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Discovery of 42 genome-wide significant loci 
associated with dyslexia

Catherine Doust1, Pierre Fontanillas    2, Else Eising    3, Scott D. Gordon    4, 
Zhengjun Wang    5, Gökberk Alagöz3, Barbara Molz    3, 23andMe Research 
Team*, Quantitative Trait Working Group of the GenLang Consortium*, 
Beate St Pourcain    3,6,7, Clyde Francks    3,6, Riccardo E. Marioni    8, 
Jingjing Zhao5, Silvia Paracchini9, Joel B. Talcott    10, Anthony P. Monaco    11, 
John F. Stein12, Jeffrey R. Gruen    13, Richard K. Olson    14,15, Erik G. Willcutt14,15, 
John C. DeFries14,15, Bruce F. Pennington16, Shelley D. Smith17, 
Margaret J. Wright    18, Nicholas G. Martin    4, Adam Auton, Timothy C. Bates    1, 
Simon E. Fisher    3,6 and Michelle Luciano    1 

Reading and writing are crucial life skills but roughly one in ten children are 
affected by dyslexia, which can persist into adulthood. Family studies of 
dyslexia suggest heritability up to 70%, yet few convincing genetic markers 
have been found. Here we performed a genome-wide association study of 
51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and 
identified 42 independent genome-wide significant loci: 15 in genes linked to 
cognitive ability/educational attainment, and 27 new and potentially more 
specific to dyslexia. We validated 23 loci (13 new) in independent cohorts 
of Chinese and European ancestry. Genetic etiology of dyslexia was similar 
between sexes, and genetic covariance with many traits was found, including 
ambidexterity, but n ot n eu ro an at omical measures of language-related 
circuitry. Dyslexia polygenic scores explained up to 6% of variance in 
reading traits, and might in future contribute to earlier identification and 
remediation of dyslexia.

The ability to read is crucial for success at school and access to employ-
ment, information and health and social services, and is related to 
attained socioeconomic status1. Dyslexia is a neurodevelopmental disor-
der characterized by severe reading difficulties, present in 5–17.5% of the 

population, depending on diagnostic criteria2,3. It often involves impaired 
phonological processing (the decoding of sound units, or phonemes, 
within words) and frequently co-occurs with psychiatric and other devel-
opmental disorders4, especially attention-deficit hyperactivity disorder 
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to overlap with dyslexia (for example, educational attainment, cogni-
tive ability) and were considered new (Table 1).

Of 38 associated loci (the 4 remaining were tagged by indels 
unavailable in validation cohorts), 3 (rs13082684, rs34349354 
and rs11393101) were significant at a Bonferroni-corrected level 
(P < 0.05/38) in the GenLang consortium GWAS meta-analysis of 
reading (n = 33,959) and spelling (n = 18,514) ability14. At P < 0.05, 18 
were associated in GenLang, 3 in the NeuroDys case-control GWAS12 
(n = 2,274 cases), and 5 in the Chinese Reading Study (CRS) of reading 
accuracy and fluency (n = 2,270; Supplementary Note) (Table 1 and 
Supplementary Tables 3–6).

Gene-based tests identified 173 significantly associated genes 
(Supplementary Table  7) but no significantly enriched biologi-
cal pathways (Supplementary Table  8). We estimated the LDSC 
liability-scale SNP-based heritability of dyslexia to be h2

SNP = 0.152 
(standard error = 0.006) using the 23andMe sample prevalence of 5%, 
and h2

SNP = 0.189 (standard error = 0.008) using a 10% prevalence of 
dyslexia, which is more typical of the general population2,3.

Fine-mapping and functional annotations
Within the credible variant set (Supplementary Table 1), missense vari-
ants were the most common (55%) of the coding variants; Extended 
Data Figure 4 summarizes all predicted variant effects. Predicted del-
eterious variants by SIFT (Sorting Intolerant From Tolerant) score were 
identified in R3HCC1L, SH2B3, CCDC171, C1orf87, LOXL4, DLAT, ALG9 
and SORT1. Within the credible variant set, no genes were especially 
intolerant to functional variation (smallest LoFtool (Loss-of-Function) 
percentile was 0.39). For the 42 associated loci, the most probable gene 
targets of each were estimated by the Overall V2G (Variant-to-Gene) 
score from OpenTargets (Supplementary Table 9). Two index variants 
(missense variant rs12737449 (C1orf87) and rs3735260 (AUTS2)) could 
be causal because they had combined annotation dependent depletion 
(CADD) scores suggestive of deleteriousness to gene function accord-
ing to Kircher et al.15 (Supplementary Table 10). The AUTS2 variant 
RegulomeDB rank of 2b indicated a regulatory role; its chromatin state 
supported location at an active transcription start site16,17.

Of the 173 significant genes from genome-wide gene-based tests 
in MAGMA (see Supplementary Table 11 for their functions), 129 could 
be functionally annotated (Supplementary Table 12). Protein-coding 
and noncoding sequences are actively conserved in approximately 
three-quarters of these genes, 63% are more intolerant to variation 
than average and 33% are intolerant to loss-of-function mutations. 
Gene property analysis for general tissues and 13 brain tissues con-
firmed the importance of the brain and specific brain regions (Sup-
plementary Tables 13 and 14). Levels of brain expression for 125 of the 
173 significant genes from gene-based tests could be mapped in FUMA 
and are shown in Supplementary Table 15. A total of 20 genes showed 
high general brain expression levels and, of these, 3 (PPP1R1B, NPM1 
and WASF3) were located near significant SNP associations. Of the 12 
brain regions assessed, gene expression was generally highest in the 
cerebellar hemisphere, cerebellum, and cerebral cortex, consistent 
with the results of gene property analysis.

