
Similarity Search over Network Structure

Fan Wang

Doctor of Philosophy

December 2021

© Fan Wang, 2021

Fan Wang asserts her moral right to be identified as the author of this thesis

This copy of the thesis has been supplied on condition that anyone who consults it is under-

stood to recognise that its copyright belongs to its author and that no quotation from the

thesis and no information derived from it may be published without appropriate permission or

acknowledgement.



Dedication

To my parents

2



Aston University

Similarity Search over Network Structure

Fan Wang

Doctor of Philosophy
December 2021

With the advent of the Internet, graph-structured data are ubiquitous. An essential task

for graph-structured data management is similarity search based on graph topology, with a

wide spectrum of applications, e.g., web search, outlier detection, co-citation analysis, and

collaborative filtering. These graph topology data arrive from multiple sources at an astounding

velocity, volume and veracity. While the scale of network structured data is increasing, existing

similarity search algorithms on large graphs are impractical due to their expensive costs in

terms of computational time and memory space. Moreover, dynamic changes (e.g., noise and

abnormality) exists in network data, and it arises from many factors, such as data loss in

transfer, data incompleteness, and dirty reading. Thus, the dynamic changes have become the

main barrier to gaining accurate results for e�cient network analysis.

In real Web applications, CoSimRank has been proposed as a robust measure of node-pair

similarity based on graph topology. It follows a SimRank-like notion that “two nodes are con-

sidered as similar if their in-neighbours are similar”, but the similarity of each node with itself

is not constantly 1, which is di�erent from SimRank. However, existing work on CoSimRank is

restricted to static graphs. Each node pair CoSimRank score is retrieved from the sum of dot

products of two Personalised PageRank vectors. When the graph is updated with edges(nodes)

addition and deletion over time, it is cost-inhibitive to recompute all CoSimRank scores from

scratch, which is impractical. RoleSim is a popular graph-structural role similarity search mea-

sure with many applications (e.g., sociometry), it can get the automorphic equivalence of nodes

pair similarity, which SimRank and CoSimRank lack. But the accuracy of RoleSim algorithm

can be improved. In this study, (1) we propose fast dynamic scheme, D-CoSim and D-deCoSim,

for accurate CoSimRank search over large-scale evolving graphs. (2) Based on D-CoSim, we

also propose fast scheme, F-CoSim and Opt_F-CoSim, which greatly accelerates CoSimRank

search over static graphs. Our theoretical analysis shows that D-CoSim, D-deCoSim F-CoSim

and Opt_F-CoSim guarantee the exactness of CoSimRank scores. Experimental evaluations
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verify the superiority of D-CoSim and D-deCoSim over evolving graphs, and the fast speedup

of F-CoSim and Opt_F-CoSim on large-scale static graphs against its competitors, without any

loss of accuracy. (3) We propose a novel role similarity search algorithm FaRS, and a speedup

algorithm Opt_FaRS, which guarantees the automorphic equivalence capture, and captures the

information from the neighbour’s class. The experimental results of FaRS and Opt_FaRS show

that our algorithms achieves higher accuracy than baseline algorithms.

Keywords: Social Network, SimRank Model, Role-based similarity, Web search

F,WANG,PhD Thesis,Aston University 2021. 4



Acknowledgements

First and foremost, I want to thank my supervisors, Dr. Hai Wang and Dr. Weiren Yu,

for providing me with invaluable direction and strength throughout my PhD studies. Their

intelligent suggestions and unwavering information sharing constantly motivate me to improve

my work. Nothing in this small space can adequately express my gratitude and admiration for

them.

I am grateful to all members of the computer science group, especially Dr. Hongxia (Helen)

Wang, who has encouraged me to continue working on the original concept of this project. I’m

particularly grateful for the advise and support I received from the School of Engineering and

Applied Sciences’ research and administrative employees during my PhD studies.

I also want to express my gratitude to all of my friends and colleagues at Aston University

and elsewhere. My PhD research work could not have been completed in the current shape

without their encouragement and assistance. I’m afraid I will not be able to mention all of their

names here. I am grateful to my friends Rui Zhu, Dr. Xi He, and Dr. Lei He for their constant

support and friendly company. Thank you so much to Lin Gui, Nhat Do, Vishwash Batra, and

Gabriele Pergola for making our time together so delightful.

Finally, I am grateful to my family: my parents for their unending love and support, as

well as my grandparents and extended family members for their tremendous care and attentive

attention in my life.

Thanks to all of you

5



Contents

Dedication 2

Abstract 3

Acknowledgements 5

Contents 6

List of Tables 9

List of Figures 10

List of Abbreviations 14

List of Symbols 15

Declaration 17

1 Introduction 18

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Applications and Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 E�cient Similarity Algorithms on Evolving Graphs . . . . . . . . . . . . . 21

1.3.2 Similarity Detection on Large-scale Graphs . . . . . . . . . . . . . . . . . 22

1.3.3 Role Similarity Detection on Social Networks . . . . . . . . . . . . . . . . 24

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Literature review 26

2.1 Similarity Search over Static Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6



2.1.1 Iterative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Non-iteration Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2.1 Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2.2 Matrix-Based Methods . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Similarity Search over Evolving Graphs . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 PageRank on Evolving Graphs . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 SimRank on Evolving Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Role-based Network Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Fast and Accurate Similarity Search For Evolving Graphs 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Jeh and Widom’s SimRank Model . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 CoSimRank Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Similarity Search for Large-scale Evolving Graph Streams . . . . . . . . . . . . . 44

3.3.1 The Similarity Search algorithm For Incremental Dynamic Graphs . . . . 44

3.3.1.1 Updating Adjacency Matrix . . . . . . . . . . . . . . . . . . . . 44

3.3.1.2 D-CoSim Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Similarity Search over Decremental Graph . . . . . . . . . . . . . . . . . . 55

3.3.2.1 Similarity Search over Decremental Dynamic Graphs with Edges’

Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2.2 Similarity Search over Decreased Dynamic Graph with Node

Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.3 Combinatorial Algorithms For Similarity Search Over Dynamic Graphs . 76

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.2.1 Experimental Results of D-CoSim For Incremental Dynamic Graphs

83

F,WANG,PhD Thesis,Aston University 2021. 7



3.4.2.2 Experimental Evaluation of D-deCoSim Algorithm over Decre-

mental Dynamic Graphs . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Scalable Similarity Search over Large-Scale Graphs 94

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.2 Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Why Spanning Polytree is Irreplaceable . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Computing CoSimRank Scores of Spanning Polytrees . . . . . . . . . . . . . . . . 102

4.4 F-CoSim over Large-Scale Network . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Further E�ciency Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 The Optimisation of Spanning Polytree Extraction. . . . . . . . . . . . . . 109

4.5.2 E�cient Single-Source CoSimRank Scores’ Retrieval of Spanning Polytree. 112

4.5.3 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.6.2.1 Experimental Results of F-CoSim . . . . . . . . . . . . . . . . . 119

4.6.2.2 Experimental Results of the Optimisation F-CoSim Algorithm . 123

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 An Axiomatic Role Similarity Search Over Networks 131

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.1.2 Chapter Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Proposed Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3.1 FaRS: A Role-Based Similarity Algorithm Over Graphs . . . . . . . . . . 143

F,WANG,PhD Thesis,Aston University 2021. 8



5.3.2 Sec-RoleSim: Role-Based Similarity Search algorithm Based On Graph

Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.3 The Axiomatic Properties of Sec-RoleSim . . . . . . . . . . . . . . . . . . 149

5.4 EFFICIENT COMPUTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.1 Pruning Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4.2 P-speedup approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.4.3 Out-speedup approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.5 The Application of Opt_FaRS Over Dynamic Graphs . . . . . . . . . . . . . . . . 166

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6 Conclusions and Future Work 179

6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.2 Future Avenues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Appendices 193

A Configuration METIS 194

A.1 Resource Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

A.2 Compile METIS algorithm In MATLAB . . . . . . . . . . . . . . . . . . . . . . . 195

A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

B SNAP Compilation 199

F,WANG,PhD Thesis,Aston University 2021. 9



List of Tables

2.1 Time Complexity Comparisons on Iteration Algorithms . . . . . . . . . . . . . . 29

2.2 Comparisons on Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Three Cases of Dynamic Graphs with Node Deletion . . . . . . . . . . . . . . . . 63

3.2 Description of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Description of the Five Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.1 Basic Information of Configuration METIS . . . . . . . . . . . . . . . . . . . . . 194

B.1 Basic Information of SNAP Compilation . . . . . . . . . . . . . . . . . . . . . . . 200

B.2 Code set of SNAP Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

10



List of Figures

1.1 Facebook social Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Dynamic Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Decomposing G into a spanning polytree T and �G (= G ° T ) . . . . . . . . . . 45

3.3 Updating the Adjacency Matrix of the Incremental Dynamic Graph G . . . . . . 47

3.4 Edge Deletion �G of Graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Updating the Adjacency Matrix of Dynamic Graph G With Edges Deletion . . . 57

3.6 Case 1: Nodes Deletion �G of Graph G . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Case 2 of Decremental Dynamic Graphs with Node Deletion . . . . . . . . . . . . 68

3.8 Case 3: Node Deletion �G of Graph G . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 4 Cases: Node Deletion �G of Graph G . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 Example of old web graph G(solid arrows) updated by �G . . . . . . . . . . . . 78

3.11 Parameter Testings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.12 Time E�ciency on Incremental Graphs . . . . . . . . . . . . . . . . . . . . . . . 83

3.13 Time E�ciency on Incremental Graphs: Varied |�G| for D-CoSim . . . . . . . . 84

3.14 Memory E�ciency & Scalability of D-CoSim . . . . . . . . . . . . . . . . . . . . . 85

3.15 Accuracy of D-CoSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.16 Time E�ciency on Decremental Graphs (Edge deletion) . . . . . . . . . . . . . . 86

3.17 Time E�ciency on Decremental Graphs (Node Deletion) . . . . . . . . . . . . . . 87

3.18 Time E�ciency of All 3 Cases in D-deCoSim (Node) . . . . . . . . . . . . . . . . 88

3.19 Memory E�ciency & Scalability of D-deCoSim(Edge) . . . . . . . . . . . . . . . . 89

3.20 Memory E�ciency & Scalability of D-deCoSim(Node) . . . . . . . . . . . . . . . 90

3.21 Accuracy of D-deCoSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Extract a spanning tree and spanning polytree from the undirected G . . . . . . 101

11



4.2 Extract a spanning tree and spanning polytree from the directed G . . . . . . . . 101

4.3 Decompose G into a spanning polytree T and �G (= G ° T ) . . . . . . . . . . . 104

4.4 Comparison of Opt_Find_Spanning_PolyTree and Find_Spanning_PolyTree Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Time E�ciency on Static Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Time E�ciency: Phases in F-CoSim . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.8 Memory E�ciency & Scalability of F-CoSim . . . . . . . . . . . . . . . . . . . . . 121

4.9 Memory E�ciency: Phases in F-CoSim . . . . . . . . . . . . . . . . . . . . . . . . 121

4.10 Memory E�ciency: Phases in F-CoSim . . . . . . . . . . . . . . . . . . . . . . . . 122

4.11 Time E�ciency Comparison of Procedure 1 and Procedure 2 . . . . . . . . . . . 123

4.12 Time E�ciency Comparison of P2-S(T ) and Opt_P2-S(T ) . . . . . . . . . . . . 124

4.13 Time E�ciency Comparison of F-CoSim and Opt_F-CoSim . . . . . . . . . . . . . 125

4.14 Memory E�ciency Comparison of P2-S(T ) and Opt_P2-S(T ) . . . . . . . . . . . 126

4.15 Memory E�ciency Comparison of F-CoSim and Opt_F-CoSim . . . . . . . . . . . 126

4.16 Accuracy of F-CoSim and Opt_F-CoSim . . . . . . . . . . . . . . . . . . . . . . . 127

5.1 A Social Network of A Project Studio With Three Levels (Level 1: project man-

ager/associate project manager; Level 2: senior sta�s; Level 3: junior sta�s). . . 133

5.2 In-Neighbour Matrix of Node-Pair (u, v) . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 The role similarity search results of RoleSim and FaRS . . . . . . . . . . . . . . . 137

5.4 Left side: Example of Graph G. Right side: Multi-Hop Backward Tracking Path

of the Graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5 Iterated Computation of CP2
3(out, e) . . . . . . . . . . . . . . . . . . . . . . . . 159

5.6 The Maximum Matching Result of CP1
4 . . . . . . . . . . . . . . . . . . . . . . . 165

5.7 Left side: example of old graph G (solid arrows) updated by ÂG (new edge in dashed

arrow and deleted edge with red cross). Right side:the partition of updated edges 167

5.8 FaRS with di�erent ⁄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.9 FaRS with di�erent � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.10 Accurate Evaluation of Algorithms Over Four Departments’ Networks . . . . . . 173

5.11 Accurate Evaluation of the Opt_FaRS Algorithm on EU(K-means Clustering Method)174

5.12 Accurate Evaluation of the Opt_FaRS Algorithm (NDCG Method) . . . . . . . . 175

F,WANG,PhD Thesis,Aston University 2021. 12



5.13 Time E�ciency of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.1 Online Source of METIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.2 The details of the metismex-master file . . . . . . . . . . . . . . . . . . . . . . . . 196

A.3 Generate Visual Studio project by CMake (Phase 1) . . . . . . . . . . . . . . . . 196

A.4 Generate Visual Studio project by CMake (Phase 2) . . . . . . . . . . . . . . . . 196

A.5 Redefinition in Several Header Files of METIS (Phase 1) . . . . . . . . . . . . . . 197

A.6 Redefinition in Several Header Files of METIS (Phase 2) . . . . . . . . . . . . . . 197

A.7 Environment seeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.8 Build MEX-function in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.9 The code of MEX-file comply in MATLAB . . . . . . . . . . . . . . . . . . . . . 198

B.1 Comply SNAP with Cygwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.2 Configure SNAP in Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

B.3 Add the location of SNAP into VC++ directories . . . . . . . . . . . . . . . . . . 202

B.4 Add SNAP head file into project . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

B.5 The Result of SNAP Example File . . . . . . . . . . . . . . . . . . . . . . . . . . 203

F,WANG,PhD Thesis,Aston University 2021. 13



List of Abbreviations

AS as-735 data which is a communication graph representing autonomous systems

BFS breadth-first search (Mehlhorn & Sanders, 2008)

CSR CoSimRank algorithm (Rothe & Schütze, 2014)

CSM CoSimMat algorithm (Yu & McCann, 2015a)

DFS depth-first search (Mehlhorn & Sanders, 2008)

EE email-EuAll data which is an EU email contact graph.

EU email-Eu-core-temporal data from a prominent European research organisa-

tion was used to create the network.

HP ca-HepPh data which is a collaboration graph obtained from the arXiv High

Energy Physics

LJ soc-LiveJournal data which is a social community network

NDCG normalised discounted cumulative (Y. Wang, Wang, Li, He, & Liu, 2013)

PPR Personalized PageRank (Brin & Page, 1998)

RTG random typing generator (Akoglu & Faloutsos, 2009)

RWR Random Walk with Restart (Yu & McCann, 2016)

SVD Singular value decomposition

WG web-Google data which is a Google web graph, where each node is a web page

and each edge a hyperlink

WT wiki-Talk data which is a Wikipedia network

14



List of Symbols

G given (old) graph G

�G update graph to (old) graph G
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E the edge set of the graph G

q/Q the query/the query set

T a spanning polytree

M(i, j) the maximum matching value of in-neighbour matrix of node pair (i, j)

maxdeg
≠(i, j) the maximum value of in-degree of node pair (i, j)

maxdeg
+(i, j) the maximum value of out-degree of node pair (i, j)

mindeg
≠(i, j) the minimum value of in-degree of node pair (i, j)

mindeg
+(i, j) the minimum value of out-degree of node pair (i, j)

⁄ the normalization coe�cient (0 Æ ⁄ Æ 1)

I(u) the in-neighbours set of node u

O(u) the out-neighbours set of node u

pl/P the tracking path

M[CPk≠1] the maximum matching result of CPk≠1

ÊM[CPk≠1] the matched values set of maximum matching on CPk≠1

Bij the in-neighbour matrix of node-pair (i, j)

M[Bij ] the maximum matching result of Bij

ÊM[Bij ] the matched values set of maximum matching on Bij

M[Bij , CPk≠1] the matched values of CPk≠1 in Bij

|Mk[Bij , CPk≠1]| the number of matched values of CPk≠1 in Bij
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1 Introduction

Network structure is often ubiquitous around us. Some vivid examples include social net-

works, web graphs, neural networks and infrastructure networks. These data carry graph topol-

ogy structures and arrive from multiple sources at an astounding velocity, volume and veracity.

Many proliferating application areas, such as link analysis, web mining, recommender systems

and graph databases, have resulted in a growing requirement to access single-source relevance

based on network structure.

1.1 Background

What is network structure (graphs)? A basic and complete network structure (graphs)

(Sedgewick & Wayne, 2011) is composed of node sets and connections between nodes. Graphs

are commonly used to describe and store data with a “many-to-many” relationship, which is

a critical data structure. Depending on the assumptions used to update the data, graphs can

be classified into several types, such as: static graphs and dynamic graphs. The static graph’s

nodes and edges will not change as time passes or as other factors change. Updates are present

in dynamic(evolving) graphs. However, the updates in evolving graphs are known and unique,

whereas the updates in uncertain graphs are not. This thesis focuses on algorithms for both

dynamic and static graphs. Graphs are categorised into directed and undirected graphs based

on the types of edges in the graph. The adjacency matrix and the linked list are two standard

storage methods for graphs. We mainly employed the adjacency matrix in our studies.

Why is the graph structure used? Why use the graph structure to analyse datasets when

there are so many di�erent types of data representation? It is used because the graph structure

displays the type of node and the interaction between node pairs unambiguously. The existing

graph-based techniques, such as the shortest path method, depth-first search approach etc. can

aid data analysis. For example, consider the urban road network. Each city site represents a
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node, and the road linking the two nodes represents an edge, resulting in a city road network.

The starting point is location a, and the destination is location b. In this case, we utilise the

shortest path algorithm in the road network to find the quickest route from location a to location

b.

Similarity Search Based on Network Structure. As an implement of network-structured

data, the similarity search has become an important and necessary research area. Generally

speaking, similarity search can be split into two types: one is text-based similarity search (such

as words), and the other one is link-based similarity search (including graph and network). In

this thesis, we primarily concentrated on link-based similarity search.

Analysing the relationship between nodes in a network-structured data can reveal the sim-

ilarity between nodes of graphs, thus similarity searching has become a fundamental issue in

graph analysis. For example, Figure 1.1 is a Facebook graph. It depicts a typical social network

where each node represents a user and each edge denotes the relationship between the two users.

Essentially, my research aimed to identify the similarity between any two nodes in a graph (for

instance, similarity search between Nick and Alice in Figure 1). While the scale of network-

Figure 1.1: Facebook social Network

structured data is increasing, updates (such as noise and abnormality) often exist in network

data. Such dynamic updates often arise from various factors, such as data loss during trans-

fer, data incompleteness and dirty reading, and this has become the main barrier to obtaining

accurate results from e�cient network analysis.
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1.2 Applications and Motivations

Several relevant real-world instances are provided below, which demonstrating the need for

e�cient algorithms to cope with similarity search on massive, dynamic network data.

Application 1 (Image Recommendation system). For image recommendation, searching

for images that are similar to a given image is critical. The previous research has primarily

focused on content-based similarity detection, which quantifies similarity based on visual char-

acteristics such as colour and shape, with only a few studies paying significant attention to

semantics. The semantic performance of the image recommendation system can be improved by

using a similarity search algorithm on the image-tag network (M. Zhang, Yang, Dong, Wang,

& Zhang, 2021). The image-tag network is made up of the relationships between images and

tags, where tags and images are the nodes and the interactions between pictures and tags are

the edges. The similarity search algorithm is used to provide image recommendation semanti-

cally based on the intuition that “similar images contain similar tags, and similar tags describe

similar images”. An image recommendation system with a similarity search algorithm can ef-

ficiently retrieve the image recommendation list with respect to the query image semantically,

which is better than an image recommendation system with content similarity (M. Zhang et al.,

2021). However, the number of images is constantly increasing with the continuous development

of the Internet information age; thus, the content (images and tags) of images with dynamic

updates. Therefore, e�cient and accurate image recommendation system algorithms on big dy-

namic graphs are still challenging. In this thesis, we proposed a fast and exact similarity search

algorithm over large-scale evolving graphs to bridge this gap(Chapter 3).

