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In this article we consider the linear stability of the two-dimensional fow induced by the 

linear stretching of a surface in the streamwise direction. The basic fow is a rare example 

of an exact analytical solution of the Navier-Stokes equations. Using results from a large 

Reynolds number asymptotic study and a highly accurate spectral numerical method we 

show that this fow is linearly unstable to disturbances in the form of Tollmien-Schlichting 

waves. Previous studies have shown this fow is linearly stable. However, our results show 

that this is only true for Görtler-type disturbances. 
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I. INTRODUCTION 

Boundary-layer fows induced by the extrusion of a surface have received considerable atten-

tion since they were frst described by Sakiadis 1. Interest in these types of fows stems not only 

from the fact that they often admit analytical solutions to the Navier-Stokes equations; they are 

also used to model a variety of industrial processes. These so called ‘stretching’ fows are of 

practical importance to chemical and metallurgy industries where extrusion processes are com-

monplace. One such example would be the manufacture of a polymer sheet being continuously 

extruded from a casting die. Bounded stretching and/or shrinking surface fows also have a num-

ber of physiological applications and can be used to model transmyocardial laser revascularisation 

(TMLR), see, for example Waters 2. 

These types of boundary-layer fows exhibit fuid entrainment and are therefore qualitatively 

different to Blasius-type boundary layer fows. In fact, two- and three-dimensional stretching 

fows are much more closely aligned to stagnation-point fows. The specifc focus of this article 

will be on fows induced by an impermeable sheet with a velocity that increases linearly in the 

direction of stretching. Vleggaar 3 has shown that this linear behaviour is appropriate in relevant 

experiments. This specifc case of linear stretching was frst considered by Crane 4 who derived 

an exact analytical solution of the Navier-Stokes equations in two dimensions. The equivalent 

three-dimensional problem was frst considered by Wang 5 who demonstrated that although exact 

analytical solutions could not be obtained, the problem could be solved numerically by introducing 

a suitable similarity approach. Given that these fows exhibit fuid entrainment at the boundary-

layer edge, and that the surface stretching is linear in nature, an association can be made between 

these fows and the three-dimensional fow induced by a rotating disk. Very recently the ideas of 

Crane and Wang have been extended by Ayats et al. 6 to include the family of fows associated 

with the independent stretching or shrinking of two infnite parallel plates. 

A wealth of literature exists concerning fows over different types of stretching surfaces. 

Crane’s analysis of the fow induced by a linear sheet velocity has been extended to consider 

power-law type sheet velocities by Vleggaar 3, and exponential type sheet velocities by Magyari 

and Keller 7. Gupta and Gupta 8, included the effects of both permeability and heat and mass 

transfer demonstrating that exact analytical solutions for the temperature variation across the layer 

can be obtained in the case when the Prandtl number is equal to unity. In the cases when this 

condition does not hold the solutions can be generalised and are described in terms of the in-
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complete gamma function. The relatively recent article by Al-Housseiny and Stone 9 provides a 

chronological summary of the literature on boundary-layer fows due to stretching impermeable 

sheets and the interested reader is referred to this manuscript for a more comprehensive list of pre-

vious studies. In addition to the studies noted by Al-Housseiny and Stone 9, there are many more 

studies that consider these types of fows with the addition of magnetohydrodynamic (Chakrabarti 

and Gupta 10), non-Newtonian (Rajagopal, Na, and Gupta 11) and pressure gradient (Riley and 

Weidman 12) effects. There are yet more studies that consider combinations of these effects for 

permeable/impermeable stretching (or indeed shrinking) sheets, one particularly nice example is 

Liao’s investigation13, which details a range of analytical solutions for magnetohydrodynamic 

non-Newtonian stretching fows. 

Given the vast number of studies detailing basic fow solutions for a plethora of different 

stretching confgurations, it is surprising just how little attention the associated stability prob-

lems have received. Bhattacharyya and Gupta 14, were the frst to investigate the linear stability 

of the two-dimensional Crane solution, determining that the fow is linearly stable to infnitesimal 

Görtler-type disturbances. Seeking disturbances of this nature is an entirely justifable procedure 

since the fow exhibits streamline curvature. It is well understood that Görtler-type disturbances 

form owing to centrifugal instability. This is in contrast to Tollmien-Schlichting (TS) waves that 

are observed in fows that exhibit zero curvature at the wall, such as the Blasius boundary-layer, 

and the stretching sheet confguration consider herein. Indeed, Bhattacharyya and Gupta 14 note 

that “. . . our stability analysis is confned to infnitesimal Görtler-type disturbances, which are 

non-propagating. It cannot, therefore, be ruled out that the fow may be unstable to other types of 

disturbances which may be infnitesimal or of fnite amplitude”. Bhattacharyya and Gupta’s analy-

sis was then extended by Takhar, Ali, and Gupta 15 to include magnetohydrodynamic effects. The 

authors note that the magnetic feld has a stabilising infuence on a fow that was already linearly 

stable. In much the same fashion, Dandapat, Holmedal, and Andersson 16 consider an extension 

to include viscoelastic fuid effects, determining that, for disturbance wavelengths shorter than the 

viscoelastic lengthscale, the fow will again be further stabilised. 

More recently Davis and Pozrikidis 17 have revisited the linear stability of the fow induced 

by a linear stretching sheet. In a departure from the analysis of Bhattacharyya and Gupta 14, the 

authors stipulate that the streamwise dependence of the disturbances must match that of the base 

state. Again, searching for Görtler-type disturbances, they fnd that the fow is linearly stable to 

both two- and three-dimensional disturbances. A far-feld asymptotic analysis details a remarkably 
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simple relationship between the growth rate of the disturbance and the disturbance wavenumber. 

The work associated in the derivation of this relationship offers an insight as to why this fow is 

not susceptible to this type of disturbance. 

In this study we will analyse the stability of Crane’s solution from an alternative viewpoint. 