Partitioned heritability
SNP-based heritability of dyslexia partitioned by functional annotation 
showed significant enrichment for conserved regions and H3K4me1 
clusters (Supplementary Table 16 and Extended Data Fig. 5). There was 
enrichment in genes expressed in the frontal cortex, cortex and anterior 
cingulate cortex (P < 4.17 × 10−3) (Supplementary Table 17 and Extended 
Data Fig. 6), but not for brain cell type (Supplementary Table 18 and 
Extended Data Fig. 7). Enrichment was seen in enhancer and promoter 
regions, identified by the presence of H3K4me1 and H3K4me3 chro-
matin marks, respectively, in multiple central nervous system (CNS) 
tissues (Supplementary Tables 19 and 20 and Extended Data Figs. 8 
and 9). Reading, an offshoot of spoken language, is a uniquely human 

(ADHD)5,6 and speech and language disorders7,8. Dyslexia may represent 
the low extreme of a continuum of reading ability, a complex multifacto-
rial trait with heritability estimates ranging from 40% to 80%9,10. Identi-
fying genetic risk factors not only aids increased understanding of the 
biological mechanisms, but may also expand diagnostic capabilities, 
facilitating earlier identification of individuals prone to dyslexia and 
co-occurring disorders for specific support.

Previous genome-wide investigations of dyslexia have been lim-
ited to linkage analyses of affected families11 or modest (n < 2,300 
cases) association studies of diagnosed children and adolescents12. 
Candidate genes from linkage studies show inconsistent replication, 
and genome-wide association studies (GWAS) have not found signifi-
cant associations, although LOC388780 and VEPH1 were supported in 
gene-based tests12. Larger cohorts are vital for increasing sensitivity 
to detect new genetic associations of small effect. Here, we present 
the largest dyslexia GWAS to date, with 51,800 adults self-reporting 
a dyslexia diagnosis and 1,087,070 controls, all of whom are research 
participants with the personal genetics company 23andMe, Inc. We 
validate our association discoveries in independent cohorts, provide 
functional annotations of significant variants (mainly single-nucleotide 
polymorphisms (SNPs)) and potential causal genes, and estimates of 
SNP-based heritability. Lastly, we investigate genetic correlations with 
reading and related skills, health, socioeconomic, and psychiatric 
measures, and evaluate the evidence for previously implicated dyslexia 
candidate genes in our well-powered results.

Results
Genome-wide associations
The full dataset included 51,800 (21,513 males, 30,287 females) par-
ticipants responding ‘yes’ to the question ‘Have you been diagnosed 
with dyslexia?’ (cases) and 1,087,070 (446,054 males, 641,016 females) 
participants responding ‘no’ (controls). Participants were aged 18 years 
or over (mean ages of cases and controls were 49.6 years (s.d. 16.2) 
and 51.7 years (s.d. 16.6), respectively). We identified 42 independ-
ent genome-wide significant associated loci (P < 5 × 10−8) and 64 loci 
with suggestive significance (P < 1 × 10−6) (Fig. 1 and Supplementary 
Table 1). Genomic inflation was moderate (λGC = 1.18) and consistent 
with polygenicity (see Q–Q plot, Extended Data Fig. 1). We also per-
formed sex-specific GWAS and age-specific GWAS (younger or older 
than 55 years) because dyslexia prevalence was higher in our younger 
(5.34% in 20- to 30-year-olds) than older (3.23% in 80- to 90-year-olds) 
participants. These subsample analyses showed high consistency with 
the main GWAS (of the full sample). Genetic correlation estimated by 
linkage disequilibrium (LD) score regression (LDSC) was 0.91 (95% 
confidence intervals (CI): 0.86–0.96; P = 8.26 × 10−253) in males and 
females, and 0.97 (95% CI: 0.91–1.02; P = 2.32 × 10−268) between younger 
and older adults.

Of the 17 genome-wide significant variants in the female GWAS 
(Extended Data Fig. 2), all but four (rs61190714, rs4387605, rs12031924 
and rs57892111) were significant in the main GWAS and, of these four, 
three were in LD with an SNP that approached significance (P < 3.3 × 10−7 
or smaller) in the main analysis. Intergenic SNP rs57892111 (located 
between TFAP2B and PKHD1 on chromosome 6p) was not among the 
significant or suggestive SNPs of the main analysis, and so may rep-
resent a female-specific variant. There is no evidence from existing 
GWAS that this SNP is associated with any other human trait. Of the six 
genome-wide significant variants in the male GWAS (Extended Data 
Fig. 3), all were significant in the main GWAS.

In the main GWAS, all significant variants were autosomal, except 
rs5904158 at Xq27.3 (for regional association plots, see Supplemen-
tary Fig. 1). A total of 17 index variants were in high LD with published 
(genome-wide significant) associated SNPs in the NHGRI GWAS Cata-
log13 (15 were associated with cognitive/educational traits; Supple-
mentary Tables 1 and 2). Thus, a total of 27 associated loci showed no 
evidence of published genome-wide associations with traits expected 
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trait, but there was no enrichment for a range of annotations related to 
human evolution spanning the last 30 million to 50,000 years18 (Sup-
plementary Table 21).

Genetic correlations and LDSC
Genetic correlations were estimated for 98 traits (Fig. 2 and Supple-
mentary Table 22), including reading and spelling measures, from 
GenLang (Fig. 3), and brain subcortical structure volumes, total cortical 
surface area and thickness from the Enhancing Neuro Imaging Genet-
ics through Meta-Analysis (ENIGMA) consortium. A total of 63 traits 
showed genetic correlations with dyslexia at the Bonferroni-corrected 
significance threshold (P < 0.05/98; Fig. 2). Genetic correlations (rg) 
with quantitative reading and spelling measures ranged from −0.70 
to −0.75 (lowest 95% CI of −0.60, highest 95% CI of −0.86), and were 
−0.62 (95% CI: −0.50, −0.74) and −0.45 (95% CI: −0.26, −0.64) with 
phoneme awareness and nonword repetition measures, respectively. 
The childhood/adolescent performance (nonverbal) intelligence 
quotient (IQ) rg was lower (−0.19; 95% CI: −0.08, −0.30) than that for 
adult verbal-numerical reasoning19 (−0.50; 95% CI: −0.45, −0.55) but 
similar to that for childhood IQ20 (−0.32; 95% CIs: −0.21, −0.43) and 
educational attainment21 (−0.22; 95% CI: −0.15, −0.29). Traits showing 
positive rg included jobs involving heavy manual work21 (0.40; (95% 
CI: 0.34, 0.45)), work-related/vocational qualifications21 (0.50; 95% CI: 

0.41, 0.59), ADHD22 (0.53; 95% CI: 0.29, 0.77), equal use of right and left 
hands21 (0.38; 95% CI: 0.19, 0.57) and pain measures21 (average = 0.31; 
95% CI: 0.21, 0.41). Of the 11 ENIGMA measures tested, only intracranial 
volume was significantly correlated with dyslexia (rg = −0.14; 95% CI: 
−0.06, −0.22). Targeted investigation of 80 structural neuroimaging 
measures from UK Biobank, including surface-based morphometry and 
diffusion-weighted imaging for brain circuitry linked to language, were 
nonsignificant at a Bonferroni-corrected significance level for number 
of independent traits. Phenotype independence was estimated by 
spectral decomposition of the phenotypic correlation matrix implied 
by the bivariate LDSC intercept from GWAS summary statistics of these 
traits, using the PhenoSpD toolkit23 (Supplementary Table 23).

