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Abstract

Carbon dioxide (CO,) emissions contribute considerably towards increasing
greenhouse effect. Carbon capture and storage can reduce CO, emissions to a
great extent but lacks economic feasibility. The economic feasibility of CO,
capture could be boosted by utilizing the captured gas to produce valuable end
products. CO, is a highly stable molecule; therefore, special catalysts and
elevated conditions of temperature and pressure are required for its
conversion. This review presents the current status of CO, utilization
processes from various aspects, including thermodynamic, economic, and
environmental impacts. The use of process systems engineering (PSE) tools
and techniques in a broad spectrum, to improve the technical, economic, and
environmental feasibility of these processes, is the major focus of this review.
In this regard, a framework has also been presented showing the integration of
various PSE techniques. All the related information in the form of tabulated
data as well as qualitative and quantitative plots have been presented and
critically analyzed.

KEYWORDS

chemical conversion, climate change mitigation, CO, utilization, greenhouse gas emissions,
process systems engineering, sustainability

© 2022 The Authors. Energy Science & Engineering published by the Society of Chemical Industry and John Wiley & Sons Ltd.

Energy Sci. Eng. 2022;1-34.

wileyonlinelibrary.com/journal/ese3

85UB017 SUOWWOD BAIES.D 8|qedt|dde auy Aq peusencb a1e S3jolie VO (88N JO S3INI 104 AR1q 1T BUIIUO A1 UO (SUORIPUOD-PUR-SWBHI0O" A3 1M AJeiq | Ul Uo//Sdny) SUORIPUOD pue SWe L 84} 885 *[2202/0T/LT] uo Ariqiauluo A|IMm ‘AisieAlun UosY Ag E0ET"€852/200T 0T/10p/iod" A3 (1M ARe1q Ul |uoj/sdny Woly papeoumoq ‘0 ‘50500502


http://orcid.org/0000-0003-0318-5728
http://orcid.org/0000-0002-3057-1301
https://orcid.org/0000-0003-1250-1745
mailto:m.imran12@aston.ac.uk
https://onlinelibrary.wiley.com/journal/20500505
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fese3.1303&domain=pdf&date_stamp=2022-09-28

2 | OSC'

YOUSAF ET AL.

where science

1 | INTRODUCTION

The high concentration of carbon dioxide (CO,) in the
stratosphere hinders the formation of new ozone
molecules and therefore, contributes toward greenhouse
effect.! Moreover, the concentration of CO, is continu-
ously increasing in the atmosphere contributing exten-
sively toward global warming.”> The advent of first
industrial revolution in Europe and the United States,
in the period from 1750 to 1850 led to a negligible rise in
the global CO, emissions. But afterward, rapid growth of
industrialization in the world caused a significant
increase in CO, emissions, especially from anthropogenic
sources.” The atmospheric growth of CO, was 2.04 GtC/
yr (giga ton carbon per year) in 1959 that followed an
oscillating behavior with an ultimate increase to
5.43 GtC/yr in 2019* as shown in Figure 1. National
Oceanic and Atmospheric Administration (NOAA) and
American Meteorological Society (AMS) reported the
global atmospheric CO, concentration as 407.4 ppm in
2018, that was about 2.5 ppm more than that in 2017.° In
May 2019, for the first time in the history, sensors
measured the atmospheric CO, concentration to be
around 415 ppm that is substantial when compared to
240 ppm some thousand years ago.® Burning of fossil
fuels for transportation, industry, and power generation
causes significant increase in CO, concentration in the
environment. Power generation and transport accounts
for over 67% of the rise in anthropogenic greenhouse gas
emission (GHGs) emissions.” The worldwide increase in
power demand has caused significant increase in the
consumption of coal, oil, and natural gas which in turn
accelerated the CO, emissions.

Atmospheric Growth of CO, (GtC/yr)
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FIGURE 1 Atmospheric growth of CO,. Source: Reproduced
from Friedlingstein et al.*

The GHGs (prominently CO,) emissions can be
reduced by following these four possible pathways: (1)
increasing the efficiency of existing appliances, plants,
and processes, (2) replacing the fossil fuel-based tech-
nologies to renewables or low CO,-based technologies,
(3) carbon capture and storage (CCS), and (4) carbon
capture and utilization (CCU). Improving the efficiency
of existing mature processes is not an easy task as most of
the already installed processes have little space for
further improvement.® Renewable energy technologies
like solar and wind are now developed and are cost
competitive to fossil fuels.” However, an important
concern associated with these renewable energy
resources is their intermittent nature.'® Moreover, efforts
are in progress to replace fossil fuel-based power plants
and synthesis gas generation units to biomass-based
processes in order to reduce GHGs emission. However,
biomass-based fuels have low energy density and are
mostly preferred as a combined fuel mixed with coal. To
overcome this issue, a reasonable share of conventional
power generation is required owing to its continuous
availability and suitability to meet peak load demands.
Furthermore, fossil fuels are an important feedstock for a
variety of chemicals and fuels. Therefore, CO, mitigation
technologies will be required to mitigate the environ-
mental damage by associated emissions with the
burning/utilization of fossil fuels.

Carbon capture can be implemented in shorter span
both on existing and new power plants."' However, the
underground storage of CO, may create surface stability
issues or false permeation leading to leakages and thus,
emitting the captured CO, back to the atmosphere.'”
However, these leakages could be reduced by continuous
monitoring of CCS sites."> Furthermore, CCS is a cost
intensive process and it affects the plant economy to a
great degree as the cost of electricity (COE) is increased
from 45% to 70% depending on the type of fuel and
plant.'* CO, utilization is now considered as the most
feasible option available and focus is shifting toward the
production of valuable products from CO,."> It could
significantly help to reduce the cost of CO, storage as
well as recover the cost of carbon capture, and can
improve the overall economy of the process.'® Integra-
tion of CO, capture process with some of the CO,
utilization processes (e.g., hydrogenation of CO, to
methanol) and doing energy integrations, the energy
required for capture process can be reduced thus
reducing the cost of CO, capture.'”*® Currently, the
CO, utilization processes require energy input in the
form of heat, pressure and/or catalyst for the activation of
highly stable CO, molecule, this is the reason behind the
economic infeasibility of most of CO, utilization pro-
cesses. Nevertheless, CO, utilization processes could be
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made sustainable by employing computational tech-
niques at multiscale levels such as optimizing the
operating and design parameters, selection of reaction
pathways, process integrations, using renewable energy
sources and utilizing the waste heat of processes.

Apart from the mitigation techniques discussed
above, GHG emissions could also be abridged by
optimizing the energy mix of the country, with the
intention to minimize cost and GHG emissions."
However, this is a long-term solution, requires significant
finance flows and has certain assumptions associated
with it. The choice of the utilization process depends on
the following factors: (1) CO, availability, (2) product
demand, (3) product price, (4) process economics, and (5)
overall environmental impact. The main objectives of the
CO, utilization process are net CO, and cost reduction.?
Various studies on CO, utilization routes have been
reported in the literature. Utilization of captured CO, is
mainly in the (1) production of carbon-neutral fuels that
do not emit net CO, on combustion, for example,
methanol'”*'"%%; (2) synthesis of various chemicals, for
example, polycarbonates,” acetic acid,”> urea,”® and
many others; (3) enhanced oil recovery (EOR) process,*’
where captured CO, is injected in depleted oil wells
giving up to 40% increased oil production; (4) synthesis of
biofuels with micro algae,?® that can be used as a source
of energy; (5) CO, can also be utilized through
photosynthesis by growing more plants® resulting in
more biomass production; and many other processes. In
recent years, several review articles have been published
with focus on several aspects such as photocatalytic CO,
reduction,*>*' CO, utilization through carboxylation and
reduction reactions,”* hydrocarbon and methanol syn-
thesis,”” assessing early-stage CO, utilization technolo-
gies,* current status, challenges and roadmap for the
further development of CO, utilization technologies,*>’
cultivation of microalgae using CO, and hydrogenation
of CO, to energy products,®® advanced chemical looping
materials (i.e., metal oxide-based materials) for CO,
utilization,” review of patents on CO, utilization
technologies published between 1980 and 2017,*° over-
view of reaction mechanisms and catalyst activities for
CO, utilization,*" process systems perspectives,* and life
cycle environmental impacts.*?

The published review articles are limited, and various
articles presented some selected options for CO, utiliza-
tion. Mature technologies, emerging technologies, and
innovative explorations are presented with major focus
on the reaction mechanisms, catalysts and their activi-
ties, operating conditions, and yield of the product.
However, the review on the use of computational
techniques for the assessment, improvement and

innovation of certain processes or products is limited.
In this context, the published article focusses on the
process level simulations and other computational
techniques such as molecular level simulations, compu-
tational fluid dynamics (CFD), life cycle assessment
(LCA) and process or superstructure level optimizations
were not reported. Moreover, autonomous discussion of
process modeling and simulation techniques was not
spotted. The systematic approach in PSE perspective can
be very useful for the accelerated development and
innovation of the CO, utilization.

