respectively.
This selection also met the rule of thumb (Heaton
2008)—the number of hidden layer neurons (five)
should be less than twice the number of neurons in
the input layer (three, as presented in Figure 1).

The r2 values of the ANN model with five neu-
rons in the hidden layer and tansig as the trans-
fer function are 0.990, 0.953 and 0.982 for
training, test and overall, respectively. High r2

values indicated a good agreement between
experimental and simulated values for the opti-
mum ANN architecture.

Training of ANN model
Experimental binodal data of seven ABS contain-
ing ethyl lactate, water and either K3PO4,
K2HPO4, K2CO3, Na3C6H5O7, Na2C4H4O6,
Na2S2O3 or (NH4)2S2O3 were used to train the
ANN model with the optimum architecture
(five neurons in the hidden layer and tansig as
the transfer function). The MATLAB code of the
trained ANN model is provided in the
Supplementary Material. From the regression fig-
ures in Figure 8(a), it is clear that the trained
ANN model had high regression values for train-
ing, validation, test and overall. It indicated a
good correlation between the simulated and the
experimental values. The error histogram dia-
gram in Figure 8(b) shows a close to normal dis-
tribution, with most of the errors between 0.09
and �0.05.

The key statistics of the ANN model are sum-
marized in Table 6.

Validation of ANN model
As described in the previous session, seven ABSs
were used to train the model, which was subse-
quently used to predict the binodal lines for
water-ethyl lactate-K2S2O3 and water-ethyl lac-
tate-Na2C4H6O4 systems. For the water-ethyl lac-
tate-K2S2O3 (Figure 9(a)) system, the model
underestimated the molality of ethyl lactate with
a RMSD of 0.020 and r2 value of 0.975. While for

Figure 6. Relationship of average RMSD and transfer functions in the hidden layer.
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the water-ethyl lactate-Na2C4H6O4 (Figure 9(b))
system, the model gave a better prediction with a
RMSD of 0.005 and r2 of 0.998. The close agree-
ment of the simulated and experimental values
highlights the accuracy of the ANN model for
the estimation of the binodal lines with only the
inputs of the Gibbs free energy of hydration of
ions and the molar fraction of the salt.

FTIR–ATR analysis of binary and ternary solutions

Figure 10 presents the FTIR-ATR spectra of the
salt-rich ternary solutions, whilst Figures S1–S3 in
the Supplementary information present those for
the ethyl lactate-rich ternary, middle ternary and
binary solutions, respectively. In each, only the data
between 2400�3800 cm�1 are displayed for clarity.

Referring to Figures S1–S3, it can be seen that
there is no appreciable impact upon the O–H
stretch as a result of the addition of the different
salts in either the ethyl lactate-rich ternary, middle
ternary or binary solutions. In Figure S1
(Supporting Material), a change is observed when
comparing the ethyl lactate-rich solutions with
pure ethyl lactate, but this is simply due to the
higher level of water present in these solutions.
Conversely, the O–H stretch is clearly significantly
affected by the addition of the different salts in the
salt-rich ternary solutions as can be seen in Figure
10. The fact that these changes are only observed
in the salt-rich ternary solutions is to be expected,

as it has been shown previously that in order to
interfere with the hydrogen bonding network
within water sufficiently to be detected by FTIR-
ATR, most salts need to be present in molar ratios
of 1:25 or higher (Nickolov and Miller 2002). This
is only the case in this study for the salt-rich tern-
ary solutions, and therefore, the subsequent analysis
focuses on this set of data specifically.

FTIR-ATR spectroscopy is used to study aque-
ous systems like these as it is highly sensitive to
the hydrogen bonding network, which impacts
the structure and order within the liquid
(Nickolov et al. 2003; Dubouis et al. 2019). In
pure water and on the order of the lifetime of a
hydrogen bond, this structure is “ice-like”, with
each water molecule connected via four hydrogen
bonds to other water molecules in a tetrahedral
geometry, giving rise to an O–H band centered
around 3250 cm�1. The presence of any impur-
ities within the water gives rise to a second band
at a higher wavenumber, around 3400 cm�1,
which corresponds to water molecules that are in
a distorted geometry where the hydrogen bond-
ing is weakened (Nickolov et al. 2003). The weak-
ening of the hydrogen bonding strengthens the
O–H bond hence the second band appearing at a
higher wavenumber. As a result of the breadth
and proximity of these two bands, the result is a
single overall band, the position and breadth of
which are determined by the relative amounts of
“order” and “disorder” water in the solution.

Figure 7. Relationship of average RMSD and the number of neurons in the hidden layer.
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Figure 8. (a) Regression of training, validation and test steps for the optimum artificial neural network architecture. (b) Error histo-
gram diagram.

Table 6. Summary of the statistics of the ANN model.

Number of iterations

Root mean square deviation (RMSD) r2

Training Validation Test Overall Training Validation Test Overall

143 0.0127 0.0299 0.0347 0.0205 0.9834 0.9340 0.9797 0.9627
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As stated above, salts can interfere with the
hydrogen bonding network within aqueous solu-
tions and can do so in a “structure making” man-
ner, where the hydrogen bonding network is
enhanced, or a “structure breaking” manner,
where the hydrogen bonding network is dis-
rupted (Nickolov et al. 2003). In effect, this
means that “structure making” salts increase the
intensity of the band centered around 3200 cm�1

whilst “structure breaking” salts decrease it. The
observed result is that the more “structure-
making” salt is, the more the O–H band is
shifted to a lower wavenumber and the greater
the full-width half maxima (FWHM) of the peak.

