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tube are considered and analytical expressions for
the transmission loss and resonant conditions are
derived. Detailed analysis of periodically stratified
branch profiles demonstrates the effectiveness of the
MHQ tube for fluid-borne noise attenuation in pipe
systems.
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1. Introduction
Attenuators, such as silencers or pulse damping devices, are integrated in hydraulic and exhaust
pipe systems to suppress fluid-borne noise. The Herschel-Quincke tube (HQ), introduced in the
nineteenth century by Herschel [1] (1833) and subsequently Quincke [2] (1866), is a silencer based
on the concept of destructive interference. Although the HQ tube in its classic form is a relatively
simple configuration, consisting of two one-dimensional ducts running in parallel, it features
quite complex dynamics. Quantitative analysis of the HQ tube dynamics was first conducted by
Stewart [3,4]. In Stewart’s analysis, the parallel ducts of the tube were set to have the same cross-
section area. This restriction has been shown [5,6] to limit the attenuation effectiveness. Selamet
& Dickey [6] presented a study that combined theoretical formulaes, experiments and numerical
simulation for an HQ tube with unequal branch cross-section dimensions and demonstrated that
broadband attenuation is possible, contrary to the equal cross-section branch approach.

Several authors have introduced and studied configurations that generalize the HQ tube
concept, aiming at enhanced, broadband transmission loss characteristics. Selamet & Easwaran
[7] studied an HQ tube with an arbitrary number of branches. This development introduced more
degrees of freedom to tune resonances and hence more flexibility in designing HQ tube silencers
for broadband attenuation. Further developments include analysis of mean flow effects [8], the
HQ system with arbitrary number of ducts in the presence of mean flow [9], active variation of
parallel branch length and successive HQ tubes in the same circuit [10], use of interconnecting
branches [11] and adaptive variation of the parallel branch properties using active membranes or
piston elements [12].

In the case of constant and uniform branch properties, the increased Transmission Loss (TL)
bands depend on the number of parallel ducts, the cross-section area of each duct and its
Helmholtz number, i.e. the product He = ωL/c, where ω is the angular natural frequency, L
the duct length and c the speed of sound [4,7]. Increasing the number of parallel branches to
form an N-duct HQ tube allows for enhanced attenuation characteristics if appropriate tuning
of branch length and cross-section is achieved. Fundamentally, tuning can be achieved either
thought changing the branch lengths and cross-sections or the branch celerity. However, there
are certain cases where specific constraints render practical solutions impossible. Among several
restrictive factors are the lack of space for very elongated branches when several modern exhaust
pipe or hydraulic circuit applications are considered (e.g. automotive and aerospace industry
applications). Reviewing the definition of the Helmholtz number, it is evident that instead of
increasing the branch length reducing sufficiently the celerity could produce the same effect.
However, considering the Kortweg-Moens approximation [13,14], the material would have to
be very compliant and then structural integrity issues have to be taken into account. This fact
limits the available options regarding tube materials when for example high pressure hydraulics
are considered or extensive hosing effects might manifest.

A different approach could be to enhance reflection characteristics of the HQ tube by
introducing modulated branches. A very recent study [15] introduces the concept of the Virtual
HQ tube. In the Virtual HQ tube, a periodic array of identical resonators is embedded in
one of the branches. This approach has been found in [15] to exploit periodicity and generate
broadband attenuation, hence leading to very efficient silencers. The basic idea in [15], i.e. to
use the properties of periodicity, is adopted in the present study as well. Only in this case
is the pipe stiffness or thickness properties vary periodically. Of course, modulations of pipe
stiffness or thickness can produce enhanced transmission loss even when a single pipe is used
[16,17]. A key hypothesis of the present study is that synergies between pipe modulation
inducing reflection and destructive interference from parallel branches could yield very good
attenuation features. Hence, the concept of the Modulated Herschel-Quincke (MHQ) tube is
introduced. The new concept extends results from Selamet & Easwaran [7] to include modulated
branches in an N-duct HQ tube. Similarly to [15], the MHQ uses in certain cases periodicity
(but through appropriate modulation in the pipe properties) allowing for branches where the
celerity is a function of the spatial variable. It therefore introduces complex reflection phenomena
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Figure 1. Herschel-Quincke tube with modulated branches. Branches consist of three regions. The upstream unmodulated
region, the modulated region and the downstream unmodulated region. (Online version in colour.)

