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ABSTRACT Direction finding and positioning systems based on RF signals are significantly impacted
by multipath propagation, particularly in indoor environments. Existing algorithms (e.g MUSIC) perform
poorly in resolving Angle of Arrival (AoA) in the presence of multipath or when operating in a weak signal
regime. We note that digitally sampled RF frontends allow for the easy analysis of signals, and their delayed
components. Low-cost Software-Defined Radio (SDR) modules enable Channel State Information (CSI)
extraction across a wide spectrum, motivating the design of an enhanced AoA solution. We propose a Deep
Learning approach for deriving AoA from a single snapshot of the SDR multichannel data. We compare
and contrast deep-learning based angle classification and regression models, to estimate up to two AoAs
accurately. We have implemented the inference engines on different platforms to extract AoAs in real-time,
demonstrating the computational tractability of our approach. To demonstrate the utility of our approach
we have collected IQ (In-phase and Quadrature components) samples from a four-element Universal Linear
Array (ULA) in various Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) environments, and published
the dataset. Our proposed method demonstrates excellent reliability in determining number of impinging
signals and realized mean absolute AoA errors less than 2◦.

INDEX TERMS Angle-of-Arrival, deep neural networks, machine learning, signal processing, software
defined radio.

I. INTRODUCTION
The modern digital world is constructed in part by the
ubiquity of wireless communication, enabling information
exchange without mobility constraints. Although the primary
purpose is typically for communication, RF signatures in
the frequency domain become valuable sources of informa-
tion in their own right. These signals, also called Signals
of Opportunity, have sparked numerous applications such
as jammer detection [1], location fingerprinting [2], radio
planning etc.

Estimating Angle-of-Arrival (AoA) is one of the most
popular radiogoniometric parameters to provide positional
awareness about RF signals. Based on their importance,
a number of classical algorithms have been proposed
to accurately estimate bearing angles, typically based on
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electromagnetic propagation theory and physical models.
One of the most well known is the MUSIC [3] approach
for multiple source estimation, with the ability to provide
super-resolution beyond the resolution of the antenna array.
However, MUSIC performs poorly in Non-Line-of-Sight
(NLOS) conditions, which is further compounded by opera-
tion in low Signal-to-Noise Ratio (SNR) regimes. Moreover,
both super-resolution methods and iterative Maximum Like-
lihood methods require knowing the number of impinging
signals a-priori [4], [5].
As an alternative, data-driven or learning-based AoA

methods have drawn increasing attention [6], [7] in the
past decade. However, we note that none of the existing
data-driven methods utilize real-world channel data for train-
ing. Rarely have these methods, which are taught by syn-
thetic data, been validated in real-world environments [6].
To some extent, this is due to the high cost and challenges of
obtaining basebanded IQ data, as most RF front ends for AoA
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estimation are dedicated to a specific use case. The high-end
USRPs (Universal Software Radio Peripheral) which cover
VHF (Very High Frequency), UHF (Ultra High Frequency),
and SHF (Super High Frequency) bands are costly, limiting
their adoption. We instead focus on investigating how low-
cost Software-DefinedRadio (SDR), e.g., RTL-SDR dongles,
makes passive sensing of AoAs possible with a minimal
setup. Moreover, state-of-the-art AoA estimator [8] which is
blind of the impinging signals relies on a 16-element Uni-
versal Linear Array (ULA). Yet has it been validated in real-
world measurement. To this end, we have proposed a hybrid
classification and regression DNNmodel to predict the AoAs
from SDR arrays agnostic of the number of impinging signals
or the type of modulation.

We note that AoA is encapsulated through phase-
differences between channels due to propagation delays [9].
Deep Learning based methods excel at extracting highly-
abstract and representative features directly from a large
amount of data. This makes Deep Learning an excellent
candidate in attending AoA from quadrature demodulated IQ
data which are noisy and prone to coupling effect. Regular-
ities of the phase delays can be further revealed by comput-
ing correlations among channels, also known as the sample
covariance matrix. This acts to reduce the impact of low
SNR through correlation over a window of samples. Using
the sample covariance matrix to estimate AoA also negates
the effect of symbol modulation schemes, pulse shaping,
or carrier frequency drift [10]. To this end, we have devel-
oped a supervised learning approach to AoA using low-cost
SDRs. Given a limited number of antenna array elements,
our proposed method can estimate multiple AoAs from a
single-snapshot sample covariance matrix. However, this task
is non-trivial. There are four main difficulties that need to be
addressed:

i EstimatingAoAs inmultipath conditionswith lowSNRs
remains a long-standing problem.

ii Classic AoA methods have a limited Field of View
(FOV) [8] when using a ULAwhich is prevailing. ULA’s
(as opposed to Uniform Circular Arrays, UCAs) are
commonly encountered due to their slim form-factor.

iii A blind sensing approach in the physical layer to AoAs
is confronted by agnosticism of the signal types, number
of sources, or symbol modulation.

iv Constructing a balanced dataset that allows ergodic
supervised-learning is a formidable task because the
sheer varieties of multipath channel conditions are
infinite.

