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determined via a similarity solution. Results for power-law and Bingham plastic fluids agree with
previous investigations. We present solutions for fluids that adhere to the Carreau viscosity model. It
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accurate description of non-Newtonian rotating disk flow.
� 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The steady incompressible flow induced by the rotation of an
infinite plane with uniform angular velocity is an exact solution
of the Navier–Stokes equations, as was first described by von
Kármán [1]. The flow is characterised by the lack of a radial pres-
sure gradient near to the disk to balance the centrifugal forces so
the fluid spirals outwards. The disk acts as a centrifugal fan, the
fluid emanating from the disk being replaced by an axial flow
directed back towards the surface of the disk.

Batchelor [2] showed that this type of flow is in fact just a limit-
ing case of a whole number of flows with similarity solutions in
which both the infinite plane and the fluid at infinity rotate with
differing angular velocities. The corresponding limiting case, when
the infinite plane is stationary and the fluid at infinity rotates at a
constant angular velocity, was first described by Bödewadt [3].

A vast wealth of material exists concerning the solutions of the
Newtonian rotating disk equations; the interested reader is
referred to Zandbergen and Dijkstra [4]. The authors provide a
thorough review of the major contributions made postdating von
Kármán’s seminal work.

Considerably less attention has been given to the corresponding
non-Newtonian rotating disk problem. Mitschka [5] modified the
von Kármán similarity solution to incorporate a power-law
governing viscosity relationship. In this case the base flow is not
an exact solution of the generalised Navier–Stokes equations and
a boundary-layer approximation is required. Both Mitschka and
Ulbrecht [6] and Andersson et al. [7] present basic flow solutions
for shear-thickening and shear-thinning power-law fluids.
However, the authors overlooked the importance of matching
these boundary-layer solutions to an external flow. Denier and
Hewitt [8] addressed this problem and presented corrected solu-
tions for both cases, noting that the structure of the solutions is
intrinsically different for shear-thickening and shear-thinning
fluids.

More recently, Ahmadpour and Sadeghy [9] (subsequently
referred to herein as AS) formally addressed the problem of the
flow due to a rotating disk when one considers Bingham plastic
fluids. Claiming to have found an exact solution to the problem,
the authors are only able to present numerical solutions for specific
values of the Reynolds number (Re) and dimensionless radius of
the disk (r). Having not considered the boundary-layer formulation
of the problem, the authors find that terms dependent on Re and r
appear in the formulation of the governing base flow ODEs, and
thus have the need to provide specific values for these constants
during their numerical solution process.

In this study we determine steady mean flow solutions for
power-law, Bingham and Carreau fluid models. The power-law
results are essentially a review of the work of Denier and Hewitt
[8] but are included here as they prove useful to compare with
the results owing from the more complex Carreau model. By intro-
ducing the modified Bingham number used by Matsumoto et al.
[10] in their film thickness investigation, we are able to determine
a governing set of ODEs dependent solely on this parameter, these
results are then compared to those of AS. Additionally, we present
solutions for shear-thickening and shear-thinning Carreau fluids
where now the flow is controlled by not one, but three
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dimensionless parameters. In Section 2 we formulate the problem
in the general case, results are presented in Section 3 and are dis-
cussed in Section 4. Conclusions are drawn in Section 5.

2. Formulation

Consider the flow of a steady incompressible generalised
Newtonian fluid due to a rotating disk located at z� ¼ 0. The disk
rotates about the z�-axis with angular velocity X�. Working in a
reference frame that rotates with the disk, the continuity and
Cauchy momentum equations are expressed as

$ � u� ¼ 0; ð1aÞ
q�½u� � $u� þX� � ðX� � r�Þ þ 2X� � u�� ¼ �rp� þ $ � s�: ð1bÞ

Here u� ¼ ðu�;v�;w�Þ are the velocity components in cylindrical
polar coordinates ðr�; h; z�Þ, the angular velocity vector is
X� ¼ ð0;0;X�Þ, the position vector is r� ¼ ðr�;0; z�Þ, the fluid density
is q� and p� is the fluid pressure. The stress tensor s� for incom-
pressible generalised Newtonian fluids is given by

s� ¼ l� _c� with l� ¼ l�ð _c�Þ; ð2Þ

where _c� ¼ $u� þ ð$u�ÞT is the rate-of-strain tensor and l�ð _c�Þ is
the generalised Newtonian viscosity. The magnitude of the rate-
of-strain tensor is _c� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _c� : _c�Þ=2

p
. The governing relationships

for l�ð _c�Þ that will be considered herein are:

Power-law model � l� ¼ m�ð _c�Þn�1
; ð3aÞ

Bingham model � l� ¼
1 for s� < s�y;

l�p þ s�yð _c�Þ
�1 for s� P s�y;

(
ð3bÞ

Carreau model � l� ¼ l�1 þ ðl�0 � l�1Þ½1þ ðk
� _c�Þ2�

ðn�1Þ=2
: ð3cÞ

Here m� is the consistency coefficient and n is the fluid index, for
n > 1 the fluid is said to be shear-thickening, whilst for n < 1 the
fluid is said to be shear-thinning. The Newtonian viscosity relation-
ship is recovered when n ¼ 1; s�y ¼ 0 and l�0 ¼ l�1, respectively. The
plastic-shear-rate viscosity is l�p, the magnitude of the shear stress

tensor is s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� : s�Þ=2

p
and s�y is the yield stress. The infinite-

shear-rate viscosity is l�1, the zero-shear-rate viscosity is l�0 and
k� is the characteristic time constant, often referred to as the ‘relax-
ation time’.

Assuming the flow to be axisymmetric the components of the
stress tensor are

sr�r� ¼ 2l� @u�

@r�

� �
; ð4aÞ

shh ¼ 2l� u�

r�

� �
; ð4bÞ

sz�z� ¼ 2l� @w�

@z�

� �
; ð4cÞ

sr�z� ¼ l� @u�

@z�
þ @w�

@r�

� �
¼ sz�r� ; ð4dÞ

sr�h ¼ l� r�
@

@r�
v�
r�

� �� �
¼ shr� ; ð4eÞ

shz� ¼ l� @v�
@z�

� �
¼ sz�h; ð4fÞ

where the magnitude of the rate-of-strain tensor takes the form

_c� ¼ 2
@u�

@r�

� �2

þ u�

r�

� �2

þ @w�

@z�

� �2
" #(

þ r�
@

@r�
v�
r�

� �� �2

þ @v�
@z�

� �2

þ @u�

@z�
þ @w�

@r�

� �2
)1=2

: ð5Þ
In the rotating frame of reference this system is closed subject
to the boundary conditions

u� ¼ v� ¼ w� ¼ 0 at z� ¼ 0; ð6aÞ
u� ! 0; v� ! �r�X� as z� ! 1: ð6bÞ

We non-dimensionalise the system by writing

uðr; zÞ ¼ u�ðr�; z�Þ
l�X�

; vðr; zÞ ¼ v�ðr�; z�Þ
l�X�

; r ¼ r�

l�
;

wðr; zÞ ¼ w�ðr�; z�Þ
d�l�X�

; pðr; zÞ ¼ p�ðr�; z�Þ
q�ðl�X�Þ2

; z ¼ z�

d�l�
:

We note here that the axial coordinate and velocity component
have been scaled by the boundary-layer thickness, d�, this is in
anticipation of a boundary-layer structure arising on the rotating
disk. One finds that

d� ¼ Re�1=ðqþ1Þ with Re ¼ q�X�
2�q

l�
2

r� ; ð7Þ

where throughout the forthcoming analysis q ¼ n for power-law
fluids and q ¼ 1 for Bingham plastic and Carreau fluids, whilst
r� ¼ m�;l�p;l�1 for power-law, Bingham plastic and Carreau fluids,
respectively. Thus, the scaled governing equations are

1
r
@ðruÞ
@r
þ @w
@z
¼ 0; ð8aÞ

u
@u
@r
þw

@u
@z
�ðvþrÞ2

r
¼�@p

@r
þ @

@z
l@u
@z

� �

þ 1
Re2=ðqþ1Þ

2
r
@

@r
lr
@u
@r

� �
þ @

@z
l@w
@r

� �
�2lu

r2

� �
;

