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A B S T R A C T

Purpose: Imatinib is used in gastrointestinal stromal tumours (GIST) and chronic myeloid leukaemia (CML).
Oncology patients demonstrate altered physiology compared to healthy adults, e.g. reduced haematocrit,
increased a-1 acid glycoprotein, decreased albumin and reduced glomerular filtration rate (GFR), which may
influence imatinib pharmacokinetics. Given that Chinese cancer patients often report raised imatinib plasma
concentrations and wider inter-individual variability reported in trough concentration when compared to
Caucasian cancer patients, therapeutic drug monitoring (TDM) has been advocated.
Method: This study utilised a previously validated a Chinese cancer population and assessed the impact of
imatinib virtual-TDM in Chinese and Caucasian cancer populations across a dosing range from 200-800 mg
daily.
Results: Staged dose titration to 800 mg daily, resulted in recapitulation to within the target therapeutic
range for 50 % (Chinese) and 42.1% (Caucasian) subjects possessing plasma concentration < 550 ng/mL when
dosed at 400 mg daily. For subjects with plasma concentrations >1500 ng/mL when dosed at 400 mg daily, a
dose reduction to 200 mg once daily was able to recover 67 % (Chinese) and 87.4 % (Caucasian) patients to
the target therapeutic range.
Conclusion: Virtual TDM highlights the benefit of pharmacokinetic modelling to optimising treatments in
challenging oncology population groups.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Pharmacists Association. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
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Introduction

Tyrosine kinase inhibitors (TKIs) have revolutionised the treat-
ment of several cancers,1 but there still remains a need to consider
optimising dosing to ensure personalised anticancer treatment in a
range of patient groups.2 Imatinib, which inhibits BCR-ABL activity,
has gained attention as one candidate which would benefit from
TDM approaches,3-5 particularly in gastrointestinal stromal tumours
(GIST) and chronic myeloid leukaemia (CML).

Gastrointestinal stromal tumours (GIST) are one of the common-
est types of mesenchymal tumour localised to the gastrointestinal
tract, affecting approximately 7 people per million per year in West-
ern countries,6 16 people per million per year in Korea7,8 and approx-
imately 4 people per million per year in China.9 Whilst surgical
resection is the mainstay treatment, only 70 % of patients attain a 5-
year post-operative survival10 and the economic burden of therapeu-
tic interventions is high, at over $100,000 per patient per year.11 Fur-
thermore, a large study in Chinese patients identified a steep rise in
cases after 50 years old, with males being more predisposed than
females.9 Chronic myeloid leukaemia (CML) accounts for approxi-
mately 20 % of all cases on leukaemia within adults.12 Approximately
33 % of patients with CML treated with imatinib demonstrate a lack
of complete cytogenetic response (CCyR) or present with drug resis-
tance/toxicity.13-15

In both cases, a key in the paradigm of treatment is imatinib,
which has revolutionised treatment outcomes and improved survival
times.16,17 Imatinib is well absorbed with an absolute bioavailability
of > 98 %,18,19 which is not dose/dosage form20,21 dependant nor
food/fed-state dependant.22,23 Its’ half-life is approximately 18 hours,
and multiple dosing often leads to target plasma concentrations in-
excess of the 0.5mM (» 250 ng/mL) required for tyrosine kinase inhi-
bition in-vitro.20,24 Furthermore, it is highly protein bound (>95 %)25
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and has a large volume of distribution (Vd) > 400 L.19 The elimination
of imatinib is governed by CYP 2C8 (primary role)26 and 3A4,27-29

with other CYP isozymes (CYP1A2, CYP2D6, CYP2C9 and CYP2C19)
playing a minor role (< 3 % contribution in total).27-30 Furthermore,
being a low extraction drug, the elimination of imatinib is highly sen-
sitive to protein binding and intrinsic clearance. Confounding the
pharmacokinetics of imatinib, is its wide inter-individual variability
with steady-state trough concentrations varying by over 20-fold in
CML patients.31,32 Furthermore, the intrinsic variability of CYP 3A4 is
thought to also contribute to this inter-individual variability.33,34