To the best of our knowledge, state-of-the-art data-driven
methods of AoA estimation are all based on training with
synthetic data [6], [10]–[12]. Furthermore, real-time perfor-
mance validation upon multiple signals in multipath envi-
ronment remains scarce. We utilize a supervised learning
approach to predicting up to two AoAs in complex indoor
environments. We have taken real-world tests to validate our
approach. The source code of this project has been made

accessible to the public.1 In addition, we have made our
dataset accessible to foster research in this area.2

Our contributions are threefold: (1) We have published
the sample covariance matrix feature vectors used for super-
vised AoA learning, and the corresponding ground-truth
AoAs from various real-world environments; (2) We have
proposed a series of Deep Neural Network models, termed
DeepAoANet, which classify the number of impinging sig-
nals before predicting their AoAs accurately without prior
knowledge of the signals; (3) Using KerberosSDR, we have
developed a real-time AoA estimation and visualization tool
to facilitate a low-cost and low-power AoA solution.

The rest of this paper is organized as follows. Section II
reviews existing AoA estimation methods and advocates the
motivations of our approach. The RF front end, DeepAoANet
architecture, and dataset composition are expanded in details
in Section III. Performance evaluation of the DeepAoANet is
shown in Section IV. Section V summarizes this work.

II. BACKGROUND
Passive sensing of RF primitives, such as RSSI (Received
Signal Strength Indicator), TDOA (Time Difference of
Arrival), AoA etc., has seen broad applications in radar,
localization, and source detection. RSSI provides a coarse
measurement of signal quality versus noise. A limited posi-
tioning precision is achievable with RSSI alone [13], [14].
Localization using TDOA requires rigorous synchronization
between transmitter and receivers [15], which can be expen-
sive and challenging to achieve. AoA on the other hand is a
competitive candidate for positioning and source detection in
terms of accuracy and cost [16].

Listening to RF signals non-intrusively is made possible
with low-power and low-cost SDRs. The most remarkable
advantage of SDR is the flexibility of adapting to new
RF needs based on a common hardware platform [17].
Compared to the high-end USRP, an RTL-SDR dongle, cost-
ing under $20, is a significantly low-cost, low-power, and
compact transceiver of VHF and UHF signals [18]. The lat-
est RTL-SDR V3 unit produces a maximum sampling rate
of 3.2MHz covering frequency bands from 24MHz up to
1.7GHz. This gives rise to potentially an extremely low-cost
passive AoA estimator in the corresponding frequency bands.

N. BniLam et al. [19] proposed an AoA estimator of LoRa
signals based on an SDR front end and found 2◦ mean error
in LOS (Line-of-Sight), and 10◦ mean error in NLOS. How-
ever, a hand-crafted crystal oscillator has to be integrated to
accomplish synchronization among channels. The emerging
KerberosSDR [20] comprises four coherent RTL-SDR don-
gles. The shared crystal oscillator and calibrator board with
internal noise source allow sample and phase synchronization
with ease. The KerberosSDR makes a cost-effective AoA
solution possible.

1https://github.com/zdai257/DeepAoANet
2https://drive.google.com/drive/folders/1421NOSQcveTE-

TpKAM6cPg3SN_vatJPQ?usp=sharing
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Conventional AoA algorithms, such as Capon and MUSIC
etc., suffer from accuracy degradation in the presence of
multipath or a low SNR [4], [21]. Despite widely used with
a desirable form factor, the ULA usually results in a limited
FOV [8]. Taking MUSIC for example, the Wave Vector, Ek ,
propagating along the x-axis is defined as

Ek =
2π
λ
sin (θ) (1)

where the wavelength is λ; the impinging angle with respect
to the antenna array is θ . The magnitude of the Wave Vector
is Wave Number, k = 2π/λ. Given M array elements, the
position of the m-th element of the array placed along y-axis
can be written as;

Eym = (0, ym) (2)

and

ym = α (m− 1) λ (3)

given the inter-element spacing factor, α. The steering vector
represents the set of phase delays a plane wave experiences
evaluated at a set of array elements, which can be expressed
as;

a (θ) = [e−jEky1 , e−jEky2 , . . . , e−jEkyM ]T (4)

Hence, the received signal, x, can be expressed as;

x =
L∑
l=1

a (θl) · sl + n (5)

where L is the number of impinging signals, s denotes the
source signal, and n is the zero-mean Gaussian noise vector.
Given a sampling window of lengthN , the sample covariance
matrix, R, reads

R =
1
N

N∑
i=1

xxH (6)

where xH denotes the Hermitian Transpose of the received
signal.

In order to obtain AoAs of multiple sources, MUSIC takes
an eigen-decomposition approach to distinguishing signals
from noise which co-exist in a plane wave. The basic hypoth-
esis lies in the orthogonality of signal and noise in the sub-
space. The eigenvalues and eigenvectors of the signal and
noise can be written as;

R = QsDsQs
H
+QnDnQn

H (7)

where Qs is the signal subspace formed by eigenvectors cor-
responding to large eigenvalues, and Ds is a diagonal matrix
containing eigenvalues; Likewise, Qn is the noise subspace
formed by eigenvectors corresponding to smalls eigenvalues,
and Dn is the diagonal matrix.
In ideal conditions, the steering vector in the signal sub-

space is orthogonal to the noise subspace;

a (θ) ·Qn = 0 (8)

Thereafter, MUSIC algorithm is implemented by minimiz-
ing the following term (we refer the readers to [3] for details
of derivation);

θMUSIC = argmin
θ

aH (θ)QnQn
Ha (θ) (9)

Thus, a search is launched over the steering vector candi-
dates to identify the ones that maximize the power spectrum
of the received signal;

P (θ) =
1

aH (θ)QnQn
Ha (θ)

(10)

However, MUSIC relies on the orthogonality of signal
and noise subspace which does not hold in real-world mul-
tipath conditions. Moreover, the model-based derivation of
the above power spectrum is susceptible to array positional
imperfections and mutual coupling [6]. To overcome these
challenges, the research community have moved towards
learning-based AoA in the past few years. Some works
attempt to learn AoAs from base-band IQ data directly [9],
[11]. However, received data fromRF front ends are subject to
various channel characteristics, such as antenna gains, mutual
coupling between array elements, negative SNRs etc. Only
when the SNR is above 18dBwith a fixedwindow length does
the method in [11] produce acceptable results. In addition,
almost all works have used synthetic data for training and
validation. It is inevitable that these networks overfit to the
assumptions used to simulate the IQ data, whichmay not hold
in the real world.