ð8bÞ

u
@v
@r
þw

@v
@z
þ uv

r
þ 2u ¼ @

@z
l @v
@z

� �

þ 1
Re2=ðqþ1Þ

1
r2

@

@r
lr3 @

@r
v
r

	 
� �� �
; ð8cÞ

u
@w
@r
þw

@w
@z
¼ �Re2=ðqþ1Þ @p

@z
þ 1

r
@
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lr
@u
@z

� �
þ 2

@
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l @w
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� �

þ 1
Re2=ðqþ1Þ

1
r
@

@r
lr
@w
@r

� �� �
; ð8dÞ

where the dimensionless viscosity functions (in the yielded region
when considering Bingham plastic fluids) l are defined as

Power-law model � l ¼ ðl̂Þn�1
; ð8eÞ

Bingham model � l ¼ 1þ 2rBnðl̂Þ�1
; ð8fÞ

Carreau model � l ¼ 1þ c0½1þ ðkl̂=rÞ2�
ðn�1Þ=2

; ð8gÞ

where Bn ¼ s�y= 2r�X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�pq�X

�
q	 


is the Bingham number defined by

Matsumoto et al. [10]. The authors experimental investigations
have shown this quantity to be Oð1Þ for flows with Re� 1. The
Carreau viscosity ratio is c0 ¼ l�0 � l�1

� �

l�1 and

k ¼ r�k�X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�X�=l�1

p
is the dimensionless equivalent of the con-

stant k�. Here

l̂ ¼ @u
@z

� �2

þ @v
@z

� �2

þ Ll̂

" #1=2

; ð8hÞ

the higher order terms, Ll̂, that contribute to the generalised viscos-
ity, are given in the Appendix A for completeness. We note that the
expressions for Bn and k can be simplified when one considers the
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modified Reynolds number, R ¼ rRe1=2, based on the boundary-layer
thickness and the local azimuthal velocity of the disk. In that case

Bn ¼
s�y

2l�pX
�R
; ð9aÞ

k ¼ k�X�R: ð9bÞ

We are now able to make a boundary-layer approximation by
eliminating terms involving inverse powers of the Reynolds number
since here we assume that Re� 1. Inside the boundary-layer we
assume a solution to (8a)–(8h) given that the velocity components,
pressure and viscosity have the following asymptotic expansions

uðr;~zÞ ¼ u0ðr; zÞ þ Re�2=ðqþ1Þu1ðr; zÞ þ � � � ; ð10aÞ
vðr;~zÞ ¼ v0ðr; zÞ þ Re�2=ðqþ1Þv1ðr; zÞ þ � � � ; ð10bÞ
wðr;~zÞ ¼ w0ðr; zÞ þ Re�2=ðqþ1Þw1ðr; zÞ þ � � � ; ð10cÞ
pðr;~zÞ ¼ p0ðr; zÞ þ Re�2=ðqþ1Þp1ðr; zÞ þ � � � ; ð10dÞ
l̂ðr;~zÞ ¼ l̂0ðr; zÞ þ Re�2=ðqþ1Þl̂1ðr; zÞ þ � � � ; ð10eÞ

where ~z ¼ z�=l� ¼ Re�1=ðqþ1Þz is the coordinate corresponding to the
region outside of the boundary-layer. To leading order we see that
p0 ¼ p0ðrÞ, however, since it is assumed that inside the boundary-
layer the pressure is a function of z only we have that p0 � 0.

Having isolated the dominant viscous terms via the boundary-
layer approximation, we arrive at the leading order equations that
must be solved in order to determine the steady mean flow relative
to the disk
1
r
@ðru0Þ
@r

þ @w0

@z
¼ 0; ð11aÞ

u0
@u0

@r
þw0

@u0

@z
� ðv0 þ rÞ2

r
¼ @

@z
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@u0
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; ð11bÞ
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@
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; ð11cÞ
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þw0
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@z
¼ 1

r
@

@r
l0r

@u0

@z

� �
þ 2

@

@z
l0
@w0

@z

� �
; ð11dÞ

where the viscosity functions are given by

Power-law model � l0 ¼ ðl̂0Þn�1
; ð11eÞ

Bingham model � l0 ¼ 1þ 2rBnðl̂0Þ�1
; ð11fÞ

Carreau model � l0 ¼ 1þ c0½1þ ðkl̂0=rÞ2�
ðn�1Þ=2

; ð11gÞ

with

l̂0 ¼
@u0

@z

� �2

þ @v0

@z

� �2
" #1=2

: ð11hÞ

To solve for the basic flow inside the boundary-layer we intro-
duce the modified von Kármán [1] similarity solution in the form