Oncology patients tend to demonstrate altered physiology which
may influence a drugs pharmacokinetics, with key changes including
reduced haematocrit, increased a-1 acid glycoprotein and decreased
albumin and reduced glomerular filtration rate (GFR).35,36 Further-
more, racial and weight differences between Chinese and Caucasian
patient demographics have a direct role in current Chinese guidelines
for treatment. Furthermore, the tolerance of Chinese patients to
higher doses (> 400 mg/day) is often lower than that of Caucasian
patients, with the (United States) National Comprehensive Cancer
Network (NCCN) guidelines recommending 800 mg/day37-39 for
those who show limited improvement at the standard dose (400mg/
daily) (originating from Caucasian studies), whereas in Chinese stud-
ies doses are recommended at 600 mg/day.40,41

Given the long-term use of imatinib, appropriate steady-state lev-
els are critical in limited side effects and toxicity such as myelosup-
pression, nausea, diarrhoea, hypophosphatemia, musculoskeletal
symptoms, rash, fatigue, and headaches.42 For both CML and GIST, a
target trough concentration of 1000 ng/mL and 1100 ng/mL has been
suggested, respectively.43,44 Whilst these are often drive around
pharmacodynamic endpoints (e.g. hematologic, cytogenetic and
molecular responses), some groups have advocated the use of such
concentrations as pharmacokinetic predictors of response.45,46 Fur-
thermore, given the wide inter-individual variability reported in
trough concentration (50-100 %)47 likely a result of the intrinsic vari-
ability in CYP 3A4 activity,33,34 sub- or supra- therapeutic dosing is
possible.47,48

In order to address the clinical consequences of this variability,
Gotta et al (2014) coined the term “rescue TDM” to refer to ‘correc-
tive’ dosing based on therapeutic drug monitoring (TDM) for specific
cases to support optimal imatinib plasma concentrations.5 Recently,
Buclin et al (2020)3 utilised the work by Gotta et al5 to reiterate the
Fig. 1. The workflowmodel for m
need for TDM for imatinib, providing a structured approach to
accomplish this. In the approach originally developed by Gotta et al
(2014),5 dose adjustments were support for subtherapeutic patients
(500-800 mg once daily) and supratherapeutic patients (200-400 mg
once daily), to target an “acceptable” target concentration range
(750-1500 ng/mL) surrounding the target trough concentration of
1000-1100 ng/mL.3

Higher plasma concentrations have been reported in Chinese can-
cer patients when compared to Caucasian cancer patients.49,50 Given
the physiological difference between Chinese and Caucasian cancer
patients, particularly changes in alpha-1-acid glycoprotein, the
assessment of optimal doses to attain targeted plasma concentrations
is warranted and can be pragmatically achieved through the use of
mechanistic physiologically-based pharmacokinetic modelling
approaches.51

In this study, we utilise previous work conducted by our group to
assess the requirements and approaches towards dose titrations in
Chinese cancer patients, with explicit account of the physiological
differences encountered in Chinese cancer patients compared to Cau-
casian cancer patients.

Methods

In order to conduct virtual clinical trials simulations in subjects,
the physiologically-based pharmacokinetic (PBPK) modelling tool
Simcyp (Simcyp Ltd, a Certara company, Sheffield, UK, Version 19)
was utilised. The algorithms and ordinary differential equation
describing elements of the Simulator have been previously
described.52,53 Furthermore, the concept of virtual populations incor-
porates subjects forming representatives from a specific population
group and incorporates appropriate physiological and biochemical
variances defined for each population.54 Unless otherwise stated, all
simulations utilised mixed genders (50:50). Further, we adopted a
workflowmodel with four stages (Fig. 1).

Validation of Imatinib in Caucasian Subjects

We utilised a previously developed and validated model of imati-
nib,55 with some modifications. The validation dataset utilised
included 4 studies within Caucasian populations: (i) 12 healthy Cau-
casian volunteers (2 female) (40-58 years old) who received a single
odel verification and TDM.