Figure 11 presents the FWHM maxima of the
O–H band for each salt-rich ternary solution
plotted against its peak position. As expected, the
general correlation of a higher FWHM and a
lower peak position is observed and some clear
groups amongst the salts emerge. Considering the
anions, the O–H band for the thiosulfate (S2O3

2-)
anion salts generally appear at the highest wave-
number and have the lowest FWHM suggesting
that they are the least “structure making”. The
carbon-containing anions citrate, tartrate, succin-
ate and carbonate (CO3

2-) give rise to O–H bands
at intermediate wavenumber and FWHM, sug-
gesting that they are moderately “structure
making”. Finally, the phosphorus-containing
anions phosphate and hydrogen phosphate
(PO4

3- and HPO4
2) result in O–H bands at the

lowest wavenumbers and with the highest
FWHM suggesting that they are the most struc-
ture making.

It is harder to draw any conclusions about the
effect of the cation. Initially, it would appear that
of potassium and sodium, it is the former that is
the most “structure making” as the three most
“structure making” salts all have potassium cati-
ons; however, so does the least “structure
making.” The only direct comparison that can be
made is between potassium thiosulfate (K2S2O3)
and sodium thiosulfate (Na2S2O3), which would
suggest that, in fact, sodium is the more
“structure making” of the two cations, but further
analysis of other comparable sodium and

Figure 9. Predicted binodal lines using the ANN model for (a) water-ethyl lactate-K2S2O3 system; (b) water-ethyl lactate-Na2 succin-
ate system. The training dataset included 95 experimental data points for seven ternary systems containing different salts, K3PO4,
K2HPO4, K2CO3, Na3-citrate—Na3C6H5O7, Na3-tartrate—Na2C4H4O6, Na2S2O3 and (NH4)2S2O3).

Figure 10. FTIR–ATR spectra of the salt-rich ternary solutions
(Na3 citrate—black, Na2 tartrate—dark blue, Na2 succinate—
green, K3PO4—grey, K2HPO4—red, K2CO3—light blue,
K2S2O3—brown, Na2S2O3—yellow and (NH4)2S2O3—pink)
between 2400–3800 cm�1.
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potassium salt pairs is needed to verify this. In
addition, the ammonium thiosulfate
((NH4)2S2O3) should be considered with caution
as the presence of the N–H stretch within the
O–H band envelope could be impacting
the results.

Using the peak position as the figure of merit
for ranking these salts as “structure making” gives
the following order: K2HPO4 > K2CO3 > K3PO4

> Na2 succinate>Na2 citrate>Na2 tartrate >
(NH4)2S2O3 > Na2S2O3 > K2S2O3. Conversely
using the FWHM as the figure of merit for the
ranking gives the following order: K3PO4 >
K2HPO4 > K2CO3 > (NH4)2S2O3 > Na2
succinate¼Na2 citrate>Na2 tartrate>Na2S2O3

¼ K2S2O3. The “structure-making” nature of salts
should correlate with their salting-out strength,
as the more ordered the water molecules in the
aqueous phase are, the more readily the organic
component will separate into a separate phase.
For these salts, the salting-out strength was deter-
mined in the above section and is repeated here
for comparison: Na2 citrate>K3PO4 > Na2
tartrate>K2HPO4 > Na2S2O3 > Na2
succinate>K2S2O3 > K2CO3 > (NH4)2S2O3.
Comparing the trends, some of the same patterns
emerge, with the phosphorous-containing salts
(K3PO4 and K2HPO4) being both more “structure
making” and more effecting at salting-out than

the thiosulfate salts ((NH4)2S2O3, Na2S2O3 and
K2S2O3). However, differences also emerge as
whilst the carbon-containing salts are broadly
intermediary in terms of their “structure-making”
ability, they show a much wider range of salting-
out strengths.

Overall, this suggests that whilst the use of
O–H bandwidth and position as a proxy for the
“structure making” nature of salt is a useful guide
in suggesting groups of salts that would be of
interest for further research, there are clearly
more complex factors at play that cannot be cap-
tured by as simple a technique as FTIR–ATR
spectroscopy.

Conclusions

This work investigated three analytical models to
describe the binodal curves of nine aqueous
biphasic systems based on ethyl lactate.
Exponents of Merchuk’s equation were optimized
to provide better agreements with experimental
data of ABS based on ethyl lactate. The results
confirm that all three analytical models are suit-
able to be used, with the average root mean
square deviation and coefficient of determination
of 0.0119 and 0.9971, 0.0182 and 0.9932, 0.0264
and 0.9869, for Merchuk’s equation with opti-
mized exponents, two-parameter exponential
equation and effective excluded volume model,
respectively. These models can be used for similar
systems in the future to interpolate compositions
of phases when such data are unavailable.

Furthermore, we have developed an artificial
neuron network (ANN) capable of predicting
binodal curves using the mole fraction of salt and
characteristics of ions—their charges and molar
Gibbs of hydrations. The optimum network
structure contained five neurons and tansig as
the transfer function in the hidden layer. A good
agreement between experimental data and the
predicted values was achieved—the average root
mean square deviation was 0.2050 while the coef-
ficient of determination was 0.9627.

FTIR–ATR spectroscopy broadly supported the
model predictions in terms of the observed struc-
ture making/structure breaking nature of the dif-
ferent salts as determined from the position and
FWHM of the O–H band; however it failed to

Figure 11. Full-width half maxima (FWHM) of the peak versus
peak position for the O–H band in the FTIR–ATR spectra of the
salt-rich ternary solutions (Na3 citrate—black, Na2 tartrate—
dark blue, Na2 succinate—green, K3PO4—grey, K2HPO4—red,
K2CO3—light blue, K2S2O3—brown, Na2S2O3—yellow and
(NH4)2S2O3—pink).
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capture all of the variations, suggesting that more
complex intermolecular interactions than cap-
tured here are also at play.
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