In this article, a comprehensive review of CO,
utilization processes with special focus on current status
of the recent process and operating developments
including performance of the catalyst; effect of operating
conditions; reduction in the energy demand; utilization
of renewable energy; overall cost reduction; carbon
footprint reduction; and the PSE perspectives in process
selection, design and optimization is presented. As the
selection of a CO, utilization process (for further
research or industrial implementation) is a critical
decision, many process parameters like lifecycle inven-
tory, CO, reduction potential, energy requirements,
catalyst requirement, and process economics must be
thoroughly considered. The specific details are presented
in a systematic way to help researchers become aware of
the current status of the developments and challenges as
well as the vast array of possible solutions. The scope of
this paper does not include the details on carbon capture
technologies as several review articles**™*® are already
available in the literature. A review of the studies
involving the use of computational tools to analyze the
CO, capture as well as its utilization processes is
presented, under the umbrella of five different computa-
tional techniques; molecular level simulations, CFD,
LCA, process or plant level simulations and process
optimization, to give greater insights about these
processes.

The rest of the paper is organized as follows. The
second section presents a detailed discussion on options
for CO, utilization (including physical and chemical
processes) along with their performance analysis and
related issues. A wide spectrum of the PSE perspective
(starting from molecular level simulations to super-
structure level optimization) in exploring, analyzing,
selecting, designing, and integrating the CO, utilization
processes is presented in the third section along with a
framework presenting the integrated use of these PSE
techniques to maximize the thermodynamic, economic,
and environmental benefits from these processes.
Finally, conclusions are presented followed by future
recommendations.
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2 | CARBON DIOXIDE on the current status, recent advances, CO, mitigation
UTILIZATION potentials, and related issues or challenges.

CO, utilization processes are broadly classified into two
categories: physical utilization and chemical utilization.
Among various physical utilization processes, the most
prominent ones are presented in Figure 2. Some physical
utilization processes like EOR and enhanced gas recovery
(EGR) are also termed as CO, sequestration because of
their potential to store large volumes of CO,.** CO, has
the potential to be utilized chemically in the production
of fuels and chemicals including ethanol, di-methyl
carbonate (DMC), di-methyl ether (DME), methanol,
methane, syngas and carbonates. In this article, major
focus is given to chemical utilization processes because of
their potential to abate CO, (by changing the molecular
identity) as most of the physical utilization processes
stores CO, for small period of time (e.g., dry ice, fire
extinguishers and carbonated beverages). However, a
brief discussion about physical utilization processes is
added in Section 2.1. Moreover, literature regarding use
of PSE techniques in development of physical utilization
processes is also included in Section 3. The purpose of
this section is to make the readers aware of various
options that can utilize CO,. For this purpose, a brief
review of various physical and chemical utilization
processes is presented in this section with major focus

CO,

CO, emission
sources

Fire
extinguishers
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Enhanced oil
recovery
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Physical utilization

Enhanced gas
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2.1 | Physical utilization

During physical utilization, CO, remains in pure form
either suspended in a solution or have its own
distinguished existence. These processes exploit the
physical properties of CO, for its utilization, for example,
solubility of CO, endorsed its use in carbonated
beverages. Numerous industrial applications are known
in which CO, can be physically consumed; prominent
ones are sketched in Figure 2. This section presents the
processes for physical utilization of CO, as well as pros
and cons along with technology readiness levels (TRLs)
as given in Table 1. The main types of physical utilization
include EOR, EGR, enhances geothermal systems,
carbonated beverages, dry ice and fire extinguishers.

2.2 | Chemical utilization

In contrast to physical utilization, the CO, molecule's
identity in chemical utilization does not exist in the end
products as it is transformed into some other compound.
CO, is extensively used in chemical industry especially as
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FIGURE 2 Physical CO, utilization processes
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TABLE 1 Summary of various physical CO, utilization processes
Utilization/
sequestration option  Pros Cons TRL
Enhanced oil recovery « Large volume of CO, can be sequestered » Due to low viscosity of CO, oil recovery is less 9

permanently

when carbon tax is implemented

Enhanced gas recovery  « Large volume of CO, can be sequestered

permanently

high methane concentrations)

Enhanced geothermal Compared to water:

systems + Increased heat recovery from hot rocks
+ CO, leakage in rocks is favorable as it do

not create stability issues

Carbonated beverages » Adds value to beverages taste

» Consumption of CO, in beverages can

improve capture process economy

Dry ice + Dry ice has got advantage of lower
temperature than ice

water in case of ice)

Fire extinguishers » Good fire extinguishing characteristics

Best suited for electrical fires
» No harmful residues left behind

a feedstock for the production of various chemicals and
synthetic fuels. CO, is a highly stable compound of
carbon and significant energy inputs (in the form of high
temperature and pressure) are required for its chemical
conversion. However, requirement of elevated conditions
can be reduced by the addition of process-specific
catalysts. Most of the reactions of CO, are carried over
metallic catalysts and still high temperature and pressure
conditions are required for its conversion. However,
economics of the reaction pathways using CO, can be
improved by (1) developing new catalysts which reduces
the energy requirement of the reactions, (2) optimizing
the design and operation of the utilization processes, (3)
utilization of renewable energy to save the energy cost
and reduce GHG emissions, and (4) exploring new
pathways and reactants for CO, utilization as huge
volumes of CO, are continuously being released to the
atmosphere due to burning of fossil fuels. This requires
special focus of researchers from various fields to develop
novel processing routes for abatement of atmospheric
CO,. Moreover, in doing economic analysis or energy
conservation, the net reduction in overall CO, footprint
should be realized along with economic benefits.

Increases oil production from oil fields
« Economically favorable process especially

Increased gas production from gas wells
» Due to density and viscosity differences,
mixing of CO, and CH, can be avoided (at

It does not leave any residue behind (like

compared to other working fluids
The trapped CO, in the wells can leak back to
the atmosphere which is a serious concern

Separation of natural gas from injected CO, 9
(when natural gas concentration is low) is an

issue and requires additional processing

The trapped CO, in the wells can leak back to

the atmosphere which poses a serious concern

» Very deep drilling is required for EGS 5

« Economically infeasible for commercial
applications

» No sequestration of CO, 9

» Too much consumption of carbonated
beverages has serious health impacts

« Too much lower temperature is dangerous 9
Ultimate addition of CO, to the atmosphere
when it sublimes

Ultimate addition of CO, to the atmosphere 9
« They cannot be used for solid fuel burning fires

Several options are available to convert CO, chemi-
cally into useful products. Several prominent chemical
utilization pathways are critically reviewed in this section.
The current focus is on finding the most beneficial
pathway (in terms of economic and environmental
impacts) to utilize CO,. Selection of CO, utilization
process for its implementation is a critical decision. Most
important parameters that must be analyzed before
selection of CO, utilization process includes market
demand of the end product, CO, reduction potential,
raw material availability, and economic feasibility.

Annual production of various chemicals and fuels
along with their stoichiometric CO, uptake potentials
and TRLs (if produced by CO, conversion) are presented
in Table 2. Stoichiometric CO, uptake potentials of these
chemicals and fuels presents that out of all the target
compounds (presented in Table 2), theoretically methane
production has the highest potential to utilize CO,. It
should be realized that these stoichiometric CO, uptake
potentials does not incorporate the emissions associated
with processing intervals; however, these data may
provide an overview of reduction in CO, emissions if
environmental friendly routes could be developed for
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TABLE 2 Summary of chemical utilization options
Specific mass Stoichiometric
Production (ton CO,/ton CO, uptake
Compound (Mt/yr) product) (MtCO,/yr) TRL Reference
Acetic acid 10.25 0.733 7.513 3 [50]
Acrylic acid 5.85 0.611 3.574 3 [51]
Algae 35 1.8 63 7 [52]
Calcium carbonate 113.9 0.439 50.00 7 [37]
Carbamates 5.3 - >6 2 [37]
Dimethyl carbonate 1.60 1.466 2.346 5 [52]
Dimethyl ether 11.4 1.911 21.785 3 [37]
Ethanol 80 1.911 152.88 2 [52]
Ethylene carbonate 0.2 0.499 0.099 8 [52]
Formaldehyde 21 1.45 30.45 3 [37]
Formic acid 1.0 0.956 0.956 6 [53]
Magnesium carbonate 20.5 0.261 5.350 4 [52]
Methane 1100-1500 2.75 3025-4125 7 [52]
Methanol 65 1.373 89.245 9 [52]
Polycarbonates 5 0.173 0.865 9 [53]
Polyurethane 15 0.3 4.5 9 [52]
Propylene carbonate 0.2 0.431 0.086 7 [52]
Salicylic acid 0.17 0.319 0.054 9 [54]
Sodium carbonate 62 0.415 25.73 6 [55]
Synthesis gas 359 1.4667 526.545 6 [56]
Urea 180 0.735 132.3 9 [57]

CO, utilization. Production of urea, dimethyl carbonate,
methanol, polycarbonates, polyurethane, and salicylic
acid are the mature technologies. It should be noted that
Table 2 presented an assessment of reduction in CO,
achieved if all the current production of target product is
from CO,. For example, most of the methane is naturally
extracted and its related production terms in Table 2
include production from all sources including natural
extraction. However, the stoichiometric CO, uptake is
calculated if all the production amount of methane is
manufactured from industrial process utilizing CO,.
Industrial production of methane is not a mature
technology and TRL mentioned here is for the industrial
process that can utilize CO,. Furthermore, the produc-
tion terms presented in Table 2 contain current overall
production which may be increased if the economy of
CO, utilization improves.

The important chemical utilization products include
urea, syngas, methanol, DME, formic acid, methane,
dimethyl carbonate, polyurethane, carbamates, microalgae,

ethanol, salicylic acid, calcium carbonate, sodium carbon-
ate, formaldehyde, magnesium carbonate, acetic acid,
acrylic acid, ethylene carbonate, propylene carbonate, and
polycarbonates.