H. Yu, R.K.S. Badhan / Journal of Pharmaceutical Sciences 112 (2023) 599−609 601
dose administration of imatinib 400 mg;19 (ii) 34 cancer patients (6
female) (28-84 years old) who received multiple doses of imatinib
400 mg with sampling on days 1 and 15;56 (iii) 50 cancer patients (21
female) (39-82 years old) who received multiple doses of imatinib
400 mg/day for 15 days;57 (iv) 103 patient (83 female) (18-77 years
old) who received multiple doses of imatinib 400mg/day for 15
days.58 The Simcyp Healthy Volunteer population54 or Cancer popu-
lations59 were utilised in trials.
Validation of Imatinib in a Virtual Chinese Cancer Population

In order to assess differences in pharmacokinetics of imatinib in
Chinese and Caucasian cancer subjects, we utilised a previously
developed virtual Chinese cancer population group60 in a virtual trial
to compare predicted trough imatinib plasma concentration to those
reported at steady state for doses of (i) 100, 200, 250, 300, 400, 600
and 800 mg once daily (36 subjects aged 17-79 years);61 (ii) 190 GIST
subjects dosed at 400 mg once daily (31-85 years) demarked for age/
weight in addition to trough concentrations reported at doses of 300,
400, 500 and 600 mg once daily;62 (iii) 84 CML subjects dosed 300-
600 mg once daily (18-76 years);63 (iv) 129 GIST subjects dosed 200-
600 mg once daily (29-75 years).64 This virtual Chinese cancer popu-
lation group incorporates physiological alterations previously
reported35 to occur within oncology populations includes reductions
in haematocrit, increases a-1 acid glycoprotein and decreases in both
albumin and GFR.36
Imatinib TDM in a Virtual Chinese Cancer Population

Although there is no definitive guidance on the need for TDM for
imatinib, previous studies have examined approaches to implement-
ing TDM in clinical practice.3-5,65-68 Utilising the “rescue TDM”

approach coined by Gotta et al (2014), we implemented the subse-
quent structured approach to TDM suggested by Buclin et al (2020)3

(Fig. 2), in order to assess the need for imatinib TDM in a virtual Chi-
nese cancer population group.
Fig. 2. TDM-guided dose titrations. Dose titrations were conducted based on
approaches previously described3. Subjects with imatinib trough plasma concentration
outside of the prescribed target trough window (750-1500 ng/mL), following a 400 mg
once daily (to steady-state) dosing schedule, were identified and subjected to dose
adjustment based on either a dose increase or decrease, dependent upon their trough
plasma concentration.
A 10 £ 10 trial design (100 subjects) was implemented (20-50
year olds, 50 % female) with a dose of 400 mg once daily for 28 days,
followed by dose adjustments in 100 mg daily increments to the tar-
get dose and maintained for a further 28 days at each specific target
dose. At day 28 (before adjustment) and day 56 (after adjustment),
subjects were identified who demonstrated trough plasma concen-
trations below or above the target thresholds, and the impact of the
dose adjustment was quantified in relation to ability to target the
therapeutic concentration range (750-1500 ng/mL) identified by
Buclin et al (2020).3 Subjects’ demographics were maintained for the
TDM-applicable cohorts.

As a comparison, an identical trial design was implemented for
the Simcyp Cancer (Caucasian) population group.

Predictive Performance

For the validation steps 1-3, predictive performance was deter-
mined within a 2�fold (0.5−2.0�fold) range of reported pharmacoki-
netic parameters.69-71 A visual predictive checking (VPC) strategy (U.
S. Food and Drug Administration, 2012)72-74 was also adopted for
predicting plasma concentration-time profiles. This checking strategy
was performed visually when the predicted plasma-concentration
profiles, including the predicted mean and 5th and 95th percentiles,
was compared with the observed data which should overlap with the
predicted data sets. Furthermore, the prediction accuracy of the sim-
ulation profiles was evaluated using average fold error (AFE) (Eq. (1))
and absolute average fold error (AAFE) (Eq. (2))75-77 were calculated
to further validate provide a measure of precision and bias, as fol-
lows:

AFE ¼ 10
1
n ¢

P
log predt

obst

� �
ð1Þ

AAFE ¼ 10
1
n ¢

P����log predt
obst

� ����� ð2Þ
where n represents the number of observations, predt and obst are the
predicted and observed concentrations at time t. Deviations from
unity refer to over-prediction (AFE > 1) or under-prediction (AFE < 1)
of the observed data. AAFE measures the absolute error from the true
value and inherent determined bias of the profile. AAFE values of ≤2
were considered appropriate.78

Mean predicted values (e.g. Cmax or Cmin) were compared with
observed values and the standard deviation ratio (SDratio) calculated
(Eq. (3))51 as follows:

SDratio ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SD observed
Mean observed

� �2

þ SD predicted
Mean predicted

� �2
s

� Mean predicted
Mean observed

ð3Þ

where SD observed and SD predicted are the SD of observed and pre-
dicted values; Mean observed and Mean predicted are the arithmetic
mean of observed and predicted values. A criterion of < 2-fold was
deemed an acceptable prediction of values.69-71

The observed clinical data used in verification studies were
extract using WebPlotDigitizer v. 3.10 (https://automeris.io/WebPlot
Digitizer/). Statistical significance was confirmed as p < 0.05.

Results

Validation

The model was successfully validated against 5 adult imatinib sin-
gle- and multiple-dosing regimen studies, with the majority of
plasma concentrations falling within the 5th and 95th percentiles of

https://automeris.io/WebPlotDigitizer/
https://automeris.io/WebPlotDigitizer/
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the predicted concentrations (Supplementary Materials Fig. S1). Fur-
ther, in all cases the AFE and AAFE were between 0.85-1.21 and 0.98-
1.14, indicating successful model predictions (Supplementary Materi-
als Table S1).

Validation of Imatinib in a Virtual Chinese Cancer Population

Simulated median steady-state trough and peak imatinib plasma
concentrations in Chinese cancer populations were broadly within
1.5-fold of those reported for a variety of doses from 100 mg −
800 mg (Fig. 3) with mean prediction ratio and SD-ratio within the 2-
fold boundary (Table 1).

Imatinib TDM in a Virtual Chinese Cancer Population

In order to examine the requirement for TDM-based dose adjust-
ment, simulations in Chinese and Caucasian cancer populations
assessed the changes in trough imatinib plasma concentrations fol-
lowing dose adjustment from a baseline of 400 mg once daily across
a range of 200-800 mg once daily. Trough plasma concentrations
were higher for Chinese than Caucasian subjects (Fig. 4A) (Table 2)
with a standard dose resulting in trough levels of 1816.2 ng/mL
(52.85-8257.29 ng/mL) and 1216.6 ng/mL (121.23-4464.89 ng/mL)
respectively (Table 2) (Fig. 4B).

In order to engage in virtual-TDM, we considered each simulated
subject and sampled the steady-state trough plasma concentration
(following 400 mg once daily dosing), prior to dose-titrations. At a
400 mg dose, fewer Chinese subjects possessed trough concentra-
tions within the target range (750-1500 ng/mL) when compared to
Caucasian subjects, 26 % and 43 % respectively (Table 3). However, a
greater number of Chinese subjects possessed trough concentrations
in excess of the upper limit of the target range (>1500 ng/mL), 51 %,
when compared to Caucasian subjects, 25 % (Table 3).

In Chinese and Caucasian populations, 9 % and 13 % of subjects,
respectively, possessed sub-therapeutic concentration in the range of
550-750 ng/mL, of which all were recapitulated to the target range,
upon the application of the appropriate TMD method (Fig. 2)
(Table 3). However, for those with a plasma concentration <
550 ng/mL, a dose increase to 800 mg was only able to recover 50 %
(Chinese) and 42.1% (Caucasian) of those subject to within the target
therapeutic range (Table 3). For subjects with plasma concentration
>1500 ng/mL, a dose reduction to 200 mg once daily was able to
recover 67 % (Chinese) and 84 % (Caucasian) of those patients of
within the target therapeutic range (Table 3).