Application 2 (Community Detection). Since data from many di�erent areas can be

naturally transferred to graph typologies, networks have grown ubiquitous. Many networks can

be naturally divided into many communities (K. Wu & Liu, 2021). A community is a group of

comparable nodes, such as employees in an organisation with similar work or animals at the same

level in the food webs. The similarity detection approach is mostly used to find communities on

graph structures. Similarity search algorithms detect communities based on the intuition that

“the more common the neighbour nodes of two nodes, the more similar they are”. Take food

webs as an example; each animal is denoted as a node, and the edge exists between prey and

predators. The food web continues to expand as people’s knowledge of animals grows. When
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dealing with the community detection of huge graphs, the existing similarity search algorithms

demand a high level of computational complexity. This thesis provides the solution for enhancing

the e�ciency of retrieving similarity scores over large-scale static graphs(Chapter 4).

Application 3 (De-anonymisation of Social Networks). People are becoming increasingly

aware of the privacy risks associated with public network information as network information

continues to expand. De-anonymising the network (identifying the same person in di�erent

networks) can help it e�ectively assess the privacy risks of users (Shao, Liu, Shi, Zhang, & Cui,

2019). De-anonymisation is a technique for discovering information in a dataset. By comparing

anonymised data with other data sources, it is possible to re-identify the source of the anonymised

data. De-anonymisation can be accomplished using any information that di�erentiates one data

source from another. The role similarity algorithm is used to achieve de-anonymisation based

on the notion that correct node mappings have a high degree of similarity between nodes. To

e�ciently produce high-quality de-anonymisation findings, a role similarity search algorithm

takes advantage of node similarities and structural information from neighbourhood matches.

However, the accuracy and e�ciency of existing role similarity search algorithms based on graph

topology can be improved. Thus, we develop a more accurate role similarity search algorithm

over graphs as well as an accelerated algorithm to improve the computation e�ciency(Chapter 5).

1.3 Challenges and Contributions

The purpose of this thesis is to build unique link-based single-source similarity search models

and innovative strategies for e�ciently similarity searching on large-scale static and dynamic

networks. Furthermore, we are interested in innovative methods for taming the computing

complexity of similarity searching in a scalable manner as well as in unique e�ective models for

enriching the semantics for role relevance assessment without incurring increased computational

costs. We go over the thesis’ primary obstacles.

1.3.1 E�cient Similarity Algorithms on Evolving Graphs

Real graphs are frequently huge, and links evolve with modest changes. When the graph

is refreshed, reassessing the similarities of all node pairs is somewhat costly. We, therefore,

examined fast and accurate similarity search algorithms on evolving networks.
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SimRank (Jeh & Widom, 2002) is a well-known link-based pairwise similarity model, how-

ever, a SimRank search on vast and dynamic networks creates considerable issues due to its

self-referentiality. The more e�cient existing similarity search measure, CoSimRank (Rothe &

Schütze, 2014), was proposed at ACL 1 2014. Unlike the SimRank algorithm, the CoSimRank

algorithm captures all meeting times of two arbitrary surfaces. The SimRank algorithm only

captures the first meeting time of two random surfaces. This is why the CoSimRank algorithm

retrieves more accurate similarity scores than the SimRank algorithm. However, when we apply

CoSimRank over large-scale dynamic graphs, it leads to the following limitation: the CoSimRank

algorithm is not sensitive to the updates of dynamic graphs. When we implement CoSimRank

on dynamic graphs, it needs to compute all node pairs’ similarity scores from scratch even if we

only add or delete one node or edge to the old graph. Thus, it is di�cult for the CoSimRank

algorithm to produce quick responses over dynamic graphs due to its cost for resumptions.

We have addressed the aforementioned issue in Chapter 3. (1) We proposed a novel sim-

ilarity search algorithm over large-scale incremental evolving graphs, D-CoSim. The D-CoSim

algorithm can e�ciently and accurately retrieve the similarity search scores of the updated parts

of the dynamic graphs rather than recomputing the similarity scores of all the node pairs of the

new graphs. (2) We proposed another similarity search algorithm over decremental graphs,

D-deCoSim. It is similar to the D-CoSim algorithm because they are sensitive to the updated

parts of the graphs. The D-deCoSim algorithm can be separated into two parts, D-deCoSim(Edge)

and D-deCoSim(Node). D-deCoSim(Edge) can be implemented on the dynamic graphs with edge

deletion. D-deCoSim(Node) works on the dynamic graphs with node deletion.

Using real large-scale data, we empirically verify the following: (1) For time e�ciency,

D-CoSim and D-deCoSim outperforms the best-known baseline algorithms by around 3–5 order-

of-magnitude. (2)D-CoSim and D-deCoSim require smaller memory space than baseline algo-

rithms to ensure memory e�ciency. (3) D-CoSim and D-deCoSim retrieve similarity scores quickly

and accurately on dynamic graphs, with no need to reassess them from scratch.

1.3.2 Similarity Detection on Large-scale Graphs

Graph structure plays an increasingly important role in people’s lives, such as Facebook

networks, online shopping networks, urban road structure networks etc. As the application of
1Association for Computational Linguistics Conference.
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graph structure in people’s lives increases, the size of graphs becomes larger and larger. There-

fore, an e�cient similarity detection approach that can be applied to large-scale graphs is urgent

and necessary. The existing similarity search algorithms over static graphs have the following

limitations: (1) Due to the limitation settings of some existing algorithms, some node pairs’

similarity search scores equal 0(“zero issue”). For example, SimRank (Jeh & Widom, 2002) has

“zero issue”. For any two nodes in the graph, if there does not exist any symmetric in-link path

of node pair, the SimRank score of the node pair is 0. Similarity search algorithms with “zero

issue” would miss partial information contained in the graphs. (2) For single-source similarity

search over large-scale static graphs, the computation of existing algorithms is time-consuming;

e.g., the time complexity of CoSimRank is O(K(m + n)) for computing one node pair’s simi-

larity score. (3) Memory e�ciency can directly a�ect the application range of algorithms. For

example, Co-Simmate (Yu & McCann, 2015a) needs O(n2) memory to store the decomposed

matrices. Thus, Co-Simmate only works on small graphs.

Motivated by this, in Chapter 4, we propose a fast and accurate similarity search model over

large-scale static graphs, F-CoSim. F-CoSim is mainly composed of three phases: (i) extracting

a spanning polytree from the given graph; (ii) according to the advantage of the spanning

polytree, computing the similarity scores of the spanning polytree level by level; (iii) recalling

the D-CoSim algorithm to generate the di�erence between the given graph and the spanning

polytree. Furthermore, we accelerate the F-CoSim algorithm by three parts: (i) we propose a

more e�cient approach to extracting the spanning polytree from the given graphs; (ii) a single-

source similarity search algorithm based on the spanning polytree is implemented; (iii) inspired

by the definition of parallel computing, we propose a novel algorithm to speed up the F-CoSim

algorithm. The first step of the accelerate algorithm is to separate graphs by following the

METIS (Kusumoto, Maehara, & Kawarabayashi, 2014) approach and to compute the similarity

scores of each part simultaneously. Then, it uses D-CoSim to retrieve the similarity scores of the

cut edges.

Our empirical evaluations verify the following: (1) our algorithms’ time e�ciency perfor-

mance is about 9.8 times better than the best-known baseline algorithms; (2) our algorithms

retain comparable linear memory and scale on million-node graphs; (3) our algorithms improve

computational e�ciency without sacrificing accuracy.

F,WANG,PhD Thesis,Aston University 2021. 23



1.3.3 Role Similarity Detection on Social Networks

People’s social networks have grown significantly in the last decade due to the rapid ad-

vancement of electronic communication technologies. Role similarity detection is essential for

analysing real complex social networks, as it can retrieve structural information from networks.

RoleSim (Rothe & Schütze, 2014) is the best-known role similarity search algorithm over net-

works. The RoleSim algorithm was founded on the recursive philosophy that “two nodes have

the same role if they interact with equivalent sets of neighbours”. RoleSim retrieves the role sim-

ilarity of node pairs based on graph automorphism, and the role similarity scores are computed

using the maximum matching approach. However, the RoleSim algorithm has the following

limitations: (1) (accuracy) the RoleSim scores are calculated using the maximum matching ap-

proach; thus, the algorithm only capture partial information from a node pair’s in-neighbour

matrix. The missing information causes the accuracy of the algorithm to decrease; (2) (compu-

tation e�ciency) it is time-consuming to implement the RoleSim algorithm for single-source role

similarity scores computation with respect to the query as redundant calculations; (3) (dynamic)

if the graph constantly undergoes small changes over time when using RoleSim on dynamic net-

works, all node-pair role similarity scores must be computed from scratch. As a result, the

RoleSim algorithm struggles to generate speedy replies over dynamic graphs due to the high

cost of resumptions.

In Chapter 5, we propose a more accurate single-source role similarity search algorithm

based on graph topology. Our role similarity search algorithm computes role similarity scores

with respect to a query by top � maximum matching. The convergence, uniqueness, symme-

try, boundedness and triangular inequality of our role similarity search algorithm are proved.

Furthermore, an acceleration algorithm is proposed to speed up our role similarity algorithm.

The acceleration algorithm can be divided into two parts: tracking path extraction and pre-

computation. Then, We implement our role similarity search algorithm over dynamic graphs,

and the pre-processor is chunking the updated parts of evolving graphs into groups with the

same end node. Finally, the role similarity scores of the new graph can be generated by the

Opt_FaRS algorithm.

The experimental evaluations along with the theoretical proofs show the following: (1) our

role similarity search algorithm is more accurate than two state-of-the-art algorithms based on

graph topology; (2) the accelerate role similarity search algorithm does not sacrifice accuracy
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for speed.

1.4 Thesis Outline

The rest of the thesis is organised in the following chapters:

Chapter 2 In this chapter, we provide a comprehensive literature review on graph-based sim-

ilarity search. According to the di�erent standards, similarity search algorithms can be

divided into di�erent types. They can be divided into static and dynamic algorithms on

evolving graphs based on the assumptions pertaining to date updates. Similarity search

algorithms can also be divided into iterative and non-iterative algorithms (Monte Carlo

sampling and matrix-based methods) depending on the format of the models.

Chapter 3 We propose e�cient similarity search algorithms over incremental and decremental

dynamic graphs in this chapter. We conduct several experiments on real datasets to

demonstrate that our algorithms steadily outperform two state-of-the-art algorithms (time

e�ciency and memory e�ciency) and that our algorithms do not scarify accuracy for

speeding up.

Chapter 4 In this chapter, we propose a fast and accurate similarity search algorithm over

large-scale static graphs. Furthermore, we develop an acceleration algorithm to reduce the

time consumption while computing similarity scores. We conduct extensive experiments

on large datasets to demonstrate that our e�cient similarity search algorithm outperforms

the state-of-the-art approaches on static graphs with better time and memory e�ciency.

At the same time, our algorithms do not scarify accuracy for speeding up.

Chapter 5 We propose an accurate role similarity search algorithm based on graph topology in

this chapter. Based on our role similarity search algorithm, we also propose an optimisation

algorithm. We conducte several experiments on real datasets to demonstrate that our

algorithms are steadily more accurate than two baseline algorithms, and our optimisation

algorithm does not scarify accuracy for speeding up.

Chapter 6 This chapter summarises the research’s findings, highlights the new contributions

the study has made, and addresses future research directions.

The contents of the main chapter are supplemented by Appendix A and Appendix B.
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2 Literature review

In the days of information and networks, similarity detection has emerged as the most ef-

fective data analysis method. Similarity detection algorithms are extensively used in big data

processing in real life, such as recommendation systems (J. Wu et al., 2021; Linden, Jacobi, &

Benson, 2001; Machado, Bocek, Filitz, & Stiller, 2014; Catherine & Cohen, 2016; Hang & Singh,

2010), web mining (Kinne & Lenz, 2021; Muni Manasa & Farooq, n.d.), social networks (Kumar,

Novak, & Tomkins, 2006; Garg, Gupta, Carlsson, & Mahanti, 2009; Machado et al., 2014), etc.

Based on people’s demand for instantaneous information acquisition, e�cient and accurate sim-

ilarity detection algorithms on large graphs denote a problem to be solved urgently. In a graph

structure, similarity detection algorithms can be divided into di�erent types in accordance with

di�erent application environments and requirements. According to the graphs, the algorithm

can be divided into static and dynamic algorithms. As per the requirements of information

searchers, it can be divided into node-pair, partial node-pairs, all node-pairs, and single-source

algorithms. The di�erent implementation methods of similarity detection algorithms can be

divided into iteration, Monte Carlo sampling, and matrix-based method. In this chapter, we

primarily review the existing work in detail from three directions, which is inclusive of static,

dynamic and role similarity detection. This chapter provides an elaborate summary of previous

works in relevance evaluation and relevant fields. In the relevant chapters, a brief comparison

of earlier research will be presented along with the methodologies established in this thesis.

2.1 Similarity Search over Static Graph

The development of methods for e�cient similarity search over static graphs denotes a sig-

nificant research area, which is widely applied in node ranking and graph data mining (Yu &

Lin, 2013; Yu, Lin, & Zhang, 2013a; Yu, Lin, Zhang, Chang, & Pei, 2014; Yu, Lin, Zhang, &

McCann, 2015; Yu, Lin, Zhang, Zhang, & Le, 2012; Yu & McCann, 2014, 2015b, 2015c). In
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this section, studies on state-of-the-art data computational methods for similarity search over

the static network structured data are reviewed. According to the varied methods for similarity

search, these literature can be divided into two categories, i.e., iterative algorithms and

non-iterative algorithms.

2.1.1 Iterative Algorithms

Computing similarity by iterative algorithms has been proposed as powerful method in real

web applications. The following is a summary of recent studies on similarity search using iterative

algorithms based on graph topology.

On the basis of an intuitive and straightforward graph-theoretic model, a general similarity

iterative method called SimRank (Jeh & Widom, 2002) was proposed, which is the most adopted

similarity search method. The basic intuition of SimRank is that two objects are similar if they

are related to similar objects. In addition to the basic intuition, they defined any node in a graph

is maximally similar to itself (S(a, a) = 1). The central idea of the SimRank algorithm is that

the similarity score of any two nodes in a graph is computed by the average similarity scores of

their in-neighbours. They assign a decay factor C (where 0 Æ C Æ 1) to prevent the similarity

score of one node and itself equal to the similarity of the node’s in-neighbours (if node b and

node c are in-neighbours of node a, decay factor C is used to prevent S(a, a) = S(b, c) = 1).

Intuitively, a SimRank score S(a, b) aggregates all the paths of two random surfers starting at

node a and node b, and the algorithm will terminate after meeting at a common node. SimRank

has been a fundamental measure for evaluating the similarity of node-pair in a graph, due to

its self-referentiality, accuracy,and fast SimRank computation over static graphs pose striking

challenges.

In order to solve these problems, an accurate estimate and optimization techniques for Sim-

Rank computation are suggested (Lizorkin, Velikhov, Grinev, & Turdakov, 2008a). Firstly, they

proposed a method to estimate the x accuracy of SimRank algorithm. They assigned that the

di�erence between SimRank theoretical and iteration similarity scores decrease exponentially,

referred to as the accuracy gap. The accuracy of SimRank score will increase while the number

of iteration goes up. Similarly, while the decay number is closer to 1, the accuracy of SimRank

score will decrease. This proposition implies that it can be achieved by choosing a smaller decay

factor or more iterations to guarantee a more accurate similarity score. Next, they proposed
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an optimization technique to expedite the SimRank algorithm. They firstly chose the essential

node-pair with zero scores and node without out-neighbour, which, in turn, is used to reduce the

computation of each iteration. Thereafter, the essential part of the technique is partial sums,

which greatly avoids repeat computations. Finally, they assign a threshold to reduce the mem-

ory space for useless similarity scores (the values of which are close to 0). This optimization

technique reduces the computation of SimRank from O(n4) to O(n3) time in the worst case

scenario.

SimRank similarity algorithm was firstly represented by matrix formulation in (Yu, Zhang,

Lin, Zhang, & Le, 2012a). The method successfully prevents the random surfer from the two start

nodes from getting stuck by the teleportation approach. The adjacency matrix is stored by the

Compressed Sparse Row(CSR) scheme, which greatly reduces the memory space of computation.

Yu. et al. also developed a novel optimization method such that each iteration of similarity

computing takes O(min(n ⇧ m, n
r)) time and O(n + m) space, where m denotes the number of

edges in a graph.

Based on the previous research findings (Lizorkin et al. 2008), a more e�cient SimRank

computation method has been put forward (Yu, Lin, & Zhang, 2013b). They discovered that

it is possible for similarity scores across in-neighbours to have common sub-summations fol-

lowing partial sums. The novel clustering method of optimizing partial sum sharing eliminates

redundancy computation based on minimum spanning tree. This e�cient algorithm drastically

reduces the time complexity of SimRank from O(n4) to O(Kd
Õ
n

2), where d
Õ is much smaller

than the average in-degree of a graph. Thus, SimRank can be applied in a wide area by this

measure.

Another e�cient algorithm was proposed based on a matrix formulation, called CoSim-

Rank (Rothe & Schütze, 2014). It recursively follows the SimRank-like philosophy that two

nodes are considered similar if their in-neighbours are similar. However, two di�erent key points

are known to exist between SimRank and CoSimRank algorithm. Firstly, for CoSimRank, the

similarity between a node and itself is not equal to 1 (S(a, b) ”= 1). Secondly, each CoSimRank

score needs to aggregate all meeting times of two random surfers starting at the node-pair. Thus,

CoSimRank has been found to be more accurate and practical than SimRank in many real-life

applications. The most major improvement of CoSimRank is that the algorithm can compute

the similarity score of a single node pair without computing the similarity scores of the entire
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graph, thus greatly improving the time complexity to O(n2).

Time Complexity Analysis Depending on the di�erent characteristics of iteration simi-

larity search algorithm over static graph, we summarize time complexity using three di�erent

aspects:

• Single-pair. The SimRank score computation S(a, b) of one node pair (a, b) of the given

graph.

• All-pairs. The SimRank scores computation S(ú, ú) of all node pair of the given graph.

• Per-iteration. The SimRank scores computation S(ú, ú) of all node pair of the given

graph at each iteration.

Table 2.1: Time Complexity Comparisons on Iteration Algorithms

Literature Type Time Complexity

(Jeh & Widom, 2002) All-pairs O(n4)

(Lizorkin et al., 2008a) All-pairs O(n3)

(Yu, Zhang, et al., 2012a) Per-iteration O(min(n ⇧ m, n
r))

(Yu et al., 2013b) All-pairs O(Kd
Õ
n

2)

(Rothe & Schütze, 2014) Single-pair O(n2)

From Table 1, it can be seen that the SimRank scores’ computation became increasingly

e�cient along with the order of techniques. The most e�cient one is CoSimRank algorithm,

which needs time complexity O(n2) to compute single-pair nodes. This is because it computes a

single node similarity without the similarity scores of the entire graph. In the next sub-section,

we will survey state-of-art non-iteration similarity search algorithms, and divide the previous

studies in accordance with di�erent methodologies (Monte Carlo Sampling and Matrix-Based

Method).

2.1.2 Non-iteration Algorithm

Retrieving similarity scores by the iterative method su�ers from some limitations, such as

ine�ciency. In particular, when applied on an extensive scale network structured data, the

iterative algorithm will entail high time complexity. Thus, there are several types of research

F,WANG,PhD Thesis,Aston University 2021. 29



studies on non-iteration similarity search algorithms over graphs. In this section, we divide non-

iteration similarity search algorithms on graphs into two groups: Monte Carlo sampling method

and matrix-based method.

2.1.2.1 Monte Carlo Sampling

Unlike the iterative similarity search algorithms, similarity search algorithms with Monte

Carlo sampling methods are fast and scalable. Existing works on Monte Carlo sampling for

similarity search based on graph topology include (Fogaras & Rácz, 2005; Sarlós, Benczúr,

Csalogány, Fogaras, & Rácz, 2006; Tian & Xiao, 2016; Kusumoto et al., 2014).

In order to scale similarity search algorithms on large-scale graphs, Fogaras et al. proposed a

Monte Carlo similarity search algorithm (Fogaras & Rácz, 2005). This algorithm refers to a link-

based similarity search method, which then analyses the “proximity” of nodes in a graph for the

purpose of link prediction. The algorithm is premised on the second definition of Monte Carlo

methods that need to calculate the expected value of samples. When computing the expected

value, this algorithm maintains all positions of random walks by a fingerprint tree structure,

thus greatly enhancing the e�ciency of time and space. Therefore, this algorithm is the first

one to require linear time and space to compute single-pair nodes similarity scores. However,

when the algorithm is applied on a graph with billions of nodes, it will entail high consumption

time.