CO, is not permanently utilized by the process of
urea production. After 8 days of application of 55.8 mg
carbon as urea, 54 mg of carbon is released as CO0,.”® This
carbon footprint can be slightly reduced by using CO,
from reformer flue gas as reactant in the process.”
Integration of urea production plant with power plant or
other CO, emission sources can reduce the carbon
footprint by using CO, emitted as feedstock for urea
production. A novel process for coproduction of urea and
electricity from power plants was proposed in which CO,
from flue gases of the power plant was used as raw
material for urea production.®® More than 1.68 tons of
urea production was indicated per ton of CO, consumed.
Utilization of CO, for urea production is a mature
technology and it has the potential to mitigate significant
CO, if coproduction processes are considered.
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CO, can be split to CO by any of the paths based on
the source of energy used that is, microwave energy,
solar energy, or wind energy. Splitting CO, to carbon
monoxide and combining it with hydrogen results in
syngas.®' Syngas can also be produced by CO, reforming
of hydrocarbons and by coelectrolysis of CO, and H,0.%*
Methanol has wide range of applications, including its
use as a feedstock for production of various chemicals
and its potential for use as a fuel.”> CO, conversion to
methanol is usually done by its catalytic hydrogenation.
Cu/ZnO/Al,0; catalyst is usually used®® under mild
conditions of temperature (210-270°C) and pressure
(50-100 bar) with high selectivity of 99%.°> Hydrogen is
the main cost burden on overall economics of the
methanol production. Sustainability of CO, hydrogena-
tion for methanol production extremely depends upon
the electricity source used for water electrolysis; use of
electricity produced by renewable and nuclear energy
sources to keep the net negative CO, emissions. Methane
is particularly used as a fuel, and as a reactant in rubber
manufacturing as well as in carbon black production.®®
CO, can be converted to methane by treating it with
hydrogen at elevated temperature (300—400°C) and
pressure in the presence of Ni catalyst. Methane
production from CO, has the significant potential to
reduce CO, emissions as shown in Table 2 but this
process is not yet implemented on industrial scale as
methane is currently extracted from natural reserves.
Ethanol is usually considered as a renewable energy
source as it is conventionally produced by fermentation
of sugars.®” Ethanol has the potential to be used as an
alternative fuel.®® Moreover, if ethanol production is
carried by utilization of renewable energy source, the net
CO, emissions by ethanol burning will be zero. Ethanol
has the potential to be used as an environment friendly
fossil alternative fuel but CO, conversion to ethanol is
currently facing challenges regarding catalyst activity
and process design.

Recently, much focus has been given to DME
production because of its potential for use as a diesel
alternative green fuel as its combustion results in
comparatively less GHG emissions.®> Coproduction of
electricity and DME is an emerging field as it can replace
significant proportion of fossil fuels with DME (a diesel
alternative fuel) accompanying CO, mitigation. CO, can
also be converted to formic acid by its electrochemical
reduction in which coelectrolysis of CO, and H,O results
in methanol production (which is then converted to
formic acid).”® Currently, production of formic acid from
CO, is not a well-developed process and special focus is
needed on development of this process to take full
advantage of its CO, reduction potential mentioned in
Table 2. Electrochemical reduction route has lower TRL

than catalytic process; however, in future, commerciali-
zation of electrochemical cells will provide a means to
utilize CO, at atmospheric conditions using the renew-
able energy or waste electricity from power plants. DMC
is an intermediate for poly-carbonate resins production
and has the potential to be used as a methylation agent.”*
CO,-based production of DMC is recently practiced due
to its CO, utilization potential mentioned in Table 2, but
appropriate catalyst selection is a critical issue. Carba-
mates have found wide range of applications, for
example, in the production of urea, polyurethane
plastics, cosmetics, and so on. From the statistics
presented in Table 2, it is evident that the conversion
of CO, to carbamates is currently not a well-established
process and further advancement of catalyst and
improvement of the overall process is required.

Algae are emerging as one of the sustainable sources
of biomass, food, fuel, and other products.72 They can
also be used for water purification. They absorb CO, and
converts it into oxygen.”> Algae production as energy
crop has the potential to provide fuel for transportation.”*
It is obvious (from the statistics presented in Table 2) that
the production of microalgae has significant potential for
future CO, mitigation and biofuels production; however,
production of microalgae in reactors is an emerging field
for researchers. Biodiesel from microalgae has the
potential to replace fossil fuels to a great extent in future,
provided the economic feasibility is achieved.

Some of the chemical utilization processes like
production of urea, methanol, salicylic acid, poly-
urethane, and polycarbonates from CO, are mature
technologies while some are under development such
as production of ethylene carbonate, propylene carbon-
ate, ethane, and so fortg and some processes like
production of formaldehyde and acrylic acid are at the
very initial phase of their development. Selection of
chemical utilization process is a critical decision as the
main aim of such processes is to ensure economic
feasibility as well as environmental protection. LCA and
process optimization play a critical role in this regard.
The next section of this article presents the PSE
prospective in optimal selection and improvement of
the CO, conversion processes using various computa-
tional techniques and tools.

3 | PROCESS SYSTEMS
ENGINEERING PERSPECTIVES

The use of various computational techniques and tools
for the identification, analysis, design, and optimization
of raw material conversion to useful products is
becoming very important due to global competition and
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strict regulations. Multiple tools and algorithms are
developed in this regard for different applications. PSE
has found wide applications in research and develop-
ment as well as in industrial sector, starting from
molecular level simulations to enterprise-level manage-
ment and optimization. Main application areas of PSE
are summarized in Figure 3. In this section, the role and
prospective of PSE is presented in identifying reaction
pathways and affinity of CO, capture and conversion
with new materials; improving the operating conditions
and equipment geometry/design; developing and analyz-
ing the process and its economic as well as environ-
mental impacts; and finally identifying the suitable
conversion pathways by optimally selecting the most
suitable option among the various available CO, utiliza-
tion options. Though carbon capture is a well-developed
process, but high cost associated with it is a major issue
and many researchers are working to improve its
economic feasibility. Since most of the situations
involved carbon capture process integrated with CO,
conversion, therefore, this section also touches the
carbon capture processes. In this context, the discussion
linked with molecular level simulations and CFD also
includes carbon capture process. However, the major
focus of this paper as well as this section is the utilization
of CO,. Further details on the current role of PSE and its
future prospective in CO, utilization such as molecular
level simulations, CFD, LCA, process-level simulations,
and process optimization, are presented in the following
subsections.

The overall framework that can be used to assess CO,
utilization processes using computational techniques at
various system levels is presented in Figure 4. In this

multiscale framework, molecular level simulations are
the first step which requires the information regarding
shape of the molecules involved in the process, force
fields under which the system is operated, the process
conditions and constraints. Results of these simulations
yield the molecular interactions, molecular mechanics,
and interfacial mechanics. These simulations can also
harvest information about the transport mechanisms
involved in the system. The results of the molecular level
simulations, along with experimental data in the form of
empirical relations could be used as an input for the
CFD-level simulations which could yield the information
regarding the process parameters, predicts the process
performance, structurally analyze the process, and can
give an information regarding the net CO, balance of the
system under consideration. CFD results could then be
used for the LCA studies which classifies the processes in
terms of their GHG emission potentials. The processes
giving net negative GHG emissions are techno-
economically analyzed using process-level modeling
and simulations and those giving positive emissions are
either replaced with the other processes giving same
product (process replacement) or the final product is
changed with some other product performing the same
function (product replacement). The thermodynamic and
economic feasibility of CO, utilization processes is
established from the information generated from
process-level simulations. The thermodynamically and
economically feasible processes are then ready for
implementation while the infeasible processes are then
optimized using process optimization techniques. The
process will be implemented only if the process
optimization is able to improve the thermodynamic and

Process systems engineering

I 1
Molecular level Computational
simulations fluid dynamics

Study of molecular
interactions, molecular
mechanics, interfacial

mechanics and molecular
level specie transport

Fluid, heat and mass transfer
problems, study of utilization
efficiency, area requirement per unit
CO, injection (for EOR /EGR etc.)
and effects of geometric parameters

1
Life cycle
assessment

Lifecycle inventory (LCI),
estimation of CO, avoided, and
net reduction in GHG
emissions

| 1
Process/ plant Process
level simulations optimization

Optimization of existing
processes and selection of
optimized processing routes in
terms of economics and GHG
emissions

Thermodynamic analysis,
economic analysis, sensitivity
analysis, plant design and
process configuration
modifications

FIGURE 3 Use of PSE in development of CO, utilization processes
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FIGURE 4 Framework to assess CO, utilization processes using PSE tools and techniques
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motion Specie transport in CCU processes
Topology
Force field
Force
(CO,’s molecular interactions) field

FIGURE 5 Schematics of a molecular level study

economic feasibility to an acceptable level, otherwise the
process/product will be replaced (process replacement or
product replacement).

3.1 | Molecular-level simulations

High computational speed is required for molecular level
simulations.”” Limited number of articles are available
on carbon capture,’*® physical utilization,®®*° and
chemical utilization processes®’** for identification of
molecular interactions, study of diffusion such as
adsorption capacity and selectivity of CO, in a given
material, and estimation of activation energy. Schematics
of a typical molecular level study is presented in Figure 5.
A brief review of these studies is presented in the
following paragraphs (and is summarized in Table 3) as

this information may be useful for the researchers and
may be the initial step for this type of simulations to
explore more CO, utilization processes, especially for
chemical utilization.