Discussion

The management and treatment of patients with CML and GIST
have significantly improved since the first TKI, imatinib, was intro-
duced, with similar survival rates to that of control subjects.79 As a
selective inhibitor of the protein tyrosine kinase Bcr-Abl, platelet-
derived growth factor receptors (PDGFRa and PDGFRb) and KIT, ima-
tinib has been demonstrated as part of the treatment of CML and
GIST.80,81

Monitoring the plasma concentration of imatinib may be benefi-
cial in optimising treatment strategies,82 particularly given that all
tyrosine kinase inhibitors are administered orally and, usually, as
fixed doses regardless of the patient’s weight, age, or gender, leading
to inconsistent bioavailability and individual differences in plasma
levels across a population.83

For adult CML/GIST patients (irrespective of ethnicity), the current
recommended dose is 400 or 600 mg once daily,84 resulting in quite
diverse plasma concentrations in different ethnic groups, with the
average plasma imatinib concentration in 10 countries (Asia (China,
South Korea, Japan, and India), Europe (France, Norway, the
Netherlands, Belgium, and Italy), and North America (United States))
ranging from 800-1500 ng/mL.85

In this study, we utilised virtual-TDM to optimise imatinib ther-
apy in virtual Chinese and Caucasian cancer subjects. The imatinib
model was adapted and validated in single and multiple dose studies
in Caucasian subjects19,56-58 in addition to a being validated using a
previously developed virtual Chinese cancer population group60 with
CML/GIST multiple dose studies.61-64 In these validation studies, the
predicted imatinib plasma concentrations were within the range
reported in clinical studies (Fig. S1 and Fig. 3) and mean predicted
pharmacokinetics parameters were all within 2-fold of those
reported (Table 1). Some level of under/over-prediction was evident
in Fig. 3F and G, when predicting trough (Fig. 3F) and peak (Fig. 3G)
plasma concentrations with observed data from 129 GIST subjects
dosed 200-600 mg once daily (29-75 years).64 However, the observed
data recruited a total of 129 patients in an observational phase 4 trial,
with patients demarked for imatinib daily dose and hence the
observed data for each dose reflect a smaller subset of the total
patient number, and this may have contributed to the under/over-
prediction at the higher doses. Nonetheless, median predictions were
within 2-fold of those reported.

Failures in imatinib treatment can be attributed to the resistance
mutations of imatinib in the kinase domain of BCRABL1.86 In these
cases, therapeutic drug monitoring (TDM) may provide clinicians
with opportunities for informed dosage decisions. The European CML
Treatment and Outcome Study (EUTOS),87 offered guidance on
approaches for TDM with imatinib in addition to identify the rela-
tionship between imatinib plasma concentration and response. Using
centralised TDM and clinical outcome data including cytogenetic
response (CyR) and molecular response (MR), the imatinib plasma
concentrations of thousands of CML patients were collected in the
registry, and the population PK modelling was used to analyse the
data. This model describes pharmacokinetic parameters of imatinib
in specific populations, quantifies the impact of patient characteris-
tics on the behaviour of imatinib, and provides an individual estimate
of Cmin. Additionally, the observations suggest that due to the lower
concentration of imatinib and the slower response rate, early dose
optimisation of TDM may benefit some patients.87 This study exem-
plifies the potential of TDM for different populations and provides
theoretical evidence for individual variations. Critically, this study
suggested at a defined therapeutic target concentration which was
utilise as the basis for this work.

Having confirmed the ability of the model to recapitulate plasma
concentrations within both Caucasian cancer and Chinese cancer
populations, we subsequently applied TDM-based dose adjustment,
using the approach developed by EUTOS,5 in simulations by assessing
the changes in trough imatinib plasma concentrations following dose
adjustment from a baseline of 400 mg once daily across a range of
200-800 mg once daily (Fig. 4).