and additional Transmission Loss bands. The MHQ tube concept is depicted in figure 1. Some,
or all, of the branches include modulated pipe segments. In the modulated segments pulse
propagation velocity differs from that of the standard ducts and can be a function of the spatial
variable. Incident waves reach the Upstream Junction and enter the branches. Pulses in each
branch propagate with different wavenumbers and meet again at the Downstream Junction. By
appropriately tuning the number of branches or their modulation, destructive interference occurs.
Consequently, there is no pulse propagation after the Downstream Junction. Energy conservation
then dictates that the pulse is fully reflected and the tube acts as a filter for the transmission region.

The paper is organized as follows. Section 2 presents the governing equations for
long wavelength pressure and volumetric flow rate pulses in pipes with variable celerity
characteristics. These equations constitute the basis in developing the MHQ tube theory. In §3,
the transfer matrix for a modulated branch is derived and three cases of modulation, namely
continuously varying profiles, stratified and periodically stratified profiles are introduced.
Sections 4 and 5 present the overall transfer matrix formulation and resonance condition
equations for the MHQ tube, respectively. Finally, several examples that verify the derived
formulaes and demonstrate the effectiveness of the MHQ tube are included in §6.

2. Governing equations
To study pulse reflection and transmission in modulated pipes, a pulse of unit amplitude and
angular frequency ω is set to propagate rightwards inside a pipe filled with fluid of density ρ.
Assuming small amplitude disturbances and low Mach numbers, the acoustic volume velocity
q = Au and pressure p satisfy the linearized mass and momentum balance equations [18,19]

∂p
∂t

+ c2 ρ

A
∂q
∂x

= 0 (2.1)

and
∂q
∂t

+ A
ρ

∂p
∂x

= 0, (2.2)

where A is the undistorted cross-section area of the pipe, u the velocity and

c2 = KfEh
ρ(Eh + χKfD)

(2.3)

defines the Kortweg-Moens celerity c. Coefficient χ depends on the pipe Poisson’s ratio and has
the value χ = 1 − ν/2 when the pipe is constrained at its upstream end only, χ = 1 − ν2 for a pipe
constrained throughout from axial movement and χ = 1 for a pipe constrained with expansion
joints throughout (Korteweg model) [18]. In the celerity definition, E is the pipe material Young’s



4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20220074

...............................................................

modulus, h the pipe wall thickness, Kf the hydraulic fluid bulk modulus and D the internal pipe
diameter. The fundamental assumption in the employed model is that wavelengths are large
compared to the characteristic dimensions of the pipe cross-section, e.g. inner radius, and that
the velocity profile is approximately uniform in each cross-section [19]. A modulated profile of
length 2L is now considered. The modulation refers to the product Eh and is of the form δf (x),
where δ denotes modulation amplitude and |f (x)| ≤ 1. Then it is

c2(x) = Kf Eh[1 + δf (x)]

ρ[Eh(1 + δf (x)) + χKf D]
= c2

ref
1 + δf (x)
1 + rδf (x)

, (2.4)

where r = Eh(Eh + χKf D)−1 < 1 and c2
ref = rKf /ρ.

Eliminating q from (2.1) and (2.2), and assuming solutions of the form q = Q(x)e−iωt,
p = P(x)e−iωt, a Helmholtz type equation with variable wavenumber k(x) = ω/c(x) occurs

d2P
dx2 + k2(x)P = 0. (2.5)

The general solution of (2.5) is of the form

P(x) = C1F(x) + C2G(x), (2.6)

and from (2.2) the amplitude Q can be calculated as

iQ = A
ωρ

dP
dx

= A
ωρ

[
C1

dF
dx

+ C2
dG
dx

]
. (2.7)

Finally, to facilitate analytical solutions for certain cases of complex celerity profiles, mild
modulations will be introduced. In such cases it is δ � 1 and an approximation of the wavenumber
in (2.5), using McLaurin’s expansion [1 + δf (x)]−1 = 1 − δf (x) + O(δ2), is

k2(x) = ω2

c2(x)
= ω2

c2
ref

1 + rδf (x)
1 + δf (x)

≈ ω2

c2
ref

[1 − εf (x)], (2.8)

where ε = (1 − r)δ. The case of unmodulated profiles corresponds to ε= 0. Analytical solutions in
terms of F, G for several profiles f (x) of mild modulation can be found in appendix A.