In molecular dynamic (MD) studies, atoms and
molecules are allowed to interact for a fixed period of
time (to avoid steady state) to get insights about dynamic
evolution of the system. Classical MD simulations were
used to study the interactions between CO, and H,O at
ionic liquid (IL) interface.”® The existence of a strong
interaction between C2(+) and O(—) sites in ILs was
observed. Diffusive dynamics were not significantly
affected by the presence of CO,, but presence of water
hindered the diffusion of both CO, and IL. The
molecular interactions associated with incorporation of
CO, in montmorillonite clay using MD simulations were
studied”” and results showed a good match with
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(Continued)

TABLE 3

Utilization/

Sequestration/

Sr. # Capture

Reference
[89]

Software used Validation

Parameters studied

Performance parameter

Process

n/a

Kinetic performance of clean Ni(111) and Quantum

Reaction mechanisms, effect of

Methanol

Utilization

14

Espresso
package

Cu, Pd, Pt, Rh)

Ni(111)-M (M
catalysts

dopants (Cu, Pd, Pt, Rh) on
kinetic performance of Ni

(111) catalyst

production

[90]

n/a

Catalytic performance of Ni(110) catalyst VASP

Energetics of H addition to CO,,

Formic acid

Utilization

15

for formate, carboxyl and formic acid

production

role of surface and subsurface
H on formic acid production

production

[91]

n/a

CO, adsorption, dissociation and Catalytic properties of different Fe facets VASP

Hydrogenation

Utilization

16

in hydrogenation of CO,

hydorgenation over Fe facets

of CO,

(100), (110), (111) and (211)

[92]

n/a

VASP

Catalytic behavior of metal catalysts (Pd,

Catalytic performance of RWGS

Hydrogenation

Utilization

17

Ni, Cu, and Ag) in RWGS reaction

reaction, CO, conversion and

CO selectivity

of CO,

eeeeeeeeeeeee
meets business

experimental and theoretical data. In another dynamic
study,”® the role of hydrogen bond in reactions of CO,
with amines was investigated. Quantum and molecular
mechanics (QM/MM) simulations were performed using
the method of umbrella-sampling”® using Amber 12
software for activation free energy identification of
zwitterion ion formation. Ab initio molecular dynamic
(AIMD) simulations were also carried out to confirm the
results of QM/MM simulations.

Nonequilibrium MD simulations were carried out to
investigate the adsorption of supercritical CO, and
translocation of hydrocarbons in shale inorganic nano-
pores.*! Low CO, injection rate accompanying large
injection volume showed amplification in oil recovery. In
another study, CO,/N, slug injection for EOR was
investigated using MD simulations.®” CO,'s swelling
effect and N,'s propelling effects were identified to be
the key parameters for oil extraction. Slug flooding
proved to be more effective in terms of displacement
efficiency than continuous injection of CO,, N, and flue
gas, separately. In another study, phase behavior of CO,
EOR was simulated using MD simulations® and
reported high affinity of CO, molecule (to be adsorbed
to the kerogen walls) than hydrocarbon molecule,
resulting in displacement of hydrocarbon molecule,
subsequently increasing the oil recovery.

Grand canonical Monte Carlo (GCMC) simulations
were performed to validate the molecular density
functional theory by simulating the EGR process.®
Negative impact of the water presence was found for
CO, adsorption. However, in case of CO, mixed with
methane, the adsorption of CO, dominated in the
presence of water. Competitive adsorption behavior of
CO,/CH,4 mixtures on various clay minerals was studied,
in relation to EGR, using GCMC molecular simula-
tions.*® Results demonstrated the sorption capacity in
clay materials to be of order montmorillonite > illite >
kaolinite. Kerogen, CH,, and CO, system was examined
using MD simulations.®® Swelling of kerogen was
observed on sorption of CO, and CH,; however, swelling
caused by CO, was less intense than that caused by CH,.
This would lead to an increase in recovery of gas from
shale. Moreover, CO, was observed to be strongly bound
to kerogen as compared to CH, providing a mean to
sequester its large volumes.

Molecular level studies can also be used to estimate
the adsorption capacity of CO, on different surfaces. The
selective adsorption of CO, from N, by nitrogen doping
of mesoporous carbon using molecular simulations
exhibited the increased adsorption capacity of mesopor-
ous carbon (from 3 to 12 mmol/g) at 1bar and 298 K.””
The effect of surfaces, containing oxygen, on adsorption
of mixtures including CO,/H,0, CO,/CH, and CO,/N,
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using molecular simulations were presented.* Polarity
was induced in the surface which increased the
selectivity of CO, over CH, from 2 to greater than 5
and the selectivity of CO, over N, was increased from 5
to 20. However, selectivity of H,O was greater than CO,
in carbon-based system containing hydrogen.

As already discussed, most of the reactions of CO, are
carried over catalysts. Interaction of CO, with catalyst
surfaces and mechanism of CO, conversion can be
studied on micro scale using the molecular level studies.
Reaction mechanism of CO, hydrogenation to CH;0H
using Cu/TiO, and Cu/ZrO, catalysts was studied on
molecular level by combining density functional theory
(DFT) and kinetic Monte Carlo (KMC) simulations with
in-situ experimental measurements.®” ZrO, was found to
be more effective than TiO, in terms of both catalyst
activity (synergy between reduced Zr** and Cu sites) and
CH;O0H selectivity (for 100 ml/min solution flowrate,
28.3% in case of ZrO, and 19.1% for TiO,). In another
study, activity of Cu/ZrO, catalyst in CH;OH synthesis
from CO, was studied using quantum chemical calcula-
tions.*® Conditions of catalyst preparation significantly
impacted the Cu dispersion, its electronic state and
polymorphic phases of ZrO, (tetragonal and monoclinic
phases). Catalytic activity for CH;OH synthesis increased
with increasing t-ZrO, (tetragonal phase) content.

DFT and microkinetic studies were used to investi-
gate the CO, hydrogenation to methanol on clean Ni
(111) and Ni(111)-M (M =Cu, Pd, Pt, Rh) surfaces.*
Formate mediated (HCOOH*) and carboxyl mediated
(HCO*) routes were identified to be the main pathways
for methanol production. Cu, Pd, and Pt dopants
successfully increased the kinetic performance of Ni
(111) surface in formate mediated route while in case of
carboxyl mediated route, kinetic performance was found
to be increased in case of Cu, Pt, and Rh doping. A plane-
wave DFT study of CO, hydrogenation to formate,
carboxyl, and formic acid on Ni(110) was carried out.”
It was presented that CO, could be hydrogenated to
formate in the presence of surface H. However, this
surface H hindered the further hydrogenation of formate
to formic acid. Emerging of the subsurface H was
suggested to overcome the barrier in formate to formic
acid production. It was concluded that hydrogenation of
CO, to formic acid could take place on Ni(110) catalyst
only in the presence of subsurface H.

Investigations of facets effect on CO, adsorption,
dissociation and hydrogenation over Fe catalysts were
performed.”’ Fe facets played an important role in
formation of key intermediates and hence, changed the
preferred CO, conversion pathway. CO, adsorption on
Fe (211) and Fe (111) was found to be stronger than other
facets. Fe (111) favored the associative pathway (HCOO*

formation) while Fe (100) and Fe (110) facets were more
selective toward CO* formation. Fe (211) exhibited a
competitive preference toward CO* and HCOO*. In
another study, catalytic behavior of metal catalysts (Pd,
Ni, Cu, and Ag) was investigated in high temperature
reverse water gas shift (RWGS) reaction using in-situ
surface analysis and DFT calculations.”? Results pre-
sented that Cu, Pd and Ni catalysts favored the H
adsorption while Ag surface was found to be unfavorable.

Currently, carbon capture by absorption in amine-
based solvents is a well-developed process; however, it
consumes substantial amount of energy for the regenera-
tion of the solvent. Study of solvent—CO, interactions on
molecular level may help identifying the suitable solvent
for CO, capture for a specific case. The suitability of the
solvent may vary for each system as solvent performance
and economics depends upon several factors including the
flue gas composition, CO, purity required, price of solvent
and characteristics of the solvent used. Moreover, in the
case of EOR and EGR, molecular level studies could
identify the mechanisms that can increase the CO,
sequestration, simultaneously increasing the production
of fuels. Molecular-level investigations can give insights to
chemical utilization processes of CO,. Limiting mecha-
nisms, barriers and molecular interactions in CO,
conversion processes could be evaluated by studying these
systems at micro scale. However, this computational
technique has just emerged, and its applications are quite
rare. One of the major obstacles in studying CO,
utilization processes at molecular level is the high
computational power requirement. This obstacle could
be crossed by successfully implementing the Paris accord
which vowed finance flows in minimizing CO, emissions.