Then, Kusumoto et al. (Kusumoto et al., 2014) proposed a more e�cient Mont Carlo

method for computing similarity on certain graphs. This algorithm uses hash tables to maintain

the position of random walks while they compute the expected value. In contrast to the Fogaras

et al.s (Fogaras & Rácz, 2005) algorithm that needs to maintain all random walks, this algorithm

is only required to maintain t-th random walk positions. In turn, this improves the algorithm’s

time e�ciency. When doing top-k similarity searching, this algorithm takes O(n) time, and

O(m) space.

The sampling approach, SLING (Tian & Xiao, 2016), is the best-of-breed SimRank algorithm

on static graphs. However, their techniques, if applied to CoSimRank, are not fast because the

performance gain of SLING is predicated on aggregating “only the first meeting time” of two

coalescing walks, as opposed to CoSimRank that aggregates “all their meeting times”.

Complexity Comparison.
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Similarity search algorithms based on Monte Carlo methods have drastically enhanced the

computing e�ciency of computing SimRank score over large-scale graphs. We compare the three

di�erent algorithms from three aspects: time complexity (single-pair search and single-source

search), space requirement, and pre-processing time (shown in Table 2.2).

Table 2.2: Comparisons on Monte Carlo Methods

Algorithm
Time Complexity Space

Requirement

Pre-processing

TimeSingle Pair Single Source

Fogara et al.05 O(log 1
Á log n

” /Á
2) O(n log 1

Á log n
” /Á

2) O(n log 1
Á log n

” /Á
2) O(n log 1

Á log n
” /Á

2)

Kusumoto et al.14 π O(n) π O(n2) π O(m)

Tian et al.16 O(1
Á ) O(n

Á ) O(n
Á ) O(m

Á + n log n
” /Á

2)

We can see from Table 2.2 that the time and space complexity of SLING algorithm is near-

optimal. While the time and memory e�ciency of similarity search algorithms based on Monte

Carlo method have been improved greatly, all these algorithms sacrifice the SimRank score

accuracy for speed. Next, we will review several similarity search algorithms based on matrix-

based methods to accelerate the similarity search computation and guarantee the accuracy of

SimRank score.

2.1.2.2 Matrix-Based Methods

There is a growing body of research on matrix-based methods for SimRank computation

(Fujiwara, Nakatsuji, Shiokawa, & Onizuka, 2013; C. Li et al., 2010; Yu, Lin, Zhang, & Mc-

Cann, 2018a). Li et al. (C. Li et al., 2010) proposed a fast matrix-based similarity search algo-

rithm based on graph topology. This algorithm is motivated by two powerful matrix operators:

Kronecker product (Gravano, Garcia-Molina, & Tomasic, 1994), and the well-known Sylvester

Equation (Cho, Garcia-Molina, & Page, 1998). Based on the two matrix operators, they re-write

the SimRank equation in a non-iterative matrix-based manner. Another improvement of this

algorithm is that it uses eigen-value decomposition to reduce memory cost. However, when the
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target ranking of the low-rank approximation is n π N , the memory space requirement of Li et

al.’s algorithm (C. Li et al., 2010) is O(N2
n

2), which is even higher than the original SimRank

algorithm. To bridge this gap, Fujiwara et al. (Fujiwara et al., 2013) proposed a non-iterative

algorithm called SimMat. SimMat algorithm also resorts to the Sylvester equation for com-

puting similarity scores. Then, to enhance time and space e�ciency, SimMat algorithm avoids

unnecessary similarity computations by using Cauchy-Schwarz inequality. The time and space

complexities of SimMat reduce to O(Nn) (where n π N).

2.2 Similarity Search over Evolving Graphs

In real-life applications, while the scale of network structured data is increasing, evolving

update often exists in network data. To illustrate, in a typical social network: Facebook, the

number of users as well as the relationship between any two nodes change in every second. If

we continue to compute similarity scores by static algorithms, all the similarity scores need to

be computed again even when there is a slight update in a graph, which is time and space

consuming. With regard to the research direction of similarity detection on the graph structure,

many scholars have conducted studies on similarity detection over evolving graphs. According

to the use of di�erent methods for achieving the similarity detection on dynamic graphs, the

existing research can be divided into two: PageRank-based and SimRank-based.

2.2.1 PageRank on Evolving Graphs

PageRank (Brin & Page, 1998) is a fundamental algorithm over evolving graphs. It is also

applied extensively to compute nodes significant in a graph. In this algorithm, if two pages get

a link, the weight of the page will add one. According to this law, each web page will have

a PageRank score. Subsequently, when users search a single word on Google, the results will

be ranked by PageRank score of each web page. Then, personalized PageRank (Brin & Page,

1998) was proposed to improve the PageRank algorithm. The salient feature of PPR is that

each node will have a node set referred to as seed nodes. When we want to search closer nodes

of the target node, we would not need to search through all nodes in the graph. We will obtain

the end node from the seed nodes with probabilistic.

As the research on similarity detection on dynamic graphs becomes increasingly popular,
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dynamic models based on PageRank and personalized PageRank have recently been proposed.

(Desikan, Pathak, Srivastava, & Kumar, 2005) put forth a general PageRank algorithm that

incrementally computes any metric which satisfies the first order Markov property. (Berberich,

Bedathur, Weikum, & Vazirgiannis, 2007) o�ered a computationally e�cient normalisation for

PageRank scores that allow their comparison across networks. Berberich et al. further show

that, unlike the classic PageRank measure, the normalised PageRank scores are resistant to non-

local changes in the graph. (Bahmani, Kumar, Mahdian, & Upfal, 2012) proposed a PageRank

algorithm over evolving graphs, wherein the underlying changes to the network are not notified.

Mahdian et al. developed two algorithms. The first one is randomized algorithm, based on the

idea that nodes with higher PageRank values should be probed more frequently since they have

a greater impact on the PageRank values of other nodes. The second one is the deterministic

algorithm. Both algorithms achieve a verifiable performance guarantee that outperforms the

naive approach, which then traverses the nodes in a round-robin manner.

2.2.2 SimRank on Evolving Graphs

Recall the work proposed by (C. Li et al., 2010), which is briefly introduced in the Sec-

tion 2.1.2.2. Li et al. not only presented a matrix-base format for the SimRank method but also

developed a similarity computation algorithm for dynamic, time-evolving graphs based on the

matrix-base format SimRank algorithm. The adjacency matrix changes over time in a dynamic

graphs. The incremental SimRank algorithm was the first one to demonstrate an SVD(singular

value decomposition) approach for incrementally updating similarities of all node-pairs. Its time

complexity is O(r4
n

2), where r denotes the target rank of the low-rank approximation and r is

smaller than the node number of the graph. Li et al. also developed two techniques, S_Track

and P_Track, for node similarity tracking and node centrality tracking over evolving graphs

based on the incremental SimRank algorithm. However, it is possible to improve the accuracy

of the incremental SimRank algorithm, given that the incremental algorithm may miss some

information. The computation of the incremental algorithm is quartic with response to the

value of r. In real applications, the value of r is not much smaller than the node number of the

graph; thus, the incremental algorithm is time-consuming.

To bridge these research gaps, Yu et al. proposed a fast incremental SimRank on link-

evolving graphs (Yu, Lin, & Zhang, 2014a). The fast incremental SimRank algorithm(Inc-uSR)
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generates the di�erent similarity scores of each updated link by a rank-one Sylvester equation,

instead of incrementally updating SVD (C. Li et al., 2010), and the time complexity of Inc-uSR

algorithm is O(Kn
2), where K refers to the iteration times, and n denotes the node number

of graphs. To ensure a more e�cient incremental SimRank algorithm over evolving graphs, Yu

et al. also developed a pruning strategy that is capable of extracting the "una�ected areas”

without sacrificing accuracy.

Both incremental SimRank algorithms (C. Li et al., 2010; Yu, Lin, & Zhang, 2014a) focus

on all node-pairs similarity search on evolving graphs, which will limit the scalability of the

algorithms. Inspired by this idea, Shao et al. developed two-stage random-walk sampling

framework(TSF) for SimRank algorithm over large-scale dynamic graphs (Shao, Cui, Chen,

Liu, & Xie, 2015a). The first stage (pre-processing stage) of the TSF algorithm utilizes a

novel sampling method to index raw random walks from a set of one-way graphs. The indexed

walks approach can e�ectively reduce the redundant sampling. The time complexity of the

pre-processing stage is O(NRg), where N refers to the node number of the graph, and Rg

is the number of one-way graphs. Under the second stage (query stage) of TSF algorithm,

it can quickly find related vertices by removing unqualified vertices based on one-way graph

connectedness. When the error bound is 1 ≠ ‘, TSF can also estimate the SimRank score

with a certain probability using additional Rq samples. However, SimRank algorithm su�ers

from some limitations(Section 4.1.1), such as: “zero issue”, computation e�ciency issues, and

accuracy issues. The limitations of the SimRank algorithm will be brought to the dynamic

SimRank algorithms. To bridge this research gap, we propose a fast and accurate CoSimRank-

base similarity search algorithm over dynamic graphs.

2.3 Role-based Network Analysis

Role similarity detection in graph structure is also a widely used graph analysis method. Un-

like the similarity detection algorithm we introduced before, role similarity detection can reflect

the structural similarity between point pairs and reflect role equivalence. Generally speaking,

role equivalence can be divided into four categories: structural equivalence, automorphic equiv-

alence, equitable partition, and regular equivalence (Lee, 2012).

(Batagelj, Doreian, & Ferligoj, 1992) proposed an optimization approach to regular equiv-

alence. The algorithm calculates for how far a structure deviates from a perfectly regular
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partition. The technique subsequently uses a local optimization procedure to identify partitions

that minimised the criterion function. (Borgatti & Everett, 1993) introduced two algorithms for

computing regular equivalence. Quantitative data is handled by the REGE algorithm, whereas

categorical data is handled by the CATREGE algorithm. Moreover, the CATREGE algorithm

is more e�cient and accurate than the REGE algorithm.

(Rothe & Schütze, 2014) proposed a ground-breaking study on role analysis over networks,

called RoleSim. RoleSim algorithm retrieves role similarity search scores of node-pair by cal-

culating the maximum matching values of in-neighbour matrix. The basic philosophy of the

algorithm is that two objects are similar if they are related to similar objects. Accordingly,

some role similarity algorithms have been proposed. (Shao et al., 2019) developed an e�cient

de-anonymization of social networks with structural information called RoleSim++. Di�erent

from RoleSim algorithm, RoleSim++ captures information from both in-neighbours as well as

out-neighbours. The most state-of-art role similarity algorithm is StructSim (Chen, Lai, Qin, &

Lin, 2021). StructSim algorithm makes use of BinCount matching instead of maximum match-

ing. As a result, the algorithm improves the computation e�ciency while ensuring admissibility.

More details have been introduced in Section 5.7. However, the existing role similarity search

algorithm su�ers from some limitations in terms of accuracy, computation e�ciency, and dy-

namic. To bridge these research gaps, we propose a more accurate and e�cient role similarity

search algorithm in this thesis.
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3
Fast and Accurate Similarity Search For Evolving

Graphs

This chapter discusses the development of an innovative similarity search algorithm for dy-

namic topology structures. A dynamic graph can be described as a graph updated by an ordered

list (e.g., additions and deletions of nodes and edges). In other words, each update in a dynamic

graph is known and unique.

Consider Facebook, a typical example of a social network (graph), to comprehend the main

idea of a dynamic network. When a person creates a Facebook account, a new node would be

created in the social network (node addition). Moreover, when they add a friend on Facebook,

a “follow” edge is created in the social network (edge addition).

Figure 3.1: Dynamic Graph

In Figure 3.1, G is a small Facebook social network. (G1, G2) describes all possible cases of
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nodes’ update, and (G3, G4) indicates possible cases of edges’ update in this dynamic graph.

As shown in Chapter 2, many existing works focus on the similarity search for static graphs

or small- or medium-sized dynamic graphs. This chapter presents a novel similarity search

algorithm for large-scale dynamic graphs.

3.1 Introduction

Graphs are widely used to model complex objects (e.g., web pages) and their relationships

(e.g., hyperlinks). Quantifying objects’ similarity based on graph structure topology is a foun-

dational operation for a lot of network research. Examples include web mining (Kinne & Lenz,

2021), graph clustering (Smirnov & Warnow, 2021), Amazon recommendation system (J. Wu et

al., 2021), protein structure analysis (Biehn & Lindert, 2021), etc.

Most existing research on similarity search focusing on static graphs have been introduced

in Chapter 2. However, in reality, most information systems keep changing constantly. Coping

with continuous dynamic changes is the surest way to keep pace with the Information Age and

guarantee success with dynamic updates. The challenges associated with these changes are real

and highly uncertain. Similarity search in a large-scale dynamic network (graph) inherently

presents computation challenges, and the constant updating of data exacerbates the challenges.

This is particularly valid for those parts of societies dependent on di�erences and are sensitive

to information changes.

Following are some real-world applications of similarity search, highlighting the need for

e�cient algorithms to handle such assessments across large-scale dynamic graphs.

Application 1 (Synonym Expansion).

Synonym expansion is a useful tool in search engine query rewriting (Antonellis, Garcia-

Molina, & Chang, 2008; Chaudhuri, Ganti, & Xin, 2009) and text simplification (Buyukkokten,

Garcia-Molina, & Paepcke, 2001). It replaces a target word in a sentence with another, more

appropriate word. The current CoSimRank measure was utilised to compute the similarity be-

tween words based on the intuition that “two words that are synonyms of each other should

have similar lexical neighbour”. In this application, the graph is constructed using nouns, ad-

jectives, and verbs appearing in Wikipedia and form nodes in the graph (a œ V); the rest of

the graph represent types of syntactic configurations extracted from the parsed Wikipedia pages
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(e.g., adjective-noun, verb-object, and noun-noun coordination), which constitute the edges of

the graph (< a æ b >œ E). They evaluated the CoSimRank similarities between words (syn-

onyms). The results from using CoSimRank are superior to identifying e�ective synonyms using

two personalised PageRank vectors (Rothe & Schütze, 2014).

As people’s language habits continue changing, the synonyms and phrases in each vocabulary

are constantly updated. The current CoSimRank algorithm can e�ciently solve the similarity

search on the static graph. However, when the static graph is changed to a dynamic one, the

algorithm must recompute the similarities of all node pairs with respect to every update, making

the current CoSimRank algorithm impractical to use (Rothe & Schütze, 2014).

Application 2 (Lexicon Extraction).

Automatically building bilingual lexicons from corpora is an essential task in natural lan-

guage processing. Rothe and Schütze (Rothe & Schütze, 2014) applied CoSimRank to lexicon

extraction and represented an English and a German text corpus as two graphs, wherein nodes

represent words and edges denote the grammatical relationships between the words. The central

intuition of CSR is that “a node in the English graph and a node in the German graph are similar

(i.e., they are likely to be translations of each other) if their neighbouring nodes are similar”.

Rothe and Schutze initialised the CoSimRank scores using an English-German “seed” dictionary

whose entries correspond to known pairs of equivalent nodes (words). Their approach produced

more reliable similarity results than the previous SimRank-based approaches (Laws et al., 2010;

Tamura, Watanabe, & Sumita, 2012).

However, with the continuous change of people’s language habits, synonyms set for each word

and the English-German “seed” dictionary are updated from time to time. Therefore, using the

original CoSimRank algorithm to follow the update results in high computation pressure.

It can be noted that CoSimRank is a robust similarity measure between two objects based

on static graph topologies. It recursively follows the SimRank-like philosophy that “two nodes

are considered similar if their in-neighbours are similar”. CoSimRank is a node pair similarity

measure, di�erent from PageRank that ranks nodes only. Intuitively, a CoSimRank score s(a, b)

between nodes a and b aggregates all meeting times of two random surfers starting at a and b, in

contrast with SimRank (Jeh & Widom, 2002) that counts their first meeting time only. Thus,

CoSimRank has been shown (Rothe & Schütze, 2014) to be more accurate and practical than

SimRank in many applications (e.g., synonym expansion and lexicon extraction). However, some
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major limitations of the existing CoSimRank searching algorithm prevent it from being e�ectively

applied to some real applications, which are illustrated in the section 3.1.1. The detailed

definition and current evaluation of SimRank and CoSimRank are reviewed in Chapter 3.2.

3.1.1 Motivation

Previous research on CoSimRank similarity search su�ers a few major limitations, of which

the lack of support for dynamic graphs is the most important one. The state-of-the-art algo-

rithms for CoSimRank search (Rothe & Schütze, 2014) are mainly restricted to static graphs,

where a CoSimRank score is retrieved from the sum of the dot product of two personalised

PageRank vectors. However, in many real applications, graphs (e.g., for Facebook and Twitter)

are often updated dynamically, with new nodes/edges forming over time. However, it is di�cult

for the existing static approaches to produce quick responses with evolving graphs due to their

cost-inhibitive overheads for recomputing CoSimRank scores from scratch.

This highlights the urgent need to investigate the problem concerning fast and accurate

dynamic CoSimRank search. This problem can be formally defined as follows.

Problem (Dynamic CoSimRank on Evolving Graphs).

Given: a graph G, a collection of edge updates �G to G, and a query

set Q = {q1, q2, · · · }, here qi(qi œ V ) is the target node(query).

Retrieve: the changes to the CoSimRank scores with respect to Q on

(G ü �G) quickly and accurately.

This thesis proposes a fast, accurate dynamic scheme for CoSimRank search over evolving

graphs to address this issue. In the remainder of this chapter, the schema will be discussed for

two di�erent situations, i.e, D-CoSim (for node and edge additions) and D-deCoSim(for node and

edge deletions).

Moreover, as an important application of D-CoSim and D-deCoSim, we show that our dy-

namic D-CoSim algorithm can also be applied to static graphs to greatly speed up large-scale

CoSimRank search. The details of this application are presented in Chapter 4.
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3.1.2 Chapter Outlines

This chapter is organised as follows:

Chapter 3.2 In this section, we recall the current SimRank and CoSimRank algorithms and

analyse the limitations of both algorithms while applying them for dynamic graphs.

Chapter 3.3.1 An e�cient similarity search algorithm D-CoSim for incremental dynamic graphs

is proposed in this section.

Chapter 3.3.1.1 A cost-e�cient operation of the update adjacency matrix of incremental

dynamic graphs in response to each update is detailed in this subsection.

Chapter 3.3.1.2 A novel similarity search algorithm D-CoSim over large-scale incremen-

tal dynamic graph is suggested. D-CoSim algorithm can accurately detect the “influ-

enced part” with respect to the updated part of dynamic graphs with high compu-

tation e�ciency. The time complexity of the innovated similarity search operation

is O(K(m̃ + ñp|Q|)), and it requires O(m̃ + Kñ) memory to compute �S[:, Q] dy-

namically after K iterations, where |Q| is the number of queries. In contrast, the

current CoSimRank algorithm requires O(K(m + n)) time and O(m + Kn) memory

to compute the same graph.

Chapter 3.3.2 In this section, we proposed D-deCoSim algorithm to retrieve the similarity

scores for decremental dynamic graphs. This algorithm considers several cases with re-

spect to edges’ and nodes’ deletion.

Thus, we separate D-deCoSim to D-deCoSim(Edges) and D-deCoSim(Nodes) algorithm.

D-deCoSim(Edges) is an algorithm to obtain CoSimRank scores of the decremental dy-

namic graphs with edge deletion. It can compute the CoSimRank scores of update parts

only and avoids repeated computation. For decremental dynamic graphs with node dele-

tion, for each deleted node, we separate out-neighbours of a deleted node into three cases

based on the number of Dd and the indegree of each node of Dd, here Dd is the in-neighbour

nodes set of the deleted node. Then compute the CoSimRank scores of “refreshed area”

only using the formula corresponding to the three cases respectively in response to the

query.
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Chapter 3.3.3 In this section, a combination algorithm has been proposed, Com-D, which is

composed by D-CoSim, D-deCoSim(Edge) and D-deCoSim(Node). Com-D can e�ciently

compute similarity values on dynamic graphs.

Chapter 3.4 We conduct many experiments on real datasets to demonstrate that our al-

gorithm D-CoSim and D-deCoSim steadily outperform two state-of-the-art CoSimRank

competitors (CSR (Rothe & Schütze, 2014) and CSM (Yu & McCann, 2015a)) with 3-5

order-of-magnitude(time e�ciency). Compared with CoSimRank and CSM algorithms,

our algorithms show a great advantage in memory e�ciency. In particular, CSM cannot

be implemented for large graphs since its memory complexity is O(n2). The experimental

results also show that our algorithms do not compromise on accuracy while increasing the

(search) speed.

3.2 Preliminaries

In this section, we first define the main notations and symbols used in the remainder of the

thesis, and the rest definition of symbols can be found in the List of Symbols.