3. Transfer matrix for a modulated branch
In this section, the transfer matrix relating pressure and acoustic volume velocity upstream and
downstream of the nth modulated branch will be derived. Transfer-matrix formulations, along
with other approaches such as the mobility-matrix, facilitate greatly pulse propagation analysis
in one-dimensional circuits [7,20] and have been used excessively to study the HQ tube [7,8].

Each branch of the MHQ tube is composed of three regions, as shown in figure 2. First there
is the upstream region with branch length an, internal pipe cross-section area A1n and constant
celerity c1n. Adjacent to that is the modulated region defined in the interval x = −Ln to x = −Ln

and with internal pipe cross-section An. Celerity cn(x) within this region is a function of the
spatial variable. After the modulated region follows the downstream part of the branch with
total length bn, cross-section area A2n and celerity c2n. In the upstream and downstream region it
is ωan/c1n = k1nan and ωbn/c2n = k2nbn respectively. Furthermore, the ratios Ξ1n = ρc1n/A1n and
Ξ2n = ρc2n/A2n for the upstream and downstream region, respectively, are introduced.

The transfer matrix equation relating P and Q in branch n from the upstream to the
downstream junction is⎡

⎣ P(n)
d

iQ(n)
d

⎤
⎦=

⎡
⎣T(n)

11 T(n)
12

T(n)
21 T(n)

22

⎤
⎦
⎡
⎣ P(n)

u

iQ(n)
u

⎤
⎦= Tn

⎡
⎣ P(n)

u

iQ(n)
u

⎤
⎦= DnMnUn

⎡
⎣ P(n)

u

iQ(n)
u

⎤
⎦ , (3.1)
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Figure 2. Length, celerity and cross-section area variation along a modulated branch. Properties are constant at the upstream
and downstream region, while celerity is a function of the spatial variable in the modulated region. (Online version in colour.)

where Tn, the overall transfer matrix for branch n, is calculated using the transfer matrices for the
upstream region Un and downstream region Dn

Un =
⎡
⎣ cos(k1nan) Ξ1n sin(k1nan)

−Ξ−1
1n sin(k1nan) cos(k1nan)

⎤
⎦

Dn =
⎡
⎣ cos(k2nbn) Ξ2n sin(k2nbn)

−Ξ−1
2n sin(k2nbn) cos(k2nbn)

⎤
⎦ , (3.2)

and the transfer matrix of the modulated region

Mn =
⎡
⎣ M(n)

11 M(n)
12

M(n)
21 M(n)

22

⎤
⎦ . (3.3)

In the following, explicit forms of the M(n)
ij coefficients in (3.3) for the case of continuously

modulated profiles, stratified profiles and periodically stratified profiles will be presented. The
transfer matrices defined in (3.1), (3.2) and (3.3) are unimodular, that is their determinants satisfy
det Dn = det Mn = det Un = 1 [21].

(a) Continuously modulated profile
With reference to equation (2.5) and solution (2.6) it is

Mn = 1
Wn

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Wn(Ln, −Ln) ωρ
An

∣∣∣∣∣∣
Fn(−Ln) Gn(−Ln)

Fn(Ln) Gn(Ln)

∣∣∣∣∣∣
− An

ωρ

∣∣∣∣∣∣
F′

n(−Ln) G′
n(−Ln)

F′
n(Ln) G′

n(Ln)

∣∣∣∣∣∣ Wn(−Ln, Ln)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3.4)

where

Wn(ξ , η) =
∣∣∣∣∣∣
Fn(ξ ) Gn(ξ )

F′
n(η) G′

n(η)

∣∣∣∣∣∣= Fn(ξ )G′
n(η) − F′

n(η)Gn(ξ ). (3.5)