3.2 | CFD

CFD considers continuum level simulations to solve
partial differential equations (PDEs). Mass, momentum,
and energy balance equations on small fluid elements are
discretized and solved using numerical methods.”* CFD
studies for CO, utilization are limited and most of the
available literature covers carbon capture.”” % A few
CFD studies are available on CO, utilization pro-
cesses.'”' 1%’ A brief summary of literature in this regard
is presented in Table 4. CFD simulations can be used to
carry out the sensitivity analysis of the processes, that is,
to evaluate the effect of various parameters (e.g., ratio of
liquid to gas flows, pressure, temperature, steam flows,
etc.) on energy penalty, absorption efficiencies, reactor
performance, or other performance indicators of specific
process. Schematics of a typical CFD study is presented
in Figure 6.
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FIGURE 6 Schematics of a computational fluid dynamics study

The model of a chemical looping combustion (CLC)
fuel reactor to find the optimal operating conditions was
developed®® using Fluent. High temperature of the bed,
low flow rate of the gas and smaller particles resulted in
enhanced performance of CLC. A post combustion
carbon capture (PCCC)-based packed bed absorption
system was simulated using amine solvent.”® Two fluid
Eulerian model was used to study the detailed hydrody-
namics. Absorption efficiency was found to be sensitive
to the ratio of liquid to gas mass fluxes. The model
proved to be reliable because of its consistency with
experimental data. The model of lower riser of solid
sorbent CO, reactor using CPFD's BARRACUDA code
exhibited the improvement of the reactor performance
with increased flow rate of solids.”” Reactor performance
was also found to be the function of molar sorbent to CO,
ratio entering the reactor. The three-dimensional simu-
lations of regeneration unit of carbon capture process
was performed using MgO-based solid sorbents.”® It was
concluded that back mixing could be avoided using high
regenerator pressure, high gas velocities, and more solid
flow. Moreover, high steam velocity was responsible to
dilute the CO, concentration of the system, thus
increasing the regeneration efficiency.

A low temperature PCCC reactor was investigated by
CFD simulations using both FLUENT and BARRA-
CUDA to compare the strengths and weaknesses of these
CFD tools.”” The reactor was silica supported amine-
based fluidized bed reactor. FLUENT simulations were
found to be unstable for given reactor conditions while
BARRACUDA simulations were found stable under
appropriate simplifying assumptions. An integrated
simulation of power plant with capture plant was carried
out in which a detailed CFD model was used to study the
gas phase combustion as well as radiative heat transfer
from furnace walls and re-boiler.'” The resultant
insights were used to suggest the modifications in the

heat transfer components. These modifications were then
implemented in the gPROMS (a process modeling tool)
to accommodate the effect of different gas compositions.

Physical utilization processes were assessed for their
CO, sequestration potential, economic feasibility, and
process effectiveness. CO, storage facility in New Albany
shale using EGR was investigated.'”" The well was
simulated using GEM simulator. Impacts of CO, injec-
tion, storage capacity, and effectiveness of EGR system
were studied. The well was found to have the capacity to
accommodate 4 X 10* metric tons of CO,, injected within
5 years. In another study, a natural gas reservoir using
CO, as working fluid for EGR was simulated'®* using a
3D model. The results showed an increased gas recovery
along with sequestration of large volume of CO,. A
simulation tool was developed to simulate CO, injection
in the western section of Farnsworth Unit, Texas'*® using
a model composed of balance equations, equation of state
and phase relationships. Furthermore, the heterogene-
ities in the phases were modeled using fluid equilibria
with injected CO,. These simulations could help in
understanding the mechanisms of CO, utilization and its
ultimate fate in petroleum reserves. In another study,
EOR from depleted oil reserves was simulated using
multiphase flow solver package COZView (provide GUI
for pre- and post-processing)/COZSim (simulator).'*
The simulation resulted in increased oil recovery along
with more efficient utilization of CO,. This study could
be applied to other similar systems, for example, EGS,
EGR and enhanced water recovery. Numerical simula-
tions of CO, and water injection for EGS were carried
out'®® and substantially higher heat extraction was found
for CO, as compared to water. A steady-state solver was
developed to study reactions and heat transfer of CO,
methanation process.'®® This solver could be used to
capture the thermal hot spots as well as to predict the
carbon conversion while maintaining the heat transfer in
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the reactor with great accuracy. Moreover, it could also
be used for modeling the CO, methanation process.

CO, reforming of methane was analyzed, using 3D
CFD study, in a packed-bed reactor and a membrane
reactor.’®” Heating tube as a heat source was used at the
center of the reactor. Temperature and concentration
profiles were visualized both axially and radially. H,
enhancement was found to be proportional to radial
distance between center of the reactor and center of the
membrane. A 2D CFD model of catalytic membrane
reactor (for dry reforming of CH,) was developed to
visualize the reaction and hydrogen permeation phe-
nomena.'® The membrane with high hydrogen per-
meance inhibited the RWGS reaction thus reducing the
steam yield and increasing the yield of hydrogen. The
study concluded that the most crucial parameter for
membrane reactor design is the hydrogen flux perme-
ation profile. In another study, molecular level simula-
tions were coupled with CFD study to investigate the
CO, hydrogenation to CH3;OH over Cu/ZnO/AlLO;
heterogeneous catalyst.'” Molecular-level study was
aimed at obtaining the insights to the upper most layer
conditions during reaction while CFD was focused at
nonuniform catalytic reduction of CO, to formate. This
coupled model proved to be fruitful in optimization of
the catalytic reactors.

Using CFD analysis, the performance of cost inten-
sive carbon capture and utilization processes could be
analyzed to identify the challenging mechanisms and
optimal operating conditions. These studies could also be
used to estimate CO, storage capacities of EOR and EGR
wells. CFD studies are a decent tool to model CO,
utilization processes with the aim of process improve-
ment. Although these studies can provide useful
information about processes, results of these studies are
never exact (discretization errors, approximation errors,
round off errors, and convergence errors). Moreover,
involvement of chemical reactions (chemical CO, utili-
zation) in CFD models complicates the problem to a
great degree. However, these issues could be resolved by
using smaller grids, least error tolerances, higher order
discretization, and no doubt a high speed computer.

33 | LCA

LCA refers to the study of environmental impacts of
products and resources used all the way through
product's lifecycle, starting from raw material acquisi-
tion, moving toward production, then utilization and
ending up in waste management (as presented in
Figure 7)."'! Following are the four phases of LCA''*:
(1) goal and scope, (2) inventory analysis, (3) impact

Construction
J

Waste k

Recycle f¢ &4 Raw material extraction
Life-cycle
assessment
Sale and usem \f":o\ Processing
< (production, purification, etc.)
ol
b

Transportation

FIGURE 7 Stages of a typical LCA study. Source: Modified
from Brusseau,''° with permission from publisher.

assessment, and (4) interpretation. Selection of CO,
utilization processes is a critical decision. One of the
important questions that must be addressed while CO,
utilization process selection is “whether or not the
process will give net reduction in GHG emissions?”.
Reduction in environmental impacts by implementation
of CO, utilization processes cannot be taken for granted
and the environmental feasibility should be evaluated.
LCA is the broadly accepted way to assess CO, utilization
processes among industrialists and researchers.''> How-
ever, LCA studies on CO, utilization processes are
limited to a few processes only, including production of
DMC, methanol, polymers, formic acid, carbon mon-
oxide, methane, and MgCOs.

The CO, footprints of mineral carbonation (MgCO;
production) were evaluated by considering four projected
scenarios.''* In the first two scenarios, CO, was captured
from natural gas combined cycle (NGCC) power plant by
amine-based PCCC and in other two scenarios direct
mineralization of CO, was employed. Ecoinvent and
GaBi life cycle engineering packages were used for
analysis and the two scenarios with direct CO, mineral-
ization were found to be superior in terms of CO,
avoided. In another study, a coal-fired power plant with
utilization of captured CO, to MgCO; was assessed using
Aspen Plus® and Sima Pro®''® and mineralization of 1
ton CO, resulted in 483 kg CO, avoided. The conven-
tional route (from phosgene) and CO,-based route of
DMC production were compared using environmental
LCA.''® Process impacts on the greenhouse effect, ozone
layer, nitrification, acidification, and photochemical
oxidant formation were evaluated. Urea route (CO,
based) for DMC production demonstrated low impacts
on the environment.

A framework to environmentally assess CCU pro-
cesses using LCA was developed in which CO, was
captured directly from the atmosphere as well as from
coal-fired power plant (CFPP)."'” The captured gas was
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utilized for methanol and polymer synthesis. The CCU
process resulted in 59% reduced GHG emissions for
methanol. Whereas CCU process for polymer production
resulted in slightly higher global warming potential due to
increased emissions during plant construction. The
reduction in global warming potential, when conventional
processes are replaced by CO,-based processes for the
production of formic acid, CO, methanol, and methane,
was investigated.''® The formic acid production presented
maximum emission reduction followed by CO and
methanol while methane production presented lowest
emission reductions. In another study, formic acid
production by electrochemical reduction of CO, was
analyzed.''® The results were compared with conventional
formic acid production and CCS route. The CCS route
provided more reduction in CO, emissions as compared to
CCU route while CCU proved to be more efficient in
terms of economics and fossil fuel consumption. In
another work, it was concluded that CO,-based produc-
tion of formic acid reduced climate change impact and
fossil fuel depletion by 53.6% and 28.3%, respectively.'*°

LCA of EOR process was performed using PCCC
from a combined cycle power plant.'*! The results
showed 80% decrease in CO, emissions from the power
plant when captured CO, was used for EOR. In another
study, net lifecycle CO, emissions from EOR process
were investigated.'** It was found that for 1 ton of CO,
sequestered, 3.7—4.7 tons of CO, were released. Several
studies'**7*?7 are available on LCA of CO, utilization for
microalgae growth using different functional units and
different capture technologies. Further details including
scope of LCA, software used, capture technique em-
ployed, utilization process assessed, functional unit used
and findings are summarized in Table 5. LCA studies are
very important to evaluate the environmental feasibility
of a CCU process. Usually this is the first step in selection
of CCU process; however, LCA results are highly
uncertain because of involvement of if-then scenarios.
Moreover, definition of scope of LCA studies is also a
critical decision as estimation of emissions from trans-
portation of raw material or products has uncertainties
associated with it; however, this issue can be resolved by
development of precise correlations or using real-life
process data. To get maximum benefit from these studies,
integration of LCA with techno-economic analysis of the
CO, utilization processes was proposed'*® but their
integration methods are still to be developed. Methodo-
logical choices (e.g., boundaries of the system, allocation
methods, technology level, and marginal/average data)
were identified to be the major sources of uncertainty
and this type of uncertainty can be avoided by agreeing
upon a standardized framework on how to do LCA
studies."*’