Learning AoAs from the sample covariance matrix have
also drawn increasing attention recently [12]. The sample
covariance matrix calculates correlations among channels
while masking the morphology of the signal itself. For
instance, SVR (Support Vector Regression) has seen success
in generating robust and accurate AoAs from the sample
covariance matrix [22]. SVR is a member of the SVM
(Support Vector Machine) family. It shines in mapping multi-
variate non-linear sample covariance matrix features to latent
phase differences. A supervised learning method by applying
SVM upon PDPs (Power Delay Profile) of antenna arrays to
estimate AoA has been proposed in [7].

Nevertheless, regression cannot resolve the ambiguity of
unknown number of signals at different time instants [23],
leading the majority of existing learning approaches to focus
on estimating a single source at a time. A two-stage classi-
fication model has been proposed in [6]. In the first stage,
a multi-output autoencoder extracts phase delay features from
the sample covariance matrix into pre-defined angular subre-
gions. A one-versus-all classifier then determines if a signal
exists in each angular subregion. In addition, synthetic noise
is introduced in the training data as a form of data augmen-
tation, including gain-phase inconsistency, sensor position
errors, and mutual antenna coupling, to increase robustness
of the algorithm. However, a fine-grained angular resolution
trades off system efficiency and simplicity in constructing
the training data, since angular bins of 0.1◦ require 1201
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classifiers given a FOV = 120◦, as well as an immense set
of ground-truth labels for training.

In addition, the vast majority of the data-driven methods
utilize artificial signals [8], [11], [24], and few have been
validated using real-world signals [6]. This is probably due
to the sheer complexity of real-world RF propagation and
signal diversity and the challenges of obtaining sufficient
ground-truth data for balanced training. We note that similar
issues exist in the acoustic signal processing and speech
recognition community. The AoA of acoustic signals have
been widely studied using temporal-spectral features from
microphone arrays [25], [26]. Despite huge differences in
propagating speed and wavelength, acoustic and RF AoA
estimation share common challenges such as multipath,
also known as reverberation, and interference of multiple
sources [27]. S. Adavanne et al. [28] proposed a Convolu-
tional Recurrent Neural Network to detect multiple indoor
sound sources from the spectrogram of a four-element array.
Y. He et al. proposed SoundDet [29] which is an end-to-end
sound classification and direction finding system.

In summary, we observe that (a) classical learning
approaches, althoughmature andwell studied, do not perform
well in high multipath and low SNR conditions, (b) existing
learning approaches are predominantly only able to resolve
a single source, and (c) more critically, learning approaches
are largely trained and validated with simulated data which is
not realistic. This leads us to design a learning based system
to overcome these challenges.

III. DeepAoANet
We develop a data-driven algorithm to predict AoA’s robustly
and accurately in multipath conditions. In doing so, we first
create a dataset of sample covariance matrix observations
in various scenarios. We use relative GPS positions and
a compass for direction alignment to label the impinging
LoRa signals [17]. Thereafter, we generate augmented data
by introducing phase shifts and multiple levels of Additive
White Gaussian Noise (AWGN) to provide sufficiently dense
and balanced training labels [30]. We propose DeepAoANet,
a hybrid classification and regression Deep Learning model,
to perform end-to-end AoA estimation from a single sam-
ple covariance matrix snapshot. It is of key importance for
DeepAoANet to learn generic AoA features regardless of
signal strength, number of sources, or symbol modulation.
We further utilize multi-step fine-tuning techniques [31] to
jointly train the classification and regression heads. In order
to validate the DeepAoANet performance in real-time, real-
world conditions, we have developed a Graphic User Inter-
face (GUI) tool allowing AoA visualization with the aid of
KerberosSDR. Moreover, we emphasize that our approach
works well with a single low-cost SDR device with only 4
antennas. The device can passively sniff the channel, detect
any RF transmission (within the frequency band) and esti-
mate the AoA accurately. Such a passive AoA detector is
extremely useful in many applications such as indoor local-
ization, intruder detection, etc.

A. PROBLEM FORMULATION
Real-world AoA estimation using conventional methods
faces numerous challenges. The presence of multipath under-
mines the assumption that the signal and noise subspace are
orthogonal to one another. Coupling between array elements
and slight positional imperfections act to reduce the effec-
tive FOV. Moreover, it is difficult for a simple peak search
algorithm to determine the number of signals from the spatial
power spectrum (Eqn. 10).
Specifically, the first challenge in AoA-based systems is

the limited FOV of antenna array (for simplicity, we assume
the antenna array is a ULA, although we note that any other
geometric structure is applicable). In principle, a ULA is
capable of estimating theAoAof arriving signal from−90◦ to
+90◦. However, the resolution degrades significantly towards
the antenna axis (near +90◦ and −90◦) and thus limits the
effective FOV of the antenna. Figure 1 plots the power pattern
of a 4-element antenna array with an inter-element spacing
(αλ) of λ/4. The figure shows that the -3dB (half the power)
beamwidth of the main beam significantly increases when
the steering angle approaches 60◦ (the beamwidth increases
from 54◦ to 132◦). Because of the presence of noise, a wider
beamwidth will consequently result in higher AoA error.
In real-world environments, robustness to noise is crucial.