Polygenic score analyses
Dyslexia polygenic scores (PGS) based on the 23andMe dyslexia GWAS 
were computed in four independent cohorts and, overall, higher PGS 
were associated with lower reading and spelling accuracy (Supple-
mentary Table 24). In two Australian population-based samples (1,647 
adolescents, 1,163 adults), the dyslexia PGS explained up to 3.6% of 
variance in the reading and spelling measures, being most predictive 
of lower performance on tests of nonword reading, an index of phono-
logical decoding. Dyslexia PGS did not correlate with scores on tests of 
nonword repetition (considered a marker of phonological short-term 
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Fig. 1 | Manhattan plot of the genome-wide association analysis of dyslexia. 
The y axis represents the −log10 P value for association of SNPs with self-reported 
dyslexia diagnosis from 51,800 individuals and 1,087,070 controls. The threshold 
for genome-wide significance (P < 5 × 10−8) is represented by a horizontal grey 

line. Genome-wide significant variants in the 42 genome-wide significant loci are 
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memory). In developmental cohorts enriched for reading difficulties, 
the dyslexia PGS explained 3.7% (UKdys; n = 930) and 5.6% (CLDRC; 
n = 717) of variance in word recognition tests.

Analyses of dyslexia associations from the literature
Of 75 previously reported dyslexia associations, none showed 
genome-wide significance in our analyses (Supplementary Table 25). 
Of these targeted variants, 19 (in ATP2C2, CMIP, CNTNAP2, DCDC2, 
DIP2A, DYX1C1, FOXP2, KIAA0319L and PCNT) showed association sur-
viving Bonferroni correction that accounted for LD (P < 0.05/68.7). 
In gene-based tests of 14 candidate genes from the literature24,25, 

association at a Bonferroni level (P < 0.05/14) was seen for KIAA0319L 
(P = 1.84 × 10−4) and ROBO1 (P = 1.53 × 10−3) (Supplementary Table 26). 
The CNTNAP2 association approached corrected replication-level  
significance (P = 0.004). Targeted gene set analysis of three pathways 
previously implicated in dyslexia (Supplementary Table 27) showed 
replication-level support (P = 2.00 × 10−3) for the axon guidance path-
way (comprising 216 genes).

Discussion
In the largest GWAS of dyslexia to date (>50,000 self-reported 
diagnoses), we identified 42 significant independent loci. Of these,  

Table 1 | New SNP associations with dyslexia, including gene-based results, eQTL status, expression in brain and validation 
in three independent cohorts (GenLang Consortium, CRS and NeuroDys)

Cytoband SNP Effect 
allele

Frequency Odds 
Ratio

GWAS P Gene(s) Most probable gene Validation cohort 
(P uncorrected for 
multiple testing)

chr1q21.3 rs4845687 A 0.56 1.044 1.1 × 10−9 KCNN3, PMVK PMVKab GenLang (0.02)

chr2q22.3 rs497418 A 0.38 1.043 3.0 × 
10−9

ACVR2A AC062032.1c GenLang (0.009)

chr2q33.1 rs72916919 G 0.51 1.049 4.1 × 10−12 RFTN2 MARS2a NeuroDys (0.02), 
GenLang (0.02)

chr3p12.1 rs10511073 A 0.37 1.046 4.6 × 
10−10

CADM2 CADM2a GenLang (0.02)

chr3q22.3 rs13082684 A 0.24 1.069 1.0 × 
10−16

PPP2R3A PPP2R3A (intron)a GenLang (0.0004); not 
in CRS

chr6p22.3 rs2876430 T 0.34 1.041 3.7 × 10−8 ATXN1, STMND1 STMND1 GenLang (0.04)

chr7p14.1 rs62453457 G 0.48 1.039 3.3 × 
10−8

POU6F2 POU6F2 CRS (0.04)

chr7q11.22 rs3735260 G 0.08 1.075 4.7 × 10−8 AUTS2 AUTS2 GenLang (0.02)

chr7q11.22 rs77059784 G 0.97 1.123 3.0 × 
10−8

CALN1 CALN1 GenLang (0.02); not 
in CRS

chr9q34.11 rs9696811 C 0.69 1.069 1.1 × 10−16 PPP2R3A AL158151.4abc GenLang (0.03)

chr11q23.1 rs138127836 A 0.65 1.056 1.7 × 10−13 PPP2R1B PPP2R1B (intron)ab GenLang (0.02)

chr17q23.3 rs72841395c C 0.77 1.049 5.4 × 10−9 TANC2 TANC2a GenLang (0.005)

chrXq27.3 rs5904158 GTA 0.65 1.037 3.3 × 
10−8

TMEM257, CXorf51Bb AL109653.3c GenLang (0.02); not in 
NeuroDys/CRS

chr2q12.1 rs367982014 CAAT 0.29 1.045 1.8 × 10−8 TMEM182 MFSD9a Not available

chr3p24.3 rs373178590 G 0.51 1.046 1.3 × 10−9 TBC1D5 TBC1D5 (intron)a Not available

chr10q24.33 rs34732054 C 0.57 1.045 3.7 × 10−9 PCGF6 USMG5a Not available

chr13q12.13 rs375018025 CA 0.57 1.044 5.6 × 10−9 CDK8, WASF3 WASF3 Not available

chr1p32.1 rs12737449 G 0.85 1.070 1.4 × 10−11 C1orf87 C1orf87 (missense)a Not significant