Rather than seeking disturbances of Görtler-type we will instead investigate the possibility of the 

development of small-amplitude perturbations in the form of TS waves. TS instability waves are 

a prominent feature of many fat plate boundary-layer fows and their growth has been shown to 

be well described by linear stability theory. It is clear from the statements of Bhattacharyya and 

Gupta that the importance of these types of disturbances in stretching fows has been known about 

for some time. Within this investigation we will outline both asymptotic and numerical stability 

analyses that show that Crane’s fow is, in fact, linearly unstable to small-amplitude TS waves. 

In II A we formulate the problem and derive the governing perturbation equations. In II B 

we describe our numerical scheme in detail and validate it against the results of Davis and 

Pozrikidis 17. In II C we derive the appropriate energy balance equations for problems of this 

type. Having completed these derivations and our validation exercise, in III, we present linear sta-

bility results for two- and three-dimensional disturbances and also results from our integral energy 

analysis, which provides insights as to the mechanisms responsible for this observed instability. 

In IV our numerical results are compared to high Reynolds number asymptotic predictions, where 

we focus primarily on the most unstable case, 2D perturbations. Excellent agreement is observed 

between our asymptotic and numerical fndings. Lastly, in V, our results are discussed and placed 

in context and potential avenues for further work are outlined. 

II. PROBLEM FORMULATION AND VALIDATION OF THE NUMERICAL SCHEME 

A. Derivation of the basic state and the governing perturbation equations 

We consider the fow of a steady, incompressible, Newtonian fuid induced by the stretching 

of an infnite planar surface. The streamwise, wall-normal and spanwise coordinates are x ∗ , y ∗ , 

U 
∗ ∗and z ∗, respectively. The associated fuid velocities in these directions are then ˜ = ( Ũ∗ ,Ṽ ,W̃ ∗). 

The surface stretching acts along the y ∗ = 0 plane and is linear in nature. Note that throughout this 

analysis an asterisk indicates a dimensional quantity. 
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The system is governed by the following conservation of mass and momentum equations 

∇
∗ · Ũ∗ = 0, (1a) 

DŨ∗ 1 
= − ∇

∗P̃∗ + ν∗Δ∗Ũ∗ , (1b)
Dt∗ ρ∗ 

where t∗ is time, ρ∗ is the fuid density, P̃∗ is pressure and ν∗ is the kinematic viscosity of the 

fuid. The two-dimensional mean fow (see Fig. 1 (a)) is solved subject to the following boundary 

conditions 

∗ ∗ ∗Ũ∗ (y = 0) − ξ ∗ x = Ṽ ∗ (y = 0) = 0, Ũ∗ (y ∗ → ∞) → 0, (2) 

where the constant ξ ∗ is the stretching rate with units s−1. The exact solution of (1) subject to (2) 

was frst reported by Crane 4. By introducing the following similarity variables 

Ũ∗ Ṽ ∗ P̃∗ 
U(y) = , V (y) = p , P(y) = ,

ξ ∗ x ∗ ξ ∗ν∗ ρ∗ξ ∗ x ∗ p
where y= y ∗/L∗, and the non-dimensionalising length-scale is L∗ = ν∗/ξ ∗, the governing equa-

tions are reduced to the following set of coupled non-linear ODEs 

U +V 0 = 0, 

U 00U2 +VU 0 = , 

+V 00VV 0 = −P0 . 

These must be solved subject to 

U(y = 0) − 1 = V (y = 0) = 0, U(y→ ∞) → 0. 

As noted by Crane 4, the streamwise and wall-normal velocities and pressure have a remarkably 

simple analytical solution 

(1− e−2y)−y −y− 1,U = e , V = e P = P0 + ,
2 
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ξ∗x∗

Ũ∗ = ξ∗x∗U(y)

Ṽ ∗ =
√
ξ∗ν∗V (y)

z∗

x∗

y∗

(a)

0 2 4 6 8 10

-1

-0.5

0

0.5

1

FIG. 1. Basic fow profles induced by a linear stretching sheet. A schematic diagram of the fow is 

presented in (a). The streamwise profle Ũ∗ = ξ ∗ x ∗U(y), linearly increases with the streamwise coordinate. 

The wall-normal fow component is independent of the streamwise coordinate and, far away from the wall, is p∗directed towards the stretching surface with uniform velocity Ṽ = − ξ ∗ν∗. The exact similarity profles ∞ 

are presented in (b). To ensure that the reference pressure at the edge of the boundary layer is zero, the 

constant P0 is set equal to minus one-half. 

where P0 = P(y = 0). These solutions are highlighted in Fig. 1 (b). The stability analysis is then 

applied at a streamwise location x ∗. The local Reynolds number is R = x ∗ξ ∗L∗/ν∗ = x ∗/L∗ = xs.s s s

Thus, the local Reynolds number is identically equivalent to a dimensionless streamwise loca-

tion along the stretching sheet. In this sense, this fow is representative of the two-dimensional 

equivalent of the fow due to a rotating disk where one fnds that a radial location along the disk 

is equivalent to the local Reynolds number18. The non-dimensionalising velocity, pressure and 

time-scales are then x ∗ξ ∗ , ρ∗(x ∗ξ ∗)2 and L∗/(x ∗ξ ∗).s s s

After non-dimensionalisation the mean fow quantities are perturbed as follows 

x
Ũ(x,y,z, t) = U(y) + u(x,y,z, t),

R

Ṽ (x,y,z, t) = 
1

V (y) + v(x,y,z, t),
R

W̃ (x,y,z, t) = + w(x,y,z, t), 

P̃(x,y,z, t) = 
1 

P(y)+ p(x,y,z, t),
R2

where the perturbation quantities (u,v,w, p) are assumed to be small. The dimensionless govern-

ing equations are then linearised with respect to the perturbation quantities. In order to make the 
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perturbation equations separable in x, y and t, it is necessary to invoke a parallel-fow-type approx-

imation; that is to say that the variable x is replaced throughout by the Reynolds number R. This 

is consistent with the approach adopted by Lingwood18, in her corresponding three-dimensional 

rotating disk analysis, where the spatial variable r is replaced by R. Although the fow is not 