For ξ = η it is Wn(ξ , ξ ) = Wn(η, η) = Wn. In this case, Wn is the Wronskian of the two linearly
independent solutions of (2.5), i.e. F, G. Because of linear independence and the governing
equation form this quantity is constant and different than zero [22].
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(b) Stratified and periodically stratified profile
Assuming a modulated profile consisting of m layers, each one with transfer matrix Mj, the overall
transfer matrix for the modulated region is Mn =∏m

j=1 Mj [22]. This product formula can be
used in conjunction with piecewise constant stratification to approximate more complex celerity
profiles [23–25]. A very important special case of (3.9) is when the modulation profile consists of
a periodic cell repeated m times within the modulated region. The transfer matrix of the periodic
cell in branch n is assumed to have the general form

Mp =
⎡
⎣μ11 μ12

μ21 μ22

⎤
⎦ , (3.6)

and to be unimodular. Then, it is [20,24,25]

Mn = (Mp)m =
⎡
⎣μ11Um−1(μ) − Um−2(μ) μ12Um−1(μ)

μ21Um−1(μ) μ22Um−1(μ) − Um−2(μ)

⎤
⎦ , (3.7)

where μ = (μ11 + μ22)/2 and Um(μ) is the mth degree Chebyshev polynomial of the second kind.
Calculations are facilitated by the recursion relation

Um(μ) = 2μUm−1(μ) − Um−2(μ) for m ≥ 2, (3.8)

with U0(μ) = 1, U1(μ) = 2μ [26].

4. Junction conditions
To formulate the total transfer matrix equation for the MHQ tube, continuity of pressure and
volumetric flux rate must be applied at the upstream and downstream junctions. In the incidence
region, with cross-section area AI and celerity cI, a pressure pulse of unit amplitude propagating
rightwards is considered. Then, at the upstream junction location x = u, the state variables are

PI = eikIu + Re−ikIu and QI = Ξ−1
I (eikIu − Re−ikIu), (4.1)

where kI = ω/cI, ΞI = ρcI/AI and R is the reflection coefficient. Junction conditions upstream are

QI =
∑N

n=1
Q(n)

u and PI = P(n)
u , for n = 1, 2, . . . N. (4.2)

At the transmission region, with cross-section area AT and celerity cT, the transmitted pulse
propagates rightwards and no reflection occurs. The state variables at the downstream junction
x = d are

PT = TeikTd and QT = Ξ−1
T TeikTd, (4.3)

where kT = ω/cT, ΞT = ρcT/AT and T is the transmission coefficient. Junction conditions
downstream are

QT =
∑N

n=1
Q(n)

d and PT = P(n)
d for n = 1, 2, . . . , N. (4.4)

Applying the junction conditions results in an overall transfer matrix for the Herschel-Quincke
tube with modulated branches that relate state variables at the upstream and downstream
junction [

PT

iQT

]
= 1∑N

n=1 (1/T(n)
12 )

⎡
⎣T11 T12

T21 T22

⎤
⎦
⎡
⎣ PI

iQI

⎤
⎦= T

⎡
⎣ PI

iQI

⎤
⎦ (4.5)

where, using also the fact that det Tn = 1, the diagonal and off-diagonal elements are

T11 =
∑N

n=1
(T(n)

11 /T(n)
12 ), T22 =

∑N

n=1
(T(n)

22 /T(n)
12 ) (4.6a)
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and

T12 = −i, T21 = −i

{[∑N

n=1

(
1/T(n)

12

)]2
−
∑N

n=1

(
T(n)

11 /T(n)
12

)
·
∑N

n=1

(
T(n)

22 /T(n)
12

)}
. (4.6b)

It can be verified that det T = 1, and after straightforward calculations

R = −Ξ−1
T T11 − (ΞTΞI)−1

T12 + T21 + Ξ−1
I T22

Ξ−1
T T11 − (ΞTΞI)−1

T12 − T21 + Ξ−1
I T22

e2ikIu (4.7)

and

T = 2Ξ−1
I

Ξ−1
T T11 − (ΞTΞI)−1

T12 − T21 + Ξ−1
I T22

ei(kIu−kTd). (4.8)

Transmission Loss (TL) is defined as

TL = 20log10

∣∣∣∣ 1
T

∣∣∣∣= 20log10

∣∣∣∣∣Ξ
−1
T (ΞIT11 − T12)

2
− (ΞIT21 − T22)

2

∣∣∣∣∣ . (4.9)

It is noted that in the present model losses and higher order mode effects at junctions are not
considered.