3.4 | Process/plant-level simulation
Process-level simulations are employed for process
development, process design, cost estimation, process
optimization, process modification, and process opera-
tion control, and so on. Schematics of a general process
and plant-level simulations is presented in Figure 8. This
section presents process-level simulations of the CO,
utilization processes or plants including various levels of
the process systems such as a single unit, a plant or an
integrated system. The main objectives include the
performance prediction and performance improvement
in terms of productivity and quality of the product by
considering both the economic and environmental
factors. Various software packages are used for this
purpose including AspenOne (Aspen HYSYS, Aspen
Plus, etc.), CHEMCAD, DWSIM, Pro/II, TRNSYS, and so
forth. In this context, substantial literature for CO,
capture is available but the main focus of this section will
be on CO, utilization. This section is divided into two
subsections: (1) a very brief summary of process
simulations-related contributions to CO, capture, (2) a
critical review of process-level simulations for CO,
utilization.

3.4.1 | Carbon capture

Literature on modeling and simulation of carbon capture
processes is vastly available which includes custom-based
process models and flow sheet type simulation models.
The objectives of this type of modeling and simulations
include model validation against a pilot plant data or
commercial plant,"*>'*! parametric studies,'**'** process
design,** energy and economic analysis,"*>'*® process
modifications,*”"1*® use of mixed solvents, process
integration,'*' flexible operation'**'** and advanced
strategies for online control and optimization.'*>'*® The
details of the above citations are not presented as carbon
capture is not the main focus of this review. The aim of
this section is to keep the readers aware of main
contributions of process-level simulations regarding
carbon capture which is an important part of CCU.

In the above cited literature, various authors have
contributed in reducing the economic burden by analyz-
ing the selection of suitable capture process (absorption,
adsorption, membranes, etc.), selection of suitable
solvent (chemical, physical, mixed, etc.)/material (as
sorbents and membranes), selection of optimal operating
conditions (temperature, pressure, solvent loadings, etc.),
development of improved process designs (single column
vs. double column, plate column vs. packed column,
temperature swing vs. pressure swing, etc.), process

139,140
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M D = = = plant integration with combined cycle, etc.) as well as
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TABLE 5

Utilization/

Sequestration

process

Conclusions

Functional unit

Capture technique

Software used

Sr. # LCA Scope

Biodiesel resulted in less GHG

Biodiesel Tonne-kilometer

PCCC

SimaPro 7

Biodiesel from microalgae with

11

emissions

canola & ultra-low sulfur

diesel

10 GJ biodiesel 86% reduction in emissions

Biodiesel

Direct flue gas injection

Ecoinvent, CED

Biodiesel production from

12

compared to base case

& BEES

microalgae by various

methods

Vehicle kilometers Special focus on conversion &

Microsoft Excel,  Flue gas injection and Biodiesel

Biodiesel production from

13

cultivation is needed

traveled (VKT)

100% CO,

crystal ball

microalgae in an open pond

8.94 x10'° MJ of diesel A compromise between global

Biodiesel

BUWAL 250 and Direct utilization of flue

Biodiesel production from

14

warming and energy
potential is needed

fuel per year

ecoinvent gas from power plants

data v2.0

microalgae in open pond in

flat plate PBR

advanced strategies of operation and control (capture
level reduction and solvent storage mode of flexible
operation, online optimization using model predictive
control, self-optimizing control, etc.). Though carbon
capture is a well-developed process, however, various
efforts are in progress to reduce its economic impacts and
further improvements are still required to implement this
technology on commercial scale.

3.4.2 | Carbon dioxide utilization

The use of process modeling and simulation has wide
application range as CO, utilization is gaining impor-
tance to mitigate climate change issues. Several research-
ers have simulated CO, utilization processes to assess
their feasibility, environmental, and economic benefits.
The discussion of this section can be broadly classified
into following categories: thermodynamic analysis, en-
vironmental analysis, economic analysis, and plant
design. Thermodynamic analysis refers to the study of
reaction conditions, equilibria, models and process
parameters. In environmental analysis, environmental
emissions data and assessment of environmental impacts
of process is involved. In economic analysis, evaluation
of the economic parameters and economic consequences
is the major aim. Combined economic and environ-
mental analysis is known as sustainability analysis which
is mostly the key analysis in selection of a CO, utilization
process. Plant design analysis involves the detailed
evaluation of equipment sizing, and process material
and energy flows.

A number of CO, utilization processes have been
thermodynamically analyzed by various authors. The
effect of different operating conditions was evaluated for
gasification of carbonaceous feedstock using CO, and a
mixture of CO, with oxygen or steam.'*’ Optimal
operating temperature of 850°C was identified based on
the minimum requirement of energy for complete carbon
conversion. Less energy input was required for biomass
as compared to coal. Use of cogasification agent such as
steam or oxygen reduced the energy requirements but at
the cost of reduced CO, conversion. The thermodynamic
analysis of utilization of CO, from combined heat and
power (CHP) system based on cogasification of coal and
biomass was presented.'*® Optimal supply ratio of CO,
(0.065) resulted in 0.64% and 0.18% increase in energy
conversion efficiency and exergy efficiency, respectively.
A study involving thermodynamic analysis of a CO,
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Equipment sizing

. Process Modelling
Feed conditions and
reaction kinetics Material
(for chemical CO, utilization) balances
Energy
Equipment specifications balances .
Constitutive
(operating conditions) relations
Economic
Economic Parameters model
Constraints
(e.g. carbon tax)
Carbon
balance

FIGURE 8 Schematics of process modeling and simulation studies

hydrogenation to methanol with in situ water sorption
was carried out.'*® Within the optimal range of operating
temperature (220—270°C) and pressure (50-70 bar), the
yield of methanol was almost 130% higher in the current
process compared to direct hydrogenation process.
Continuous water removal shifted the thermodynamic
equilibrium toward the completion of the reactions of
CO,. Furthermore, achievement of low recycle indicated
the requirement of small size of the reactor and other
auxiliary equipment's, leading to process intensification
and hence reduced costs. ANOVA analysis of methanol
synthesis process was used'™® to evaluate the optimal
conditions of CO, hydrogenation. The use of membrane
reactor without recycle, operating at 200°C and intro-
duction of 10% CO in feed was suggested. The resulting
CO, conversion and methanol yield were found to be
more than 60% compared to conventional values of 33%
and 27%, respectively. The steam-biomass reforming
(SBR) process for conversion of CO, to syngas was
investigated.'>" Various raw material ratios (methane to
CO, ratios of 2:3, 1:1 and 3:2), steam to carbon ratios of
1-2 and temperature range of 873—1123K was
considered.

Apart from thermodynamic analysis, process-level
simulations are also used to analyze the CO, utilization
processes from economics point of view. A process
should be economically feasible for its implementation
on industrial scale, and economic feasibility can be
assessed using computational tools. The economic and
thermodynamic analyses are integrated in most of the
studies. This integration can assist the researchers to
analyze the effect of various parameters on economics
of overall process. Such analysis can help the selection of
optimized process conditions. The economic feasibility of
CO, utilization in pyrolysis of biomass for biofuel
production was evaluated.'>* Incorporation of subsidies
and taxes in the economic analysis rendered the biofuel

Simulation
Energy and material flows
Solution N -
E— Environmental impacts
Convergence »
Economic outcomes
Results

cost-competitive to petroleum derived fuels. The use of
two different software packages to carry out economic
analysis of EGS was reviewed."”®> A newly developed
software US GEOPHIRES can simulate the electricity
production as well as heat output for direct use, and
EURONAUT software can effectively study the effect of
drilling depth on performance of whole process. A
framework for economic analysis of EOR process was
presented and two oil fields in Ohio were analyzed.'**
The reported framework comprised of three models: (1)
reservoir model (CO, injection, oil production, and CO,
production), (2) revenue model (net revenue, market
price of oil, tax rate), and (3) cost model (total cost of
installation, cost of pipelines, O&M cost, and CO,
capture cost). This methodology can be used for initial
screening of EOR projects as limited data are required for
these models.

Techno-economic analysis of different CO, utilization
routes for DMC production was performed.”>> Four
routes of CO, utilization were considered namely: (1)
direct synthesis route, (2) urea route, (3) propylene
carbonate route, and (4) ethylene carbonate route.
Ethylene carbonate route proved to be the best in terms
of energy consumption, net CO, emissions, global
warming potential, and human toxicity. The yield of
DMC in these processes were of the order 4>2>3>1.
The power to gas (PtG) technologies were assessed using
a techno-economic analysis for utilization of CO, within
coal-to-liquid facilities.'*® PtG was classified into two
business models namely power-to-methane (PtM) and
power-to-syngas (PtS), and three cases for each business
model (PtS-Scenarios 1,2,3 and PtM-Scenarios 1,2,3) were
developed depending upon CO, in feed (i.e., 10%, 20%
and 50% of total CO, emissions, respectively). Only PtS
scenarios 1 and 2 were economically competitive in
current situation, and only PtM scenario 3 was not found
to be feasible for future market. Thermo-economic
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analysis of flexibly operating IGCC power plant in power
only mode and multiproduct mode was carried out under
varying methane, ammonia, and electricity prices."”’ It
was found that total product value (sum of the selling
value of all products, i.e., electricity, methane and
ammonia) could be increased significantly by varying
the production decisions against the variable market
prices. Total product value was observed to be very
sensitive to electricity price while ammonia price had the
least effect on total product value.