strictly homogeneous in the streamwise direction it is reasonable to make this parallel-fow-type 

approximation given that we expect the onset of linear instability to occur suffciently far enough 

downstream (i.e., at reasonably large Reynolds numbers) from the leading edge. Employing this 

approximation leads to the retention of the terms associated with the wall-normal mean velocity 

profle V . This is a departure from Blasius-type fat plate boundary-layer studies but is consistent 

with Lingwood’s approach where she also retains terms associated with the wall-normal velocity 

profle (in her case this is W , not V , since the fow over a rotating disk is three-dimensional, not 

two-dimensional). The resulting system of linear perturbation equations is then 

∇ · u = 0, (3a) � � 
Uu V 0v 1 

L u + U 0v+ x̂+ ŷ = −∇p+ Δu, (3b)
R R R

where u = (u,v,w), the operator L is defned like so 

∂ ∂ V ∂ 
L = +U + ,

∂ t ∂ x R ∂ y 

and x̂ and ŷ are the unit vectors in the streamwise and wall-normal directions, respectively. At 

this stage it is worth noting that the last two terms on the left-hand side of (3b), and the fnal 

term associated with the operator L , appear due to the x-dependence of the streamwise velocity 

component and the non-zero nature of the wall-normal velocity component. The retention of 

these terms is entirely consistent with the three-dimensional analysis presented by18 and ensures 

that the action of surface stretching is considered explicitly. These terms are not present in the 

standard linearised governing equations, see, for example, the analysis presented by Schmid and 

Henningson 19. 

If the perturbations are assumed to have the normal mode form 

i(αx+β z−ωt)(u,v,w, p) = [ û(y), v̂(y), ŵ(y), p̂(y)]e , 
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then (3) reduces to the following system of coupled ODEs 

⎫⎤⎡⎤⎡⎤⎡⎧ ⎤⎡⎤⎡ 
1 0 0 0 U 0 0 1 S+1 DU 0 0 û 0 ⎢⎢⎢⎢⎢⎣ 

0 1 0 0 

0 0 1 0 

⎥⎥⎥⎥⎥⎦ 
+ iα 

⎢⎢⎢⎢⎢⎣ 

0 U 0 0 

0 0 U 0 

⎥⎥⎥⎥⎥⎦ 
+ 

⎢⎢⎢⎢⎢⎣ 

0 S−1 0 D 

0 0 S0 iβ 

⎢⎢⎢⎢⎢⎣ 

⎪⎪⎪⎪⎪⎬ 
⎥⎥⎥⎥⎥⎦ 

v̂

ŵ

⎥⎥⎥⎥⎥⎦ 
= 

⎢⎢⎢⎢⎢⎣ 

0 

0 

⎥⎥⎥⎥⎥⎦ 
, (4) 

⎪⎪⎪⎪⎪⎨
α2 

R⎪⎪⎪⎪⎪⎩ 

⎪⎪⎪⎪⎪⎭0 0 0 0 1 0 0 0 0 D iβ 0 p̂ 0 

where Sn = (R−1β 2− iω)+ R−1(VD − D2)+ nR−1U , and D = d/dy. In our spectral analysis 

we assume that the frequency of the disturbance ω , and the spanwise wavenumber β , are solely 

real whilst the streamwise wavenumber α , is assumed to be complex α = αr + iαi. As such, 

disturbances will grow exponentially in space when αi < 0. 

Combining the governing equations together gives an Orr-Sommerfeld-type equation for this 

problem 

(D2−γ
2)2v̂− iαR[(U−c)(D2−γ

2)v̂− v̂D2U ] = V (D2−γ
2)D v̂−U(D −γ

2)v̂+ iβ D(Uŵ), (5) 

where γ2 = α2 + β 2, and c = ω/α . The terms on the right-hand side are due to the infuence of 

the surface stretching and do not normally appear in the standard Orr-Sommerfeld equation. The 

appearance of the spanwise wavenumber in (5) means that it is not possible to ensure that Squire’s 

theorem will hold in this case. As such, it will be necessary to investigate both 3D and 2D modes 

in this study. 

Given that the perturbation velocities are subject to the no-slip condition at the wall, and that 

all perturbations must decay to zero far from the surface, (4) is solved subject to 

û(y = 0) = v̂(y = 0) = v̂0(y = 0) = ŵ(y = 0) = 0, 

û(y→ ∞) → v̂(y→ ∞) → ŵ(y→ ∞) → p̂(y→ ∞) → 0. (6) 

The condition on the derivative of the wall-normal perturbation at y = 0, is simply a consequence 

of the form of the continuity equation. 

B. Numerical Method and Validation 

The system of linear ODEs (4) is solved subject to the above boundary conditions (6) using a 

spectral method that utilises Chebyshev polynomials. These polynomials are defned like so 
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Tn(Yj) = cos[narccos(Yj)], n = 0,1,2, . . . ,N− 1,N, 

where N is the number of collocation points and the Gauss-Lobatto points Yj, are defned as such 

� � 
jπ

Yj = −cos , j = 0,1,2, . . . ,N− 1,N.
N 

In order to map the physical domain 0 ≤ y j ≤ ymax, to the computational domain −1 ≤ Yj ≤ +1, 

the following exponential map is used 

� � 
1 1+Yj + A 

y j = − ln ,
φ A 

where A = 2(e−φymax − 1)−1, and φ is a free constant. In order to capture the exponential nature 

of the base fow a range of different φ values were tested (see Fig. 2 (a)). Our analysis revealed 

that choosing too large a value for φ resulted in solutions that did not converge within a desired 

tolerance, typically O(10−5). This was true irrespective of the choice of ymax, as the number of 

collocation points were increased. Too small a value for φ and the map reverted to a linear ap-

proximation, and was therefore unable to capture the exponential decay of the base fow solutions. 