For AoA-based applications, the size of an antenna array
significantly affects the accuracy of AoA estimation in the
presence of noise. A smaller antenna array (fewer elements
or shorter inter-element spacing) causes wider beamwidth
and thus results in lower AoA resolution. Figure 2 shows
the power pattern of a ULA with different number of ele-
ments (4 and 8) and inter-element spacing (λ/2 and λ/4).
It is noticeable that the -3dB beamwidth increases more than
twice when the number of elements decreases from 8 to 4,
or when the inter-element spacing decreases from λ/2 to λ/4.
Practical indoor systems cannot usually afford an extremely
large antenna array for highly accurate AoA estimation. Con-
sequently, a classic highest peak search may fail to detect the
correct angle under noisy, multi-path conditions.
Fundamentally, the classic methods are based on a thresh-

olding and/or a searching algorithm to find the most probable
impinging signal(s). For example, to find the number of sig-
nals, a system can compare the eigenvalues to a threshold; the
number of eigenvalues higher than a threshold is considered
the number of signals [32]. However, this method is not reli-
able when the environment sees a large number of traveling
paths and when the antenna array has few elements. As an
example ( [32] required 16 and [33] required 8 antennas, with
spatial smoothing, to achieve an acceptable AoA accuracy
of around 5◦). ArrayTrack [32] also shows that the direct
path is not always the most probable path (in the maximum
likelihood sense) in multi-path environments, and thus needs
to use multiple antenna arrays to resolve the ambiguity.

In this paper, we explore the use of data-driven approaches
to resolve the limitations of classic methods. We argue that a
Deep Learning method is able to estimate accurately both the
number of impinging signals and the AoA of each individual
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FIGURE 1. Power pattern of a 4-antenna ULA with an inter-element
spacing factor (α) of 0.25 with 3 different steering angles of 0◦,30◦ and
60◦ respectively. The beamwidth of antenna array becomes larger when
the steering angle moving toward ±90◦, and thus more susceptible to
noise.

FIGURE 2. Power pattern of 4 or 8-antenna ULA configurations (steering
angle = 0◦). A ULA with fewer elements, or with a smaller inter-element
spacing factor (α), are more susceptible to noise (because of larger
beamwidth). However, it may be extremely expensive to accommodate a
large number of elements or a large inter-element spacing because of
form factor requirements.

signal. Given a passive RF receiver system with M synchro-
nized antennas, arranged in some geometric, sub-wavelength
spaced configuration. The system passively listens to the
RF channel. Whenever the system detects a spike in RF
energy, it will execute an algorithm to estimate the number
of impinging signals and the corresponding AoA. Instead
of relying on a predefined threshold and peak searching
algorithms, we design the DeepAoANet that automatically
estimates the number of signals and their respective AoA’s.
In doing so, we have taken a standard method to firstly

derive the sample covariance matrix following Eqn. 6. The
benefits are twofold: Using the sample covariance matrix
negates the need to constrain the sampling window to a fixed
configuration; Computing the correlations among channels
frees the AoA estimation from prior knowledge of signal type
or modulation. Therefore, the task of the DeepAoANet is
essentially recovering θl from R;

θ1, θ2, . . . θL = g(R) (11)

B. DeepAoANet ARCHITECTURE
An intuitive solution to derive accurate AoA’s is regression.
However, classic regression methods, e.g., SVR [5], cannot
compute AoA’s directly if the number of signals is unknown.
On the other hand, state-of-the-art classification methods
require a vast number of angular bins in order to achieve
a high angular resolution, as they essentially discretize the
angular space. For example, [6] created 1201 angular bins
of 0.1◦ which merely covers an FOV of 120◦. This not
only makes the classification task complex but demands a
more sophisticated dataset, e.g., C2

1201 classes for labeling.
We suggest that this could be a fundamental reason which
precludes researchers from using measured data for training.

Instead, we argue that a hybrid method of joint classifi-
cation and regression is potentially a more sensible end-to-
end model. The intuition behind our approach is that decision
on the number of sources is a natural classification problem
i.e. choosing from a discrete set of options, whereas esti-
mating angle of arrival is better suited to a regressor operat-
ing over a continuous domain. We developed DeepAoANet
which comprises a multilayer perceptron (MLP), a class-
fier to estimate the number of impinging signals, and
multiple regression heads to predict AoA’s. We denote this
model as DeepAoANet-FC. The network architecture of the
DeepAoANet-FC is shown in Fig. 3. The layer details of the
DeepAoANet-FC are shown in Table 1. Four fully-connected
layers with ‘ReLU’ (Rectified Linear Unit) activation are
utilized to extract latent phase difference features among
the four channels [34]. A classification head predicts the
number of sources. Two regression heads predict θ1 and θ2,
respectively.