5. Resonance conditions
Equations (4.6a) and (4.6b) imply that resonance conditions occur when

ΩN =
∑N

n=1

(
1

T(n)
12

)
= 0. (5.1)

Element T(n)
12 of the overall transfer matrix for branch n can be calculated from Tn = DnMnUn.

For most practical applications the upstream and downstream region properties and length will
be the same, i.e. Ξ1n = Ξ2n = Ξn and k1nan = k2nbn = knn. If at the same time in the modulated
region it is M(n)

11 = M(n)
22 = M(n), formula (5.1) becomes

ΩN =
n∑

n=1

Ξ−1
n

M(n) sin(2knn) + Φ(n) cos(2knn) + Ψ (n)
= 0, (5.2)

where Φ(n) =
(
Ξ−1

n M(n)
12 − ΞnM(n)

21

)
/2 and Ψ (n) =

(
Ξ−1

n M(n)
12 + ΞnM(n)

21

)
/2.

In the restricted case of unmodulated branches, where even the modulated region has the
same properties, it is Ψ (n) = 0, Φ(n) = sin (knLn) and Ξn = ρcn/An. Then, equation (5.2), using
trigonometric identities for the sine and cosine of sums reduces to the condition for resonance
derived in [7].

ΩN =
N∑

n=1

An

cn sin[2kn(n + Ln)]
= 0. (5.3)

Equations (5.1) and (5.2) generalize (5.3) in the case of modulated branches. Therefore, they
feature more degrees of freedom available for calibration to achieve full reflection conditions at
specific frequency bands. This attribute could be very useful when design constraints, such as
branch length, number of branches and material properties (e.g. strength) are taken into account.
Consequently, the option of modulated braches could facilitate spurious pulse filtering based
on the HQ tube concept in very challenging designs and advanced applications. Furthermore, it
could increase the number of frequency bands where high Transmission Loss occurs with respect
to both band location and band width. This aspect could be useful in hydraulic circuits with
positive displacement pumps for pressure ripple attenuation. In such applications, HQ tubes are
not typically considered due to the narrow banded attenuation they produce [27].



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20220074

...............................................................

upstream
junction

incidence region 2

1

2L

2L

k2 = w 2/c2
ref

c2
ref

w 2
k2 (x) = 1 – e

1
2

+
x

x = u

x

x = d

reflection transmission

downstream
junction

Figure 3. MHQ tube with modulated parallel branch. The modulated branch includes a segment of length 2L continuously
varying celerity. Properties of the configuration are given in table 1. (Online version in colour.)

6. Results and discussion
In this section, the theory and formulaes for the MHQ tube will be applied to the analysis and
design of configurations that maximize Transmission Loss at specific frequency bands. Three
examples will be presented. The first one is a verification case, where the newly derived formulaes
will be applied to benchmark examples from previous studies on HQ tube performance. The
second example, in §§6b, introduces an MHQ tube with a single periodically modulated parallel
branch. Finally, example 6.3 considers the same periodically modulated profile but with two
parallel branches, increasing the total number of branches of the MHQ tube to three.

(a) Verification example
This first example aims to serve as verification of the formulae derived for the MHQ tube and
at the same time highlight some significant features that modulation inflicts on Transmission
Loss characteristics of the HQ tube. To verify the formulae a benchmark case from the relevant
literature will be used. The approach adopted is to consider a configuration already analysed by
other researchers and allow for the parallel branch to be mildly modulated. When the modulation
amplitude ε tends to zero, the results of the unmodulated HQ tube are to be reproduced. For mild
modulations, solution properties, such as energy conservation, will be verified and a comparative
study of the TL diagrams for small values of the amplitude parameter will be conducted.