u0 ¼ r�uðgÞ; r�vðgÞ; rðq�1Þ=ðqþ1Þ �wðgÞ
� �

; p1 ¼ r2ðq�1Þ=ðqþ1Þ�pðgÞ; ð12Þ

where g ¼ rð1�qÞ=ðqþ1Þz, thus for Bingham plastic and Carreau fluids g
reduces to z. Substituting this form for the similarity solution into
(11) we find that �u; �v; �w and �p must satisfy

� 2�uþ q� 1
qþ 1

g�u0 ¼ �w0; ð13aÞ

�u2 � ð�v þ 1Þ2 þ �wþ 1� q
qþ 1

g�u
� �

�u0 ¼ ð�l�u0Þ0; ð13bÞ

2�uð�v þ 1Þ þ �wþ 1� q
qþ 1

g�u
� �

�v 0 ¼ ð�l�v 0Þ0; ð13cÞ

q� 1
qþ 1

�uð �w� g�w0Þ þ �w �w0 þ �p0 ¼ �m�u0 � 2�l0�uþ ð�l �w0Þ0; ð13dÞ
where the primes denote differentiation with respect to g and

Power-law model � �l ¼ ð�u02 þ �v 02Þðn�1Þ=2
; ð13eÞ

Bingham model � �l ¼ 1þ 2Bnð�u02 þ �v 02Þ�1=2
; ð13fÞ

Carreau model � �l ¼ 1þ c0½1þ k2ð�u02 þ �v 02Þ�
ðn�1Þ=2

: ð13gÞ

The model dependent form of �m is given in the Appendix B along
with results for the pressure correction term, �p, which, as noted by
Denier and Hewitt [8], is determined a posteriori once the velocity
components have been calculated. By rearranging (13b) and (13c)
we isolate terms involving �u00 and �v 00; having such expressions
allows us to formulate a system of five first order ordinary dif-
ferential equations in five unknowns �u; �v ; �u0; �v 0 and �w, that must
be solved subject to

�u ¼ �v ¼ �w ¼ 0 at g ¼ 0; ð14aÞ
�u! 0; �v ! �1 as g!1: ð14bÞ

Solving (13) subject to (14) requires a full numerical solution.
We employ a shooting method that utilises a fourth-order
Runge–Kutta quadrature routine to perform the numerical integra-
tion of the differential equations twinned with a Newton iteration
scheme to determine the values of the unknowns �uð0Þ ¼ �u0 and
�vð0Þ ¼ �v0.

3. Steady mean flow

In much the same way as Denier and Hewitt [8], we firstly con-
sider the asymptotic form of the functions �u; �v and �w as g!1. In
the limit as g!1 we have that

�w1�u0 	 ð�l�u0Þ0; ð15aÞ
�w1�v 0 	 ð�l�v 0Þ0; ð15bÞ

where

�w1 ¼ �
ð3qþ 1Þ
ðqþ 1Þ

Z 1

0
�udg < 0:

For shear-thinning power-law fluids Denier and Hewitt [8]
determined that ð�u; �vÞ 	 gn=ðn�1Þ as g!1 and that n=ðn� 1Þ < 1
to ensure �w is bounded in the far-field. Thus, in order to produce
boundary-layer solutions that match to an external flow we are
only able to consider shear-thinning fluids with n in the range
0:5 < n < 1. For shear-thickening fluids the analysis is somewhat
more involved. Denier and Hewitt [8] showed that the solutions
for n > 1 become non-differentiable at a critical location g ¼ gc.
However, it is noted that in this case the singularity can be com-
pletely regularised and thus the solutions can be matched to an
external flow. We will not consider shear-thickening power-law
fluids here, the interested reader is referred to Denier and Hewitt
[8] for the full details regarding flows with n > 1 and for a lengthy
discussion on shear-thinning flows with 0 < n < 0:5;n ¼ 0:5 and
0:5 < n < 1.