In DeepAoANet-FC, the input feature input is first rear-
ranged into a one-dimensional vector. Then, several learn-
able fully-connected layers with weight W and bias term b
individually are applied to sequentially map the input feature
to the output feature output , with nonlinear activation ReLU
between to consecutive fully-connected layers,

output = dropout(ReLU (W · input + b)) (12)

where dropout(·) is a random dropout operator.
We notice the non-diagonal components of the sample

covariance matrix are especially small whenever there is no
signal. Prevailing acoustic and RF signal processing research
all utilize filtering mechanism to determine the presence of a
signal [29], [35]. This is not only efficient but reliable from
our observation because sample covariance matrix essentially
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FIGURE 3. Input, output, and the network architectures of the
DeepAoANet-FC.

computes the correlation of signal co-occurrences among
different channels, whereas, noises are independent. More-
over, it is difficult to classify ‘noise’, as it is subject to RF
frontend settings and the environment. We argue a predefined
threshold can be used to determine whether signals of interest
present. Thereafter, if it detects a signal the number of sources
and their AoAs can be estimated using DeepAoANet.

The sample covariance matrix is naturally square-shaped
in which the latent phase delays reside. Based on this obser-
vation, we propose an alternative network architecture using
CNN (Convolutional Neural Network) for feature extraction,
namely DeepAoANet-CNN. DeepAoANet-CNN takes the
input sample covariance matrix as a M × M ‘image’, and
applies a 2D convolution layer before three fully-connected
layers. The input ‘image’ can be expanded to C layers by
splitting the sampling windows into C smaller windows.
This enriches the temporal features of the input by incor-
porating temporal variations. The network architecture of
DeepAoANet-CNN is shown in Fig. 4.

In DeepAoANet-CNN, the input, input , is treated as
an image-patch like feature. A 2D convolution Conv2D
is applied to consume the image-patch like feature. The
same nonlinear operator ReLU , as well as random dropout,
is applied to the 2D convolved feature before obtaining the
output feature output ,

output = dropout(ReLU (Conv2D(input))) (13)

where Conv2D-processed feature is further fed to fully-
connected layers for further process.

TABLE 1. DeepAoANet-FC Nerual Network Architecture Illustration. (B is
batch size; M is number of array elements; C is number of sample
covariance matrix channels).

FIGURE 4. Input, output, and the network architectures of the
DeepAoANet-CNN.

The network architecture of the DeepAoANet-CNN,
as shown in Table 2, is similar in which only the first layer
is replaced by a 2D Convolution layer with Batch Nor-
mailization (BN) and Max-Pooling. A BN layer is inserted
right before the first activation function to produce better
convergence.

Since the classification and regression heads use differ-
ent loss metrics, namely, Binary Cross-Entropy (BCE) and
Mean-Squared Error (MSE), a loss weight coordination is
necessary in the joint training process. The BCE loss function
for the classifier, Lc, can be written as;

Lc = −
1
N

N∑
i=1

[
yi log(pi)+ (1− yi) log(1− pi)

]
(14)

where N is total number of samples, yi is the ground-truth
label of having two sources for the i-th sample, and pi is
the corresponding probability from the ‘sigmoid’ activation.
On the other hand, either regression loss, Lr, can be written
as;

Lr(z, ẑ) =
1
N

N∑
i=1

(
zi − ẑi

)2 (15)

where z is the ground-truth angle and ẑ is the prediction.
We define the joint loss function, L, as follows;

L = τ ·
[
Lc,Lr(z1, ẑ1),Lr(z2, ẑ2)

]T (16)

TABLE 2. DeepAoANet-CNN Nerual Network Architecture Illustration (B
indicates the batch size).
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where τ is a weight vector for the three heads. We discuss
further the selection of the weight vector in Section IV.

Notice [8] only considers correctly classified numbers of
signal in the mean error calculations which overestimates its
realistic performance. We have defined the RMSE and MAE
metrics, with penalties for incorrect classifications as follows;

RMSE =



√√√√∑N
i=1

[
(θ̂i1+θ̂i2)

2 − θi1

]2
N

if l = 1√√√√∑N
n=1

[
(θ̂i1 − θi1)2 + (θ̂i2 − θi2)2

]
N

if l = 2

(17)

MAE =


∑N

i=1 ‖
(θ̂i1+θ̂i2)

2 − θi1‖

N
if l = 1∑N

n=1 ‖θ̂i1 − θi1‖ + ‖θ̂i2 − θi2‖

N
if l = 2

(18)

where l is the ground-truth number of impinging signals, θ̂ik
and θik are the estimated angle and ground-truth angle of the
k-th regression head, respectively.

C. DATASET COMPOSITION
To conduct supervised learning upon DeepAoANet, a crucial
step is to construct a balanced and representative dataset.
We used intermittent LoRa beacons at 0.5Hz as the vendor
signal, which transmits a narrow-band signal at 868MHz in
the EU. The benefits are threefold: (1) excellent range in
multipath environments; (2) highly configurable air time,
transmitting power, and payload [36]; (3) free licensing in the
Industrial, Scientific and Medical (ISM) band.

We used KerberosSDR as the receiver for data collec-
tion thanks to its low cost and simplified synchronization
steps. An open-source driver of KerberosSDR with GUI is
provided. The KerberosSDR driver enables real-time AoA
visualization in several steps as shown in Fig. 5. Several
conventional AoA algorithms are built-in such as Capon [37]
and MUSIC. We took the following procedures to setup the
KerberosSDR as a passive LoRa receiver;
• Connect KerberosSDR to a laptop throughUSB and launch

the driver.
• Specify the center frequency as 868MHz, sampling rate

(2MHz), a unform gain for four channels (22.9dB), and
bandwidth (125kHz).