The MHQ tube in figure 3 is considered. The main branch, termed Branch 1, is unmodulated
while the parallel branch, termed Branch 2, is mildly modulated according to the formula
(2.8). Parameters of the MHQ tube are given in table 1. All dimensions and the reference
celerity cref = 343 m s−1 are selected to correspond to Configuration 1 from the 1994 study of
Selamet & Dickey [6] (page 3183). This configuration has also been validated using experimental
and computational results in [6]. In the present example, for the modulated branch the mildly
modulated profile f (x) = 1/2 + x/2L is selected. The linearly independent solutions of equation
(2.5), needed to formulate transfer matrix (3.6), are actually the Airy functions and the relevant
arguments can be found in Appendix A. The incidence and transmission region celerity is
cI = cT = cref = 343 m s−1. The internal tube diameter in both these regions is dI = dT = 4.859 cm.
Formula (2.8) for the mildly modulated wavenumber indicates that the results for modulation
amplitude ε → 0 should approach the TL diagram in figure 10 of Selamet & Dickey.

In figure 4, the Transmission Loss (TL) and Reflection-Transmission coefficients for modulation
amplitude ε = 0.2 are plotted. The very mild modulation is found to shift the TL spikes towards
higher frequencies. Indeed, as ε → 0, the effect of modulation is reduced and the results of
the MHQ tube tend to coincide with the results of Selamet & Dickey (black dashed line).
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celerity and periodically placed stiffeners of width w that increase celerity locally. Properties of the configuration are given in
table 2. (Online version in colour.)

The Reflection-Transmission (R-T) diagram corresponding to the same example demonstrates
that |R|2 + |T|2 for the MHQ tube is equal to one for all frequencies, since due to energy
conservation this sum should equal the amplitude of the incoming pulse. Furthermore, for two
characteristic frequencies of full reflection (approx. 295 and 599 Hz) and a frequency of partial
reflection (840 Hz), the MHQ tube circuit has been simulated using COMSOL Pipe Flow Module.
Graphical results for these three frequencies are embedded in the R-T diagram of figure 4. Results
are in perfect agreement with the predictions of the analytical solution, COMSOL yielding zero
pressure pulse in the transmission branch when the response in frequencies of full reflection is
simulated.
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(b) Parallel branch with periodic modulation
The MHQ configuration in figure 5 is considered. The tube has the main, unmodulated, branch
denoted as Branch 1 and one periodically modulated parallel branch (Branch 2). The modulated
branch between x = −L and x = L has a pipe with reduced stiffness, and hence reduced celerity
denoted as cs. To avoid hosing effects, stiffeners of width w are placed along the modulated region.
At the stiffener locations, the celerity is increased to cw. The distance between two successive
stiffeners is 2s. The first and last stiffener are placed at distance s from the left- and right-hand side
ends of the flexible pipe region, respectively. A periodic cell of length  = 2s + w is thus defined.
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Table 1. Parameters for the MHQ tube in example 6.1.

upstream region modulated region downstream region

an c1n d1n 2Ln cn dn bn c2n d2n
(cm) (m s−1) (cm) (cm) (m s−1) (cm) (cm) (m s−1) (cm)

Branch 1

n= 1 4 343 4.859 31.85 343 4.859 4 343 4.859
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Branch 2

n= 2 (modulated) 23.3 343 4.674 31.85 343√
1−εf (x)

4.674 23.3 343 4.674
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. Parameters for the MHQ tube in example 6.2.

upstream region modulated region downstream region

an c1n d1n 2Ln cn dn bn c2n d2n
(m) (m s−1) (m) (m) (m s−1) (m) (m) (m s−1) (m)

Branch 1

n= 1 0.05 1000 0.01 1 1000 0.01 0.05 1000 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Branch 2 cs = 500

n= 2 (modulated) 0.2 1000 0.01 1 cw = 1000 0.01 0.2 1000 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5 depicts the case of five such periodic cells. The approach presented in sub-section 3b for
periodic stratifications will be adopted in the following. Denoting Ms and Mw the transfer matrix
for part s and part w respectively, the transfer matrix of the periodic cell is

Mp = MsMwMs =
⎡
⎣μ11 μ12

μ21 μ22

⎤
⎦ , (6.1)

with

μ11 = μ22 = μ = cos
(

2ωs
cs

+ ωw
cw

)
− Λ sin

(
ωw
cw

)
sin

(
2ωs
cs

)
, (6.2a)