A more moderate value of the constant, φ = 1/5, proved to be a sensible choice, providing fully 

converged solutions when ymax = 40, and N = 100. It was somewhat surprising to note the re-

quirement of such a large value for ymax, in order to obtain accurate numerical solutions. Many 

corresponding fat plate boundary-layer studies fnd that converged eigensolutions are obtained 

when the value of ymax is of the order of 20, for example Miller et al. 20. However, we note that 

Davis and Pozrikidis 17 arrived at a similar conclusion when conducting their Görtler disturbance 

analysis. 

In order to validate our numerical scheme it was tested against the results of Davis and Pozrikidis 17. 

The authors showed, rather remarkably, that in the limit as y → ∞, a simple relationship exists 

between the growth rate λ ∗, and transverse wavenumber k∗, when searching for Görtler-type 

disturbances 

λ ∗ 1 
= −(L∗k∗ )2− . (7)

ξ ∗ 4

Our spectral scheme, which requires solving a quadratic eigenvalue problem, was used to solve 

their systems of ODEs subject to the standard conditions of no-slip and no-penetration at the wall 

and decay in to the far-feld. We were able to exactly reproduce the results quoted by the authors, 
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FIG. 2. In (a) the physical domain is mapped to the computational domain for a range of different φ values. 

In this study we use the value φ = 1/5 for all quoted results. In (b) we reproduce the results of Davis and 

Pozrikidis 17. Our numerical results, in the range 0.4 ≤ L∗k∗ ≤ 1.6, shown in blue, are plotted against the 

authors asymptotic prediction given in (7). The growth rate λ ∗, is never greater than zero for any value of 

the transverse wavenumber k∗, and hence the fow is linearly stable to Görtler-type disturbances. 

showing excellent agreement with both their asymptotic prediction and the results from their linear 

eigenvalue temporal analysis, see Fig. 2 (b). 

C. Derivation of energy balance equations 

In order to derive an appropriate integral energy analysis for this problem we take a linear 

combination of the constituent parts of (3b), average over one time period and integrate across the 

boundary layer. Having done so we arrive at the governing integral energy equation for fows of 

this nature 

� � � �Z 
∞ Z 

∞∂ E ∂ (up) 1 ∂ (vΩz − wΩy) ∂ (wp) 1 ∂ (vΩx − uΩy)U + − dy+ + dy
0 ∂ x ∂ x R ∂ x 0 ∂ z R ∂ z � �Z 

∞ Z 
∞U(2u2− E ) (Ω2 + Ω2 + Ω2) 

= − + uvDU dy− x y z dy, 
0 R 0 R 

where E = (u2 + v2 + w2)/2, and Ωi is the i-component of vorticity. Given that the perturbations 

have the normal mode form then it is possible to show that 
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FIG. 3. Variation of the three energy contribution terms highlighted in (8) with the spanwise wavenumber 

β . For each value of β , the most unstable eigenmode (αi = max(αi)) is selected, and the integrals as defned 

in (8), are computed at a fxed Reynolds number of R = 1× 105. These terms have not been normalised 

but prove to be negligible and so are excluded from the integral energy analysis and the associated integral 

energy equation presented in (9). 

I z }| {� � � �Z 
∞ Z 

∞β hûŵi U(2hû2i−hÊ i)− 2αi UhÊ i + hûp̂i + dy = − + hûv̂iDU dy
0 R 0 R � �Z 

∞ hû02i + hŵ02i (α2− αi
2)(hv̂2i + hŵ2i) β 2(hû2i + hv̂2i)r− + + dy, (8)

0 R R R| {z } | {z }
II III 

where hÊ i = (hû2i + hv̂2i + hŵ2i)/2, and hx̂ŷi = x̂?ŷ+ x̂ŷ?, with ? indicating the complex conju-

gate. The frst term on the right-hand side of (8) exists solely due to the infuence of the surface 

stretching. The second is the ‘standard’ Reynolds stress term that appears in all 2D and 3D anal-

yses of this type (see, for example, Porter 21). All the terms included in the fnal integral term are 

associated with the action of viscous dissipation. 

Our numerical investigations reveal that for all the cases considered here, terms I − III (high-

lighted above) are in fact negligible, with their absolute value always being less than 2 ×10−6 (see 

Fig. 3). It transpires that the above integral energy equation can be approximated like so 

Z 
∞ Z 

∞ Z 
∞U(2hû2i−hÊ i) hû02i + hŵ02i − 2αi '− hûv̂iDU dy− dy− dy, (9)

0 0 R 0 R| {z } | {z }| {z }| {z }
TME EPRS EDSS EDV 
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TABLE I. Critical values (indicated by the superscript ‘crit’) for the frequency, streamwise wavenumber 

and Reynolds number for a range of fxed values of the spanwise wavenumber, β . The critical values of 

ω and αr are given to four decimal places whilst the critical Reynolds number is quoted accurate to fve 

signifcant fgures. 

β ωcrit αcrit 
r Rcrit 

0 0.1364 0.1614 48499.1 

0.05 0.1310 0.1550 50911.5 

0.1 0.1139 0.1348 60652.0 

0.15 0.0823 0.0971 96607.5 

where the right-hand side of (9) has been normalised by the integral of the combination of en-

ergy fux and the work done by the pressure, N = 
R 

0 
∞(UhÊ i + hûp̂i)dy. The energy production 

term, labelled EPRS− Energy Production due to Reynolds Stresses, will always be positive and 

the dissipation terms, labelled EDSS− Energy Dissipation due to Surface Stretching and EDV− 

Energy Dissipation due to Viscosity, will always be negative. Therefore, in the cases when the 

production is greater than the absolute value of the dissipation, the right-hand side of (9) will be 

greater than zero. In these cases the eigenmode in question is amplifed and the Total Mechanical 

Energy of the system is positive. Clearly, this can only hold true if αi < 0, which is consistent with 

our defnition of linear instability. 