• Disconnect the antennas. Activate the noise source before
conducting sample and phase synchronization.

• Connect the antennas. Apply a band-pass filter, with FIR
tap size 100 and decimation 4, at the center frequency.

• Specify the ULA inter-element spacing factor as 0.2. Acti-
vate AoA estimation.

We labeled the data using relative GPS positions and
a compass for direction alignment. A Dragino LoRa-GPS
board stacked on a Raspberry Pi 4 was used as the transmitter.
The LoRa payload contains a full NMEA Message [13].
We have specified the LoRa SF (Spreading Factor) equal

FIGURE 5. On the left is a KerberosSDR connected to four whip antennas
with an inter-element spacing factor α = 0.2. The screenshot on the right
shows the spectrum of the four LoRa channels after band-pass filtering.

FIGURE 6. Effects of impinging angle change, ϕ, to the delay of the last
channel with respect to the first channel. The red circle represents
original source location while the red quiver represents the impinging
angle, θ ; Blue quiver stands for the new impinging angle after a phase
augmentation where the blue circle is the virtual source; Black triangles
are the ULA elements with a spacing factor of α. The phase delay (or
advancement), 4ξ , is equal to (d2 − d1)/λ. Note that smaller impinging
angles see greater phase shifts given the same ϕ.

to 11. This not only increases the range but lengthen the air
time to increase the efficiency of signal recording.

During data collection, we collected sample covariance
matrix snapshots measured in a variety of propagation con-
ditions. Nearly 50k snapshots of sample covariance matrices
were collected in (a) open area, (b) open area with copper
sheet as reflectors, (c) office, (d) corridor, and (e) interior-
to-outdoor environments. In scenarios (a) and (b), there is
no high-rise building or vegetation within 200m. Datasets
(c) and (d) were collected in a department building with
approximately 20m × 16m floor area. In (e), the transmitter
was fixed indoor while the KerberosSDR conductedmeasure-
ments outside on a parking lot full of cars. The composition
of the training dataset is illustrated in Table 3.

Discrete ground-truth AoA labels, between [−70◦, 70◦]
with 10◦ increment, were recorded by referring to the GPS
positions. We observed a threshold can be used upon Rij
values to differentiate signals from noise. If over 90% of
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TABLE 3. Training Data Composition.

non-diagonal Rij magnitudes are above 1e−4, signals are
detected. For each category of environment, Additive White
Gaussian Noises (AWGN) of zero mean and different Stan-
dard Deviations have been introduced to enrich the dataset.
This emulates receiving signals at different SNRs or ranges.

To approach an enhanced angular resolution, we have
introduced phase shifts to the dataset. A discrete angular
increment or decrement of 2◦ is posed to the original data as
illustrated in Fig. 6. This angular augmentation is restricted
within 4◦ to best preserve the ratio of raw data versus syn-
thetic and enrich the labels for regression. Therefore, them-th
array element of the receiver sees a phase shift as below

x̂ = x · ej4ξ = x · ej(m−1)α[sin θ−sin (θ+ϕ)] (19)

where θ is the ground-truth AoA and ϕ ∈ {−4◦,−2◦, 2◦, 4◦}.
Hence, a FOV ranging from−74◦ to 74◦ has been created for
a fine-grained AoA learning.

Similarly, AoA detection of multiple sources is constructed
through superposition of the collected single-source data. The
IQ data collected at scenarios other than LOS of different
ground-truth AoAs are superimposed to create synthetic IQs.
Notice the carrier signals come with stochastic initial phases
wherever they interfere. A random phase difference between
the carriers is inserted to simulate constructive or destructive
interference. The steps are expanded as follows.

Themodulated signals at carrier frequency,F0 = 868MHz,
can be written as;

m1(t) = x1(t)ejφ1ej2πF0t = [i1(t)+ jq1(t)] ej2πF0t (20)

m2(t) = x2(t)ejφ2ej2πF0t = [i2(t)+ jq2(t)] ej2πF0t (21)

where x1(t) and x2(t) are the base-band signals, and φ1 and
φ2 stand for the initial phases of the carrier signals which are
independent. Only in the modulated frequency band are the
signals additive. As a result, the superimposed signal reads

m1(t)+m2(t) =
[
x1(t)+ x2(t)ej(φ2−φ1)

]
ejφ1ej2πF0t (22)

If we define the carrier phase difference 4φ = φ2 − φ1,
IQ samples of the superimposed signal with random original
carrier phases yields

i1(t)+ jq1(t)+ [i2(t)+ jq2(t)] ej4φ 4φ ∈ [0, 2π) (23)

in which 4φ conforms continuous uniform distribution
within a period.