chr2p23.2 rs1969131 T 0.17 1.053 3.0 × 
10−8

BABAM2 BABAM2 Not significant

chr3q26.33 rs7625418 C 0.21 1.056 4.3 × 
10−9

PEX5L, TTC14 TTC14a Not significant

chr3p13 rs13097431 G 0.58 1.044 1.3 × 10−9 MITF MITFa Not significant

chr5q33.3 rs867009 G 0.36 1.041 2.3 × 10−9 SGCD SGCDa Not significant

chr9p22.3 rs3122702 T 0.5 1.041 8.3 × 
10−9

CCDC171 CCDC171ab Not significant

chr10q24.2 rs10786387 C 0.68 1.049 1.1 × 10−10 CRTAC1, R3HCC1L R3HCC1La Not significant

chr11p14.1 rs676217 G 0.37 1.050 1.1 × 10−11 KCNA4, FSHB ARL14EPab Not significant

chr19q13.2 rs60963584 A 0.89 1.065 2.7 × 10−8 GMFG, SAMD4B SAMD4Ba Not significant

chr20q11.21 rs4911257 C 0.39 1.055 7.5 × 
10−14

DNMT3B DNMT3B (intron)ab Not significant

Statistics for each variant are from the 23andMe GWAS (see Supplementary Table 1 for all 42 significant variants). Genes that are significant in gene-based tests are set in bold. Multi-allelic 
effect alleles represent insertions. The most probable gene is that most likely to be causal based on genetic and functional genomic data tied to the tag SNP (https://platform.opentargets.
org/). aeQTL. beQTL linked to brain expression. cNot available in gene-based results.

https://platform.opentargets.org/
https://platform.opentargets.org/
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27 represent new associations that have not been uncovered in GWAS 
of related cognitive traits; 12 of the new associations were validated in 
the GenLang consortium GWAS meta-analysis of reading/spelling in 
English and other European languages14, and 1 in a Chinese language 
cohort. Of the significant SNPs, 36% overlapped with variants from 
general cognitive ability GWAS, consistent with twin studies that find 
that genetic variation in reading disability is explained by general and 
reading-specific cognitive ability10. Similar to other complex traits, 
and consistent with high polygenicity, each significant locus showed 
small effects (odds ratios (ORs) ranging from 1.04 to 1.12). Our esti-
mated SNP-based heritability of 19% (assuming a 10% dyslexia popu-
lation prevalence) was equal to that reported in a smaller GWAS12, but 
lower than heritability estimates from twin studies (40–80%)26,27. This 

difference may be due partly to effects of rare and structural variants28, 
which have been implicated in reading and related traits29,30.

Whereas AUTS2 has been implicated in autism31, intellectual disa-
bility32 and dyslexia33, the variant we uncovered (rs3735260) represents 
the strongest AUTS2 SNP association with a neurodevelopmental trait 
to date. Amongst our findings were other known neurodevelopmental 
genes, such as TANC2 (implicated in language delay and intellectual 
disability34,35) and, especially, GGNBP2 (linked to neurodevelopmental 
delay36 and autism37) with variant rs34349354 supported in all our vali-
dation cohorts. However, rs34349354 is also associated with cognitive 
performance38, and based on expression quantitative trait loci (eQTL) 
evidence is more likely linked to ZNHIT3, colocalizing with molecu-
lar QTLs (opentargets.org). Notably, none of the more established 
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Fig. 2 | Genetic correlations of dyslexia with other phenotypes. Significant 
(P < 5 × 10−4) genetic correlations (rg) between self-reported dyslexia diagnosis 
from 23andMe and other phenotypes from the LD Hub database and Enhancing 
Neuro Imaging Genetics Through Meta-Analysis (ENIGMA). We tested 98 traits 
but present only those that were significant after Bonferroni correction. Center 
points represent genetic correlations, and error bars represent standard errors 

around the estimate; exact values can be found in Supplementary Table 22. The 
vertical line indicates a genetic correlation of zero, and the horizontal lines divide 
groups of related traits. GCSE, General Certificate of Secondary Education; 
HNC, Higher National Certificate; HND, Higher National Diploma; NVQ, National 
Vocational Qualification.
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candidate genes for dyslexia approached genome-wide significance 
in our results.

Like other human complex traits, partitioning of SNP-based 
heritability revealed enrichment in conserved regions39. We further 
observed enrichment in the histone mark H3K4me1 (which has also 
been reported for ASD40), and at H3K4me1 and H3K4me3 clusters in 
the CNS (marking enhancers and promoters, respectively). Since read-
ing/writing systems are built on our capacities for spoken language, 
it is plausible that evolutionary changes on the human lineage helped 
shape the underlying genetic architecture41. However, we did not find 
enrichment of significant associations for curated annotations span-
ning different periods of hominin prehistory.

Our self-reported dyslexia diagnosis binary trait showed strong 
negative genetic correlations with quantitative reading and spelling 
measures, supporting the validity of this measure in the 23andMe 
cohort, and suggesting that reading skills and disorder are not quali-
tatively distinct. The positive genetic correlation between hearing dif-
ficulties and dyslexia is consistent with genetic correlations reported 
for childhood reading skill42, suggesting that hearing problems at an 
early age could affect acquisition of phonological processing skills.

Dyslexia showed moderately negative genetic correlations with 
adult verbal-numerical reasoning, but there was a lack of a strong genetic 
correlation of dyslexia with (nonverbal) performance IQ. This would be 
consistent with phenotypic observations that individuals with dyslexia 
are disadvantaged on verbal IQ tests43. Educational attainment correla-
tions were also not strong, which might reflect school adjustments and 
other support that counteract disadvantage in academic learning.

There was little evidence of common genetic variation in dys-
lexia being related to interindividual differences in subcortical vol-
umes, or structural connectivity and morphometry for brain regions 
implicated in language processing in adults. Thus, the phenotypic 
correlations previously reported between dyslexia and aspects of 
neuroanatomy may in large part reflect environmental shaping of the 
brain, perhaps through the process of reading itself44. Left-handedness 

and ambidexterity show small genetic overlap with each other45 yet are 
both phenotypically linked to neurodevelopmental disorders/cogni-
tive abilities46,47. We report a significant genetic correlation between 
dyslexia and self-reported equal hand use, but not left-handedness, 
supporting theories linking ambidexterity and dyslexia48.