III. NUMERICAL RESULTS 

Having validated our numerical scheme we begin by solving (4) subject to (6) for fxed values 

of β whilst cycling through a range of values of ω and R in order to determine points where 

αi ≤ 0. A point is deemed to be neutrally stable if αi = 0. When considering 2D perturbations 

only (β = 0) we fnd that the fow is linearly unstable above a critical Reynolds number of Rcrit = 

48,499 (see Table I). Although this critical Reynolds number is large when compared to a Blasius-

type boundary-layer fow, these results do clearly show that this fow is susceptible to instabilities 

arising from travelling-wave disturbances. In fact, the critical Reynolds number noted above, is 

of the same order of that exhibited by other boundary-layer fows with exponentially decaying 

base fow solutions, for example, the asymptotic suction boundary-layer fow which has a critical 
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FIG. 4. In (a) the growth rate, defned as −αi, is plotted against αr, for a range of β values at a fxed value 

of the Reynolds number, R = 1× 105. In (b) the curves of neutral stability, all the points where αi = 0, 

are plotted for the same range of β values. As the value of the spanwise wavenumber increases the area 

encompassed by the curve is reduced. 

Reynolds number, as quoted by Dempsey and Walton 22, of Rcrit ' 54,370. 

Although an equivalent to Squire’s theorem cannot be proved for this type of fow we do fnd 

that two-dimensional disturbances are indeed the most unstable. Fig. 4 (a) presents a snapshot 

of the linear growth rates for a range of β values at a fxed Reynolds number, R = 1× 105. We 

fnd that the amplitude of the growth rate is signifcantly reduced as β increases. This observed 

stabilisation is further exemplifed by the neutral stability curves for αr presented in Fig. 4 (b), 

showing that the critical Reynolds number increases as the spanwise wavenumber increases. In 

addition to this, the area encompassed by the neutral curves is also reduced. Physically, this means 

that there are fewer wavenumbers that are susceptible to linear instability. 

We fnd that as the value of the spanwise wavenumber is increased above even moderate values, 

β ' 0.187, the fow becomes linearly stable. This suggests that in the cases when β is greater than 

this value the area encompassed by the neutral stability curve becomes vanishingly small, and thus, 

the critical Reynolds number asymptotes towards positive infnity. Given that we were unable to 

categorically prove that 3D disturbances would be more stable than 2D disturbances, due to the 

additional terms appearing in the modifed Orr-Sommerfeld equation (5), these numerical results 

provide strong evidence that this must indeed be the case. 

Before discussing our results associated with the integral energy analysis derived in II C it 

proves useful to frst determine the form of each of the three eigenfunctions. In Fig. 5 (a), Fig. 5 (b) 
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FIG. 5. Plots of the streamwise, wall-normal and spanwise eigenfuncions for a range of β values at a fxed 

value of the Reynolds number, R = 1× 105. In each case the most unstable eigenmode (αi = max(αi)) is 

selected. All the results have been normalised with respect to the maximum value of |û| for the case when 

β = 0. 

and Fig. 5 (c) we present plots of |û|, |v̂| and |ŵ| for a range of spanwise wavenumbers. As the 

value of β increases we observe that the streamwise eigenfunctions decay to zero closer to the 

boundary-layer wall, providing supporting evidence for the observed stabilisation. In addition to 

this, we also notice that the peak of the wall-normal eigenfunction is also notably reduced. Whilst 

these eigenfunctions do decay to zero in a region close to y = ymax, suitable numerical testing has 

taken place to ensure that these results are indeed independent of our numerical scheme. With 

regards to the spanwise eigenfunction, no such clear and obvious trends appear to exist. In fact, it 

would appear that there exists some β in the range 0.05 < β < 0.15 such that the value of max|ŵ|, 
is itself maximised. This suggests that the energy production and dissipation terms associated 

with this system will not increase and decrease linearly as the value of the spanwise wavenumber 

is increased. 

In Fig. 6 we then plot the functions associated with the energy production due to Reynolds 

stresses, and the energy dissipation due to surface stretching and viscosity, for a range of β values 
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FIG. 6. Plots of the functions associated with the Energy Production due to Reynolds Stresses in (a), the 

Energy Dissipation due to Surface Stretching in (b), and the Energy Dissipation due to Viscosity in (c). 

It should be noted that in (c), in the case when β = 0, the plot depends only on û0 and R, since ŵ0 ≡ 0. 

As before, the value of the Reynolds number is fxed at R = 1× 105, and the most unstable eigenmode is 

selected. 

in order to determine their relative infuence on the normalised energy balance. We observe in 

Fig. 6 (a) that the area encompassed by the energy production curves initially increases as the value 

of β increases. However, in much the same way as before, we notice that the peak of the curve 

eventually decreases as a function of the spanwise wavenumber. This suggests that there exists a 

critical value of the spanwise wavenumber, whereby, above this critical value, the contribution of 

energy production due to Reynolds stresses begins to decrease. It is clear from Fig. 6 (b) that the 

contribution of energy dissipation from the terms associated with surface stretching are minimal. 

These terms are much larger in magnitude than those ignored in II C, however, they are still roughly 

two orders of magnitude smaller than the dissipation term associated with the action of viscosity. 

It is therefore clear, from this fgure, that the additional terms appearing in (5) play a very minimal 

role in the overall energetics of the system. This suggests that the linear stability of the fow is 

primarily governed by the form of the base fow and the standard Orr-Sommerfeld equation. It is 
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FIG. 7. A plot of the variation of the Total Mechanical Energy (TME), the Energy Production due 

to Reynolds Stresses (EPRS) and the Energy Dissipation due to Viscosity (EDV) against the spanwise 

wavenumber. The point at which the fow transitions from linearly unstable to linearly stable is indicated 

here by the dotted black line. For all the β values presented here the fow is linearly unstable. 

clear, from Fig. 6 (c), that the energy dissipation functions associated with the action of viscosity 

decay to zero farther from the boundary-layer wall as the spanwise wavenumber is increased. This 

would suggest that the absolute value of the energy dissipation term will likely increase with β . 

In Fig. 7 the normalised energy contributions, as defned in (9), are presented for increasing 

values of the spanwise wavenumber. Note that here we exclude the contribution from the EDSS 

terms as these have now been shown to be negligible in this context. As predicted by our prior 

analysis the energy production initially increases before levelling off and eventually decreasing. 