μ12 = Ξs

{
sin

(
2ωs
cs

+ ωw
cw

)
− sin

(
ωw
cw

)[
K − Λ cos

(
2ωs
cs

)]}
(6.2b)

and μ21 = −Ξ−1
s

{
sin

(
2ωs
cs

)
+ ωw

cw
+ sin

(
ωw
cw

)[
K + Λ cos

(
2ωs
cs

)]}
, (6.2c)

where Ξs = ρcs/An, Ξw = ρcw/An and K = Ξ2
s − Ξ2

w/2ΞsΞw, Λ = (Ξs − Ξw)2/2ΞsΞw.
The modulated region transfer matrix for m periodic cells can now be calculated from equation

(3.8). The upstream and downstream region have same properties and length. Since μ11 = μ22,
(3.8) implies that M(n)

11 = M(n)
22 = M(n). Therefore resonance frequencies correspond to roots of (5.2).

A specific configuration is considered, where the incidence and transmission region celerity
is set to cI = cT = 1000 m s−1. The internal tube diameter in both these regions is dI = dT = 0.02 m.
The upstream junction is located at x = u = −0.05 m and the downstream junction is located at
x = d = 1.05 m. With reference to figure 5, the length of modulation is selected to be 2L = 1 m. The
unmodulated branch, indicated in the following as Branch 1, has therefore total length of 1.1 m.
Celerity c1n, c2n, cn, length an, Ln, bn and pipe diameter d1n, dn, d2n values for n = 1 (Branch 1)
and n = 2 (Branch 2) in the upstream, modulated and downstream region are summarized
in table 2. The stiffener width in the modulated branch is w = 0.05 m. The transmission loss
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(TL) characteristics of the modulated HQ tube will be compared to those of a HQ with the
same geometric characteristics (lengths, number of branches, pipe diameter) but with constant
celerity along all the HQ components equal to that of the incidence and transmission region, i.e.
c = 1000 m s−1. This reference HQ tube will be referred to as unmodulated.

Transmission Loss characteristics for the modulated and unmodulated version of the HQ tube
in figure 5 are summarized in figure 6. Analysis in the frequency range up to 1000 Hz is presented
for increasing number of periodic cells in the modulated HQ tube. Efficient transmission loss is
set to be achieved for values higher than 20 dB. This regime is indicated using the shaded area in
figure 6. The solid blue line represents performance of the modulated HQ tube while the dashed
black line represents the performance of the unmodulated tube. The case of three periodic cells is
found to introduce a reflection tongue (appearing as a hump in the first subplot) in the frequency
range from approximately 200 to 400 Hz. At the same time, transmission loss spikes are shifted to
higher frequencies compared to the unmodulated tube. Increasing the number of periodic cells to
five leads to a further, though very slight, shifting toward higher frequencies. At the same time the
reflection tongue amplitude increases significantly featuring now a wide band (approx. from 320
to 370 Hz) above the 20 dB threshold. For seven periodic cells, the hump splits in two TL spikes
with a band of about 100 Hz being over 20 dB. Further increase of the periodic cells shifts the TL
spikes to higher frequencies. For nineteen periodic cells the TL diagram of the modulated HQ
resembles closely the one of the unmodulated one. Since cw = 1000 m s−1 and the stiffener width
is w = 0.05 m, the use of twenty periodic cells will lead to the whole modulated region having
celerity equal to the unmodulated tube.

The predictions of formula (5.2) regarding resonant frequencies of the tube are plotted in
figure 7 for the case of 3, 5 and 7 periodic cells. For demonstration purposes, the logarithm of
|ΩN| is plotted. Then, roots of ΩN correspond to spikes tending to minus infinity (indicated
by red dots in figure 7). Finally, it is worth mentioning that effects of periodicity can also be
implemented using continuously modulated profiles, such as the ones resulting from functionally
graded materials. The formulaes derived in this study can facilitate simple analytical solutions
even in such cases. In Appendix A, the second and third row of table 3 present functions F, G for
a simple sinusoidal profile (corresponding to periodic stiffening and softening of the modulated
tube) and a profile corresponding to the square of a sinusoidal variation representing periodic
stiffening or softening depending on the sign of the profile.
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branches are the same as in example 6.2. (Online version in colour.)