Definition 1 (Directed Graph). A directed graph (or digraph) is an order pair G = (V, E)

where

• V is a set of elements, called vertices or nodes;

• E is a set of directed edges, and each directed edge is an ordered node pair.

|V | indicates the cardinality of edges in graph G, and |E| is the number of nodes in G.

Definition 2 (Dynamic Graph). A dynamic graph is a new graph evolving from an old one by

applying a sequence of updates. It can be expressed by the mathematical formula: G = G + �G.

Here. �G represents one of the four cases, i.e., the addition of nodes or edges, or the deletion

of nodes or edges of graph G.

Definition 3 (Vertices Neighbours.). Given a directed graph G = (V, E), for any edge

(u æ v) œ E ((u, v) œ V ), the node u is the in-neighbour of node v. At the same time, the node

v is the out-neighbour of node u.

Then, we denoted the following:
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• I(v) denotes the in-neighbour set of node v, which means all nodes in that set have a direct

link to v:

I(v) = {u œ V |(u æ v) œ E}

• O(v) represents the out-neighbour set of node v, which means v has directs links to nodes

in that particular set:

O(v) = {u œ V |(v æ u) œ E}

• deg
≠
v is the number of in-neighbours of node v, i.e., deg

≠
v = |I(v)|.

• deg
+
v is the number of out-neighbours of node v, i.e., deg

+
v = |O(v)|.

As presented previously in Chapter 2, SimRank has been proposed as an essential technique

in existing works on similarity search. Its basic premise is that “two objects are similar if they are

referenced by similar objects”. Based on this intuition, there are two models from the SimRank

family, namely Jeh and Widom’s SimRank model (Jeh & Widom, 2002), and CoSimRank model

(Rothe & Schütze, 2014). Their formal definitions and calculation details are provided as follows.

3.2.1 Jeh and Widom’s SimRank Model

Following the basic intuition of SimRank, the recursive equation of SimRank is given in

Definition 4.

Definition 4 (SimRank). Given a directed graph G(E, V ), the similarity score of node pair

(u, v) œ V can be retrieved by,

s(u, v) =

Y
_______]

_______[

1, u = v;
C

deg≠
u deg≠

v

ÿ

jœI(v)

ÿ

iœI(u)
s(i, j), I(u), I(v) ”= ?;

0, otherwise.

(3.1)

where C œ (0, 1) is the decay factor.

Mathematically, the matrix version of SimRank is formulated as follows:

S = max
Ó

CAT SA, I
Ô

(3.2)

F,WANG,PhD Thesis,Aston University 2021. 42



where S is the SimRank matrix, whose element S[i, j] denotes the similarity score between nodes

i and j in a graph G; C is a constant decay factor between 0 and 1, A is the column-normalised

adjacency matrix, and I is the identity matrix. It can be seen from Eq.(3.2) that the SimRank

algorithm computes the first meeting time of two random surfers from nodes i and j in graph G.

For each node, the similarity score between the node and itself (s(a, a), a œ V) strictly equals 1.

3.2.2 CoSimRank Model

The second model is the CoSimRank similarity search algorithm proposed by (Rothe &

Schütze, 2014). By default, CoSimRank is defined on a digraph. If a graph is undirected, it

can be converted into a digraph by replacing every undirected edge between node pair (u, v)

with two directed edges (u æ v) and (v æ u). CoSimRank is an feasible node-pair similarity

measure based on graph topologies. It is based on the recursive philosophy that “two nodes are

considered similar if their in-neighbours are similar”. Unlike SimRank (Jeh & Widom, 2002), the

CoSimRank score of each node with itself S[a, a](a œ V) is not constantly 1. Mathematically,

CoSimRank is formulated as follows:1

S = CAT SA + I (3.3)

where S is the CoSimRank matrix, whose element S[i, j] is the similarity score between node

i and node j in the graph G; C is a constant decay factor between 0 and 1; A is the column-

normalised adjacency matrix; I is the identity matrix; and (ú)T is the matrix transpose. To

normalise all CoSimRank scores into [0, 1], one can readily use S
Õ = (1 ≠ C)S.

To evaluate one single pair CoSimRank score, Rothe and Schütze (Rothe & Schütze, 2014)

adopted a novel method to compute S[i, j]:

S[i, j] =
Œq

k=0
C

k(p(k)
i )T p(k)

j (3.4)

where p(k)
j is the personalised PageRank vector with respect to the seed node j, which can be

iteratively obtained from

p(k)
j = Ap(k≠1)

j with p(0)
j = ej (3.5)

It requires O(K(m+n)) time and O(m+Kn) memory to compute a single pair score S[i, j] using

Eqs.(3.4) and (3.5) for the static graph G with n nodes and m edges after K iterations. When
1In comparison, SimRank (Jeh & Widom, 2002) is defined as: S = max{CAT SA, I}.
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the graph is dynamically updated, it will be expensive to recompute all CoSimRank scores from

scratch.

We first present our e�cient dynamic scheme, D-CoSim, that can quickly and accurately

obtain CoSimRank scores for incremental evolving graph streams. Next, D-deCoSim similarity

search algorithm for decremental dynamic graphs is illustrated in detail.

3.3 Similarity Search for Large-scale Evolving Graph Streams

In this section, we leverage two e�cient and accurate similarity search algorithms for dynamic

graphs, namely D-CoSim and D-deCoSim algorithm. We introduce D-CoSim algorithm firstly in

subsection 3.3.1.

3.3.1 The Similarity Search algorithm For Incremental Dynamic Graphs

Changes in the graph will directly a�ect the structure and values of its adjacency matrix A.

We propose an e�cient measure to update the adjacency matrix with respect to each update of

the incremental dynamic graph.

3.3.1.1 Updating Adjacency Matrix

The adjacency matrix needs to be renewed at once with respect to each update of the dynamic

graph. To improve the e�ciency of updating the adjacency matrix, we chunk all update edges

with the same end node and then update the adjacency matrix column to column. There are two

reasons to chunk update edges by this method. The first one is that updating the edge set with

the same end node, which only a�ects the end node’s column of the adjacency matrix. Secondly,

the pre-processing of the adjacency matrix in our algorithm follows column normalisation. The

method of updating the adjacency matrix is shown as follows: Given an old graph G and a set

of new edges updated to G:

�G = {(v1 æ u1), (v2 æ u2), (v3 æ u3), · · · }

according to the endpoint ui of each edge (vi æ ui) in �G, we first bunch all edges in �G into

pieces:

�G = �Gu1 fi �Gu2 fi · · · fi �Gup
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such that all edges in each piece �Gui share a common endpoint ui. Thus, each piece �Gui

takes the following form:

�Gui = {(vi1 æ ui), (vi2 æ ui), · · · , (vi” æ ui)}

which is expressed as �Gui , ([vi1 , vi2 , · · · , vi” ] æ ui) .

Figure 3.2: Decomposing G into a spanning polytree T and �G (= G ° T )

Example 1. Figure 3.2 depicts an old graph G (solid black arrows and solid black cycle), and

an updated graph �G (dashed red arrows and dashed read cycle) to G:

�G = {(a æ f), (c æ e), (d æ g), (f æ e), (b æ f), (g æ e)}.

To simplify the process of chunking, the partition of the new nodes is determined by the new

edges. We lump the edges of �G into three pieces: �G = �Ge fi �Gf fi �Gg, where

�Ge = {(c æ e), (f æ e), (g æ e)} , ([c, f, g] æ e),

�Gf = {(a æ f), (b æ f)} , ([a, b] æ f), and �Gg = ([d] æ g).

Remark 1. If graph G is undirected, we first convert it into a directed graph by replacing each

undirected edge between node pair (v, u) with two directed edges (v æ u) and (u æ v). Then,

when bunching the edges of �G into pieces, we put (v æ u) to �Gu, and (u æ v) to �Gv.

Remark 2. A new node of the old graph G can be defined as follows: for a new edge, one of the

two endpoints does not belong to the old graph G. Mathematically, {(a æ b) /œ E|a œ V, b /œ V },

then edge (a æ b) is a new edge of the old graph G, and node b is a new node. Recall example 1,

{((a æ f), (b æ f)and(f æ e)) /œ E|(a, b, e) œ V, f /œ V }, thus ((a æ f), (b æ f)and(f æ e))

are three new edges of the old graph G, and node f is a new node of the old graph.
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The way we chunk the edges of �G has two advantages. First, we can e�ciently charac-

terise the changes to the adjacency matrix A of an old graph G in response to �Gui as a linear

transformation of the ui-th column of the old A. This characterisation allows us to dynami-

cally capture only the “refreshed areas” of CoSimRank scores in response to the update �Gui ,

instead employing the original static approach that has to recompute all similarities through-

out G ü �Gui from scratch. Second, bunching the edges of �G facilitate sharing and reusing

common information among all the edge updates over each piece �Gui , thus discarding many

unnecessary repeated computations on graph streams. For instance, to e�ciently update CoSim-

Rank similarities in response to each piece �Gui , ([vi1 , vi2 , · · · , vi” ] æ ui), the intermediate

results to update the edge (vi1 æ ui), once computed, can be maximally reused to update all

other edges (e.g., (vi2 æ ui), (vi3 æ ui), · · · ) in �Gui . Therefore, D-CoSim is highly e�cient for

evolving graph streams.

Having bunched together all edges of �G into chunks, we propose an e�cient approach that

dynamically computes the changes to the CoSimRank scores in response to each update piece

�Gu
2. We observe that each update piece �Gu changes only one column of A. Specifically, we

show the following lemma.

Lemma 1. Given an old graph G and an update piece to G: �Gu = ([v1, v2, · · · , v”u ] æ u),

the new column-normalised adjacency matrix Ã of graph (Gü�Gu) can be dynamically updated

from old A by replacing its u-th column with

Ã[:, u] = 1
”u+deg≠

u

1
deg≠

u A[:, u] + 1{v1,v2,··· ,v”u }
2

(3.6)

where deg≠
u is the in-degree of node u in the old graph G; ”u is the number of edge updates in

�Gu; and 1{v1,v2,··· ,v”u } is a column vector (whose length is the number of rows in new Ã) with

1s in the (v1, v2, · · · , v”u)-th entries, and 0s elsewhere.

Note that if the new Ã and old A are not of the same size (occurring when there are new

nodes in �Gu), then prior to using Eq.(3.6), we should border A with new zero-columns on the

right and new zero-rows at the bottom to make the old one the same size as new Ã.

Example 2. In Figure 3.2, the old graph G has five nodes, so the old A is of size 5 ◊ 5. In

�Ge = ([c, f, g] æ e), there are two new nodes: f and g. Thus, to update A in response to
2In the following, �Gui = ([vi1 , vi2 , · · · , vi” ] æ ui) is abbreviated to �Gu = ([v1, v2, · · · , v”u ] æ u) for

simplicity.
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�Ge, we first widen A to 7 ◊ 7 with two zero columns and rows: Then, since deg≠
e = 2 and

a b c d e f g
a 0 1

2
1
2 0 0 0 0

b 0 0 0 0 1
2 0 0

c 0 1
2 0 0 0 0 0

d 0 0 1
2 0 1

2 0 0
e 0 0 0 0 0 0 0
f 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0

bordered
region

1
3+2 ⇥

 
2⇥

a 0
b 1

2

c 0
d 1

2

e 0
f 0
g 0

+

a 0
b 0
c 1
d 0
e 0
f 1
g 1

!
=

a 0
b 1

5

c 1
5

d 1
5

e 0
f 1

5

g 1
5

1{c,f,g} new Ã[:, e]old A[:, e]old A(bordered)

deg�e�e

Figure 3.3: Updating the Adjacency Matrix of the Incremental Dynamic Graph G

”e = 3, in light of Eq.(3.6), the e-th column of A, in response to �Ge, is updated to

Ã[:, e] = 1
3+2

1
2A[:, e] + 1{c,f,g}

2
= [0,

1
5 ,

1
5 ,

1
5 , 0,

1
5 ,

1
5 ]T .

The computation details can be found in Figure 3.3.

Leveraging Lemma 1, we next show how to update CoSimRank scores dynamically in re-

sponse to each piece �Gu over incremental dynamic graphs.

3.3.1.2 D-CoSim Algorithm

In this subsection, an e�cient and accurate similarity search algorithm D-CoSim for CoSim-

Rank scores’ computation over incremental dynamic graphs is illustrated in detail. There are

two cases associated with the incremental graph, e.g., node addition and edge addition. For

nodes’ addition, same as updating the adjacency matrix, the size of the similarity score matrix

of the graph should be bordered firstly, and then the bordered parts’ scores (nodes’ addition)

and updated parts’ scores (edges’ addition) can be retrieved by Theorem 1.

Theorem 1. Given an old graph G, an update piece to G: �Gu = ([v1, · · · , v”u ] æ u), and

a query node q œ (G ü �Gu), the changes �S[:, q] to CoSimRank scores with respect to q are

dynamically computed as

�S[:, q] =
Œq

k=0
C

k
1
t(k)[q] · p(k) + p(k)[q] · t(k)

2
(3.7)
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where p(k)[q] and t(k)[q] denote the q-th entry of the vectors p(k) and t(k), respectively, which

are iteratively obtained by
Y
_______]

_______[

p(0) = eu

p(k) = ÃT p(k≠1)

and

Y
_______]

_______[

t(0) = C
2(”u+deg≠

u )(A + Ã)T r

t(k) = ÃT t(k≠1)

(3.8)

in which A and Ã are the old and new column-normalised adjacency matrix of G and Gü�Gu,

respectively; and r = limKæŒr(K), which can be iteratively derived as
Y
_______]

_______[

r(0) = w(K)

r(k) = CAT r(k≠1) + w(K≠k)

(1 Æ k Æ K) (3.9)

with

Y
_______]

_______[

w(0) = 1{v1,··· ,v”u } ≠ ”uA[:, u]

w(k) = Aw(k≠1)

(1 Æ k Æ K) (3.10)

Proof. After �Gu is updated to G, by the definition in Eq.(3.3), the new CoSimRank scores

(S + �S) in G ü �Gu satisfy

S + �S = CÃT (S + �S) Ã + I

Rearranging the terms in the above equation yields

�S = CÃT �SÃ + E with E = CÃT SÃ + I ≠ S (3.11)

Let �A = Ã ≠ A. From Eq.(3.6) in Lemma 1, we have

�A[:, u] = 1
”u+deg≠

u

1
1{v1,··· ,v”u } ≠ ”uA[:, u]

2
(3.12)

To simplify E in Eq.(3.11), we plug Ã = A + �A[:, u]eT
u , S = CAT SA + I, and let fu , S�A[:
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, u], which produce

E = C(eu(fT
u A) + (AT fu)eT

u + (�A[:, u]T fu)eueT
u )

= euxT + xeT
u where (3.13)

x = CAT fu + C
2 (�A[:, u]T fu)eu

= C(AT + 1
2eu�A[:, u]T )fu {using Eq.(3.13)}

= C
2 (AT + ÃT )fu (3.14)

Thus, combining Eqs.(3.11) and (3.12), we obtain

�S =
Œq

k=0
C

k(ÃT )kEÃk {using Eq.(3.13)}

=
Œq

k=0
C

k
1
(ÃT )keuxT Ãk + (ÃT )kxeT

u Ãk
2

(3.15)

By direct iteration, it follows from Eqs.(3.8) and (3.10) that

p(k) = (ÃT )keu, w(k) = Ak(1{v1,··· ,v”u } ≠ ”uA[:, u]) (3.16)

To express r in t(0) of Eq.(3.8), by iteration, Eq.(3.9) implies

r(K) =
1
CAT

2K
w(K) +

1
CAT

2K≠1
w(K≠1) + · · · + w(0)

=
!
(CAT )KAK + (CAT )K≠1AK≠1 + · · · + I

"
¸ ˚˙ ˝

={the first K terms of S =
qŒ

k=0 Ck(AT )kAk}

!
1{v1,··· ,v”u } ≠ ”uA[:, u]

"

¸ ˚˙ ˝
{By Eq.(3.12)}=(”u+deg≠

u )�A[:,u]

By applying limits on both sides, we have

r , lim
KæŒ

r(K) =
!
”u + deg≠

u

"
S�A[:, u] =

!
”u + deg≠

u

"
fu

Thus, by plugging r =
!
”u + deg≠

u

"
fu into Eq.(3.8), we get

t(0) = C
2 (A + Ã)T fu = {By Eq.(3.14)} = x, t(k) = (Ãk)T x (3.17)

Substituting Eqs.(3.16) and (3.17) into Eq.(3.15) provides

�S =
Œq

k=0
C

k
3

p(k)
1
t(k)

2T
+ t(k)

1
p(k)

2T
4

Finally, post-multiplying both sides by eq yields Eq.(3.7).

The proof shows the correctness of Theorem 1. Next, let’s take an example to see how the

D-CoSim algorithm works in a graph.

F,WANG,PhD Thesis,Aston University 2021. 49



Example 3. Recall the old G (solid arrows) in Figure 3.2 and update piece �Ge = ([c, f, g] æ e)

to G (dashed arrows). Given query q = e, number of iterations K = 3, and decay factor C = 0.6,

Theorem 1 retrieves �S[:, e] as follows:

First, we compute {w(k)
} and {r(k)

} using Eqs.(3.10) and (3.9):

k w(k) r(k)

0 [0, ≠1.5, 1, ≠1.5, 0, 1, 1]T [0, 0, 0, 0, 0, 0, 0]T

1 [≠.25, 0, ≠.75, .5, 0, 0, 0]T [≠.375, 0, 0, ≠.375, 0, 0, 0]T

2 [≠.375, 0, 0, ≠.375, 0, 0, 0]T [≠.25, ≠.113, ≠.975, .5, ≠.113, 0, 0]T

3 [0, 0, 0, 0, 0, 0, 0]T [0, ≠1.868, 1.075, ≠1.5, .116, 1, 1]T

Next, we obtain {p(k)
} and {t(k)

} via Eq.(3.8) with r = r(3):

k p(k) t(k)

0 [0, 0, 0, 0, 1, 0, 0]T [0, .065, ≠.09, 0, ≠.105, 0, 0]T

1 [0, 0, 0, 0, 0, 0, 0]T [0, ≠.045, 0, 0, ≠.005, 0, 0]T

2 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, ≠.009, 0, 0]T

3 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

Finally, we use Eq.(3.7) to derive �S[:, e] in response to �Ge:

�S[:, e] =
3q

k=0
0.6k

1
t(k)[e] · p(k) + p(k)[e] · t(k)

2

= [0, .0645, ≠.09, 0, ≠.2091, 0, 0]T

Theorem 1 implies an e�cient dynamic method, D-CoSim, to retrieve the changes to CoSim-

Rank scores. The details of Theorem 1 are demonstrated in Algorithm 1 later.

The algorithm, named D-CoSim, retrieves the changes to CoSimRank scores over the incre-

mental dynamic graph, as depicted in Algorithm 1. Given an old graph G, an update �G to G,

and a query set Q, it first divides �G into pieces {�Gu} such that �G =
t

u �Gu with edges

in each piece �Gu sharing a common end node u (line 2). Then, for each piece �Gu, Eq.(3.10)

is used to iteratively obtain {w(k)
} (line 8 and line 10), by which r is iteratively derived using
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Algorithm 1: D-CoSim (G, �G, C, Q, K)
Input : an old graph G, a set of edge updates �G to G, decay factor C, a query set Q, and

#-iteration K

Output: CoSimRank changes �S[:, Q] in response to �G.

22 chunk all edges of �G to {�Gu} s.t. �G =
t

u �Gu and edges in �Gu = ([v1, · · · , v”u ] æ u)

share common end u

44 foreach query q œ Q do initialise �S[:, q] := 0

66 foreach piece �Gu do

88 initialise w(0) := 1{v1,··· ,v”u } ≠ ”uA[:, u]

1010 for k = 1 to K do update w(k) := Aw(k≠1)

1212 initialise r := w(K)

1414 for k = 1 to K do update r := CAT r + w(K≠k)

1616 �A[:, u] := 1
”u+deg≠

u

!
1{v1,··· ,v”u } ≠ ”uA[:, u]

"

1818 update Ã := A + �A[:, u]eT
u

2020 initialise p(0) := eu

2222 for k = 1 to K do update p(k) := ÃT p(k≠1)

2424 initialise t(0) := C
2(”u+deg≠

u ) (A + Ã)T r

2626 for k = 1 to K do update t(k) := Ãt(k≠1)

2828 foreach query q œ Q do

3030 initialise s := 0;

3232 for k = 0 to K do

3434 s := s + C
k(t(k)[q] · p(k) + p(k)[q] · t(k));

3636 update �S[:, q] := �S[:, q] + s;

3838 update A := Ã

4040 return �S[:, Q] := {�S[:, q] | ’q œ Q};
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Eq.(3.9) (line 12 and line 14). Next, using r and Lemma 1, {p(k)
} and {t(k)

} are iteratively

computed from Eq.(3.8) (line 20 to line 26). Finally, for each query q œ Q, �S[:, q] is obtained

through Eq.(3.7) from the linear combination of the final result {p(k)
} and {t(k)

} (line 32 to

line 36).