For all doses studied, the trough imatinib plasma concentration
was higher than that predicted within Caucasian Cancer subjects,
concurring with previous reports which have highlighted that
broadly lower doses may be required in Asian versus Caucasian sub-
jects.49,88-93

Notability, there was a wide interpatient variability in predicted
plasma concentrations in both population groups (Fig. 4), a feature
also reported by others.32,43,94 The cause of this may be attributed to
both variability in the abundance of CYP metabolic pathways or
transporter expression/function pathways. However, in the context
of comparing Chinese and Caucasian cancer population, the differen-
ces in both body weight and body surface area may also contribute to
this, with our virtual Chinese and Caucasian cancer populations pos-
sessed body weights of 62.21 kg § 9.45 kg and 74.3 kg § 14.8 kg and
BSA of 1.69 m2 § 0.16 m2 1.85 m2 § 0.21 m2. This difference is the
often quoted reason for Chinese cancer population required lower



Fig. 3. Imatinib plasma concentration following oral dose administration in Chinese cancer subjects. Steady-state trough plasma concentration reported following (A) 100, 200, 250,
300, 400, 600, 600 and 800 mg once daily doses (36 subjects aged 17-79 years)61; 190 GIST subjects (31-85 years) demarked for age with a 400 mg once daily dose (B), body weight
with a 400 mg once daily dose(C)62, trough plasma concentration dosed at 300, 400, 500 and 600 mg once daily (D)62; (E) 84 CML subjects dosed 300-600 mg once daily (18-76
years)63; (F and G) 129 GIST subjects dosed 200-600 mg once daily (29-75 years)64. Circles indicate the predicted (black) or observed (red) individual data. Where individual concen-
tration observed data was not reported, the reported observed mean and range were used and is represented by red horizontal lines (mean) and range (upper and lower horizontal
lines). Predicted mean is represented by the horizontal black lines.
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Table 1
Predicted and observed imatinib trough or peak plasma concentrations at in the Chinese cancer population group

Cmin (ng/mL) Comparison

Dose (mg) Predicted Observed Mean ratio SD Ratioa

Xia et al (2020) 100 369.11 (82.74-1162.87) 378 (140-334) 0.98 1.08
200 738.015 (85.46-2327.15) 640 (346-1222) 1.15 1.12
250 922.41 (111.8-2909.74) 986 (440-1265) 0.94 1.02
300 1106.8 (138.2-3492.63) 940 (337-2781) 1.18 1.24
400 1475.37 (150.8-4659.26) 1139 (421-7493) 1.32 1.42
500 1843.795 (320.49-5827.25) 1422 (1283-2155) 1.31 1.38
600 2212.075 (76.14-6996.38) 2076 (1103-3775) 1.07 1.08
800 2948.395 (101.38-9336.94) 3879 (2303-5017) 0.76 1.05

Wu et al (2018) 300 1221.7 (756.7) 1564.65 (596.2) 0.80 1.24
400 1593.4 (987.2) 1521.3 (610.3) 1.07 1.42
500 2078.9 (1289.9) 2540.3 (1298.1)# 0.82 1.38
600 2208 (1291.3) 0.87 1.08

Zhong et al (2012) 200 849.7 (541.2) 732.6 1.16 nd
300 1227.2 (828.1) 996 (337.7) 1.23 1.45
400 1635.8 (1105.6) 1446.2 (757.3) 1.13 1.52
500 2024.5 (1388.5) 1631.9 (507.1) 1.23 1.24
600 2246.9 (1440.2) 1802.3 (709.1) 1.24 1.13
800 2802.7 (1724.1) 1832.7 1.56 nd

Zhang et al (2018) 200 738.3 (78.2-2981.1) 960.1 (367.2-1751.2) 0.73 1.26
300 1107.6 (102.15-4471.9) 1087.5 (253.2-2452.1) 1.02 1.11
400 1484.3 (143.2-5963.2) 1270.9 (224.7-2809.3) 1.17 1.23
600 2215.3 (192.4-6788.9) 3162.6 (1327-5112.8) 0.73 1.42