For Bingham plastic fluids we find that ð�u; �vÞ 	 expð�w1gÞ as
g!1, as is the case for Newtonian fluids, see Cochran [11]. This
is particularly interesting to note as it indicates that the large g
form of the solutions has no specific dependence on the Bingham
number whatsoever. The most important consequence of this
result is that the velocity solutions will remain bounded as
g!1 for all values of the Bingham number, provided, of course,
that �w1 6 0.

Utilising the fact that ð�u0; �v 0Þ 
 1 as g!1 we find that
ð�u; �vÞ 	 exp½ �w1g=ð1þ c0Þ� for Carreau fluids as g!1. We note
here that the exponential decay of the velocity functions has no
dependence on either k or the power-law index and, more impor-
tantly, the solutions are bounded for all shear-thinning values of n,



Table 1
Numerical values of the basic flow parameters for Newtonian, power-law, Bingham plastic and Carreau fluids. The value of g1 employed for each power-law calculation is
included, we note that these are not necessarily the same as used by Denier and Hewitt [8]. Solutions for n ¼ 1 are also included for Carreau fluids, these differ from the
Newtonian results as in this case the viscosity function is effectively set to �l ¼ 1þ c0, rather than unity.

Newtonian fluids �u0 ��v0 � �w1
n� 1 ¼ Bn ¼ c0 ¼ 0 0.5102 0.6159 0.8845

Power-law fluids: n ¼ �u0 ��v0 g1 ��wðg1Þ
0.9 0.5069 0.6243 50 0.9698
0.8 0.5039 0.6362 100 1.0957
0.7 0.5017 0.6532 200 1.3055
0.6 0.5005 0.6778 400 1.7209

Bingham plastic fluids: Bn ¼ �u0 ��v0 � �w1
0.1 0.4247 0.5900 0.7815
0.2 0.3586 0.5685 0.7158
0.3 0.3077 0.5489 0.6668
0.4 0.2681 0.5308 0.6282
0.5 0.2368 0.5141 0.5968

Carreau fluids: k ¼ 100;n ¼ �u0 ��v0 � �w1
0.25 0.5007 0.6026 0.9669
0.5 0.4842 0.5789 1.0124
0.75 0.4415 0.5250 1.0980
0.95 0.3793 0.4554 1.2137
1 0.3608 0.4355 1.2508
1.05 0.3418 0.4153 1.2916
1.25 0.2678 0.3368 1.4902
1.5 0.1950 0.2562 1.8131
1.75 0.1457 0.1986 2.2015

Table 2
Numerical values of the basic flow parameters for shear-thinning and shear-
thickening Carreau fluids for increasing values of k.

Carreau fluids: n ¼ 0:5; k ¼ �u0 ��v0 ��w1
100 0.4842 0.5789 1.0124
300 0.4948 0.5940 0.9639
500 0.4982 0.5988 0.9473

Carreau fluids: n ¼ 1:5; k ¼ �u0 ��v0 ��w1
100 0.1950 0.2562 1.8131
300 0.1601 0.2111 2.1743
500 0.1456 0.1923 2.3776
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whilst for n > 1 no such ‘finite width’ crisis is encountered
whereby the solutions become non-differentiable at a critical loca-
tion, as was first noted by Dabrowski [12]. We reiterate that these
solutions will exhibit exponential decay only when �w1 6 0.
However, for the cases considered within this study, with c0 ¼ 1
and k ¼ 100;300;500, we find that �w1 is in fact always negative
for 0 < n < 1, whilst �w1 is monotonically decreasing as n increases
above unity. Hence these solutions are indeed always bounded as
g!1.