A detailed thermo-economic analysis for the produc-
tion of methanol from CO, and hydrogen was carried
out'® using Aspen Plus. Operating temperature and
pressure of electrolyzer-based methanol plant were
optimized using thermodynamic analysis. Economic
analysis was performed based on the thermodynamic
findings. Sensitivity analysis was used to find the
minimum selling price of methanol for a payback period
of 10 years using different electricity purchase prices. In
spite of the increased energy consumption (at high
pressure), the specific methanol production cost was
reduced. The electrolyzer was the most critical compo-
nent. However, the methanol production cost was 800
€/ton (almost twice its market price). To overcome this
high cost, the sale of oxygen was proposed which could
reduce the methanol cost by around 30%. In another
study,"® methanol production by catalytic hydrogenation
of CO, captured from cement plant was presented using
thermo-economic analysis. The process was found to
have the ability to treat 2475 ton CO,/day but production
of hydrogen was identified to be the main cost burden on
overall economy. Integration of the environmental
analysis with thermodynamic analysis can give insights
to the overall carbon footprints of the process. In a
similar study, methanol production process (by CO,
hydrogenation) was integrated with solid oxide electro-
lysis (SOE) process.'” The energy integrations coupled
with parametric analysis reduced the cost of methanol
from 1063 $/ton to 701.5 $/ton. Techno-environmental
analysis of CO, utilization for the production of DME via
dry reforming of methane into syngas was performed
using Aspen Plus and hybrid LCA."*° Solvent-based CO,
capture was employed to capture its emissions from a
hydrogen production unit in a refinery. It was found that
94% of the total captured CO, been utilized for DME
production and only 9% of CO, was avoided due to direct
CO, formation during DME manufacturing and dry
reforming process.

Plant design and modification is a major application
area of process-level simulations. A mathematical model
was used to simulate the methanol synthesis from CO,
and H, in ceramic membrane reactor.'®® The results
showed a good match with experimental data and

indicated increased methanol conversion and selectivity
as compared to traditional reactor. A coproduction
system producing electricity and DME was simulated."®'
Gross and net electric outputs were 371.6 and 275.1 MW,
respectively with 51.78 Mt/h yield of DME. The efficiency
of the coal gasification-based coproduction plant was
estimated to be 46.1% (significantly higher than its
conventional counterpart). The conversion of CO,
captured from industrial processes to urea and methanol
was simulated®® to produce 1600 ton/day of urea with
purity level of 56% by weight and 1300 ton/day of
methanol with purity level of 98% by weight. The process
released 0.6 ton CO, per ton of CO, consumed (net
negative CO, emissions) in case of urea and 6.8 ton CO,
per ton of CO, consumed (net CO, emissions) in case of
methanol production (when hydrogen is produced by
using electricity from fossil fuels). In another study, a
model of the methane reforming reactor for methanol
production was presented and a tradeoff between
maximum methanol production and maximum CO,
abatement was identified.'®

Methanol production process by CO, hydrogenation
was simulated using Aspen Plus.”* Hydrogen was
produced by the electrolysis of water using carbon-free
source of energy. Energy for carbon capture and
methanol plants was provided from the coal-based power
plant itself. The detailed design of the components of the
methanol plant such as reactor, distillation column and
heat exchangers were included in the simulation model.
Furthermore, pinch analysis-based heat exchanger net-
work design was implemented in Aspen Energy Ana-
lyzer. Aspen exchanger design and rating (Aspen EDR)
was used for the design of all individual heat exchangers.
Methanol plant provided significant share of energy (46%
of steam necessary) to CO, capture by chemical
absorption, which substantially reduced the capture
impact on the power plant economics. Large reduction
in CO, emissions was possible if carbon-free hydrogen
source was chosen. The process was modified® by
optimizing the compression network.

The integration of captured CO, (PCCC from flue gas
of power plant) with natural gas reforming plant for
methanol production was presented.'®® This integration
reduced the methane consumption by 25.6% and CO,
emissions by 21.9%. The product to feed ratio was also
improved from 1.69 (for conventional) to 2.27. The
methanol synthesis route by CO, utilization integrated
with EGR and geo-sequestration was investigated con-
sidering several process configurations.'®* The perform-
ance of methanol synthesis was evaluated in terms of
intensity of CH, and CO,, thermal energy intensity,
methanol productivity, and CO, uptake flexibility. The
proposed methanol production configuration was found
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to consume natural gas with up to 23.2% (mole) CO..
Furthermore, the highest CO, abatement intensity
(45.5%) was found by EGR and using geo-sequestration.

A complex electrochemical reduction model of CO, to
formic acid or formate'® was simulated using gPROMS.
The system was analyzed based on the cell height and
electrode properties. Five times better performance was
observed by using electrode catalyst (hypothetical elec-
trode of the electrochemical cell) as compared to the
experimental results. In another study, the model of an
elevated pressure CO, electrolyzer for formic acid
production was reported using MATLAB.'®® The current
density was strongly affected by pressure while faradaic
and energy efficiencies were found to be independent of
pressure above 20 bar. A DME synthesis by tri reforming
of biogas was simulated in Aspen Plus'®’ and it was
shown that this process must be operated above 800°C,
carbon to steam ratio of 2, and oxygen to carbon ratio of
0.1. Efficiency of the process was significantly improved
on removal of both water and CO.,.

More sustainable routes to abate atmospheric CO,
should be explored and identified to improve the overall
economics and to reduce the carbon footprints. A
summary of the discussion presented in this section is
summarized in Table 6. Although process modeling and
simulation is a powerful tool to assess processes from
thermodynamic and economic point of view, these
studies are based on certain assumptions. Assumptions
should be realistic and technically correct. Moreover, in
CO, utilization process modeling, economic estimations
are not found in most of the articles. Future research
should probe economic evaluation of these processes so
that an idea about their sustainability could be made.

3.5 | Process optimization

Optimization plays a vital role at various levels in process
and power industry. Some of the examples of optimization
include improving the yield of product, reducing the yield
of contaminants, reducing the energy consumption,
improving the efficiency of process, minimizing the
resources required for a given task and selection of the
most suitable pathway and supply chain. Optimization of
CO, utilization processes is a major field of interest
nowadays to mitigate carbon with the minimum economic
impact. Superstructure-based optimization is used by
several researchers and are discussed in this section.
Various routes for CO, utilization are available, some of
them are already implemented at commercial scale (e.g.,
urea production) while some are under development
stages (e.g., microalgae cultivation). Optimization prob-
lems formulated by researchers regarding CO, utilization

are mainly divided into following two categories, (1)
optimization of existing processing route (e.g., selection of
optimal operating conditions), (2) selecting the most
economical processing route out of all the available
options. A representative superstructure for a general
CCU process optimization is shown in Figure 9.

3.51 |
routes

Optimization of existing process

Already developed CO, utilization processes are under
consideration to increase the net profit or to decrease the
net emissions. Most of the CO, utilization processes (e.g.,
methanol production by CO, hydrogenation) are not
economically feasible right now (as already discussed).
Optimization of existing processes can reduce their
economic burden. Direct production of DME from syngas
was optimized with the objective to maximize the DME
production rate in a fixed bed reactor using differential
evolution (DE) algorithm.'”” Number of tubes in the
reactor, temperature of feed and coolant water temperature
were optimized. The optimization resulted in reactor design
that yielded 4.84% more DME as compared to conventional
reactors used for DME production along with 4.62%
decrease in number of tubes of the reactor. A pipe shell
reactor was optimized for DME production from syngas.'”*
The optimized reactor design resulted in lower value of hot
spot temperature which provided better functionality of bi-
functional catalyst. Dry and mixed reforming of methane
processes were optimized by modeling the reactor in
UniSim Design Suite.'”> At optimum conditions, the
requirement of a compact reactor and consequently lower
capital and operating costs were found.

Dynamic optimization was performed to optimize the
recycle ratio of CO, and shell coolant temperature under
certain process constraints for a Lurgi type methanol
reactor.'”® For this purpose, a hybrid algorithm was used
by combining genetic algorithm (GA) and generalized
pattern search (GPS). CO, recycle ratios of 0% and 5%
increased the methanol production by 1.67% and 2.53%,
respectively using optimal temperature. A biofilm growth
model was used to maximize the utilization of CO, and
biomass production.'”* The optimizing variables were gas
flow rate, number of biofilm reactors installed in series,
and gas composition. The model was also validated with
the experimental data. The maximum CO, utilization
efficiency of 96% was found with 25 or more biofilm
reactors connected in series. The concentrated CO, stream
with plug flow behavior was identified to be a critical
factor for high CO, utilization and biomass production.