Correctness. To prove the correctness of D-CoSim, we prove that �S[:, Q] (line 40) retrieved

by D-CoSim is the correct CoSimRank change in response to the update �G to G. While

Theorem 1 guarantees the correctness of �S with respect to the one piece update �Gu only,

the following theorem further guarantees that, after the one piece update �Gu is processed,

other pieces being processed will not distort the correct CoSimRank results �S[:, Q].

Theorem 2. Let �G , {�G1, �G2, · · · , �Gp} be a set of edges bunched into pieces updated

in the old graph G (line 2). The CoSimRank changes �S (line 40) returned by D-CoSim are

correct in response to the updated graph �G.

Proof. Let �A, �A1, �A2, · · · , �Ap be the changes to the column-normalised adjacency ma-

trices with respect to the graph updates �G, �G1, �G2, · · · , �Gp, respectively.

In the 1st round of the for loop (Line 8–38): D-CoSim starts by taking account of G0 (, G)

as the old graph and S0 (, S) as the old CoSimRank scores and updates the 1st chunk �G1 to

G0. Theorem 1 ensures that s (line 36) in the 1st round, denoted by �S1, is the CoSimRank

changes with respect to the update �G1 to G0, i.e., �S1 satisfies

S0 + �S1 = C(A0 + �A1)T (S0 + �S1)(A0 + �A1) + I

Then, D-CoSim updates �S (line 36) by adding s (= �Sp), updating the current graph from

G0 to G1 (line 38):

�S = 0 + �S1 = �S1, A1 = A0 + �A1

In the 2nd round of the for loop (Line 8–38): D-CoSim regards G1(= G0 + �G1) as the old

graph and S1(= S0 + �S1) as the old CoSimRank scores and updates the 2nd chunk �G2 to

G1. Theorem 1 ensures that s (line 36) in the 2nd round, denoted by �S2, is the CoSimRank

changes with respect to the update �G2 to G1, i.e., �S2 satisfies

S1 + �S2 = C(A1 + �A2)T (S1 + �S2)(A1 + �A2) + I

Then, D-CoSim updates �S (line 36) by adding s (= �S2), updating the current graph from
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G1 to G2 (line 38):

�S = �S1 + �S2, A2 = A1 + �A2

The for loop (lines 16–38) continues till the last chunk �Gp is updated. In the p-th (last)

round of for loop (lines 8–36): D-CoSim regards Gp≠1 (= Gp≠2 + �Gp≠1) as the old graph

and Sp≠1(= Sp≠2 + �Sp≠1) as the old CoSimRank scores and updates the p-th chunk �Gp to

Gp≠1. Theorem 1 ensures that s (line 36) in the p-th round, denoted by �Sp, is the CoSimRank

changes with respect to the update �Gp to Gp≠1, i.e., �Sp satisfies

Sp≠1 + �Sp = C(Ap≠1 + �Ap)T
· (Sp≠1 + �Sp)·

· (Ap≠1 + �Ap) + I
(3.18)

Then, D-CoSim updates �S (Line 36) by adding s (= �Sp), updating the current graph from

Gp≠1 to Gp (Line 38):

�S = (�S1 + · · · + �Sp≠1) + �Sp, Ap = Ap≠1 + �Ap

Finally, we check if �S (= �S1 + �S2 + · · · + �Sp) is the correct CoSimRank change with

respect to the update �G to G. Our above analysis for each round of the for loop implies

Si = Si≠1 + �Si, Ai = Ai≠1 + �Ai (’i = 1, · · · , p ≠ 1)

Repeatedly applying the above iterations provides

Ap≠1 + �Ap = (Ap≠2 + �Ap≠1) + �Ap = · · · =

=(A0 + �A1) + �A2 + · · · + �Ap≠1 + �Ap

=A0 + �A with �A , �A1 + · · · + �Ap (3.19)

Similarly,

Sp≠1 + �Sp = S0 + �S with �S , �S1 + · · · + �Sp (3.20)

Plugging Eqs.(3.19) and (3.20) into Eq.(3.18) gives

S0 + �S = C(A0 + �A)T (S0 + �S)(A0 + �A) + I

Thus, �S satisfies the CoSimRank definition, which implies that �S (= �S1+�S2+· · ·+�Sp)

retrieved by D-CoSim is exactly the CoSimRank changes with respect to the graph update

�G (= �G1 + · · · + �Gp) to G0 (, G).
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We show that �S[:, Q] returned by D-CoSim (Line 40) is the correct CoSimRank change in

response to the updated graph �G to G. Next, the example presented in Figure 3.2 is used to

show how to retrieve the CoSimRank scores of “refreshed are” by Algorithm 1.

Example 4. Recall the old graph G (solid arrows) and updated graph �G to G (dashed arrows)

in Figure 3.2. Given the query q = e, number of iterations K = 3, and decay factor C = 0.6,

D-CoSim computes �S in response to �G through the following steps.

First, D-CoSim chunks all edges of �G into three pieces: �G = �Gefi�Gf fi�Gg, according

to Example 1.

Then, the changes of CoSimRank, �S1[:, e], with respect to the 1st piece update �Ge to

G0 (= G) are derived (see Example 3):

�S1[:, e] = [0, .0645, ≠.09, 0, ≠.2091, 0, 0]T ,

Thereafter, D-CoSim considers G1(= G0 ü �Ge) as the old graph and computes the changes

�S2[:, e] with respect to the 2nd piece update �Gf to G1:

�S2[:, e] = [0, .009, 0, 0, .0239, .1, 0]T .

Next, it regards G2(= G1 ü �Gg) as the old graph and computes the changes �S3[:, e] with

respect to the 3rd piece update �Gg to G2:

�S3[:, e] = [0, .018, 0, 0, .0288, 0, .12]T .

Finally, the changes of CoSimRank �S[:, e] with respect to the graph update �G (= �Ge ü

�Gf ü �Gg) are as follows:

�S[:, e] = �S1[:, e] + �S2[:, e] + �S3[:, e]

= [0, .0915, ≠.09, 0, ≠.1564, .1, .12]T

Complexity. We now analyse the computational cost of D-CoSim. Let ñ and m̃ denote the

number of nodes and edges in the new graph Gü�G, respectively. Let ” be the number of edges

in �G, and p be the number of update pieces {�Gu} in �G. Clearly, p Æ ”. The complexity

bound of D-CoSim can be defined as the following theorem.

Theorem 3. D-CoSim requires O(K(m̃ + ñp|Q|)) time and O(m̃ + Kñ) memory to dynamically

calculate �S[:, Q] after K iterations, where |Q| is the number of queries in Q.
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Proof. D-CoSim runs in three phases: (1) bunching edges of �G (Line 2), (2) {p(k)
} and {t(k)

}

iteration (Line 8–26), and (3) online query (Line 28–36). Specifically, bunching the edges of

�G requires O(”) time and O(”) memory for a linear scan of all edges in �G. To iteratively

compute {p(k)
} and {t(k)

}, for each query q œ Q and each piece update �Gu, it is required

O(Km̃) time and O(m̃ + Kñ) memory using Eqs.(3.8), Eqs.(3.9), and Eqs.(3.10). The O(Km̃)

time is dominated by five matrix-vector products: Aw(k≠1) (Line 10), AT r(k≠1) (Line 14),

ÃT p(k≠1) (Line 22), (A + Ã)T r (Line 24), and Ãt(k≠1) (Line 26). The memory O(m̃ + Kñ) is

determined by the storage of matrix A, and the resulting iterative vectors. For online query,

once {p(k)
} and {t(k)

} are computed, they are saved and reused to compute �S[:, q] for every

query in Q. After �S[:, q] is updated in response to each piece �Gu, all the vectors {p(k)
} and

{t(k)
} are freed for the next piece update. Thus, for |Q| queries and p update pieces, D-CoSim

algorithm entails O(K(m̃ + ñp|Q|)) time and O(m̃ + Kñ) memory in total.

Theorem 3 guarantees the high e�ciency of D-CoSim for dynamic CoSimRank search, whose

speed is increased by (a) our characterisation of the “refreshed areas” �S[:, q] in terms of the

linear combination of {p(k)
} and {t(k)

} only, and (b) maximally reusing and sharing common

intermediate results in response to the edge updates on each piece �Gu. In comparison, the

existing approach (Rothe & Schütze, 2014) requires O(K(m̃+ ñ)) time to compute only a single-

pair S̃[i, j] per edge update using Eqs.(3.4) and (3.5) from scratch, leading to O(K(m̃+ ñ|Q|)ñ”)

a total time of to compute S̃[:, Q] (ñ ◊ |Q| pairs) for ” edge updates, which is rather expensive.

3.3.2 Similarity Search over Decremental Graph

As presented in Figure 3.1, there are four cases of dynamic graph evolution: the addition

of nodes, the addition of edges, the deletion of nodes and the deletion of edges. Previously,

in Subsection 3.3.1, an e�cient similarity search algorithm D-CoSim over incremental dynamic

graphs was explained in detail with several examples. However, decremental cases of dynamic

graphs also commonly exist. For example, when user signs o� their Facebook account, then a

node and some related edges need to be removed from the social network (graph). This section

describes a novel similarity search algorithm over decremental dynamic graphs. We named this

algorithm as D-deCoSim.

In the following part of this section, D-deCoSim is discussed considering two separated cases

with respect to the type of updating parts (edges’ deletion and nodes’ deletion). For bet-
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ter understanding, we define D-deCoSim(Edge) as the CoSimRank similarity search algorithm

over decremental dynamic graphs with edge deletion, and D-deCoSim(Node) as the CoSimRank

scores’ computation algorithm over decremental dynamic graphs with node deletion.

3.3.2.1 Similarity Search over Decremental Dynamic Graphs with Edges’ Deletion

This subsection illustrates how the scores can be e�ciently computed when some edges are

deleted from an old graph. In this case, since the number of nodes in the new graph does not

change, the size of the CoSimRank score matrix of the new graph is the same as that of the old

graph.

The values and structure of the adjacency matrix closely follow the graph’s updating. The

adjacency matrix of the old graph A and the new adjacency matrix of the new graph ÂA are the

primary information input of the similarity search algorithm. Thus, we introduce the e�cient

method for updating the adjacency matrix with respect to each update (edge deletion) as follows.

E�cient Updating of the Adjacency Matrix (Edges’ Deletion)

Same as D-CoSim presented in the previous subsection, the first step for D-deCoSim in edges’

deletion is updating the adjacency matrix. In decremental dynamic graphs, the method of

updating the adjacency matrix is di�erent from the one used in D-CoSim, especially when the

number of deleted edges with end node u is the same as the in-degree of node u in the old graph,

meaning all incoming edges of node u are deleted. Therefore, the entire u
th column of the new

adjacency matrix consists of zeros. The e�cient operation of updating the adjacency matrix

concerning dynamic graphs with edge deletion is shown in Lemma 2.

Lemma 2. Given an old graph G and a deletion update piece of �Gu = ([v1, · · · , v”u ] æ u), the

new column-normalised adjacency matrix ÂA of the new graph ÂG = G ° �G can be dynamically

updated from the old adjacency matrix A by replacing its u
th column:

ÂA[:, u] =

Y
_______]

_______[

1
”u≠deg≠

u
(deg≠

u úA[:, u] ≠ 1{v1,v2,··· ,v”u }) if deg≠
u ”= ”u

0 if deg≠
u = ”u

(3.21)

Here, 0 is a one-column matrix, and all its entries are zero.
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Regarding decremental dynamic graphs with edge deletion, we assume that no node is deleted

from the old graph even if an isolated vertex caused the deletion (the case of node deletion will

be discussed in detail in the next subsection). Therefore, the number of nodes of the new graph
ÂG is the same as that of the old graph G. Thus, the size of the adjacency matrix and the

CoSimRank scores matrix of the old and new graphs do not change. Next, we use an example

to illustrate the updating of the adjacency matrix of a dynamic graph with edge deletion by

applying Lemma 2 as follows.

Figure 3.4: Edge Deletion �G of Graph G

Example 5. In Figure 3.4, given an old Graph G, the first deleted pieces is: �Ge = ([d] æ e)

and �Gf = ([a, b] æ f).

Firstly, since ”e = 1 and deg
≠
e = 4, in light of Eq. (3.21), the e

th column of A in response

Figure 3.5: Updating the Adjacency Matrix of Dynamic Graph G With Edges Deletion

to �Ge is updated to

ÂA[:, e] = 1
4 ≠ 1(4A[:, e] ≠ 1{d}) = [ 0 1

3 0 0 0 1
3

1
3 ]T

Figure 3.5 shows the computation details concerning the updating of the adjacency matrix.

Then, we consider the next update piece �Gf to update the adjacency matrix. The in-degree

of node f in the old graph G is the same as ”f . According to Lemma 2, the f
th column of the

new adjacency matrix is ÂA[:, f ] = [ 0 0 0 0 0 0 0 ]T .
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D-deCoSim (Edge) over Decremental Dynamic Graphs with Edge Deletion

Leveraging Lemma 2, we next demonstrate how to dynamically update the CoSimRank

scores of “refreshed are” in response to a piece of edge deletion. The algorithm is shown in

Theorem 4.

Theorem 4. Given an old graph G, a query q œ ÂG(G ° �G), and a deletion update piece to G:

�Gu = ([v1, · · · , v”u ] æ u), the changes �S[:, q] to CoSimRank scores with respect to q can be

computed by,

�S[:, q] =
ÿŒ

k=0 C
k(p(k)[q](t(k)) + t(k)[q](p(k))) (3.22)

where p(k)[q] and t(k)[q] denote the q-th entry of the vectors p(k) and t(k), respectively, which

are iteratively obtained as follows:

Y
_______]

_______[

p(0) = eu

p(k) = ÃT p(k≠1)

Y
______________]

______________[

t(0) =

Y
_______]

_______[

C
2(”u≠deg≠

u )(A + Ã)T r if deg≠
u ”= ”u

C
2 (A + ÂA)T r(K)

if deg≠
u = ”u

t(k) = ÃT t(k≠1)

(3.23)

and r = limKæŒr(K)(1 Æ k Æ K), which can be iteratively derived as,

Y
_______]

_______[

r(0) = w(K)

r(k) = CAT r(k≠1) + w(K≠k)

Y
______________]

______________[

w(0) =

Y
_______]

_______[

”uA[:, u] ≠ 1{v1,··· ,v”u } if deg≠
u ”= ”u

≠A[:, u] if deg≠
u = ”u

w(k) = Aw(k≠1)

(3.24)

where deg≠
u is the in-degree of node u in the old graph, and ”u is the number of edge up-

dates in �G. To ensure that the algorithm is universally applicable, when deg≠
u = ”u, t(0) =

C
2 (A + ÂA)T r(K) and w(0) = ≠A[:, u].

Next, we use the example in Figure 3.4 to illustrate how Theorem 4 updates the CoSimRank

scores of “refreshed area” in response to query q.
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Example 6. Figure 3.4 depicts the old graph G (black arrows) and the updated graph �G (black

arrows with red cross) to G: �Ge = ([d] æ e) and �Gf = ([a, b] æ f), and we take node c as

query, number of iteration K = 4, and decay factory is C = 0.6. Following Theorem 4, the new

similarity score �S[:, c] can be calculated.

First, we generate �S[:, c] with respect to �Ge, after the edge (d æ e) has been deleted.

Because the in-degree of node e is not equal to 0 in the new graph G1 = G ° �Ge, according to

Eq.(3.23) and Eq.(3.24), we set w(0) = ”uA[:, u] ≠ 1{v1,··· ,v”u } and t(0) = C
2(”u≠deg≠

u )(A + Ã)T r

to generate �S[:, c] as follows:

1. We compute w(k) and r(k) using Eq.(3.24):

k w(k) r(k)

0 [0, 0.25, 0, ≠0.75, 0, 0.25, 0.25]T [0, 0, 0, 0, 0, 0, 0]T

1 [0.25, 0.125, 0.125, 0.25, 0, 0, 0]T [0.0313, 0, 0, 0.313, 0, 0, 0]T

2 [.125, 0, .0625, .0625, 0, 0, 0]T [.125, 0.01, 0.08, 0.06, 0.01, 0.01, 0.02]T

3 [0.0313, 0, 0, 0.0313, 0, 0, 0]T [0.25, 0.19, 0.18, 0.25, 0.02, 0.04, 0.04]T

4 [0, 0, 0, 0, 0, 0, 0]T [0, .38, .15, ≠0.75, .08, .38, 0.4]T

2. Then, we obtain {p(k)
} and {t(k)

} through Eq.(3.23) with r = r(4):

k p(k) t(k)

0 [0, 0, 0, 0, 1, 0, 0]T [0, .015, ≠0.075, 0, 0.0489, 0.0379, ≠0.15]T

1 [0, 0, 0, 0, 0, 0, 0]T [0, ≠.0375, 0, 0, ≠.0324, 0.0075, 0]T

2 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, ≠.01, ≠.0187, 0]T

3 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, ≠.0062, 0, 0]T

4 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

3. After obtaining the values of {p(4)
} and {t(4)

}, we derive �Se(:, c) using Eq.(3.22) in

response to �Ge:

�Se[:, c] =
q4

k=0 0.6k
1
p(k)[c]t(k) + t(k)[c]p(k)

2

= [0, 0, 0, 0, ≠.075, 0, 0]T

Leveraging the updated CoSimRank values with respect to �Ge, the old graph is updated

by G1 = Gold ° �Ge, and let A = ÂA.
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Then, we calculate the updated similarity scores with respect to the updating piece �Gf in

response to query q = c in the similar way.

We update the adjacency matrix with respect to �Gf firstly. Since edges È[a, b] æ fÍ are

deleted from graph G1, the in-degree of node f in the new graph G2 = G1 ° �Gf is equal to 0.

Thus, we consider w(0) = ≠A[:, u] to generate �Sf [:, c] as follows.

1. We compute w(k) and r(k) using Eq.(3.24):

k w(k) r(k)

0 [≠0.5, ≠0.5, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

1 [≠0.25, 0, ≠0.25, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

2 [≠0.125, 0, ≠0.125, 0, 0, 0, 0]T [≠0.25, 0, ≠0.25, 0, 0, 0, 0]T

3 [0, 0, 0, 0, 0, 0, 0]T [≠0.25, ≠.038, ≠.325, 0, 0, ≠0.0375, ≠0.075]T

4 [0, 0, 0, 0, 0, 0, 0]T [≠0.5, ≠0.68, ≠0.075, 0, ≠0.03, ≠0.086, 0]T

2. Since the in-degree of node f in G1 is equal to ”f , t(0) can be calculated as C
2 (A + ÂA)T r(K).

3. {p(k)
} and {t(k)

} can be iteratively generated as:

k p(k) t(k)

0 [0, 0, 0, 0, 0, 1, 0]T [0, ≠0.173, ≠0.15, 0, ≠0.1517, ≠.1759, 0]T

1 [0, 0, 0, 0, 0.33, 0, 0]T [0, ≠.075, 0, 0, ≠.1161, 0, 0]T

2 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, ≠.025, 0, 0]T

3 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

4 [0, 0, 0, 0, 0, 0, 0]T [0, 0, 0, 0, 0, 0, 0]T

4. Finally, we derive �Sf [:, c] in response to �Gf :

�Sf [:, c] =
q4

k=0 0.6k
1
p(k)[c]t(k) + t(k)[c]p(k)

2

= [0, 0, 0, 0, 0, ≠0.15, 0]T

Theorem 4 shows that the D-deCoSim (Edge) algorithm over dynamic graph with edge dele-

tion can e�ciently and dynamically retrieve the changes of CoSimRank scores with respect

to each update.
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Complexity. We analyse the computational cost of D-deCoSim (Edge). We take ñ as the

number of nodes in the new graph ÂG = G°�G and m̃ as the number of edges in the new graph.

Let ” be the total number of deleted edges in �G and p be the number of update pieces {�Gu}

in �G. Clearly, p Æ ”. D-deCoSim has the following complexity bound:

Theorem 5. D-deCoSim (Edge) requires O(K(m̃ + ñp|Q|)) time and O(m̃ + Kñ) memory to

dynamically compute �S[:, Q] after K iterations, where |Q| is the number of queries in Q.

The computation complexity and memory complexity of the D-deCoSim (Edge) algorithm

over the dynamic graphs with edge deletion is similar to the D-CoSim algorithm. Due to space

restrictions, the proof of complexity is omitted here.