The phase differences of the SDR channels lie in the
upper triangular components of the sample covariancematrix,
R, as values of the upper-right and lower-left triangles
are symmetric. The diagonal components are always real
numbers equal to variances of the received signals. There-
fore, we serialized as inputs the real parts of R in the
top-right triangle, concatenated with imaginary parts of the
rest;

br =
[
r11, r12, . . . , rjk , . . . , r44

]T for j ≤ k (24)

bi =
[
i21, i31, . . . , ijk , . . . , i43

]T for j > k (25)

b = [br;bi] (26)

input =
b
‖b‖

(27)

The KerberosSDR sampling window length is configured
as 215. In this work, we chose a sliding window of length
212 to generate an 8-window sample covariance matrix. This
not only exploits temporal variations but enriches the input
feature space. Since there are four array elements in Ker-
berosSDR, each sample covariancematrix window comprises
M × M = 16 floating numbers. Thus, the input vector
contains 16 × 8 = 128 elements, or a feature ‘image’ of
size (4, 4, 8). We utilize standard scaling to normalize all the
inputs.

As for labels, we have arranged them as (ClassL , θ1, θ2),
in which θ1 is populated if only one source exists. In this
work, we only consider three circumstances as L ∈ {0, 1, 2}.
Since no-signal case can be solved effectively with a
threshold-based detector, we assigned binary classification of
L = 1 and L = 2 for the classifier. As ground-truth AoAs fall
in [−74◦, 74◦], we uniformly projected θ to be within (0, 1).
Note that θ1 and θ2 are rearranged in ascending order to avoid
confusing the regression heads.

We utilized ROS (Robot Operating System) for field data
collection as well as data synthesis. The total number of
sample covariance matrix snapshots exceed 2.6 million. The
process of data collection, labeling, and training are outlined
in Fig. 7. We have further validated that our dataset contains
sufficient amount of training sources as well as label diversity
in Section IV.
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D. AoA INFERENCE AND VISUALIZATION
In order to validate our approach, we built an inference
engine of the DeepAoANet for real-time estimation. A GUI
is developed to visualize the impinging signals. At runtime,
two LoRa sources are configured with different SF and power
settings transmitting messages of random lengths. To test the
generalization capacity of the DeepAoANet, the transmitters
have been placed in different indoor and outdoor environ-
ments. An example of the GUI showing two impinging sig-
nals are displayed in Fig. 8. A detailed performance analysis
is presented in Section IV.

IV. EVALUATION
We have trained and tested the DeepAoANet using Keras
with Tensorflow backend [38]. Adamoptimizer with an initial
learning rate of 1e−3 is used with a 1e−6 decaying factor.
We modify the weight vector τ in the loss function (Eqn. 16)
in a two-stage training process: for the first 40 epochs, τ
equals [0.1, 1, 1]; for the last 10 epochs, τ = [0.001, 1, 1] is
assigned. Because the BCE loss stops declining at a relatively
large value with classification saturates above 99% accuracy,
we suppress its weight in the loss to allow regressions proceed
further. We split our dataset into 60% for training, 30% for
validation, and 10% for testing, with a batch size of 512.
It takes 1.5 hours and 2 hours on a Dell XPS 15 laptop with
an Intel Core i7 CPU and a GeForce GTX 1650 GPU to train
DeepAoANet-FC and DeepAoANet-CNN, respectively.

To validate the effectiveness of our proposedDeepAoANet,
we contrast DeepAoANet’s against other classic and
regression methods. We have conducted tests in unseen
environments with different LoRa configurations under var-
ious SNRs. We have investigated the error distributions of
DeepAoANet to validate its effetive FOV. We have measured
the DeepAoANet’s latency on different computing platforms
to validate its efficiency.

1) COMPARISON TO OTHER METHODS
Since SVR can only deal with single source [22] and MUSIC
performance is subject to the selected peak search algorithm,
we evaluated DeepAoANet against other methods using only
the single-source split with a 0dB SNR for a fair comparison
in the Cumulative Distribution Function (CDF) plot. The
CDFs of DeepAoANet-FC, DeepAoANet-CNN, MUSIC,
and SVR are displayed in Fig. 9. As can be seen, both
DeepAoANet candidates yield RMSEs of approximately 2.5◦

for 80% of the tested samples. In contrast, SVR produces a
RMSE of more than 10◦. Notice MUSIC fails in this bench-
mark due to its limited FOVwhen estimating large impinging
angles.

2) EFFECTIVE FOV
We have investigated where the errors reside in the angular
spectrum using the DeepAoANet candidates versus SVR
as shown in Fig. 10. Generally, the errors are evenly
distributed. To quantify this statement, we calculated the

error standard deviations when the ground-truth AoAs
are within (−37◦, 37◦) or outside. They are 2.101◦ and
2.454◦ using DeepAoANet-FC, or 1.954◦ and 2.369◦ using
DeepAoANet-CNN, respectively. It can be seen larger
impinging angles are more difficult to estimate. In contrast,
SVR suffers large estimation errors with large impinging
angles. The standard deviation for AoA’s within (−37◦, 37◦)
equals 9.202◦; for AoA’s outside (−37◦, 37◦) it is 12.845◦.
Nevertheless, DeepAoANets have demonstrated a superb sta-
bility across a wider FOV in comparison to SVR.

3) ACCURACY VERSUS SNRs
It can be seen from Fig. 11 both DeepAoANet-FC and
DeepAoANet-CNN exhibit great resilience dealing with neg-
ative SNRs i.e. signals below the noise floor. Either SVR or
MUSIC performs poorly. Notice DeepAoANet-CNN demon-
strates better reliability when the SNR is less than −5dB.
We think this owes to the DeepAoANet-CNN’s superb power
in generalizing to deteriorated SNRs that are lower than what
is presented during training.