(c) Double parallel branch with periodic modulation
The periodic cell modulation introduced in example 6.2 is considered again but is now applied
to two parallel branches. The MHQ tube in this case has, therefore, a total of three branches and
is shown in figure 8. All parameters are identical to the ones used in §6b with only the number
of modulated branches changing to two. A parametric study on the Transmission Loss (TL) is
conducted with respect to increasing number of periodic cells.

Figure 9 demonstrates the cases of 3, 5 and 7 periodic cells. Compared to the unmodulated HQ
tube, the case of two parallel modulated branches produces two more TL spikes even when only
three or five periodic cells are used. Furthermore, the first transmission loss spikes appear now in
lower frequencies compared to the case of the modulated HQ tube with only one parallel branch.
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A slight modification to the celerity of the modulated region in only one of the two parallel
branches is investigated too. In figure 10, the modulated HQ tube with two parallel branches
is considered again, only the celerity cs in one of the two modulated branches (Branch 3) is
changed from 500 m s−1 to 600 m s−1. This slight modification produces a significant change in
the TL diagram. The number of TL spikes for three periodic cells now doubles from four to eight,
while the first spike appears in even lower frequency. This configuration type, with appropriate
calibration, could be useful in cases where several different frequency components need to
be attenuated simultaneously, such as the pressure ripples from piston pumps in hydraulic
circuits [27].

7. Conclusion
The concept of the modulated Herschel-Quincke tube (MHQ) is introduced. The MHQ tube
allows for parallel branches with variation of the celerity profile along them. Closed form
expressions for the prediction of Transmission Loss and Resonant frequencies in the presence
of continuously varying or stratified profiles are derived. The results are verified and the
effectiveness of the MHQ in generating multiple or broadband transmission loss bands is
demonstrated using configurations with periodically stratified profiles. The modulated profiles
of the parallel branches introduce more design parameters in the HQ tube concept and hence
more flexibility in achieving enhanced reflection without resorting to branches of extensive
length. This attribute could be potentially useful in applications where space limitations are
imposed. The present analysis targets high-pressure hydraulics in particular. In such applications,
cross-section deformation and hence influence of pipe stiffness on the speed of sound becomes
important. Therefore, the MHQ tube concept could potentially be applied for pressure ripple
noise reduction [27], achieving more broadband attenuation compared to the standard HQ tube.
Future aims include extending the MHQ tube theory to periodically modulated tubes that feature
more deformation modes [28] and taking into account mean-flow as well as pipe axial tension
effects [29].
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Appendix A
In the following table, table 3, specific cases of modulated profiles f (x) for the second order
differential equation (2.5), i.e.

d2P
dx2 + ω2

c2
ref

[1 − εf (x)]P = 0, −L < x < L, (A 1)

with |f (x)| ≤ 1 and ε � 1.

Table 3. Different profiles and governing equations for the modulated region (− L, L).

f (x) equation type and standard form solution P(x)= C1F(x)+ C2G(x)

± x
2L + 1

2 Airy F(x)= Ai(α1/3x+ α−2/3β)
d2P
dξ 2 − (αξ + β)P = 0 G(x)= Bi(α1/3x+ α−2/3β)

α = ± εω2

2Lc2ref
,β = −ω2

c2ref

(
1 − ε

2

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sin
(mπ x

L

)
Mathieu F(x)= M1

(
a, q, mπ x

2L − π
4

)
d2P
dξ 2 + [a − 2q cos(2ξ )]P = 0 G(x)= M2

(
a, q, mπ x

2L − π
4

)
a= 4ω2L2

m2π 2c2ref
, q= 2εω2L2

m2π 2c2ref. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

±sin2
(mπ x

L

)
Mathieu F(x)= M1

(
a, q, mπ x

L

)
d2P
dξ 2 + [a − 2q cos(2ξ )]P = 0 G(x)= M2

(
a, q, mπ x

L

)
a= ω2L2

m2π 2c2ref

(
1 ∓ ε

2

)
, q= εω2L2

4m2π 2c2ref. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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