3.3.2.2 Similarity Search over Decreased Dynamic Graph with Node Deletion

Apart from the edge deletion in dynamic graphs, node deletion is also ubiquitous. For

example, when Amazon stops selling a product, the vertex corresponding to this product needs

to be removed from Amazon’s selling network. Deleting a node from a graph means cutting

all the in-links and out-links of the deleted node. Therefore, the similarity search algorithm

over dynamic graphs with node deletion di�ers from the one with edge deletion. We define the

similarity search algorithm over dynamic graphs with node deletion as D-deCoSim (Node). Same

as before, the prior process the algorithm performs is to update the adjacency matrix.

E�cient Update of the Adjacency Matrix (Nodes’ Deletion)

In dynamic graphs with node deletion, the adjacency matrix size of the new graph ÂG is

smaller than that of the old graph G since several nodes have been deleted from the old graph,

which means the column and row of the adjacency matrix corresponding to each deleted node

are deleted from the old adjacency matrix.

To e�ciently update the adjacency matrix over a dynamic graph with node deletion, we

first reorder the nodes of the old graph by attaching the deleted nodes to the back. Then, we

separate the adjacency scores of the deleted nodes from the remaining nodes. For example, given

a graph G, a node d is deleted from the graph. The old adjacency matrix is A, which can be

reorganised as A =
Ë

A11 v
uT 0

È
, where v and uT are the d

th column and row of the old adjacency

matrix. To calculate similarity score easily, we separate the CoSimRank score matrix in the

same way, e.g., S =
Ë

S11 S12
S21 S22

È
. Then, the following Lemma 3 is used to update the adjacency

matrix with respect to each deleted node.
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Lemma 3. Given an old graph G and a deleted node d, the out-neighbours of node d are

O(d) = {wi œ V|(d æ wi) œ E}. The first step in updating the adjacency matrix is removing

the d
th column and row from the old adjacency matrix; then, the new adjacency matrix of the

new graph can be updated from the old adjacency matrix A by replacing the w
th
i column with

ÂA[:, wi] = 1
1 + ”wi/deg≠

wi

A[:, wi]

Since for each deleted node, ”wi is always equal to -1. The above equation can be rewritten

as:
ÂA[:, wi] =

deg≠
wi

1 ≠ deg≠
wi

A[:, wi]

Repeat the above equation until all w
th
i (wth

i œ O(d)) have been updated.

Leveraging the new adjacency matrix ÂA of the new graph ÂG = G ° �G, we next show how

to update the CoSimRank scores with respect to each node deletion dynamically. This can be

achieved through several di�erent cases. Table 3.1 summarises these cases and presents their

corresponding diagram. Case 3 is the most general case, and the performance can be optimised

for the special Case 1 and Case 2.

In Table 3.1, the deleted node is d, and uT is the d
th column of the adjacent matrix, and v

is the d
th row of the adjacent matrix.

Next, we detail the similarity search algorithm of these three cases.

Case 1: The deleted node only has in-neighbour nodes

From its definition, we know that CoSimRank scores are calculated using the information

from in-neighbours. The deleted node not having any out-neighbour means that its information

does not spread to the other nodes. In this case, the method to get the similarity scores of new

graphs is illustrated in Theorem 6.

Theorem 6. Given an old directed graph G, a query q, and a deletion update piece which can

be described as G: �G(d) = ([m1, m2, · · · , m”d
] æ d) fi (d æ [n1, n2, · · · , n”d

]), if the out-degree

of the deleted node d is zero, the CoSimRank score ÂS[:, q] of the new Graph in response to the

query q is equal to the S11[:, q] of the old graph.

Proof. Firstly, the adjacency matrix A can be decomposed with respect to the deleted node d

as A =
Ë

A11 v
uT 0

È
. Since the deleted node d does not have any out-neighbour, we have A11 = ÂA;
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Case Adjacency Matrix Diagram

Case 1.The deleted node only has in-neighbour nodes

(e.g., node a).

A =

S

WWWWWWWU

A11 v

0 0

T

XXXXXXXV

Case 2. The deleted node has out-neighbours, and the

in-degree of each out-neighbour is 1 (e.g., the in-degree of

node b: deg
≠
b = 1). (Note: u = 1{d})

A =

S

WWWWWWWU

A11 v

uT 0

T

XXXXXXXV

Case 3. The deleted node has out-neighbours, and the

in-degree of some out-neighbours is larger than 1 (e.g., the

in-degree of node b: deg
≠
b > 1). (Note: b œ Dd)

A =

S

WWWWWWWU

A11 v

uT 0

T

XXXXXXXV

Table 3.1: Three Cases of Dynamic Graphs with Node Deletion
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thus, the old adjacency matrix can be written as: A =
Ë

ÂA v
0 0

È
. The CoSimRank score matrix

can be decomposed by the same method: S =
Ë

S11 (S21)T

S21 S22

È
.

The basic similarity search algorithm is as follows.

S = CAT SA + I

Substitute the new format of A and S into the algorithm:

S = C

Ë
ÂAT 0
vT 0

È Ë
S11 (S21)T

S21 S22

È Ë
ÂA v
0 0

È
+ I

According to the basic similarity search algorithm, S11 and ÂA can be calculated as,

S11 = C ÂAT S11 ÂA + I

ÂS = C ÂAT ÂS ÂA + I

Then, �S can be generated by,

�S = ÂS ≠ S11 = C ÂAT (ÂS ≠ S11) ÂA © 0

Thus, for query q, we can conclude that ÂS[:, q] = S11[:, q].

The proof illustrates the correctness of Theorem 6. Next, we discuss the complexity of

D-deCoSim (Node) Case 1 as follows.

Complexity. We now analyse the computational cost of D-deCoSim (Node) for Case 1 (the

deleted node does not have out-neighbours). Let ” denote the number of deleted nodes in the

new graph and Ân and Âm represent the number of nodes and edges in the new graph, respectively.

The computation complexity bound of the algorithm is shown in Theorem 7.

Theorem 7. D-deCoSim (Node) over dynamic graph with node deletion (Case 1: the deleted

node without out-neighbours) requires O(”|Q|) time and O(Ân + Âm) memory to get S[:, Q], where

|Q| is the number of queries.

Then, we take an example to show how Theorem 6 updates the CoSimRank scores of a new

graph in response to a query.

Example 7. In Figure 3.6, given an old graph G with 4 nodes and the deleted node d, d does

not have any out-neighbours. There are 3 nodes in the new graph ÂG = G ° �G. We take node

a as query and generate the similarity score of ÂS[:, a] using Theorem 6 as follows.
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Figure 3.6: Case 1: Nodes Deletion �G of Graph G

Before computing the CoSimRank scores, the adjacency matrix should be updated with respect

to the deleted node. Therefore, we remove the 4th column and 4th row, which correspond to node

d, from the old adjacency matrix:

A =

S

U
0 0 0 0
1
2 0 1 1
1
2 0 0 0
0 0 0 0

T

V æ ÂA =
C 0 0 0

1
2 0 1
1
2 0 0

D

Following Theorem 6 and the known similarity scores of the old graph, the similarity scores

of the new graph ÂG in response to query a is as follows:

S[:, a] = [1.39, 0, 0.3, 0.3]T æ S11[:, a] = ÂS[:, a] = [1.39, 0, 0.3]T

Case 2: The deleted node has out-neighbours, and the in-degree of each out-

neighbour equal to 1.

In this case, the deleted node d has out-neighbours, and the in-degree of each out-neighbour

equals 1 in the old graph G. Thus, the out-neighbours O(d) of the deleted node d only have

one in-neighbour in the old graph G, which is the deleted node d. Therefore, the similarity

information of the out-neighbours O(d) are only capture the information from the deleted node

d. The similarity scores of the new graph with respect to the deleted node d can be generated

using Theorem 8.

Theorem 8. Given a directed graph G, a query q, and deleted node d from the graph, the in-

degree of the node d’s out-neighbours are equal to 1s (Case 2); the changes in the CoSimRank

score �S[:, q] with respect to query q are dynamically computed as,

�S[:, q] =
ÿŒ

k=0 C
k(p(k)[q](t(k)) + t(k)[q](p(k))) (3.25)
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where p(k) and t(k) are iteratively obtained by,
Y
_______]

_______[

p(0) = u

p(k) = ÃT p(k≠1)

Y
_______]

_______[

t(0) = (≠C)( ÂAS12 + C
2 uS22)

t(k) = ÃT t(k≠1)

(3.26)

where u = A[d, i]T (i œ V|i ”= d). S12 is the d
th column of the old CoSimRank score matrix

except for the value of S(d, d), and S22 is the value of S(d, d).

Proof. Given an old directed graph G and a deleted node d from the graph, each out-neighbour

of the node d only has one in-neighbour.

As mentioned previously, the adjacency matrix is column-normalised; thus, the values in

each column are determined by the number of in-neighbours of the corresponding node. The

adjacency matrix of old graph G is the following:

A =
Ë

A11 v
uT 0

È
=

Ë
ÂA v

uT 0

È

Since the in-degree of the deleted node d’s out-neighbours O(d) are equal to 1s in old graph G,

the deleted node d will not a�ect the remaining values of the old adjacency matrix, which means

A11 = ÂA.

Then, substitute A to the basic similarity search algorithm:

S = CAT SA + I

S = C

Ë
ÂAT 0
vT 0

È Ë
S11 (S21)T

S21 S22

È Ë
ÂA v
0 0

È
+ I

where u = A[d, i]T (i œ V|i ”= d).

Then, S11 can be generated by

S11 = C( ÂAT S11 + uS12
T ) ÂA + ( ÂAT S12 + uS22)uT + I

and according to the basic similarity score algorithm, ÂS is

ÂS = CAT (S11 + �S)A + I

where �S can be calculated as

�S = C ÂAT �S ÂA ≠ CuS12
T ÂA ≠ C ÂAT S12uT

≠ CuS22uT (3.27)
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Here, we set ≠C · (uS12
T ÂA + ÂAT S12uT + uS22uT ) as E, and fu = ÂAT S12,

E = ≠C · (uS12
T ÂA + ÂAT S12uT + uS22uT ) let fu = ÂAT S12

= ≠C · (ufu
T + fuuT + uS22uT )

= ≠C · (u(fu
T + 1

2S22uT ) + (fu + 1
2uS22)uT ) let x = fu + 1

2uS22

= ≠C · (uxT + xuT )

Substitute E = ≠C · (uxT + xuT ) into Eq.(3.27),

�S =
ÿŒ

k=0 C
k( ÂAT )kE( ÂA)k

=
ÿŒ

k=0 C
k( ÂAT )k(≠C)(uxT + xuT )( ÂA)k

= ≠C ·

ÿŒ
k=0 C

k(( ÂAT )kuxT ( ÂA)k + (( ÂAT )kxuT ( ÂA)k)

Finally, let t(k) = ≠C · ( ÂAT )kx, p(k) = ( ÂAT )ku, so �S can be generated as

�S =
ÿŒ

k=0 C
k(p(k)(t(k)) + t(k)(p(k)))

Complexity. The above proof clearly establishes the correctness of the similarity search algo-

rithm over the dynamic graph with node deletion (Case 2: the in-degree of the deleted node’s

out-neighbours is equal to 1). Based on Theorem 8, we now analyse the computational cost of

the algorithm. ” is the number of the deleted nodes from the old graph G, d = [d1, d2, · · · , d”]

is the list of deleted nodes, Ân and Âm are respectively the number of nodes and edges in the new

graph, and p is the number of updated bunches of �G, where p =
q”

diœd deg
+
di

.

The computation complexity of the algorithm can be expressed as follows.

Theorem 9. Given a directed graph, a bunch of deleted nodes that satisfied the condition in

case 2, a query set Q, and the number of deleted nodes from the graph G is Ân, O(K( Âm + Ânp|Q|))

time and O( Âm + KÂn) memory are required to get �S[:, Q].

Here, time O(K Âm) comes from matrix-vector products, which include ÃT p(k≠1) and ÃT t(k≠1)

in Eq. 3.26. The memory complexity O( Âm + KÂn) comes from the storage of adjacency matrix,

rather than pi and ti, since all values of pi and ti are deleted when one update computation is

finished.

Next, we take an example to show how Theorem 8 updates similarity scores of a decremental

dynamic graph with node deletion (Case 2).
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Figure 3.7: Case 2 of Decremental Dynamic Graphs with Node Deletion

Example 8. In Figure 3.7, the old graph G has five nodes, and the deleted node is e (a node

with red cross). Given a query c, number of iterations K = 4, and damping factor C = 0.6, we

follow Theorem 8 to dynamically retrieve �S[:, q] through the following steps.

There are five nodes in graph G. To get the updated adjaceny matrix, the e
th column and

e
th row of the old adjacency matrix are removed. The new adjacency matrix can be described as

follows: A =

S

WWU

0 0 1
2 0 1

2
1 0 1

2 0 0
0 0 0 0 1

2
0 1 0 0 0
0 0 0 1 0

T

XXV æ ÂA =

S

U
0 0 1

2 0
1 0 1

2 0
0 0 0 0
0 1 0 0

T

V.

Following the similarity search algorithm, the similarity scores of the old graph is

S =
C 2.3524 0.0532 0.6922 0.0018 0.0241

0.0532 2.2540 0.0271 0.0887 0.0030
0.6922 0.0271 1.7069 0.0081 0.4687
0.0018 0.0887 00081 2.0899 0.1479
0.0241 0.0030 04687 0.1479 1.8165

D

.

According to Eq.(3.26), we have u = [ 0 0 0 1 ]T ; thus, {p(k)
} and {t(k)

} can be iteratively

generated as
k p(k) t(k)

0 [0, 0, 0, 1]T [≠0.0018, ≠0.0887, ≠0.0081, ≠0.545]T

1 [0, 0, 0, 1]T [≠0.0887, ≠0.0545, ≠0.452, 0]T

2 [1, 0, 0.5, 0]T [≠0.545, 0, ≠0.3168, 0]T

3 [0, 0, 0.5, 0]T [0, 0, ≠0.2725, 0]T

4 [0, 0, 0, 0]T [0, 0, 0, 0]T

Substituting the results of {p(k)
} and {t(k)

} into Eq.(3.25),

�S[:, c] =
ÿ4

k=0 0.64(p(4)[c](t(4)) + t(4)[c](p(4))) = [≠0.2122, ≠0.0271, ≠0.1729, ≠0.0081]T

Finally, according to ÂS = S + �S, the CoSimRank score in response to query c of the new

graph is
ÂS[:, c] = S[:, c] + �S[:, c] = [0.48, 0, 1.534, 0]T

Case 3: The deleted node has out-neighbours, and the in-degree of some out-

neighbours is larger than 1.
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The case covers the remaining cases of nodes being deleted from a graph. Since the algorithm

generates the similarity scores by getting information from the in-neighbours of a node pair, when

the in-degree of some nodes O(d) are larger than 1, the new adjacency matrix is not equal to

A11. Therefore, we need to update the adjacency matrix using Lemma 3.

Leveraging the new adjacency matrix, we next show the algorithm to calculate CoSimRank

scores in response to query q of the new graph.

Theorem 10. Given an old directed graph G, the node d is deleted from the graph. The in-

degree of some of node d’s out-neighbours are larger than 1 in the old graph(Case 3). Here, we

denote the nodes in O(d) whose in-degree is larger than 1 as Dout; then, the changes �S[:, q] to

the CoSimRank scores are dynamically computed as

�S[:, q] =
ÿŒ

k=0 C
k(p(k)[q](t(k)) + t(k)[q](p(k)) + w(k)[q](r(k)) + r(k)[q](w(k))) (3.28)

where p(k)[q] and t(k)[q] are the q
th entry of the vectors p(k) and t(k) respectively, and they are

calculated using the following:
Y
_]

_[

p(0) = eDout

p(k) = ÂAT p(k≠1)

Y
__]

__[

t(0) = C

2 · f

t(k) = ÂAT t(k≠1)
(3.29)

Similarly, w(k)[q] and r(k)[q] can be iteratively obtained by
Y
_]

_[

r(0) = ≠u

r(k) = ÂAT r(k≠1)

Y
_]

_[

w(0) = C · (A11
T S12 + 1

2uS22)

w(k) = ÂAT w(k≠1)
(3.30)

where eDout is a unit vector with 1 in the D
th
out entry.

For the calculation of t(0) in Equation 3.29,

f = (A11 + ÂA)T S11(A11(:, Dout) + 1
deg≠

Dout
·(deg≠

Dout
≠1)

A11 is extracted from the old adjacency matrix by removing the d
th column and row of the old

adjacency matrix A. Similarly, S11 is extracted from the CoSimRank scores of the old graph by

removing the d
th column and row of the old CoSimRank score matrix S.

Proof. Given an old directed graph G and a node d deleted from the graph, the in-degree of

some of node d’s out-neighbours is not equal to 0 in the new graph ÂG. Thus, the adjacency
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matrix of old graph G is

A =

S

WWWWWWWU

A11 v

uT 0

T

XXXXXXXV

=

S

WWWWWWWU

ÂA + �A v

uT 0

T

XXXXXXXV

then, substitute A into the basic similarity search algorithm:

S = CAT SA + I

= C ·

5
(ÂA≠�A)T u

vT 0

6 Ë S11 S12
S12T S22

È Ë
ÂA≠�A v

uT 0

È
+ I

Then, S11 can be generated as

S11 = C((( ÂA ≠ �A)T S11 + uS12
T )( ÂA ≠ �A) + (( ÂA ≠ �A)T S12 + uS22)uT ) + I

According to the basic similarity score algorithm, ÂS is

ÂS = C ÂAT (S11 + �S) ÂA + I

where �S can be calculated as follows:

�S = C ÂAT �S ÂA ≠ C · (uS12
T ( ÂA ≠ �A) + ( ÂA ≠ �A)T S12uT

+ uS22uT
≠ ( ÂA ≠ �A)T S11�A ≠ �AT S11 ÂA)

Then, we set

E = ≠C · (uS12
T ( ÂA ≠ �A) + ( ÂA ≠ �A)T S12uT

+ uS22uT
≠ ( ÂA ≠ �A)T S11�A ≠ �AT S11 ÂA)

here ÂA ≠ �A = A11

= ≠C · (uS12
T A11 + A11

T S12uT + uS22uT
≠ A11

T S11�A ≠ �AT S11 ÂA)

here ÂA = A11 + �A[:, Dout]eT
Dout

= ≠C · (uS12
T A11 + A11

T S12uT + uS22uT
≠ A11

T S11�A[:, Dout]eT
Dout

≠ (�A[:, Dout]eT
Dout

)T S11(A11 + �A[:, Dout]eT
Dout

))
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After describing the new adjacency matrix, we set f as follows:

f = S11
1

deg≠(Dout) · (deg≠(Dout) + 1)
1{Nbr≠(Dout)}

= 1
deg≠(Dout) · (deg≠(Dout) + 1)

(
ÿŒ

k=0 C
k(h(k)(m(k))T

+ (h(k))T m(k) + (A11
T )kA11

k))1{Nbr≠(Dout)}

= 1
deg≠(Dout) · (deg≠(Dout) + 1)

((
ÿŒ

k=0 C
k(h(k)(m(k))T + (h(k))T m(k)))1{Nbr≠(Dout)}

¸ ˚˙ ˝
y(K)

+
ÿŒ

k=0 C
k(A11

T )kA11
k1{Nbr≠(Dout)}

¸ ˚˙ ˝
j(K)

)

let fx = S11�A[:, Dout], fy = A11
T S12

= ≠C · (ufT
y + fyuT + uS22uT

≠ A11
T fxeT

Dout
≠ eDout

f T

x A11 ≠ eDout
�A[:, Dout]T fxeT

Dout
)

= (≠C)(u(fT
y + 1

2S22uT ) + (fy + 1
2uS22)uT

≠ (A11
T fx + 1

2eDout
�A[:, Dout]T fx)eT

Dout

≠ eDout
(f T

x A11 + 1
2�A[:, Dout]T fxeT

Dout
))

let x = CA11
T fx + C

2 eDout
f T

x �A[:, Dout]T fx, y = Cfy + C

2 uS22

= xeT
Dout

+ eDout
xT

≠ yuT
≠ uyT

Substitute x into the basic iterative similarity search algorithm of �S with respect to ”G,

�S =
ÿŒ

k=0 C
k( ÂAT )kE( ÂA)k

=
ÿŒ

k=0 C
k( ÂAT )k(xeT

Dout
+ eDout

xT
≠ yuT

≠ uyT ) ÂAk

Let t(k) = ( ÂAT )kx, p(k) = ( ÂAT )keDout
, where

x = CA11
T fx + C

2 eDout
f T

x �A[:, Dout]T fx

= C

2 (A11 + ÂA)T S11�A[:, Dout]

Next we set m(k) = ≠( ÂAT )ky, n(k) = ≠( ÂAT )ku. Here, �A(:, Dout) can be calculated by

�A(:, Dout) = 1
deg≠(Dout)·(deg≠(Dout)+1)1{Nbr≠(Dout)}.
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Thus, �S can be generated as follows:

�S =
ÿŒ

k=0 C
k(p(k)(t(k))T + t(k)(p(k))T + w(k)(r(k))T + r(k)(w(k))T )

where

Y
_]

_[

p(0) = eDout

p(k) = ÂAT p(k≠1)

Y
__]

__[

t(0) = C

2 (A11 + ÂA)T
· f

t(k) = ÂAT t(k≠1)

Y
_]

_[

r(0) = ≠u

r(k) = ÂAT r(k≠1)

Y
_]

_[

w(0) = C · (A11
T S12 + 1

2uS22)

w(k) = ÂAT w(k≠1)

here f = S11
1

deg≠(Dout) · (deg≠(Dout) + 1)
1{Nbr≠(Dout)}

Figure 3.8: Case 3: Node Deletion �G of Graph G

Next, we take an example to show how the D-deCoSim (Node) algorithm (Case 3) retrieves

the similarity scores of “refreshed area”.