Having determined the large g form of the velocity functions we
are then able to apply suitable asymptotic conditions as g!1
within the numerical integration scheme, ensuring the correct
far-field decay. This is achieved via the introduction of far-field
mixed boundary conditions that relate �u and �v to their respective
first derivatives. Solutions of (13) subject to (14) for a range of val-
ues of n;Bn and k are presented in Tables 1 and 2 and Figs. 1–4,
where the value of c0 for Carreau fluids is held fixed at unity, thus
making this study consistent with that of Dabrowski [12]. Where
not stated, the value of ‘infinity’ is taken to be g1 ¼ 20 in all cases,
excluding the power-law analysis, this is sufficient to provide
suitably converged results where the aforementioned asymptotic
conditions are satisfied to within the desired tolerance of Oð10�10Þ.
4. Discussion

The solutions presented in Fig. 1 are identical to those of Denier
and Hewitt [8] and as such we forgo any detailed analysis, noting
only that the value of g1 employed within the numerical scheme
for n ¼ 0:7 and n ¼ 0:6 produces differing values of ��wðg1Þ, for
the respective values of n, when compared to the results of
Denier and Hewitt [8]. This is as to be expected and is due to the
ever slowing decay of the velocity functions as n approaches the
critical limit of n ¼ 0:5. These results are included in this study
for completeness whilst also serving as an aid to compare shear-
thinning results owing from the Carreau model. Plots of the
viscosity function, �l, are also included in Fig. 1; the growth of these
functions appears to be linear with respect to the similarity
coordinate. This observation is easily derived from the asymptotic
analysis contained within the previous section. Given that
�u ¼ Agn=ðn�1Þ þ � � � and �v ¼ Bgn=ðn�1Þ þ � � � as g!1, where A and B
are constants, we find that �l ¼ Cgþ � � � as g!1, where

C ¼ ½n2ðA2 þ B2Þ=ðn� 1Þ2�
ðn�1Þ=2

. From the governing non-linear
ODEs (13) it is in fact possible to show that �l0 ! ðn� 1Þ �w1=n as
g!1. Thus for 0:5 < n < 1 the viscosity function remains
unbounded inside the boundary-layer and instead tends to a
constant gradient as g!1. Clearly this behaviour is unphysical,
predicting that fluid is entrained into the boundary-layer with
unbounded viscosity as the axial distance is increased, this being
a result of the failure of the power-law model to accurately model
shear-thinning flows in the limit as _c� ! 0. Analogously, one would
find that �l! 0 as g! gc for shear-thickening power-law fluids for
the same reason.

The results for Bingham plastic fluids are presented in Fig. 2. We
observe a significant reduction in the peak of the cross-flow veloc-
ity component, �u, as Bn increases from zero, whilst the component
of the azimuthal velocity, �v , increases in absolute value with the
Bingham number. We find that the von Kármán pumping rate,
��w1, is decreased for increasing values of the yield stress, this
being a direct consequence of the reduction in the peak of the
radial velocity profile. Since, in this case, the velocity functions
decay to the far-field exponentially one finds that
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Fig. 1. Plots of �u; �v ; �w and �l versus g for power-law fluids with n ¼ 1;0:9;0:8;0:7;0:6.
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Fig. 2. Plots of �u; �v ; �w and �l versus g for Bingham plastic fluids with Bn ¼ 0;0:1;0:2;0:3;0:4;0:5.
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�l! 1þ 2Bne��w1g

�w1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p þ � � � as g!1;

where A and B are equivalent constants. Therefore for Bn > 0 the
viscosity functions grow exponentially in the far-field, given that
�w1 6 0, as observed in Fig. 2. This unphysical result owes from
the inability of the Bingham model to describe apparent viscosity
at vanishing shear-rates, as noted by Zhu et al. [13].
4.1. Comparative results

A number of the previous comments regarding Bingham plastic
fluids have also been noted by AS who considered the full system
of non-linear governing equations by numerically integrating a
three parameter system. Because of the boundary-layer for-
mulation of this problem the governing Eq. (13) introduced here
are reduced to a one parameter system, dependent only on Bn. In
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Fig. 4. Plots of �u; �v ; �w and �l versus g for Carreau fluids with n ¼ 1;1:05;1:25;1:5;1:75 and k ¼ 100.
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order to validate our results we compare our solutions with those
of AS. Having retained all of the viscous terms, AS have a three
parameter system dependent on1
1 Although the notation used here is not consistent with that of AS the results are
directly comparable.
By ¼
s�y

l�pX
� ;

Re and r, thus AS must specify values for all of the parameters
before a numerical solution can be obtained.

However, recalling (9a) we see that Bn can be expressed simply
as a function of r;Re and By. Hence we are able to construct com-
parative solutions given the data used by AS, that being r ¼ 1
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and Re ¼ 2950. AS have obtained solutions for By ¼ 0;10;20;30;50
(for r ¼ 1 and Re ¼ 2950) in a stationary frame of reference. In
order to produce comparative results we transform our system
from a rotating reference frame to a stationary one and solve the
resulting equations.