Dyslexia and ADHD5,6 often co-occur (24% reporting ADHD in our 
cases versus 9% in controls), and we show a moderate genetic correla-
tion between the two, potentially reflecting shared endophenotypes 
like deficits in working memory and attention49. Although we did not 
find significant genetic correlations between dyslexia and ASD, the 
GWAS for the latter encompassed diverse neurodevelopmental phe-
notypes, including subgroups with varying educational attainment 
and IQ40. Genetic correlations with pain-related traits suggest that 
individuals with dyslexia may have a lower threshold for pain percep-
tion. Links between pain and other neurodevelopmental disorders 
have been reported50,51.

Dyslexia polygenic scores were correlated with lower achievement 
on reading and spelling tests in population-based and reading-disorder 
enriched samples, especially for nonword reading, a measure of pho-
nological decoding that is typically impaired in dyslexia. Polygenic 
scores could become a valuable tool to help identify children with a 
propensity for dyslexia, enabling learning support before development 
of reading skills. However, a limitation of our study is the potential for 
collider bias arising from sample selection (that is, people without 
dyslexia and from higher socioeconomic positions), which we were 
unable to quantify; thus, care should be taken in future research when 
using polygenic scores based on many variants52.

In summary, we report 42 new independent genome-wide signifi-
cant loci associated with dyslexia, 27 of which have not been associated 
with cognitive-educational traits and should be prioritized for follow up 
as dyslexia candidates. Functional annotation of the variants highlights 
the importance of conserved and enhancer regions of the genome for 
this trait. Dyslexia shows positive genetic correlations with ADHD, voca-
tional qualifications, physical occupations, ambidexterity and pain 
perception, and negative correlations with academic qualifications 
and cognitive ability; family-based methods are needed to dissociate 
pleiotropic and causal effects.
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Methods
GWAS participants
Participants were drawn from the customer base of 23andMe, Inc.,  
a consumer genetics company. Participants provided informed consent 
and participated in the research online, under a protocol approved by 
the external AAHRPP-accredited IRB, Ethical and Independent Review 
Services (www.eandireview.com). They included 51,800 (21,513 male, 
30,287 female) participants who responded ‘yes’ to the question ‘Have 
you been diagnosed with dyslexia?’ (cases) and 1,087,070 (446,054 
male, 641,016 female) participants who responded ‘no’ (controls). Age 
ranged from 18 to 110 years, with the prevalence of dyslexia higher for 
younger participants (5.34% in those aged 20–30 years) than older 
participants (3.23% in those aged 80–90 years). The negative linear 
relationship between dyslexia prevalence and participant age was 
expected given that screening for specific learning difficulties has only 
become commonplace in more recent decades. Moreover, this aligns 
with findings from the subsample (4.3%) of participants who reported 
age of diagnosis: younger participants were diagnosed at an earlier 
age (for example, 9.7 years (±4.7) for 20- to 30-year-olds) than older 
participants (for example, 22.4 years (±17.8) for 80- to 90-year-olds). 
The prevalence of dyslexia in our sample was similar for women (4.51%) 
and men (4.6%), although the slightly higher prevalence in males in this 
very large sample was statistically significant (P < 8.7 × 10−6). Such a 
prevalence lies at the lower end of the range typically reported in the 
US population3 and might represent the more severe cases of dyslexia 
given that a formal diagnosis was required; additionally, people with 
dyslexia might opt out of survey research that requires reading, further 
restricting the sample range.

Genotyping and imputation
DNA was extracted from saliva samples and genotyped on one of five gen-
otyping platforms by the National Genetics Institute (NGI). In the present 
analysis, only participants with European ancestry were included. Details 
about the genotyping arrays, quality control of samples and ancestry 
derivation can be found in Fontanillas et al.53 and the Supplementary 
Note. Phased genotypes were imputed to a combined reference panel 
of the 1000 Genomes Phase 3 haplotypes (May 2015) and the UK10K 
imputation reference panel using Minimac3 (see Das et al.54).

Association analysis
Association analysis was performed on genotyped and imputed SNP 
dosage data using logistic regression and assuming an additive model 
of allelic effects. For X-chromosome analysis, male genotypes were 
treated as homozygous diploid. Covariates included age, age squared, 
gender, the first five ancestry principal components and genotype 
platform. SNP significance was evaluated by a likelihood ratio test, and 
genome-wide significance was determined as P < 5 × 10−8 (suggestive 
significance level as P < 1 × 10−6). Only reliably imputed SNPs (r2 > 0.80) 
and those with minor allele frequency (MAF) > 0.01 are presented 
(n = 7,995,923). We define associated regions by first identifying all 
variants with P < 5 × 10−8, then grouping these variants into regions 
separated by gaps of at least 250 kb. Index variants are the variants 
with smallest P value within each associated region. We use the same 
approach for regions with suggestive associations, but by first iden-
tifying all variants with P < 10−5. Subsidiary genome-wide association 
analysis of separate male (n = 21,513 cases, 446,054 controls) and female 
(n = 30,287 cases, 641,016 controls) groups, and younger (below 55 
years; n = 30,763 cases, 582,276 controls) and older (55 and above; 
n = 21,037 cases, 504,794 controls) groups was performed. The latter 
was to check whether reliability of diagnosis (assumed to be higher 
in the younger sample whose recall of diagnosis should be better and 
who would have been exposed to greater levels of dyslexia screening) 
affected the GWAS signal.

We also looked to independently validate our genome-wide sig-
nificant variants within (1) a published GWAS meta-analysis of 2,274 

dyslexia cases from nine European countries representing six differ-
ent languages (NeuroDys) by Gialluisi et al.55; (2) a population sample 
(Chinese Reading Study; CRS) of children measured on quantitative 
traits of reading accuracy and reading fluency (n = 2,270; described 
in the Supplementary Note), and; (3) within the GenLang quantitative 
trait GWAS meta-analysis of word reading (up to n = 33,959) and spelling 
(up to n = 18,514) skills measured in cohorts of children and adolescents 
from Europe, the United States and Australia, and representing seven 
European languages, of which English was the most common14.