The absolute value of the energy dissipation due to viscosity follows a similar trend and, as such, 

the total mechanical energy of the system decreases with increasing β . This result is entirely 

consistent with the conclusions drawn from our neutral stability curve predictions. 

IV. LARGE REYNOLDS NUMBER ASYMPTOTIC ANALYSIS 

In order to investigate the structure of the TS waves in the near-wall viscous layer we now 

present a large Reynolds number lower branch asymptotic stability analysis. The most amplifed 

TS disturbances appear near to the lower branch of the neutral curve and this, along with the need 

to validate our numerical solutions, provides the motivation for the lower rather than the upper 

branch analysis. 
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We analyse the Orr-Sommerfeld-type equation (5) in the limit as R→ ∞, for neutrally stable 

solutions. Initially, we focus on two-dimensional disturbances (β = 0), so to leading order this 

becomes Rayleigh’s equation, namely 

(U− c)(D2− α2)v̂− v̂D2U = 0. 

We note that although (5) includes additional terms associated with surface stretching, in the limit 

as R → ∞, we do recover the standardised version of Rayleigh’s equation. This equation holds 

away from fxed walls and the critical layer (where U = c), since, in these regions, viscous effects 

cannot be ignored. In these regions, for R� 1, (5) becomes 

D4v̂≈ iαR(U− c)D2v̂. (10) 

Close to the wall, U(y) ≈ 1− y+ · · · , and we fnd from (10) that the thickness of the wall layer 

is O((αR(1− c))−1/2), where we note, from the numerical solutions, that 0 < c < 1. The critical 

layer is located at y = yc, say, where U(yc) = c, i.e. where e−yc = c, yielding yc = − lnc. Analysis 

of (10) determines the thickness of the critical layer to be O((Rω)−1/3). On the lower branch of 

the neutral stability curve, the wall layer and the critical layer merge, yielding (1−c) ∼ (αR)−1/3. 

In addition, the numerical solutions suggest that (1− c) ∼ R−1/4, which leads to the scales α ∼ 

ω ∼ R−1/4, on the lower branch of the neutral stability curve. For the case of three-dimensional 

disturbances β ∼ α , so β ∼ R−1/4, also. 

For the ensuing asymptotic analysis it is convenient to non-dimensionalise lengths with respect 

to a reference length l∗, velocities with respect to ξ ∗l∗, time with respect to 1/ξ ∗ and pressure 
∗ ∗ U∗ ˜ ∗ ˜with respect to ρ∗ξ ∗2l∗2. Thus, we write (x ,y ,z ∗) = l∗(x,y,z), ( ˜ ,V ,W ∗) = ξ ∗l∗(U ,V ,W ), 

t∗ = t/ξ ∗ and P̃∗ = ρ∗ξ ∗2l∗2P. This leads to the defnition of a Reynolds number Re = ξ ∗l∗2/ν∗ . 

We perform a local stability analysis about the streamwise location xs for Re � 1. The relationship 

between this Reynolds number and the local Reynolds number used in the numerical analysis is 

then R = Re1/2xs. We will return to this relationship when comparing the asymptotic solutions 

with the numerical ones. Thus, in terms of Re, (1− c) ∼ α ∼ ω ∼ Re−1/8. 

The ratio of the length scales is l∗/L∗ = Re1/2 and similarly, the ratio of the time scales is 

Re1/2xs. This gives the relations (x,y,z) = Re−1/2(x,y,z) and t = Re−1/2t/xs. Then, in terms 

of Re, the streamwise and spanwise length scales and the timescale, are O(Re−3/8). Also, the 

thickness of the wall layer is O(Re−1/2Re−1/8) = O(Re−5/8). We introduce scaled coordinates 
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and time to refect these scales. For convenience, we set ε = Re−1/8, and write 

x− xs = ε3X , z = ε3Z, and t = ε3
τ. 

Thus the non-dimensional disturbed fow is described as such 

(U ,V ,W ,P) = (xU(y),Re−1/2V (y),0,Re−1P(y)) + ( ũ, ṽ, w̃, p̃), 

where the small disturbance quantities, denoted with a tilde, are functions of x, y, z and t. 

A. Triple-deck structure 

Similarly to the instability analysis of the Blasius fow (uniform fow past a fat plate), we fnd 

we have a triple-deck structure, with upper, main and lower deck thicknesses of order Re−3/8, 

Re−1/2 and Re−5/8, respectively. The analysis turns out to be similar to the corresponding case 

for a Blasius boundary layer (see Smith23), although with the notable difference that the timescale 

that the disturbances develop over is equal to the streamwise lengthscale. The main deck covers 

the extent of the boundary layer, where the disturbances are inviscid and rotational. The upper 

deck is inviscid and irrotational in nature and required to reduce the disturbances to zero in the far 

feld. The lower deck is required to satisfy the viscous no-slip boundary conditions at the moving 

surface. 

We consider normal-mode solutions and take the perturbations proportional to E = exp(i(θ(X)+ 

β Z− ωτ)). Then the wavenumber θ , is a slowly varying function of x in the form 

dθ 
= α = α0(x)+ εα1(x)+ · · · .

dX 
The spanwise wavenumber β and the frequency ω are constant and expand as β = β0+ εβ1+ · · · , 
and ω = ω0 + εω1 + · · · . We begin our analysis in the main deck where y = Re−1/2y = ε4y, and 

the disturbances expand as 

ũ = (Um0 + εUm1 + · · ·)E, 

ṽ = (εVm0 + ε2Vm1 + · · ·)E, 

w̃ = (εWm0 + ε2Wm1 + · · ·)E, 

p̃ = (εPm0 + ε2Pm1 + · · ·)E, 
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where Um0, . . . ,Vm0, . . . ,Wm0, . . ., and Pm0 . . ., are functions of y and the slow variable x. We sub-

stitute this form for the disturbance quantities into the linear perturbation equations and equate 

leading order terms. We fnd that the solutions for the leading-order velocity and pressure distur-

bances are 

Um0 = −B0(x)U 0(y), (11a) 

Vm0 
B0(x) 

= i (α0xsU(y) − ω0), xs 
(11b) 

Wm0 
β0Pm0(x) 

= − ,
α0xsU(y) − ω0 

(11c) 

Pm0 = Pm0(x), (11d) 

where Pm0(x) and B0(x) are unknown, slowly varying, amplitude functions (representing pressure 

and negative displacement perturbations, respectively). For these viscous instability modes we 

choose 

α0xs = ω0. 