Here we have reproduced the numerical solutions of AS using
their three parameter numerical scheme. The results of these
calculations are presented in Fig. 5. The solid line curves are the
solutions obtained from the work of AS whilst the �markers repre-
sent the solutions owing from the boundary-layer formulation of
the problem. We note here that both sets of solutions decay to
the far-field exponentially, as was outlined previously for the one
parameter system.

It is clear from Fig. 5 that our results are in excellent agreement
with those of AS. We find that there is in fact negligible discrep-
ancy between the two sets of solutions. This serves to confirm
the boundary-layer approximation made previously. We see that
the elimination of the higher order viscous terms from the problem
has little to no effect on the steady mean flow solutions.

In Figs. 3 and 4 basic flow solutions are plotted for shear-thin-
ning and shear-thickening Carreau fluids, respectively. For both
cases we find that the solutions have fully converged within the
confines of the boundary-layer region 0 6 g � 20, which is in stark
contrast to the results for shear-thinning power-law fluids pre-
sented in Fig. 1. As the power-law index increases from n ¼ 0:25
we observe that the peak in the radial cross-flow profile is shifted
along the g-axis, indicating that the boundary-layer thickness
increases with n. As such, the von Kármán pumping rate also
increases with increasing n and does so in a non-linear fashion,
see Fig. 6. We note the quantitative difference between power-
law and Carreau shear-thinning solutions.

Clearly as g!1we have that �l! 1þ c0 for all values of n and
k. Thus, the Carreau model predicts a finite value of viscosity for
both shear-thinning and shear-thickening fluids, where, in this
case, the limit 1þ c0 is approached from below and above, respec-
tively. Furthermore, unlike for power-law and Bingham plastic
fluids, we are able to accurately model the variation of the viscosity
throughout the entirety of the boundary-layer. As noted by
Dabrowski [12] this is due to the unrestricted ability of the
Carreau model to describe non-Newtonian fluid behaviour for both
_c� 
 1 and _c� � 1.

Fig. 7 shows the effect of the ‘relaxation’ parameter, k, on the
axial velocity and viscosity profiles. For shear-thinning (n ¼ 0:5)
fluids, increasing the value of k has a rather minimal effect on
the steady mean flow, this is observed in Table 2 as well as
Fig. 7. Conversely, we see that increasing the value of k has rather
a significant effect on both the velocity and viscosity profiles for
shear-thickening (n ¼ 1:5) fluids. In this case both the von
Kármán pumping rate and the boundary-layer thickness increases
with k. Similar qualitative observations are noted by Dabrowski
[12] in his Falkner–Skan boundary-layer study.
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5. Conclusion

Solutions for the boundary-layer flow on a rotating disk have
been investigated for a number of generalised Newtonian fluid
models. By firstly applying a large Reynolds number boundary-
layer approximation, followed by the introduction of a von
Kármán-like similarity solution, the governing partial differential
equations are reduced to a set of five first-order ordinary dif-
ferential equations. These are solved using a fourth order Runge–
Kutta quadrature routine twinned with a Newton iteration scheme.
The results for shear-thinning power-law fluids are consistent with
those of Denier and Hewitt [8], whilst for Bingham plastic fluids we
find that implementation of the boundary-layer approximation has
a negligible effect on the solutions when compared to the full-field
results of AS.

Interestingly, we note that the base flow similarity solution is
still applicable when considering fluids with a more complex con-
stitutive viscosity relationship, such as the Carreau model. In this
case the structure of the flow is governed by the viscosity ratio
c0, the ‘relaxation’ parameter k and the power-law index n. As
noted in Section 4 the Carreau model does not suffer from any of
the non-physical flaws one encounters when employing either
the power-law or Bingham plastic viscosity models, and as such
is applicable at all shear-rates. Therefore, we suggest that the
results presented within Section 3 provide a much better
representation of the nature of the boundary-layer flow for both
shear-thickening and shear-thinning non-Newtonian fluids.
Dabrowski [12] reached a very similar conclusion in the context
of flat plate boundary-layer flows.