Gene-based analyses
The GWAS results were used to calculate gene-based P values for 
association with dyslexia by performing the gene analysis in MAGMA 
v.1.08 (ref. 56) through the FUMA interface57 using standard settings. In 
total, 19,039 genes were tested, and P values were judged based on a 
Bonferroni-corrected significance threshold of P < 2.63 × 10−6. We also 
performed gene set analyses for association of biological pathways (all 
available gene ontology (GO) terms and curated gene sets from the 
Molecular Signatures Database (MsigDB)58,59) with dyslexia in MAGMA 
through the FUMA interface. The total number of pathways tested was 
15,486, and P values were judged based on a Bonferroni-corrected 
significance threshold of P < 3.23 × 10−6.

Biological annotations
Genome-wide significant variants and nearby gene(s) were annotated 
using external reference data and evaluated for functional or regula-
tory impact. A 99% credible set of potentially causal variants for SNPs 
in significant regions was based on approximate Bayes factor (ABFs)60 
assuming a prior variance of 0.1, and using the method of Maller et al.61 
to define these sets. Variant effect prediction of these was done in 
ENSEMBL (release 104)62. For genome-wide significant variants, we 
considered: gene context (whether a variant is intergenic or located 
within a specific functional region within a gene locus); deleteriousness 
(Combined Annotation Dependent Depletion (CADD) score); function-
ality (RegulomeDB (RDB) category); chromatin state (minimum and 
common 15-core chromatin state); and SNP-trait associations reported 
in the NHGRI GWAS Catalog13.

For each variant, the most probable gene target was identified 
using the Open Target Genetics portal63, which draws on evidence from 
QTL and chromatin interaction experiments, functional predictions 
and distance from a gene’s transcription start site. For genome-wide 
significant genes, we considered: loss-of-function intolerance (prob-
ability of loss-of-function Intolerance (pLI) score); variation intoler-
ance (residual variation intolerance score, RVIS); variation intolerance 
in noncoding regions (noncoding RVIS, ncRVIS); evolutionary con-
straint of noncoding regions (noncoding genomic evolutionary rate 
profiling (ncGERP) score); evolutionary constraint of protein-coding 
regions (protein-coding genomic evolutionary rate profiling (pcGERP) 
score); deleteriousness across noncoding regions (noncoding CADD 
(ncCADD) score); combined functionality of variants in noncoding 
regions (noncoding genome-wide annotation of variants (ncGWAVA) 
score); and expression in 12 brain tissues (amygdala, anterior cingulate 
cortex, caudate basal ganglia, cerebellar hemisphere, cerebellum, 
cortex, frontal cortex, hippocampus, hypothalamus, nucleus accum-
bens basal ganglia, putamen basal ganglia and substantia nigra). All 
annotations were obtained through FUMA57 except RVIS, ncGERP, 
pcGERP, ncCADD and ncGWAVA, which were taken from Petrovski 
et al.64. Details of each annotation including original sources are in the 
Supplementary Note.

Partitioned heritability
We partitioned SNP heritability of dyslexia using stratified LDSC, as 
described by Finucane et al.39, to determine whether SNPs that share the 
greatest proportion of the heritability are also clustered in specific func-
tional categories in the genome. Overall, we performed 266 different 
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tests, which would give a very conservative Bonferroni-corrected sig-
nificance level of 1.88 × 10−4, but because there will be overlap among 
annotation groups, we also report corrections to significance within 
different classes of annotation, each of which we now describe. Parti-
tioning was performed for the 24 main functional annotations defined 
by Finucane et al.39. LD scores, regression weights and allele frequencies 
are from European ancestry samples and were retrieved from https://
alkesgroup.broadinstitute.org/LDSCORE. Heritability estimates were 
considered statistically significant if the P value surpassed an α level of 
2.08 × 10−3, derived by Bonferroni correction based on 24 tests.

We also estimated the enrichment for heritability of dyslexia for 
tissue-specific annotations, while controlling for the annotations in 
the baseline model, including gene expression in three brain cell types, 
gene expression in 12 brain regions, and chromatin marks H3K4me1 
and H3K4me3 in multiple tissues (108 and 114, respectively) since 
these marks are enriched at enhancers65 and promoters66, respec-
tively. Enrichment is the proportion of SNP heritability divided by the 
proportion of SNPs. For the brain cell types, we estimated enrichment 
for heritability of dyslexia for genes expressed in neurons, astrocytes, 
and oligodendrocytes using data from Cahoy et al.67. Enrichments 
were considered statistically significant if the P value surpassed an α 
level of 0.017, derived by Bonferroni correction based on three tests. 
The gene expression data used to estimate the enrichment of herit-
ability in genes expressed in certain brain regions was from the GTEx 
database68, and the Bonferroni-derived α level for enrichment was 
4.17 × 10−3 (based on 12 tests). Chromatin annotations include data from 
the Roadmap Epigenomics consortium17 and EN-TEx69,70. For H3K4me1, 
the Bonferroni-derived α level for enrichment was 4.63 × 10−4 (based 
on 108 tests) and, for H3K4me3, the Bonferroni-derived α level for 
enrichment was 4.39 × 10−4 (based on 114 tests).

Evolutionary annotations. Although reading and writing is a human 
cultural invention, it builds on fundamental pathways involved in 
language processing. Therefore, we investigated whether annotations 
related to human evolution were significantly enriched for heritability 
of dyslexia by applying an evolutionary analysis pipeline adapted from 
Tilot et al.18. These analyses capture a range of periods in an evolution-
ary timeframe on the lineage that led to humans, from approximately 
30 million years ago to 50,000 years ago.

Enrichment of heritability was estimated in adult brain human 
gained enhancers (HGEs)71, fetal brain HGEs72, ancient selective sweep 
regions73, Neanderthal-introgressed SNPs74 and Neanderthal-depleted 
regions75 (see Supplementary Note for a description of each annota-
tion); and controlled for using the baselineLD v.2 model from Gazal 
et al.76. Heritability enrichment in human adult and fetal HGEs were 
additionally controlled for adult and fetal brain active regulatory ele-
ments from the Roadmap Epigenomics resource17. Active regulatory 
elements were defined using chromHMM16. Enrichment P values were 
judged by an α level of 10−2, derived by Bonferroni correction based 
on five tests.