This corresponds to the critical layer, where U = ω/(αxs), moving to the wall at leading order. 

An outer layer (the upper deck) is then required to reduce the disturbances to zero as y→ ∞. 

In the upper deck y = ε3ỹ, with ỹ = O(1). Of interest here is the matching of the normal 

velocities between the upper and the main deck. Here 

ṽ = (εV 0 + ε2V 1 + · · ·)E, 

and similarly for ũ, w̃ and p̃. In the upper deck the basic fow has the behaviour U → 0, and 

V →−1. The solution for V 0 is found to be 

(α2 + β0
2)1/2 

0 −(α0
2+β0

2)1/2ỹV 0 = i Pm0(x)e .
α0xs 

Matching V 0 as ỹ→ 0, with Vm0 as y→ ∞, yields the relation 

(α2 + β0
2)1/2 

B0(x) = − 0 Pm0(x). (12)
α2 

0 xs 

The desired dispersion relation is obtained by matching the solutions in the main deck with those 

in the lower deck, which is examined next. 
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In the lower deck y = ε5Y , with Y = O(1). Close to the wall U ≈ 1− εY + · · · and V ≈ 

−εY + · · · . Then, to match with the main deck solutions, the disturbance quantities expand as 

ũ = (U0 + εU1 + · · ·)E, 

ṽ = (ε2V0 + ε3V1 + · · ·)E, 

w̃ = (W0 + εW1 + · · ·)E, 

p̃ = (εP0 + ε2P1 + · · ·)E, 

where U0, . . . ,V0, . . . ,W0, . . . , and P0, . . . depend on Y and x. 

Leading order terms in the y-momentum equation yield P0 = Pm0. The remaining equations 

show that α0U0Y + β0W0Y , satisfes Airy’s equation, namely, 

(α0U0Y + β0W0Y )YY − (i(α1xs − ω1) − iα0xsY )(α0U0Y + β0W0Y ) = 0, (13) 

where here the subscript Y denotes differentiation with respect to Y . The solution for U0 must 

satisfy 

(α2 + β0
2)1/2 

U0(Y = 0) = 0, U0(Y → ∞) →− 0 Pm0.
α2 

0 xs 

By setting 

� �
α1xs − ω1

ζ = (−iα0xs)
1/3 Y − ,

α0xs 

then the solution of (13), which is bounded as ζ → ∞, is 

α0U0ζ + β0W0ζ = C0Ai(ζ ), 

where Ai is the (appropriately decaying) Airy function and the subscript ζ denotes differentiation 

with respect to ζ . Integrating the above and satisfying the boundary conditions U0(ζ = ζ0) = 

W0(ζ = ζ0) = 0, yields 

Z 
ζ 

α0U0 + β0W0 = C0 Ai(ζ )dζ , 
ζ0 

where 
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i5π/6(α0xs)
−2/3(α1xs − ω1).ζ0 = e

Applying the boundary conditions U0(Y = 0) = V0(Y = 0) = 0, in the leading-order y- and z-

momentum equations yields 

U0YY (Y = 0) − iα0P0 = W0YY (Y = 0) − iβ0P0 = 0. 

Thus, we determine the following relation between C0 and Pm0 

(−iα0xs)
2/3C0Ai0(ζ0) = i(α0

2 + β0
2)Pm0. (14) 

B. Eigenrelation 

Matching α0U0 + β0W0 between the main and lower decks, using (12), gives a second relation 

between C0 and Pm0 

Z 
∞ (α2 + β0

2)1/2 
C0 Ai(ζ )dζ = − 0 Pm0. (15)

ζ0 α0xs 

Combining (14) and (15) yields the desired eigenrelation 

Ai0(ζ0) = κ(−iα0xs)
1/3(α0

2 + β0
2)1/2 , (16) R 

∞where κ = Ai(ζ )dζ . It is possible to scale xs from the above eigenrelation by writing 
ζ0 

−1/4 1/2
(α0,β0) = xs (α0,β 0), and α1xs − ω1 = xs γ1. 

The eigenrelation (16) then becomes 

0 + β 
2−iπ/6

α
1/3Ai0(ζ0) = κe 0 (α2

0)
1/2 , (17) 

i5π/6α
−2/3where ζ0 = e 0 γ1. 

This eigenrelation can be expressed in terms of the Tietjens function (see, for example, Reid 24). 

Using the notation in Healey 25 this function is given as 

Ai0(ξ0)F+(ξ0) = 1− ,R 
ξ0 Ai(ξ )dξξ0 ∞ 
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FIG. 8. Comparison of the asymptotic approximation 1 − ω/α ≈ 2.296R−1/4, with our numerical result 

in the case when β 0 = β = 0. The solid line represents the curve of neutral stability for two-dimensional 

disturbances. The dashed line is the lower branch asymptotic solution. 

= e−i5π/6where ξ0 z. For our problem of the stability of the fow due to a linear stretching sheet, 

the eigenrelation (17) becomes 

α0 2
F+(ζ0) − 1 = − (α2

0 + β 0)
1/2 . (18)

γ1 

Restricting our attention to neutrally stable solutions (α0 real), since ζ0 is the complex conjugate 

of ξ0, inspection reveals that F+(ζ0) is the complex conjugate of F+(ξ0). A well-known property 

of the Tietjens function F+(e−i5π/6z) is that it is real for z = z0 ≈ 2.297, with F+(e−i5π/6z0) ≈ 

0.564. In relation to the instability of the Blasius boundary layer, z = z0 corresponds to the lower 

branch of the neutral stability curve, while F+(ξ0) → 0, as |ξ0| → ∞, and this limit is relevant 

to the upper branch (Healey 25). Thus, approximations to the neutral solutions of (18) for two-

dimensional disturbances can be obtained easily, yielding α0 ≈ 1.001, and γ1 ≈ 2.299. These 

values are confrmed by numerical solution of (18). 