We investigated the classification performance when the
SNR equals 0dB. The classification confusion matrices of
the DeepAoANet-FC and DeepAoANet-CNN are shown in
Table 4 and Table 5. The DeepAoANet candidates demon-
strate excellent capabilities in identifying the number of
impinging signals.

4) REAL-WORLD TEST
To verify DeepAoANet can handle different types of sig-
nals, we have placed the KerberosSDR and two LoRa trans-
mitters inside a laboratory with a Vicon system to provide
ground-truth device positions of amm-level precision, so as to
ground-truth AoAs. The laboratory is in its typical state filled
with items. The KerberosSDR remains static while one LoRa
source is configured with SF 9 and 17 dBm of transmitting
power, and the other at SF 12 and 10 dBm of transmitting
power. Both were generating payloads of random lengths.
During the test, one transmitter was fixed and the other
was placed at four different locations. The estimated AoAs
using DeepAoANet-CNN and the ground-truths are plotted
in Fig. 12. This proves the DeepAoANet generalizes well in
unseen environments dealing with signals without knowing
the symbol modulation.

5) RUN-TIME EFFICIENCY
Both DeepAoANet-FC and DeepAoANet-CNN have merely
a few million parameters. This makes them suitable for
real-time applications. We have logged the DeepAoANets’,
as well as MUSIC and SVR’s, runtime performance on
platforms with different resource constraints, including the
Dell XPS15 laptop, an NVIDIA Jetson AGX Xavier with
a 512-core Volta GPU, and a Raspberry Pi 4, as shown
in Table 6. It can be seen using DeepAoANet inference is
more efficient compared toMUSIC (based on numpy library).
SVR is significantly faster. Nonetheless, the DeepAoANets
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FIGURE 7. A flowchart demonstrating how the offline training and online AoA estimation work.

FIGURE 10. Distributions of 95-percentile most accurate AoA’s predictions using DeepAoANet-FC, DeepAoANet-CNN, and SVR.

TABLE 4. Confusion Matrix of DeepAoANet-FC Classifier.

TABLE 5. Confusion Matrix of DeepAoANet-CNN Classifier.

allow inference rates over 60 samples-per-second even with
a single-board computer.

6) LIMITATIONS
There are several limitations in our current approach. The
DeepAoANet can only handle up to two sources at the
moment. This is because the amount of training data becomes
exponentially larger with the number of sources. Given 75
angular regions for regression, there are C3

75 = 67525 com-
binations of labels, each of which needs to be contaminated
by different levels of noise. We plan to use semi-supervised
learning rather than ergodic supervised learning to tackle
more than two AoA’s in future work. Although both con-
figurations of DeepAoANet delivered good results dealing
with LoRa signals of arbitrary configurations, they failed
whenwe shifted the transmitter center frequency by 100 kHz.
The accuracy also severely degraded if we changed the
antenna inter-element spacing factor at runtime. As specified
in Section III-C, only when the KerberosSDR is tuned to
the same center frequency, bandwidth, sampling rate, and
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FIGURE 8. An example of visualizing two impinging signals from −30◦
and 10◦ using the developed GUI tool.

FIGURE 9. CDF of estimating single-source AoA. Notice MUSIC is severely
under-performing because its reliable FOV stays between (−45◦,45◦)
from our observation. Whereas, the ground-truth angles in this
benchmark span across (−74◦,74◦).

FIGURE 11. Logarithm of RMSE to base 10 of the DeepAoANets, SVR, and
MUSIC against varying SNRs. Note SVR is analysed upon single-source
split of the testing dataset.

decimation does the DeepAoANet find its ground for phase
delay analysis. This is because the IQ data is subject to the RF

FIGURE 12. Real-time AoA estimations versus the ground-truth using
DeepAoANet-CNN. The red lines mark the ground-truth AoAs of the two
LoRa sources. The green dots represent the 1st regression output. The
blue dots represent the 2nd regression output. The orange crosses stand
for samples with wrong classification outcomes.

TABLE 6. Inference latency benchmark.

front end setup in which the training dataset were collected.
In the next step, we will collect more data under different
setups in pursuit of a truly generic AoA solution independent
of the RF front end or carrier frequency.

V. CONCLUSION
Extracting AoA of RF signals from passive sensing has
enjoyed long-standing research interest due to its importance
for a number of applications. Recent SDR front ends make
a robust and low-cost AoA estimator possible. However,
conventional AoA algorithms fall short in multipath envi-
ronments with low SNRs. Data-driven AoA methods have
emerged in the past decade showing capabilities for extract-
ing features from noisy multichannel data. Yet these methods
either require prior knowledge of the signal type, number,
and modulation, or merely realize offline performance with
synthetic data. We propose DeepAoANet, a pair of Deep
Learningmodels, to determine the AoAs of up to two imping-
ing signals. In doing so, we have collected sample covariance
matrices derived from received IQ data in various multipath
environments and published the dataset. We have validated
the reliability of the DeepAoANet in different scenarios, and
found a MAE of less than 2◦. This sheds light on a pure
physical layer approach to AoA acquisition regardless of the
propagation environment, transmission time, or modulation
of the signals.

In future work, we shall investigate a finer angular resolu-
tion for training with different antenna array setups. On top
of the current DeepAoANet baseline, we are going to explore
deeper network designs. We plan to generalize our approach

3174 VOLUME 10, 2022



Z. Dai et al.: DeepAoANet: Learning AoA From SDRs With DNNs

to signals of other frequency bands, and also AoA in both
azimuth and elevation domains.
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