Genetic correlations
Genetic correlations within the 23andMe GWAS of dyslexia. Genetic 
correlation between self-reported dyslexia diagnosis in males and 
females, and between younger (<55 years old) and older (≥55 years old) 
adults was calculated using LDSC77,78.

Genetic correlations of dyslexia with other traits. We present the 
pairwise genetic correlation of dyslexia with 98 traits. Summary statis-
tics for most of these traits are publicly available through LD Hub77–79— 
a centralized database and web interface that automates the LDSC 
regression analysis pipeline. A selection of brain magnetic resonance 
imaging measures obtained from the ENIGMA-3 consortium80–83, and 
measures of reading and spelling accuracy, and performance IQ from 
the GenLang Consortium14 were analyzed locally using LDSC. Word 

reading accuracy in GenLang was measured by the number of correct 
words read aloud from a list in a time restricted or unrestricted fashion. 
Examples of tools that include this measure are Test of Word Reading 
Efficiency (TOWRE), the British Ability Scales (BAS) and the Wide Range 
Achievement Test (WRAT). Spelling accuracy in GenLang was measured 
by the number of words correctly spelled orally or in writing. The words 
were dictated as single words or in a sentence. Examples of tools that 
include this measure are the BAS, WRAT and Wechsler Objective Read-
ing Dimensions (WORD). Performance IQ in GenLang was based on 
subtests of IQ tests that did not depend on verbal cues, as included for 
example in the BAS and Wechsler Intelligence Scale for Children (WISC). 
Trait descriptions and summary statistic sources are in Supplementary 
Table 22. Bonferroni correction for multiple testing derived an adjusted 
critical P value of 5.1 × 10−4 from 98 independent tests.

Genetic correlations were further estimated in a targeted analysis of 
structural brain magnetic resonance imaging measures from UK Biobank, 
which were more comprehensive than those currently available from 
ENIGMA, along with further advantages such as hemisphere-specific 
data and greater homogeneity in cohort and scanning procedures. GWAS 
summary statistics from brain imaging-derived phenotypes for 33,000 
participants were downloaded from the Oxford Brain Imaging Genetics 
Server84. Structural brain imaging traits encompassed both diffusion 
tensor imaging and surface-based morphometric phenotypes85 where 
selected tracts or regions of interest had a known link to language. For 
diffusion tensor imaging, fractional anisotropy values derived from 
both tract-based-spatial statistics and probabilistic tractography were 
used for available tracts spanning the extended language network86. For 
surface-based morphometric (cortical volume, surface area and thick-
ness) GWAS, summary statistics for regions of interest derived from the 
Desikan-Killiany atlas (white surface) were used, again selected for their 
relevance in language processing, based on previous literature87–90. To 
correct for multiple testing, phenotypic correlations between the UK 
Biobank imaging indices were derived and analyzed by PhenoSpD23 to 
obtain the number of independent variables (36.08) to use for Bonferroni 
correction (adjusted critical P value of 1.39 × 10−3).

Polygenic score analyses
Dyslexia polygenic scores were based on increasingly larger num-
bers of SNPs corresponding to their association P values from the 
23andMe GWAS (P < 5 × 10−8, P < 1 × 10−5, P < 0.001, P < 0.01, P < 0.05, 
P < 0.1, P < 0.5, 1). They were calculated in four independent cohorts. 
Two were general population cohorts from Australia: n = 1,640 (772 
families) adolescents/young adults (Brisbane adolescents)91; n = 1,165 
(966 families) older adults (Brisbane adults)25. The other two were 
family-based samples selected for dyslexia: one from the United King-
dom (UKdys), n = 930 (595 families); the other from the United States 
(Colorado Learning Disabilities Research Center, CLDRC), n = 717 (336 
families)92. In the Australian samples, polygenic scores were calculated 
on 1000 Genomes Phase 3 (v.20101123) imputed genetic data using 
PLINK93. Only reliably imputed SNPs (R2 > 0.80) and those with a minor 
allele frequency >0.01 were included, and the default clumping proce-
dure was used where index SNPs formed a clump with other SNPs in LD 
(R2 > 0.1) and within a 250 kb distance. In the UKdys and CLDRC samples, 
polygenic scores were calculated on Haplotype Reference Consortium 
imputed genetic data using PRSice94, with the same imputation quality 
and MAF exclusions for the base (23andMe GWAS) sample, and clump-
ing parameters.

Polygenic scores were then used as predictors in linear models 
of quantitative trait outcomes (Australia: word, nonword (phonetic), 
irregular word (lexical) reading and spelling tests from an extended 
version of the Components of Reading Examination95, and two non-
word repetition tests which are sensitive to developmental language 
disorders—Dollaghan and Campbell96, Gathercole and Baddeley97; 
UKdys and CLDRC: word recognition). All quantitative traits were pre-
adjusted for sex, age and ancestry principal components (10 principal 
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components in UKdys and CLDR; 20 principal components in Australian 
samples). Further adjustments were made for imputation run (sepa-
rate runs for different genotyping arrays) in the Australian samples, 
and for nonverbal IQ in all samples (except for the Australian adults), 
and for hearing difficulties in the Australian older adults. Because the 
cohorts included related family members (twins or siblings), linear 
mixed models (lme) were specified in RStudio98, with family member-
ship modeled as a random effect and the dyslexia polygenic score as a 
fixed effect. Where monozygotic twins were present, their trait scores 
were averaged and they were used as a single case.

Evaluation of candidates from previous literature
We used the results of the 23andMe dyslexia GWAS to assess variants, 
genes and biological pathways previously associated with or implicated 
in dyslexia and/or variation in reading and spelling ability in past asso-
ciation studies, linkage analyses and other studies.