Cmax (ng/mL)
200 1832.2 (701.6-3548.2) 1988.5 (1232.2-3699.3) 0.93 1.23
300 2748.3 (1053.6-5342.6) 2456.3 (701.8-4256.7) 1.11 1.15
400 3665.7 (1406.2-7102.1) 2604.8 (802.6-5211.9) 1.43 1.33
600 5205.7 (2113.6-9303.4) 3785.6 (2516.5-5897.3) 1.39 1.23

Data represents mean (range) or mean (SD). Cmin: trough plasma concentration; Cmax: peak plasma concentration; Mean ratio: ratio of predicted to observed concentration; nd: not determined.
a SD ratio: ratio of predicted to observed SD ratio. Observed SD was obtained or calculated from original reference source.
# Observed data for 500 mg and 600 mg doses were reported as a single value.
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Fig. 4. Simulated imatinib plasma concentrations in Chinese and Caucasian cancer subjects at different doses. (A) Simulated plasma concentration in 100 Caucasian (upper panels)
or Chinese (lower panels) cancer subjects (20-50 year olds) following an initial dose of 400 mg once daily to steady-state (10 days) and thereafter dose titrations to between 200-
400 mg once daily (left panels) or 500-800 mg once daily (right panels). Horizontal dashed line indicates lower target trough plasma concentration (750 ng/mL). (B) Simulated
plasma concentration in 100 Caucasian (open circles) or Chinese (solid green circles) cancer subjects (20-50 year olds) at steady-state doses of between 200-800 mg once daily Hori-
zontal shaded regions represents target trough plasma concentration (750-1500 ng/mL). Red lines indicate median and 5th- and 95th percentiles.
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doses to support treatment outcomes broadly lower doses are
required in Chinese versus Caucasian subjects.49,88-93

For Chinese cancer subjects, at the standard dose of 400 mg once
daily, only 26 % of subjects possessed trough concentrations within
the expected therapeutic range, with 51 % exceeding 1500 ng/mL
(Table 3). In applying TDM approaches, whilst a doubling of dose to
800 mg was only able to recapitulate 50 % (n=7) of the subtherapeutic
subjects at 400 mg below 550 ng/mL, the equivalent 1.25-fold (500
mg) and 1.5-fold (600 mg) increase in dose was able to recover all
subtherapeutic subjects between 550-750 ng/mL into the target
range. For trough levels above 1500 ng/mL, a 50 % reduction in dose
was able to recover 66% of subtherapeutic subjects into the target
window. Similar trends were identified for Caucasian cancer subjects,
albeit with dose adjustment for subjects with trough levels above
1500 ng/mL resulting in an increase in the recovery to target concen-
trations. Drug included adverse effects are likely with high imatinib
plasma concentrations, and include, nausea, vomiting, oedema and
cutaneous reactions.95 The latter occurs often at higher doses (400-
800 mg/day), although most are mild in nature.96 Although our study
was limited to 200 mg/day as the lowest dose, case reports of 100-
200 mg/day have demonstrated to result in improve clinical
outcomes.97,98

The case for TDM for imatinib has been widely made by many,2,3,5

and clear cost-effectiveness with TDM-guided therapy versus fixed



Table 2
Predicted imatinib trough plasma concentrations at difference doses in Chinese and Caucasian cancer subjects

Trough plasma concentration (ng/mL)

Dose Chinese Caucasian

(mg) Mean Median Range SD Mean Median Range SD

200 907.79 772.01 26.46-4095.64 721.56 608.28 531.78 60.66-2231.98 413.81
300 1361.92 1157.52 39.66-6168.77 1083.7 912.44 797.51 90.96-3348.33 620.79
400 1816.2 1542.73 52.85-8257.29 1446.7 1216.6 1063.155 121.23-4464.89 827.82
500 2270.62 1927.69 66.02-10360.15 1810.49 1520.77 1328.77 151.48-5581.64 1034.9
600 2725.17 2312.42 79.17-12476.44 2175.04 1824.95 1594.335 181.71-6698.57 1242.03
800 3634.66 3081.33 105.42-16745.82 2906.26 2433.36 2125.32 242.1-8933.03 1656.426

n=100 subjects. Data represents arithmetic mean. SD: standard deviation.