Griffiths et al. [14,15] have indicated that shear-thinning fluids
may have a stabilising effect on the rotating disk boundary-layer
flow. A natural extension of this work would be to see if such
results are reproduced when considering the Carreau fluid model
as opposed to the simpler power-law model. Has this predicted
stabilising nature been simply a consequence of the failings of
the power-law model at low shear-rates?

The stability of the flow for Bingham plastic fluids could also be
investigated, at least asymptotically, as in the study of Griffiths
et al. [14]. However, any attempt to implement the numerical
integration scheme outlined in Griffiths et al. [15] would prove
futile as this scheme integrates from the outer-edge of the bound-
ary-layer down towards the surface of the disk. Here we have
shown that the viscosity profiles grow exponentially in the far-
field and thus the aforementioned numerical scheme would fail
to initiate. In this case at least, a differing methodology would have
to be adopted in order to construct curves of neutral stability.
Indeed initial investigations into both of these problems has
begun; reports on these studies are to be expected in due course.

It must be stated that in the absence of experimental validation
the results presented in this study must be considered as theoreti-
cal predictions only. To the best of the author’s knowledge no such
experiments have yet taken place, suggesting that this is an area
that requires future investigation.

The one-dimensional theoretical coating investigation of
Jenekhe and Schuldt [16] may be of some interest here. In this
study results are presented for film thickness profiles on a rotating
disk for Newtonian, power-law and Carreau fluids. The authors
conclude that the breakdown of the power-law model at vanishing
shear-rates has a significant effect on the predicted film thickness.
As with this study the results for power-law and Carreau fluids are
in stark contrast to each other. This further suggests that the
applicability of the power-law model must be questioned in the
context of rotating flows of this nature.
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Appendix A. Generalised viscosity terms

The additional terms omitted from (8h) are given here as
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Appendix B. Pressure distribution

The �m terms in (13d) are given by

Power-law model � �m ¼ 2�lðq� 1Þ=ðqþ 1Þ; ðB:1aÞ
Bingham model � �m ¼ 1� �l; ðB:1bÞ
Carreau model � �m ¼ 2�l0=½lnð�u02 þ �v 02Þ�0: ðB:1cÞ
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Fig. B.8. Plots of �p versus g for power-law, Bingham plastic and Carreau fluids.

Table B.3
Numerical values of the pressure function at the outer-edge of the boundary-layer for
Newtonian, power-law and Carreau fluids. The value of g1 employed for each power-
law calculation is included. Solutions for n ¼ 1 are also included for Carreau fluids,
these differ from the Newtonian results as in this case the viscosity function is
effectively set to �l ¼ 1þ c0 ¼ 2, rather than unity. Where not otherwise stated
g1 ¼ 20.

Newtonian fluids ��p1
n� 1 ¼ Bn ¼ c0 ¼ 0 0.3911

Power-law fluids: n ¼ g1 ��pðg1Þ
0.9 50 0.5565
0.8 100 0.8317
0.7 200 1.3698
0.6 400 2.7667

Carreau fluids: k ¼ 100;n ¼ ��p1
0.25 0.5196
0.5 0.5829
0.75 0.6788
0.95 0.7643

1 0.7823
1.05 0.7971
1.25 0.8045
1.5 0.6038
1.75 �0:0120
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As noted in Section 2 the pressure correction term, �p, is realis-
able once the velocity functions have been calculated. The profiles
in Fig. B.8 have been determined using a standard trapezoidal
numerical integration scheme where the unit step-size has been
reduced until sufficiently converged results were obtained. In the
Newtonian limit this scheme was validated against the analytic
solution, �p� �p0 ¼ �2�u� �w2=2, here we stipulate that
�pðg ¼ 0Þ ¼ 0) �p0 ¼ 0.

Results for power-law and Carreau fluids are presented in
Table B.3 and Fig. B.8. Due to the exponential growth of the viscos-
ity function for Bingham plastic fluids we find that �p is unbounded
within the confines of the boundary-layer for Bn > 0, as observed in
Fig. B.8. Consequently we are unable to provide data for the limit-
ing value of �p in this case. As before this result is attributed to lim-
itations of the Bingham model as _c� ! 0.
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