Previously reported variants. We assessed 75 previously reported vari-
ants within our summary statistics, adopting a replication/validation 
significance threshold of P < 7.28 × 10−4, derived by Bonferroni correc-
tion based on 68.7 independent tests derived through matrix spectral 
decomposition, taking into account LD (see Doust et al.25 for details 
on how these variants were selected). The sources for each variant are 
provided in Supplementary Table 26.

Dyslexia candidate genes. We evaluated gene-based results from 
MAGMA v.1.08 (ref. 56) for overrepresentation of genome-wide sig-
nificant variants from the 23andMe dyslexia GWAS within the loci of 
14 candidate genes from earlier literature: CMIP, CNTNAP2, CYP19A1, 
DCDC2, DIP2A, DYX1C1, GCFC2, KIAA0319, KIAA0319L, MRPL19, PCNT, 
PRMT2, S100B and ROBO1. The rationale for this selection is detailed by 
Luciano et al.24 and Doust et al.5. The critical P value, based on Bonfer-
roni correction for 14 tests, was 3.57 × 10−3.

Candidate dyslexia gene sets. We performed a gene set analysis in 
MAGMA to test for overrepresentation of genome-wide significant 
variants within (1) a set of transcriptional targets of FOXP2, a highly 
conserved transcription factor linked to speech and language impair-
ment99; and (2) two biological pathways previously suggested to play 
a role in dyslexia susceptibility100,101—axon guidance (GO:0007411: 
‘chemotaxis process that directs the migration of an axon growth cone 
to a specific target site’; 216 genes) and neuron migration (GO:0001764: 
‘movement of an immature neuron from germinal zones to specific 
positions where they will reside as they mature’; 145 genes). An adjusted 
critical P value of 0.017 was derived using Bonferroni correction based 
on three independent tests.

Ethical standards
Participants provided informed consent and participated in 
the research online, under a protocol approved by the external 
AAHRPP-accredited IRB, Ethical and Independent Review Services. 
Participants were included in the analysis on the basis of consent status 
as checked at the time data analyses were initiated.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The full summary statistics for each dyslexia GWAS presented in 
this paper will be made available through 23andMe website (https://
research.23andme.com/dataset-access/) to qualified researchers 
under an agreement with 23andMe that protects the privacy of the 
23andMe participants. The top 10,000 associated SNPs from the main 
GWAS can be downloaded from https://doi.org/10.7488/ds/3465.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | QQ plot of dyslexia GWAS results. a-c, Quantile-quantile 
(Q-Q) plots of observed versus expected P values for associations of single 
nucleotide polymorphisms with self-reported dyslexia diagnosis in a genome-
wide association analysis for all participants (n = 51,800 cases, 1,087,070 
controls) (a), female participants (n = 30,287 cases, 641,016 controls) (b), and 

male participants (n = 21,513 cases, 446,054 controls) (c). The solid red line 
represents the distribution of P values under the null hypothesis, and the dashed 
red line represent 95% confidence intervals. The black circles represent the 
observed distribution of P values.
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Extended Data Fig. 2 | Manhattan plot of dyslexia GWAS results for females. 
The y-axis represents the -log10 P value for association of single nucleotide 
polymorphisms with self-reported dyslexia diagnosis from 30,287 female 
individuals and 641,016 female controls. The threshold for genome-wide 

significance (P < 5 × 10−8) is represented by a horizontal grey line. Genome-wide 
significant variants in the 17 genome-wide significant loci are red. Variants 
located within a distance of 250 kb of each other are considered as one locus.
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Extended Data Fig. 3 | Manhattan plot of dyslexia GWAS results for males. 
The y-axis represents the -log10 P value for association of single nucleotide 
polymorphisms with self-reported dyslexia diagnosis from 21,513 male 
individuals and 446,054 male controls. The threshold for genome-wide 

significance (P < 5 × 10−8) is represented by a horizontal grey line. Genome-wide 
significant variants in the 6 genome-wide significant loci are red. Variants located 
within a distance of 250 kb of each other are considered as one locus.
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Extended Data Fig. 4 | Variant effect predictor summary for the credible set of variants significantly associated with dyslexia. Summary information is output 
from the online variant effect predictor in ENSEMBL (release 104). All our variants were present in the 1000 Genomes reference panel so are considered existing, and 
no pre-filtering (for example, on MAF; consequence type) was done.
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Extended Data Fig. 5 | Enrichment estimates for major functional 
annotations. The 24 major functional annotations were defined by Finucane 
et al.39. Enrichment is the proportion of h2/proportion of SNPs. The horizontal 
dotted line indicates no enrichment (where proportion of h2/proportion of SNPs 

= 1). Error bars represent standard errors of the enrichment estimates. Asterisks 
indicate enrichment estimates are significant based on a Bonferroni-derived P 
value of < 2.08 × 10−3 (for 24 tests). Exact values of enrichment statistic, standard 
error, and P value can be found in Supplementary Table 16.
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Extended Data Fig. 6 | Heritability of dyslexia partitioned by brain tissue gene expression. The -log10 P value of the enrichment estimates for heritability of dyslexia 
for genes expressed in 12 brain regions. The horizontal dotted line indicates significance after Bonferroni correction for 12 tests (P < 4.17 × 10−3).
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Extended Data Fig. 7 | Heritability of dyslexia partitioned by brain cell type. The -log10 P value of the enrichment estimates for heritability of dyslexia for brain cell 
types. The horizontal dotted line indicates significance after Bonferroni correction for three tests (P < 1.67 × 10−2).
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Extended Data Fig. 8 | Heritability of dyslexia partitioned by cell-type 
specific H3K4me1. The -log10 P value of the enrichment estimates for heritability 
of dyslexia for variants located within H3K4me1 peaks of different tissues. 

Central nervous systems tissues are represented in dark green and other tissues 
are represented in light green. The vertical dotted line indicates significance after 
Bonferroni correction for 114 tests (P < 4.39 × 10−4).
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Extended Data Fig. 9 | Heritability of dyslexia partitioned by cell-type 
specific H3K4me3. The -log10 P value of the enrichment estimates for heritability 
of dyslexia for variants located within H3K4me3 peaks of different tissues. 

Central nervous systems tissues are represented in dark blue and other tissues 
are represented in light blue. The vertical dotted line indicates significance after 
Bonferroni correction for 114 tests (P < 4.39 × 10−4).
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