Example 9. Given a directed graph G with five nodes and a deleted node e (a node with red

cross) (Figure 3.8), set query q = b, the number of iterations K = 3, and decay factory C = 0.6;

then, we iteratively retrieve �S[:, q] as follows.

Figure 3.8 shows that the deleted node e has one out-neighbour (node d). Node d has 2

in-neighbours in the old graph G (node e and c), so the node d belongs to Dout. This example

satisfies the conditions of Case 3; thus, Theorem 10 is used to iteratively retrieve �S[:, q].

Firstly, Lemma 3 is used to update the adjacency matrix in response to the deletion of node

d.
ÂA(:, Dout) = A11(:, Dout) + 1

deg≠(Dout)(deg≠(Dout) ≠ 1)
1I(Dout)

=
C 0

0
1
2
0

D

+ 1
1 ú 2

5 0
0
1
0

6
=

5 0
0
1
0

6
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The remaining entries of the old adjacency matrix are the same as before. Therefore, the new

adjacency matrix is

A =
# A11 v

u 0
$

=

S

WWWU

0 0 0 0 1
2

1
2 0 0 0 1

2
1
2

1
2 0 1

2 0
0 1

2 0 0 0
0 0 1 1

2 0

T

XXXV æ ÂA =

S

WU

0 0 0 0
1
2 0 0 0
1
2

1
2 1 0

0 1
2 0 0

T

XV

The CoSimRank scores matrix with respect to the query b of the old graph G is

S[:, b] = [ 0.4484, 1.6929, 0.0722, 0.4119, 0.1377 ]T

Substituting u = [0, 0, 0,
1
2 ]T , S11 and S22 into Eq. 3.30 to compute w(K) and r(K), we

can get
k r(k) w(k)

0 [0, 0, 0, 1]T [0.15, 0.15, 0, 0.225]T

1 [0, 0.5, 0, 0]T [0.075, 0.1125, 0, 0]T

2 [0.25, 0, 0, 0]T [0.0562, 0, 0, 0]T

3 [0, 0, 0, 0]T [0, 0, 0, 0]T

Next, we obtain p(K) and t(K) using Eq. 3.29:

k p(k) t(k)

0 [0, 0, 0, ≠0.5]T [0.0402, 0.0416, 0, 0.1905]T

1 [0, ≠0.25, 0, 0]T [0.0208, 0.0953, 0, 0]T

2 [≠0.125, 0, 0, 0]T [0.0476, 0, 0, 0]T

3 [0, 0, 0, 0]T [0, 0, 0, 0]T

Then, the updated parts of S with respect to the “refreshed area” is

�S[:, b] =
ÿ3

k=0 C
3(p(3)[b](t(3))T + t(3)[b](p(3))T + w(3)[b](r(3))T + r(3)[b](w(3))T )

= [ 0.0194 0.0389 0 0.1292 ]T

Finally, the CoSimRank scores of the new graph with respect to query q is

ÂS[:, q] = �S[:, q] + S11[:, q] = [ 0.195 1.39 0 0.3 ]T

Complexity. In case 3(the deleted node has out-neighbours, and the in-degree of some out-

neighbours is larger than 1), the complexity of the similarity search computation is closely

related to the number of Dout. Here, we define |Dout| as the number of Dout. Ân and Âm denote
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the number of nodes and edges of the new graph, respectively. According to Theorem 10, Ân

is the number of deleted nodes of the old graph G. Hence, the computation complexity of the

algorithm can be expressed as

Theorem 11. Given a directed graph, a bunch of deleted nodes, the number of deleted nodes as

Ân, and a query set Q, are required O(K( Âm + |Q||Dout|Ân)) time and O( Âm + KÂn) memory to get

�S[:, Q].

|Dout| is the number of nodes satisfying the conditions of case 3. For a deleted node d, if

the in-degree of some of node d’s out-neighbours O(d) are larger than 1, then we define these

out-neighbours as Dout. Mathematically, (’deg
≠
a > 1|a œ O(d), a œ Dout).

time O(K Âm) comes from the matrix-vector products (Eq. 3.29 and Eq. 3.30) ÃT p(k≠1),

ÃT t(k≠1), ÂAT w(k≠1), and ÂAT r(k≠1). For each deleted node, the similarity scores are calculated

by Eq. 3.29 and Eq. 3.30 in response to query Q; thus, the time complexity is O(K( Âm +

|Q||Dout|Ân)).

Similarity search algorithms over decremental dynamic graphs (node deletion) have been

introduced separately in three cases. Now we take a network as an example, which includes all

the 3 cases, to illustrate how the D-deCoSim (Node) algorithm works over a dynamic graph with

all three cases and demonstrate the reliability of the similarity search algorithms.

Example 10. In Figure 3.9, given an old graph with seven nodes such that the size of old

adjacency matrix A is 7 and nodes e, f, g have been deleted from the old graph, �G = �Gg fi

�Gf fi �Ge; then, given a query q = a, decay factory C = 0.6, and iteration number K = 3, the

update similarity search scores can be generated using the algorithm as follows.

Figure 3.9: 4 Cases: Node Deletion �G of Graph G

Firstly, to calculate the updated similarity search score �Sg[:, a] with respect to �Gg, since

the out-neighbour of the deleted node g is node c and as it only has one in-neighbour node g,

Theorem 8 is used to generate �Sg[:, a].
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1. According to Eq.(3.26), we have u = [ 0 0 1 0 0 0 ]T , based on the value of u, {p(k)
} and

{t(k)
} can be iteratively generated as

k p(k) t(k)

0 [0, 0, 1, 0, 0, 0]T [≠0.0185, 0, ≠0.5357, ≠0.0082, 0, ≠0.0222]T

1 [0.3333, 0, 0, 0.5, 0, 0]T [≠0.1813, 0, 0, ≠0.2678, 0, ≠0.0089]T

2 [0.1667, 0, 0, 0, 0, 0.2778]T [≠0.0893, 0, 0, 0, 0, ≠0.1487]T

3 [0, 0, 0, 0, 0, 0.0556]T [0, 0, 0, 0, 0, ≠0.0298]T

2. We use �S[:, a] =
q3

k=0 C
k(p(k)[a](t(k))T + t(k)[a](p(k))T ) to derive �Sg[:, a] as

�Sg[:, a] = [≠0.0832, 0, ≠0.0185, ≠0.1079, 0, ≠0.0197]T

3. After the CoSimRank score is updated with respect to �Gg, the graph changes from G to

G1 = G ≠ �Gg, and A = ÂA.

Next, there are 6 nodes in the new graph G1, and node f is deleted from graph G1. Since

the out-degree of node f in the old graph G1 is 0, according to Theorem 6, no computation

is required, and the new similarity search score matrix ÂSf [:, a] of the new graph ÂG is equal to

�S11[:, a] of the old graph, i.e., �Sf [:, a] = [0, 0, 0, 0, 0]T .

Then, the graph is updated from G1 to G2 = G1 ≠ �Gf , and there are 5 nodes in the new

graph. The node e will be deleted next. The out-neighbour of the node e in graph G2 is d, and

the in-degree of the node d is 2. Here, node d can be defined as Dout.

1. The new adjacency matrix can be generated as follows:

ÂA(:, Dout) = A11(:, Dout) + 1
deg≠(Dout)(deg≠(Dout) ≠ 1)

1{Nbr≠(Dout)}

=
C 0

0
1
2
0

D

+ 1
1 ú 2

5 0
0
1
0

6
=

5 0
0
1
0

6

2. The update of the CoSimRank score with respect to �Ge is calculated by applying The-

orem 10. According to Eq.(3.29) and Eq.(3.30), we have u = [ 0 0 0 1 ]T . {p(k)
}, {t(k)

},

F,WANG,PhD Thesis,Aston University 2021. 75



{r(k)
}, and {w(k)

} can be iteratively generated as

k p(k) t(k)

0 [0, 0, 0, 1]T [0.1, 0, 0, 0.2250]T

1 [0.333, 0, 0, 0]T [0.075, 0, 0, 0]T

2 [0, 0, 0, 0]T [0, 0, 0, 0]T

k r(k) w(k)

0 [0, 0, 0, ≠0.5]T [0, 0, 0, 0.24]T

1 [≠0.1667, 0, 0, 0]T [0.08, 0, 0, 0]T

2 [0, 0, 0, 0]T [0, 0, 0, 0]T

3. We use �S[:, a] =
qŒ

k=0 C
k(p(k)[a](t(k)) + t(k)[a](p(k)) + w(k)[a](r(k)) + r(k)[a](w(k))) to

derive �Se[:, a] as: �Se[:, a] = [0.014, 0, 0, 0.1]T .

Finally, after deriving the CoSimRank scores in response to each update, we obtain the final

�S of all updates. To keep the unit size of each update, here we define R as the remaining node

set of new graph ÂG; in this example, R = [a, b, c, d].

We can get the new CoSimRank scores of the new graph ÂG as ÂS[R, a] = �Sg[R, a] +

�Sf [R, a] + �Se[R, a] + S11[R, a] = [1.24, 0, 0, 0, 2]T .

Example 10 illustrates how the similarity search algorithm works on a dynamic graph with

node deletion (incorporating all the three cases). Based on the computation of �Sg (Case 2),

�Sf (Case 1), and �Se (Case 3), we found that the formula for Case 3 can be used to cover

Case 1 and Case 2, but the computation corresponding to Case 1 and Case 2 are streamlined.

Thus, the similarity search algorithm over a dynamic graph with node deletion can be attributed

to Theorem 10.

3.3.3 Combinatorial Algorithms For Similarity Search Over Dynamic Graphs

Extracting similarity information in big data as e�ciently as possible is an challenge in the era

of information. In many situations, entities of big data and the links between data can be natu-

rally represented in graph structures, such as: biocomputing (protein-protein interactions) (Du,

2010), recommendation systems(rating relations between customers and products) (Machado

et al., 2014), social networks(users-users interaction) (Machado et al., 2014), etc. Therefore,

e�cient similarity search algorithms on graph structures are necessary and urgently needed.

F,WANG,PhD Thesis,Aston University 2021. 76



Graphs are classified as static or dynamic based on whether or not the nodes and edges in

the graph structure change. This subsection focus on similarity search algorithms on dynamic

graphs.

According to Definition 2, dynamic graphs can be divided into incremental(nodes & edges

addition) and decremental(nodes & edges deletion) dynamic graphs. Based on this, we pro-

posed two e�cient similarity search algorithms D-CoSim and D-deCoSim(D-deCoSim(Node) &

D-deCoSim(Edge)) on incremental and decremental dynamic graphs respectively (Section 3.3.1

and Section 3.3.2). This section focuses on how to integrate the proposed techniques to perform

similarity search on dynamic graphs e�ciently.

In real life, the application of a combination of incremental and decremental dynamic graphs

is more common, take Facebook social network as an example, as new users sign up or existed

users log out, the number of users in the network fluctuates, as does the number of relationship

edges in the network. To achieve e�cient similarity search on dynamic graphs, we can combine

D-CoSim and D-deCoSim,named Com-D.

Com-D is a combinatorial algorithm which includes D-CoSim and D-deCoSim(D-deCoSim(Node)

& D-deCoSim(Edge)). These algorithms are independent of each other and can be called in-

dividually or in combination depending on the type of dynamic graph. It is worth noting

that when the dynamic diagram contains the four cases in Figure 3.1, the order in which the

individual algorithms are called directly a�ects the computational complexity and e�ciency

of the Com-D algorithm. The order in which the algorithms are called is D-deCoSim(Node),

D-deCoSim(Edge) and D-CoSim. There are two advantages to calling the algorithms in this way.

Calling D-deCoSim(Node) first not only reduces the size of the adjacency matrix directly, but

also reduces the complexity of Com-D algorithm.

Example 11. In Figure 3.10, given an old graph with five nodes such that the size of old

adjacency matrix A is 5. Nodes e have been deleted from the old graph, edge (a æ b) has been

deleted and a new node f has been updated to graph G, thus �G = �Ge fi �Gb fi �Gf ; then,

given a query q = d, decay factory C = 0.6, and iteration number K = 3, the update similarity

search scores can be generated using the algorithm as follows.

To make Com-D algorithm more e�cient, we first call D-deCoSim(Node) algorithm to update

�Se[:, d] with respect to the updated part �Ge, then D-deCoSim(Edge) algorithm will be called to

generate �Sb[:, d] with respect to the updated part �Gb, lastly, D-CoSim algorithm will be called
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Figure 3.10: Example of old web graph G(solid arrows) updated by �G

to calculate �Sf [:, d] with respect to the updated part �Gf . The detailed steps of the calculation

are shown below.

Firstly, to calculate the updated similarity search score �Se[:, d] with respect to �Ge. The

out-neighbour of deleted node e is node d in graph G, and the in-degree of the node d is 2. Here,

node d can be defined as Dout.

1. The new adjacency matrix can be generated as follows:

ÂA(:, Dout) = A11(:, Dout) + 1
deg≠(Dout)(deg≠(Dout) ≠ 1)

1{Nbr≠(Dout)}

=

S

U
0
1
3
1
3
0

T

V + 1
2 ú 3

5 0
1
1
0

6
=

S

U
0
1
2
1
2
0

T

V

2. The update of the CoSimRank score with respect to �Ge is calculated by applying The-

orem 10. According to Eq.(3.29) and Eq.(3.30), we have u = [ 0 0 0 1
3 ]T . {p(k)

}, {t(k)
},

{r(k)
}, and {w(k)

} can be iteratively generated as

k p(k) t(k)

0 [0, 0, 0, ≠
1
3 ]T [0, 0.09, 0, 0.2349]T

1 [0, 0, 0, 0]T [0, 0, 0, 0.045]T

2 [0, 0, 0, 0]T [0, 0, 0, 0]T

3 [0, 0, 0, 0]T [0, 0, 0, 0]T

k r(k) w(k)

0 [0, 0, 0, 1]T [0, 0.095, 0, 0.1496]T

1 [0, 0, 0, 0]T [0, 0, 0, 0.0475]T

2 [0, 0, 0, 0]T [0, 0, 0, 0]T

3 [0, 0, 0, 0]T [0, 0, 0, 0]T

3. We use �S[:, d] =
qŒ

k=0 C
k(p(k)[d](t(k)) + t(k)[d](p(k)) + w(k)[d](r(k)) + r(k)[d](w(k))) to

derive �Se[:, d] as: �Se[:, d] = [0, 0.065, 0, 0.1426]T .
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Secondly, the graph is updated from G to G1 = G ° �Ge, and there are 4 nodes in the new

graph. The edge (a æ b) will be deleted next, and we generate �S[:, d] with respect to �Gb.

Because the in-degree of node b is not equal to 0 in the new graph G1, according to Eq.(3.23)

and Eq.(3.24), we set w(0) = ”bA[:, b] ≠ 1{v1,··· ,v”b
} and t(0) = C

2(”b≠deg≠
b )(A + Ã)T r to generate

�S[:, d] as follows:

1. We compute w(k) and r(k) using Eq.(3.24):

k w(k) r(k)

0 [≠0.5, 0, 0.5, 0]T [0, 0, 0, 0]T

1 [0.5, 0, 0, 0]T [0, 0, 0, 0]T

2 [0, 0, 0, 0]T [0.5, 0, 0, 0]T

3 [0, 0, 0, 0]T [≠0.5, 0.15, 0.8, 0]T

2. Then, we obtain {p(k)
} and {t(k)

} through Eq.(3.23) with r = r(4):

k p(k) t(k)

0 [0, 1, 0, 0]T [0, 0.285, ≠0.3, 0.285]T

1 [0, 0, 0, 0.5]T [0, ≠0.3, 0, 0, ≠0.0075]T

2 [0, 0, 0, 0]T [0, 0, 0, ≠0.15]T

3 [0, 0, 0, 0]T [0, 0, 0, 0]T

3. After obtaining the values of {p(3)
} and {t(3)

}, we derive �Sb(:, d) using Eq.(3.22) in

response to �Gb:

�Sb[:, d] =
q3

k=0 0.6k
1
p(k)[d]t(k) + t(k)[d]p(k)

2

= [0, 0.195, 0, ≠0.0045]T

Leveraging the updated CoSimRank values with respect to �Gb, the old graph is updated

by G2 = G1 ° �Gb, and let A = ÂA.

Finally, we generate �Sf with respect to �Gf . According to Theorem 4, we generate CoSimRank

scores of graph G2 as follows.
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1. First, we compute {w(k)
} and {r(k)

} using Eqs.(3.10) and (3.9):

k w(k) r(k)

0 [0, 1, 0, 1, 0]T [0.5, 0, 0, 0, 0]T

1 [0, 0.5, 1.5, 0, 0]T [1.5, 0, 0.8, 0, 0]T

2 [1.5, 0, 0.5, 0, 0]T [0, 0.98, 2.4, 0.24, 0]T

3 [0.5, 0, 0, 0, 0]T [0, 2.44, 0, 2.014, 0]T

2. Next, we obtain {p(k)
} and {t(k)

} via Eq.(3.8) with r = r(3):

k p(k) t(k)

0 [0, 0, 0, 0, 1]T [0, 0, 0, 0.366, 0.3341]T

1 [0, 0, 0, 0, 0]T [0, 0, 0, 0, 0.183]T

2 [0, 0, 0, 0, 0]T [0, 0, 0, 0, 0]T

3 [0, 0, 0, 0, 0]T [0, 0, 0, 0, 0]T

3. Finally, we use Eq.(3.7) to derive �Sf [:, d] in response to �Gf :

�Sf [:, d] =
3q

k=0
0.6k

1
t(k)[d] · p(k) + p(k)[d] · t(k)

2

= [0, 0, 0, 0, 0.366]T

The final CoSimRank scores of new graph G2 can be calculated by:

SG2 [:, d] = SG[:, d] + �Se[:, d] + �Sb[:, d] + �Sf [:, d] = [0, 0.96, 0, 2.92, 0.32]T

3.4 Experimental Evaluation

This section presents an experimental study on real large-scale data to compare our al-

gorithms with other baseline algorithms. Our evaluations using various datasets verify the

superiority of D-CoSim and D-deCoSim with dynamic graphs.

The performance e�ciency is evaluated using three metrics:
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(a) Running Time. On incremental dynamic graphs, D-CoSim quickly responds to the CoSim-

Rank search, with no need to recompute scores from scratch. On a decremental dynamic graph,

D-deCoSim is much faster than the baseline approaches.

(b) Memory Space. Both D-CoSim and D-deCoSim require only linear memory, and they

scale well on million-node graphs.

(c) Accuracy. D-CoSim and D-deCoSim do not compromise accuracy while improving (search)

speed.

3.4.1 Experimental Setting

Datasets. We adopt the following public datasets:

Datasets #-Nodes #-Edges Type

as-735 (AS) 7,716 26,467 Undirected

ca-HepPh (HP) 12,008 237,010 Undirected

email-EuAll (EE) 265,214 420,045 Directed

web-Google (WG) 916,428 5,105,039 Directed

wiki-Talk (WT) 2,394,385 5,021,410 Directed

soc-LiveJournal (LJ) 18,520,486 298,113,762 Directed

Table 3.2: Description of Datasets

• as-735 (AS). It is a communication graph representing autonomous systems, taken from the

Border Gateway Protocol logs, where an edge represent a who-talks-to-whom relationship.

• ca-HepPh (HP). It is a collaboration graph obtained from the arXiv High Energy Physics.

If two authors (nodes) co-authored a paper, there is an edge between them.

• email-EuAll (EE). It is an EU email contact graph. Each node comprises an email address.

If node i sent at least one message to j, there is an edge i æ j in the network.