In order to compare the asymptotic predictions with the numerical solutions obtained in III we 

consider an asymptotic expansion in terms of c = ω/α . We have that 

ω ω α1xs − ω11− = 1− = ε + · · · = R−1/4 γ1 + · · · . (19)
α αxs α0xs α0 

Thus, for β 0 = 0, this gives the approximation 1− ω/α ≈ 2.296R−1/4. This is compared with the 

numerical solution from III in Fig. 8, showing excellent agreement. Solutions of (18) can also be 
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FIG. 9. Plots of the neutral solutions of (18) for a range of β 0 values. In (a) and (b) we plot α0 and γ1 

against β 0, respectively. 

obtained numerically for β 0 6= 0. The neutral values of α0 and γ1 obtained for a range of values of 

β 0 are shown in Fig. 9. The frst term in the approximation of R1/4(1− ω/α) = γ1/α0, can then 

be inferred for a range of values of β 0. 

In order to compare the three-dimensional results with the computational results we use the 

relation β = R−1/4β 0 at leading order. Then the asymptotic solution for a fxed value of β 0 can 

be compared with the computational solution for three-dimensional modes where β is given as 

above. For each value of R the value of β is determined and the neutral values of α and ω are 

determined (a similar comparison is made for the asymptotic suction boundary layer by Dempsey 

and Walton 22 in their Fig. 3). In Fig. 10 we plot such comparisons for the cases when β 0 = 1/2, 

and β 0 = 1. As before excellent agreement can be seen between the one-term asymptotic result 

and lower branch of the numerically calculated neutral stability curve. 

V. DISCUSSION AND CONCLUSIONS 

We have assessed the onset of instability of the fow due to a linear stretching sheet. Previous 

studies, which consider only Görtler-type disturbances, have concluded that this fow is linearly 

stable. However, our analysis has revealed that this fow is susceptible to disturbances in the form 

of Tollmien-Schlichting waves. 

The fow itself is a rare example of an exact analytical solution of the Navier-Stokes equations. 

Our analyses, both numerical and analytical, reveal that this fow is linearly unstable to travelling 

wave disturbances. Although we have been unable to rigorously prove an equivalent to Squire’s 
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FIG. 10. Comparison between the three-dimensional asymptotic solutions and the corresponding curves of 

neutral stability. The results for the cases when β 0 = 1/2, and β 0 = 1 are plotted in (a) and (b), respectively. 

At each step in the numerical solution procedure the value of the spanwise wavenumber is updated according 

to the relation β = R−1/4β 0. The upper branch of the neutral stability curve has been truncated at R = 

2× 106. 

theorem for this type of fat plate boundary-layer fow we have shown numerically that 2D dis-

turbances are indeed the most unstable. In this case, the critical Reynolds number is of the same 

order as other fat plate fows exhibiting exponentially decaying base fow solutions. 

Our integral energy analysis reveals that the total mechanical energy of the system will al-

ways decrease as the spanwise wavenumber increases. This result aligns with the fact that the 

critical Reynolds number increases (with associated decreasing growth rates) as the value of β 

increases from zero. Given that the streamwise velocity component is x-dependent and that the 

wall-normal velocity component is non-zero, a number of additional terms appear in a governing 

Orr-Sommerfeld-type equation. However, these terms are all of order O(R−1), and, as evidenced 

by our integral energy analysis, therefore play a negligible role in the linear stability characteristics 

of this system. 

The large Reynolds number asymptotic analysis presented in IV produces excellent results 

when compared to our numerical solutions. Of particular note is the exceptional agreement ob-

served between the two sets of solutions in the most unstable case when β 0 = β = 0. 

Given that for this type of fow, the local Reynolds number R is directly related to the stream-

wise location at which the stability analysis is applied, one can infer the dimensional lengthscale 

associated with the onset of linear instability given that the critical Reynolds number, stretching 
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rate and kinematic viscosity are known 

s 
ν∗ ν∗ ∗ xs = R = R .

ξ ∗L∗ ξ ∗ 

Given the critical Reynolds number results presented here, with a fuid of kinematic viscosity 
2ν∗ = 1× 10−6 m s−1, and a dimensional stretching rate of ξ ∗ = 20s−1 (as is consistent with the 

analysis of Vleggaar 3, in fact, this estimate for ξ ∗ is likely to be very conservative given the data 

presented in Fig. 1 of Vleggaar’s study), the onset of linear instability for a fow involving the 

cooling of a continuously extended sheet would be predicted to be of the order of xs 
∗ = O(101)m. 

As such, the possibility of this type of instability being realised in an industrial context are perhaps 

somewhat limited. However, in order to be able to more accurately model industrial processes 

involving surface stretching a number of additional considerations should be taken in to account. 

Including the effects of a large temperature gradient on the fow of a polymeric fuid would result in 

a modifcation of not only the base fow profles but also the governing perturbation equations (as 

evidenced in related studies by Miller et al. 20 and Cracco, Davies, and Phillips 26, for example). 

This, in turn, would affect the predictions for the critical Reynolds number for the onset of linear 

instability. Combining this with the fact that the intrinsic properties of the fuid would also be 

changing, could result in a signifcantly reduced prediction for x ∗. Indeed, this will be the goal of s

the continuation of this study. Using the framework developed here we plan to include the above 

effects so as to ascertain the relative importance of T-S wave disturbances in a more industrially 

relevant fow settings. Having said that, this study has clearly been successful in that we have 

been able to clearly demonstrate that fows of this nature are indeed susceptible to disturbances in 

the form of Tollmien-Schlichting waves, confrming the earlier speculation of Bhattacharyya and 

Gupta 14. 
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