Table 3
Predicted imatinib trough plasma concentrations at difference doses in cancer subjects following the application of TDM

Population Trough levela Mean trough
concentration (ng/mL)

SD (ng/mL) Subjects within
trough rangeb

Dose Adjustmentc Adjusted
Dose (mg)

Mean trough
concentration (ng/mL)

SD (ng/mL) Pre-adjustment subjects
within target therapeutic
range post-adjustmentd

Pre-Adjustment Adjustment

Chinese <550 320.99 156.12 14 x2 800 640.61 311.36 50 % (n=7)
550-650 611.67 16.77 3 x1.5 600 916.79 24.5 100 % (n=3)
650-750 695.22 30.57 6 x1.25 500 868.64 38.15 100 % (n=6)
750-1500 1102.7 216.96 26 None 400 1102.7 216.96 na
>1500 2995.07 1909.81 51 x0.5 200 1496.31 950.81 66.7 % (n=34)

x0.75 300 2245.4 1429.34 29.4 % (n=15)

Caucasian <550 336.97 136.91 19 x2 800 673.34 273.68 42.1 % (n=8)
550-650 593.7 30.84 6 x1.5 600 890.39 46.66 100 % (n=6)
650-750 683.21 25.01 7 x1.25 500 853.89 31.13 100 % (n=7)
750-1500 1126.77 223.42 43 None 400 1126.77 223.42 na
>1500 2338.47 779.16 25 x0.5 200 1169.04 389.53 84 % (n=21)

x0.75 300 1753.71 584.33 44 % (n=11)

100 subjects (20-50 year olds) were initiated on an initial dose of 400 mg once daily to steady-state (10 days) (‘Pre-Adjustment’) and thereafter dose titrated to between 200-800 mg once daily (‘Adjustment’).
a Trough levels were demarked for therapeutic range (750-1500 ng/mL) and regions above and below this.
b Represents the percentage of subjects (n=100 in total) with trough levels within the range indicated.
c Represents the adjustment made to the initial steady-state dose (400 mg once daily) and below this.
d Represents the number of pre-adjustment subjects who have a concentration, following the revised dose adjustment, within the target trough range (750-1500 ng/mL). na: not applicable.
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dose therapy has been demonstrated with improved in ‘cost per qual-
ity-adjusted life year’.4,99 TDM has been applied with imatinib in a
number of approaches. Lamkheet et al (2017),66 demonstrated that
under standard imatinib dosing, < 40 % of subjects had trough levels
within the target range (calculated per individual) which with dose
adjustment (400 mg to 800 mg) leading to > 90 % of subjects with
adequate trough levels. Similarly, Yoon et al (2013),98 considered
dose titrations in toxicity cases in two GIST patients and demon-
strated reduced intolerable adverse events through dose reductions
to 100 mg/daily.

However, challenges remain, ranging from throughput limitations
of current analytic methods for the detection of imatinib, lack of spe-
cific anticancer TDM cost-effectiveness studies to support implemen-
tation, constrains of precise trough sampling, and ultimately the
unwillingness of prescribers to modify established dosing
approaches3. Furthermore, although the impact of intra-subject vari-
ability in imatinib pharmacokinetics is low (»30 % on key pharmaco-
kinetic metrics)100,101 virtual-TDM approaches should further
consider addressing approaches to model this to fully capture the
range of inter- and intra- subject variability associated with imatinib
therapy.

In addition, our dose recommendations within other Asian popu-
lations, e.g. Japanese or Korean, may applicable but would require
further validation with appropriate clinical studies, given the known
interethnic differences in Asian populations for CYP 2C8 polymor-
phisms102 and CYP abundance.103

Conclusion

This study demonstrates the application of physiologically-based
pharmacokinetic modelling and virtual clinical trials, to engage in vir-
tual-TDM of imatinib in a specific Chinese cancer population. Clear
differences are evident between Caucasian and Chinese cancer
patients, and this warrants further analysis to fully implement TDM
in multiple ethnic groups.
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