Mixed integer nonlinear programming (MINLP)-based
synthesis model was formulated'” to maximize the CO,
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FIGURE 9 A general superstructure of CCU

utilization and syngas selectivity. Reforming technologies
for the thermochemical conversion of CO, to syngas using
both rigorous and reduced reactors were considered, and
the optimization problem was implemented in GAMS
using ANTIGONE solver. Partial oxidation and dry
reforming (PODR) were found to possess more potential
for converting CO, to syngas with 100% conversion of CO,
when syngas ratio (H,/CO) lies in the range of 1-1.7.
While for the syngas ratios up to 2.4, the combination of
dry reforming (DR), combined dry and steam methane
reforming (CDSMR), and tri reforming (TR) was found to
be the most effective. For further higher syngas ratios, a
combination of steam methane reforming (SMR), tri
reforming (TR) and RWGS exhibited the highest potential
of CO, conversion. MIP model to optimize carbon capture
and storage/utilization versus carbon trading for fossil
fuel-based power plants in Turkey was formulated.'”®
EOR was considered as utilization option and data for two
CFPPs from different parts of Turkey was used. The model
was solved in GAMS and the obtained results showed that
CCU should be prioritized in Turkey to mitigate carbon in
an environmentally friendly and economic way.

3.5.2 | Selection of processing routes

Apart from optimization of existing CO, utilization
processes, optimization can also be used to find the
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optimal processing route from all the possible routes. The
purpose of such optimization studies mainly includes the
reduction in GHG emissions along with increased net
profit. A multiperiod stochastic model for optimizing CCS
infrastructure was formulated,!”” which was aimed at
meeting CO, mitigation target while maximizing the
profit. The stochastic parameters used rendered the model
more realistic. The model was solved using GAMS for 20
years' interval from 2011 to 2030 to identify most
profitable way for carbon capture, utilization and storage
(CCUS) in Korea. Various processing routes are possible
for microalgae production at large scale and the optimal
route was selected out of 7800 routes by minimizing the
cost and GHG emissions using superstructure-based
approach.'”® In another study, a supply chain super-
structure based MILP model was developed, incorporating
comprehensive transportation routes and system deploy-
ment schemes.'” Objective of the model was to optimize
CCUS for EOR process in Northeast China over a period
of 20 years. The optimization resulted in 50% reduction of
current CO, emissions at total annual cost of $2.30 billion
and $0.77 billion annual revenues from EOR.

A framework to analyze sustainability of various CCU
routes using superstructure-based approach (similar to
one presented in Figure 9) was developed.”® An
indigenous computational tool ArKa-TAC®> was demon-
strated for both techno-economic and CO, reduction
analyses in a convenient and faster way. The tool was
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demonstrated by analyzing the acetic acid production
and evaluating the sustainability of CCU process in four
different countries. Another superstructure-based
MINLP optimization model was formulated to maximize
the net profit and minimize the GHG emissions.'®"
Optimal solution was affected by scale of CO, emission
source, market demand of the product and product
pricing. The optimal solution was also observed to vary
from region to region and the mathematical model
developed can also be applied in designing an optimal
CCU supply chain network.

The literature discussed above is summarized in
Table 7. The table represents the objectives of each study
along with model type, parameters studied, utilization
option, and solver/algorithm used. Optimization of CO,
utilization process can give huge benefits in terms of
increased net profit and reduced GHG emissions.
Optimization is a very strong tool in finding the most
cost-effective way of mitigating global warming and such
studies should be extended to other CO, utilization
processes as well. Such studies could also be used to
predict the future decisions and to forecast future
actions. Previous optimization studies have taken some
assumptions (e.g., neglecting the emissions from utilities
and transportation of products) which makes the
problem less complicated but introduces uncertainty in
the results. The uncertainty introduced in the results
depends upon the assumptions taken to simplify the
optimization problem. Unrealistic assumptions in the
optimization study may result in deviation of the results
from the system boundaries, violation of science and
engineering rules, deviation from the data profiles of the
system, and so forth. Robust optimization and stochastic
programming are the techniques used to handle
uncertain optimization studies.'®' It is also proposed to
neglect unrealistic assumptions in future works, this will
no doubt increase the computational power and compli-
cate the problem yielding more and more realistic results.

4 | CONCLUSIONS AND FUTURE
RECOMMENDATIONS

The mitigation of CO, is a challenge for researchers due
to its environmental and economic impacts. CCS has
been an attractive option from Ilast two decades.
However, CCS technologies are not feasible because of
their economic drawbacks. The focus of researchers is
shifting toward CO, utilization to get economic benefits
along with CO, mitigation. In this way, the captured CO,
can be utilized to produce valuable end products. Being a
highly stable molecule, CO, requires elevated conditions
of temperature and pressure for its conversion which

needs substantial amounts of energy. This energy
demand for CO, utilization can be reduced by using
special catalysts. The current status and challenges for
CO, utilization are presented in this article from
thermodynamic, economic and environmental point of
view. The advancements and improvements in CO,
utilization have been critically analyzed using the
quantitative and qualitative information obtained from
experimental and computational studies. The selection of
a specific CO, utilization process is a multidimensional
problem as it depends on several factors and requires the
information of potential product market, environmental,
economic, and technological feasibility. All the related
information has been presented in the form of pictorial
representations and tabulated data. The multiscale
perspective has been discussed in a broad spectrum
starting from molecular simulations to superstructure-
based approaches. Nevertheless, the major focus was
perspective of PSE. The following conclusions may be
drawn from this critical review of the current status and
challenges for CO, utilization.

« Integration of CO, utilization with the capture plant may
improve the overall economics. However, the economic
feasibility of both processes needs improvement in terms
of energy penalty and capital investments.

« All the physical utilization processes of CO, (except
EGS) are considered mature technologies and can
sequester large volumes of CO, for long period of time.
However, carbonated beverages, fire extinguishers and
dry ice do not actually sequester CO, as ultimate fate
of the gas utilized by these processes is its emission
back to environment.

+ Methane has the highest potential to mitigate CO,.
However, currently most of the global methane is
extracted from natural gas wells. As natural gas
reserves are depleting continuously, the future of
CO, utilization for methane production is bright. The
CO, utilization potential of ethanol, methanol and
syngas is also significantly higher but economic
feasibility of these processes is a question.

« Hydrogen is the key ingredient that is required in most
of the chemical utilization processes including metha-
nol synthesis, ethanol synthesis, syngas production,
DME production, DMC production, and so forth.
Economics of hydrogen production have significant
impact on sustainability of these processes.

o If economics of methane, ethanol, methanol, and
syngas production are improved, these processes have
the potential to be used as feedstock for other
processes and in this way their future demand may
significantly increase. This will in turn increase the
utilization of CO,.
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Only a few chemical utilization processes are mature
and well-developed including production of salicylic
acid, methanol, urea, polycarbonates, and poly-
urethane. Some of the processes are in the mid of
their development stages,for example., algae, calcium
carbonate, formic acid, methane, syngas, sodium
carbonate, DMC and propylene carbonate while others
are in starting stages of their development including
acetic acid, ethanol, magnesium carbonate, carbamates
and DME.
Appropriate catalyst development is a major challenge
for the less developed processes, for example, low
product yield is an issue for ethanol production.
Various levels of PSE techniques are playing important
role in exploring new pathways, design improvements
and energy efficiency improvements. Nevertheless, the
contribution of molecular level simulations, CFD and
policy level analysis is limited in this field.
LCA studies presented MgCO; production, DMC
production, methanol production, EOR and biodiesel
production from microalgae as the environmentally
sustainable options among CO, utilization processes
while formic acid production through CO, utilization
route is not economically feasible.
Integration of different processes can reduce the net
energy requirements and can improve the economics
of integrated processes. For example, integration of
CO, capture with utilization processes can reduce
power requirement of stripper of capture plant (e.g., in
case of methanol production process).
Process optimization is a powerful tool that can reduce
the costs associated with existing processes and can
also be used to select the optimized processing path
out of the potential pathways.
CO, utilization is a vast field which is under
exploration in wide areas from multiple fronts for
improving the economic and environmental impacts.
CO, utilization provides an attractive opportunity
for reducing global warming potential of several
industrial sectors. CO, utilization projects should be
implemented on large scale for economic benefits
concurrently reducing CO, emissions. Based on the
literature presented in this article, following are the
suggestions for future actions.
Assess all chemical utilization processes for their
technical, economic and environmental feasibility.
This should lead to link further processes which in
turn will be facilitated by the chemicals obtained from
CO, utilization processes to assess and forecast the
overall potential of CO, utilization and its economic
and environmental feasibility.
More focus should be given to the development of
novel catalysts for conversion of CO, to reduce the

high energy requirements, for example, considering
the example of methane production which have
significant CO, reduction potential, but the catalytic
performance of this process should be improved for its
implementation at industrial scale.

« Molecular simulations should be used to explore and
analyze the chemical CO, utilization by identifying the
reaction mechanisms and molecular affinity in the
presence of catalyst.

« The use of CFD simulations to improve the operating
conditions, the design of reactors and to gain the
information about mechanisms occurring within the
process, for example, the complex integration of
hydrodynamics, photo dynamics, cell growth and mass
transfer is the major barrier behind the design of
commercial reactors for microalgae cultivation. As the
CFD models are generally more accurate and can
involve various complex phenomena along with
reactor designs, therefore, these models could be used
to gain the insights for design and operation improve-
ment with great accuracy.

« Energy integration and optimization of the existing
power plants with CCU plants for mitigating climate
changes should be investigated for economic feasibil-
ity. Moreover, EGS systems using CO, as working fluid
should be optimized to improve its economics.

« Hydrogen is used as a raw material in many chemical
CO, utilization processes including methanol, ethanol,
DME, DMC and methane production. Its economics
must be improved to improve the overall economics of
CO, utilization especially by utilizing renewable
energy.
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