• web-Google (WG). It is a Google web graph, where each node is a web page and each edge

a hyperlink.
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• wiki-Talk (WT). On Wikipedia, each user (node) has a talk page that other users can edit

for discussion. In this graph, an edge i æ j means that user i edited user j’s talk page.

• soc-LiveJournal (LJ). It is a social community network, where edge i æ j is a friendship

link from user i to j.

The size of each dataset has been illustrated in Table 3.2. To simulate real evolution on dy-

namic graphs, we used a random typing generator (RTG) (Akoglu & Faloutsos, 2009) to generate

|�G| dynamic updates following linkage generation models (Leskovec, Kleinberg, & Faloutsos,

2007; Ntoulas, Cho, & Olston, 2004). Some graph operations have been done with Standard

Network Analysis Platform (SNAP), and the details of SNAP is introduced in Appendix B.

All experiments have been conducted on a PC with Intel Core i7-6700 3.40GHz CPU and

64GB memory compiled by VC++.

Compared Algorithms. We ran our D-CoSim and D-deCoSim over an incremental graph

and a decremental dynamic graph respectively and compared them with two state-of-the-art

CoSimRank competitors:

(a) CSR, a method by (Rothe & Schütze, 2014) that retrieves a CoSimRank score from the

sum of the dot product of two personalised PageRank vectors;

(b) CSM, a repeated-squaring method by (Yu & McCann, 2015a) that cuts down the number

of CoSimRank iterations.

3.4.2 Experimental results

This section demonstrates the e�ciency and accuracy of our similarity search algorithms by

implementing them on di�erent large-scale realistic graphs. Before testing the e�ciency of the al-

gorithm, we do some tests on the parameters (C and K) to ensure that the e�ciency experiments

are more accurate afterwards. We implement three algorithms, D-CoSim, D-deCoSim(Node) and

D-deCoSim(Edge), on dataset EE with 1000 updates, respectively. Figure 3.11(a) shows that

there are no error di�erence between the results of CSR and the three proposed algorithms with

vary C. Figure 3.11(b) shows similarly trend as Figure 3.11(a), all error di�erence between the

similarity scores of CSR and the three proposed algorithms with vary K are 0. Figure 3.11

illustrates that the proposed algorithms do not sacrifice any accuracy, so the parameter settings

do not a�ect the e�ciency of the proposed algorithm. Therefore the parameters in this chapter
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(a) Vary C for Algorithms (b) Vary K for Algorithms

Figure 3.11: Parameter Testings

are set as C = 0.6, K = 5, which are previously used in (Rothe & Schütze, 2014). After the

settings of parameters, the experimental results of the D-CoSim algorithm over an incremental

dynamic graph has been shown as follows.

3.4.2.1 Experimental Results of D-CoSim For Incremental Dynamic Graphs

We implement the D-CoSim algorithm and baseline algorithms over six practical datasets, and

the performance e�ciency is evaluated using three metrics: time e�ciency, memory complexity,

and accuracy.

Time E�ciency. We evaluate D-CoSim algorithm’s time e�ciency over incremental dynamic

graphs.

Figure 3.12: Time E�ciency on Incremental Graphs

Figure 3.12 depicts the time e�ciency of D-CoSim on several dynamic graphs. From each

dataset, we randomly select |Q| = 500 queries and build |�G| = 1000 new edge updates.
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Figure 3.12 compares the time of D-CoSim against CSR and CSM to compute CoSimRank

changes per update for each query. We see that D-CoSim is consistently 3-5 order-of-magnitude

faster than CSR (resp.118x faster than CSM). This is because D-CoSim employs Theorem 1, which

evaluates only the “refreshed areas” of CoSimRank scores in response to graph updates, without

recomputing all scores from scratch. Moreover, unlike CSM that crashes on large datasets

(e.g., WT, LJ) due to insu�cient memory for repeated squaring memoisation, D-CoSim can

update the similarity scores within one second.

Figure 3.13: Time E�ciency on Incremental Graphs: Varied |�G| for D-CoSim

Figure 3.13 further depicts the time taken by D-CoSim with respect to |�G|. As |�G|

increases from 500 to 3000 in each dataset, the time of D-CoSim increases slightly, highlighting its

scalability with respect to the number of edge updates. It is consistent with the time complexity

in Theorem 4 where D-CoSim is linear to the number of update pieces p (Æ ”).

Memory Space. We evaluate the memory e�ciency and scalability of the D-CoSim algorithm

over incremental graphs. Figure 3.14 depicts the memory e�ciency of D-CoSim on six real

datasets as compared with CSR and CSM. From each dataset, we randomly select |Q| = 500

queries. We generate new edge updates |�G| = 1000 in each dataset for dynamic graphs.

Figure 3.14 illustrates the memory of D-CoSim for �G updates in each dataset with respect to the

query set Q. We see that D-CoSim and CSR have comparable memory; both increase linearly

with the growing size of graphs, highlighting their scalability. On small datasets (e.g., ASand

HP) when CSM does not fail, the memory of D-CoSim is almost 2.5 orders of magnitude smaller
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Figure 3.14: Memory E�ciency & Scalability of D-CoSim

than that of CSM. This is because D-CoSim only requires linear memory to store auxiliary

vectors, as opposed to the O(n2) memory of CSM for repeated squaring. D-deCoSim exhibits

similar memory e�ciency with D-CoSim over decremental graphs.

Accuracy.

Figure 3.15: Accuracy of D-CoSim

We evaluate the accuracy of D-CoSim, relative to the original CSR, on real datasets. We

randomly pick various query sets with size |Q| varying from 1000 to 3000. For each query set

Q, based on the CoSimRank scores S[:, Q] from D-CoSim, we measure their similarity ranking

results using normalised discounted cumulative gain (NDCG) (Y. Wang et al., 2013):

NDCGQ@k = 1
|Q|

q|Q|
q=1

!
Zk,j

qk
x=1

2S[x,q]≠1
log2(1+x)

"

where Zk,j is a normalization factor that is the DCG ranking results by the original method
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CSR. Thus, NDCG = 1 implies that the CoSimRank ranking of the compared algorithm perfectly

matches that of CSR, with no accuracy loss. Figure 3.15 shows the accuracy of D-CoSim using

NDCG for top k = 1000 CoSimRank ranking scores on AS. The trends on other datasets are

similar, so we omit them here. From the results, we notice that, for each query set Q, NDCGs

of D-CoSim equal to 1s, implying that D-CoSim does not sacrifice accuracy for increased speed.

This verifies the correctness of Theorem 1.

Next, we evaluate D-deCoSim similarity search algorithm over decremental dynamic graphs

with edge deletion and node deletion separately; we define D-deCoSim (Edge) as the similarity

search algorithm over decremental dynamic graphs with edge deletion and D-deCoSim (Node)

as the algorithm over dynamic graphs with node deletion.

3.4.2.2 Experimental Evaluation of D-deCoSim Algorithm over Decremental Dy-

namic Graphs

As introduced in Section 3.3.2, the D-deCoSim algorithm can be separated into two parts:

D-deCoSim (Edge) works on dynamic graphs with edge deletion, and D-deCoSim (Node) works

e�ciently over dynamic graphs with node deletion. This section evaluates the time e�ciency,

memory complexity, and accuracy of D-deCoSim (Edge) and D-deCoSim (Node) separately.

Time E�ciency. First, we implement D-deCoSim (Edge) over six realistic large-scale graphs

to test its e�ciency, scalability, and accuracy.

Figure 3.16: Time E�ciency on Decremental Graphs (Edge deletion)

Figure 3.16 depicts the time e�ciency of the D-deCoSim algorithm (Edge Deletion) over six
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di�erent realistic dynamic networks (graphs), and the elapsed time comes from the computation

of CoSimRank changes per update for each query. From each dataset, we randomly take |Q| =

500 queries and remove edges |�G| = 1000 from the graph. On the first two graphs (as-735

and ca-HepPh), the D-deCoSim(Edge) algorithm shows remarkable advantage over CSR and

CSM algorithms; D-deCoSim is around 80 times faster than the CSR algorithm on the first two

graphs and more than 60 times faster than the CSM algorithm. For the remaining 4 large-scale

graphs (e.g., email-EuAll, web-Google, wiki-Talk, and soc-LiveJournal), D-deCoSim exhibits

a significant advantage over CSR; it is steadily 3-5 orders of magnitude faster than the CSR

algorithm. The CSM algorithm cannot even be implemented over the four large-scale networks

since the algorithm needs large memory space. However, the D-deCoSim (Edge) algorithm can

update CoSimRank scores in 1 second (e.g., EE) over large-scale networks, which indicates its

scalability.

Next, D-deCoSim (Node) is implemented on the same six large graphs to evaluate the time

e�ciency of the algorithm.

Figure 3.17: Time E�ciency on Decremental Graphs (Node Deletion)

Figure 3.17 illustrates the experimental result showing the time e�ciency of D-deCoSim

(Node) over decremental graphs. With the same settings provided in Figure 3.16, we take

|Q| = 500. and |�G| = 1000. Note that for dynamic graphs with node deletion, the number

of deleted nodes Ân cannot represent the number of update pieces of graph G since each deleted

node may contain several di�erent cases that depend on the out-degree of the deleted node and

the in-degree of Dd. Thus, we set Ân = 1000 for each network, but the number of update pieces
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of each graph may be di�erent; further details can be found in Figure 3.18. We can learn from

Figure 3.17 that the D-deCoSim (Node) algorithm is consistently around 600x faster than the

CSR algorithm over AS and HP graphs, and it is 305x faster than CSR on the email-EuAll graph.

D-deCoSim (Node) is significantly e�cient than CSR over large-scale networks,e.g., WG, WT,

and LJ, and it is constantly 3-5 orders of magnitude faster than the CSR algorithm. For the CSM

algorithm, D-deCoSim (Node) is over 350x faster than the CSR algorithm on AS graph and 46x

faster on HP graph. Furthermore, due to the memory space cost, CSM still cannot work over

large-scale dynamic networks (e.g., EE, WG, WT, and LJ) with node deletion. Comparing the

trends of D-deCoSim (Edge) and D-deCoSim (Node) in Figure 3.16 (black bar) and Figure 3.17

(black bar), a similar growing trend with respect to to the size of graph is observed, and both

are e�cient algorithms that compute the CoSimRank scores over million-size graphs.

The D-deCoSim (Node) algorithm includes three cases; next, we evaluate the time e�ciency

of all three cases separately over large-scale graphs.

Figure 3.18: Time E�ciency of All 3 Cases in D-deCoSim (Node)

Figure 3.18 shows the time cost for the three cases (bar chart) and the number of update

pieces (line chart). For the six graphs, the number of deleted nodes is Ân = 1000 and query

number is |Q| = 500. Since each deleted node may contain several di�erent cases, the number of

deleted nodes (Ân) is not the number of updates |�G| of the graph. The line chart in Figure 3.18

indicates the number of updated pieces in the dynamic graph, and the unit of each value is 102.

In the dynamic graph, each deleted node represent at least one update piece; thus, Ân Æ |�G|,
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and the values in line chart are larger than 1000, and the number of updated pieces is not

increased by the growth of the size of the graph; it only relevant to the number of Dd and the

in-degree of Dd (deg
≠
Dd

). The bar chart in 3.18 compares the time for each case of D-deCoSim

(Node) to compute CSR changes per update for each query. We see that the time for Case 1

over six di�erent graphs is consistently faster than in Case 2 and Case 3 since the computation

complexity for Case 1 is O(”|Q|) (Theorem 7), which is a�ected by the number of deleted nodes

and the size of the graph. The computation time for Case 2 and Case 3 has comparable cost,

and the experimental results accord with Theorem 9 and Theorem 11. For the time complexity

of three cases of the D-deCoSim (Node) algorithm, all of them are increasing mildly, highlighting

the scalability of D-deCoSim. Note that the time cost for Case 2 over WT graph is 0, which

means 1000 deleted nodes do not belong to Case 2, so the result is zero.

Then, we evaluate the memory e�ciency of D-deCoSim (Edge) and D-deCoSim) (Node)

respectively over large-scale detrimental graphs as compared with CSR and CSM.

Memory E�ciency. We test the memory e�ciency of D-deCoSim (Node) on 6 real decremental

dynamic graphs.

Figure 3.19: Memory E�ciency & Scalability of D-deCoSim(Edge)

Figure 3.19 shows the memory e�ciency of the D-deCoSim (Edge) algorithm on six real

datasets compared with CSR and CSM. We randomly selected 500 nodes in the query set Q,

and 1000 deleted edges have been generated on each graph. We can learn from the figure that

the memory e�ciency of D-deCoSim (Edge) always shows a great advantage over CSR and CSM
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on the 6 graphs. On small datasets (e.g., ASand HP), the memory complexity of CSM is over

4 orders of magnitude larger than D-deCoSim(edge). This is because of the memory complexity

is linear to the number of updates; otherwise, the memory space required by CSM is O(n2),

which keeps squaring; thus, CSM cannot be implemented over large-scale graphs. The memory

e�ciency of CSR is smaller than that of the CSM algorithm over smaller graphs (e.g., AS and

HP), but it is up to 4 orders of magnitude larger than D-deCoSim (Edge) algorithm over AS, HP,

EE and WG. The memory complexity of D-deCoSim (Edge) guarantees e�ciency and scalability.

Next, we implement D-deCoSim (Node), CSR and CSM on six realistic datasets to evaluate

their memory e�ciency.

Figure 3.20: Memory E�ciency & Scalability of D-deCoSim(Node)

In Figure 3.20, we randomly took 500 nodes as query Q and deleted 1000 nodes from each

graph; thus, Ân = 1000 and the number of updates |�G| Æ 1000. The CSM algorithm requires

highest memory space cost over AS and HP due to its repeat-squaring memory space cost. The

CSR algorithm consistently requires more memory space cost for updating the CoSimRank scores

of decremental graphs (e.g., AS, HP, EEand WG) than the D-deCoSim (Node) algorithm; the

memory e�ciency of D-deCoSim (Node) is up to 2 orders of magnitude smaller than that of the

CSR algorithm. The black bar (D-deCoSim (Node)) is increasing slowly with the growing size of

graphs, which guarantees the scalability of the D-deCoSim (Node) algorithm.

Finally, we evaluate the accuracy of D-deCoSim (Edge) and D-deCoSim (Node) respectively

compared with the CoSimRank scores of CSR on real datasets.
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Figure 3.21: Accuracy of D-deCoSim

We randomly select di�erent sizes of query, |Q| = [1000, 2000, 3000]. For each query set Q,

we evaluate CoSimRank scores S[:, Q] of D-deCoSim (Edge and Node) using NDCG (normalised

discounted cumulative gain) (Y. Wang et al., 2013). The measuring method has been introduced

in Section 3.4.2.1. NDCG = 1 means that the algorithm perfectly matches the similarity search

results of CSR without any accuracy loss. In Figure 3.21, the top k = 1000 CoSimRank scores

of D-deCoSim (Edge) and D-deCoSim (Node) on graph AS have been measured using NDCG.

The trends corresponding to other datasets are identical. Thus, these results are omitted here.

We can learn from the figure that the NDCGs of D-deCoSim (Edge) and D-deCoSim (Node) are

1s, which means both do not sacrifice accuracy for increased speed. This proves the accuracy of

Theorem 4 to Theorem 10.

3.5 Related Works

Similarity search over large-scale dynamic graphs is an exceptional case due to consistent

changes (edges/nodes). The demand for similarity search algorithm over large-scale dynamic

graphs is universal, which finds applications in recommend systems (Hang & Singh, 2010)

(changes come from the number of items and the links between objects), co-citation networks

(Eto, 2019), web search (Fogaras & Rácz, 2005), etc.

Di�erent from the similarity search on dynamic graphs, many existing algorithms carry out

similarity search over static graphs. Previous research on CoSimRank search focuses on static
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graphs. The pioneering research of (Rothe & Schütze, 2014) proposed an e�cient local algo-

rithm that computes each CoSimRank score from the sum of the dot product of two personalised

PageRank vectors. It requires O(Kdn) time and O(dn) memory to compute a single pair CoSim-

Rank score over a static graph with n nodes and d average degree after K iterations. However,

when the graph is slightly updated, all CoSimRank scores must be recomputed from scratch.

Recently, Yu and McCann (Yu & McCann, 2015a) have suggested an optimisation technique,

namely CoSimMate, that leverages repeated squaring memoisation to cut down the number of

iterations from K to Álog2 KË for all pairs of CoSimRank scores’ retrieval. However, this ap-

proach requires an extra O(n2) memory to store repeated squaring results, which is impractical

for large-scale graphs. Worse still, the approach of (Yu & McCann, 2015a) is a non-local algo-

rithm on static graphs, meaning even if one wishes to compute a single-pair score, scores of all

pairs must be computed simultaneously.

Regarding dynamic updating, no work on CoSimRank could be identified except for a rela-

tively small work on the updating of SimRank, a variant of SimRank, in dynamic graphs (Yu,

Lin, Zhang, & McCann, 2018b; Jiang, Fu, Wong, & Wang, 2017; Shao, Cui, Chen, Liu, & Xie,

2015b; Yu, Lin, & Zhang, 2014a; C. Li et al., 2010). However, when extended to CoSimRank,

these works would be inadequate due to the following reasons: First, the two state-of-the-art

studies (Jiang et al., 2017; Shao et al., 2015b) are based on random walk sampling, whose opti-

misation techniques heavily hinge on aggregating “only the first meeting time” of two random

surfers for SimRank. If applied to aggregate “all the meeting times” of two random surfers

for CoSimRank, their approaches will become slow due to the expense to sample additional

meeting paths of two coalescing random walks. Second, some works (C. Li et al., 2010; Yu,

Lin, & Zhang, 2014a) devised low-rank decomposition methods to update SimRank scores of all

pairs, leading to O(n2) memory to store the decomposed matrices, which is not scalable for large

graphs. Worse still, these methods rest on an assumption that all pairs of old SimRank scores

should be given in advance even if only a few pairs of scores need updating, which is unrealistic

in practice.

There has also been much research on computing incremental personalised PageRank (PPR)

vectors (Bahmani, Chowdhury, & Goel, 2010), and dynamic Random Walk with Restart (RWR)

proximities (Yu & McCann, 2016). However, directly applying these techniques in dynamic

CoSimRank updating is not e�cient. This is because the CoSimRank score at iteration k is
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the sum of k inner products between two personalised PageRank vectors at every iteration

i = 1, 2, · · · , k. Thus, to update the k-th iterative CoSimRank score, existing incremental PPR

(RWR) algorithms will be repeatedly applied 2k times to update two PPR (RWR) vectors at

every iteration i = 1, 2, · · · , k, respectively, before summing up the k dot products of every two

PPR (RWR) vectors at each iteration, which would be rather expensive. To bridge this gap,

we proposed novel D-CoSim and D-deCoSim algorithms to e�ciently and accurately update the

similarity scores of dynamic graphs.

3.6 Conclusion

This section presents two dynamic schemes, D-CoSim and D-deCoSim, for fast, accurate

CoSimRank retrieval from evolving graphs. For incremental dynamic graphs, we devise a novel

approach D-CoSim that (a) bunches all edges of �G into pieces {�Gi} and (b) characterises

only the CoSimRank changes in response to each update piece �Gi as the linear combination of

vectors, thus discarding unnecessary computations by maximally sharing common intermediate

information on each �Gi. For decremental dynamic graphs, we present an e�cient and accurate

approach D-deCoSim that can be separated into two parts: (a) D-deCoSim (edge) is a similar-

ity search algorithm applied over decremental dynamic graphs with edge deletion. It bunches

together all deleted edges �G into pieces {�Gi} firstly, and then it retrieves the CoSimRank

scores of “refreshed area” only in response to the query, which omits the repeated computations.

(b) D-deCoSim(Node) is a similarity search algorithm applied over decremental dynamic graphs

with node deletion. For each deleted node, the algorithm bunched together out-neighbours of

the deleted nodes into three cases based on the number of Dd and the in-degree of Dd (deg≠
Dd

)

firstly, and then it follows the theorem relevant to three cases to compute the CoSimRank scores

in response to query Q respectively. The experimental results on real large-scale datasets have

shown that D-CoSim and D-deCoSim outperform the best-known algorithm CSR and CSM by

around 3-5 orders of magnitude (time e�ciency), for memory e�ciency, CSM is around 4 orders

of magnitude larger than D-CoSim and D-deCoSim, and CSR has comparable memory complexity

with D-CoSim; both of them increase linearly with the growing size of graphs. The D-deCoSim al-

gorithm is 1 order of magnitude smaller than CSR. D-CoSim and D-deCoSim retrieve CoSimRank

quickly and accurately from dynamic graphs, with no need to reassess them from scratch.
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4
Scalable Similarity Search over Large-Scale

Graphs

In the previous chapter (Chapter 3), we proposed two e�cient and accurate similarity search

algorithms, D-CoSim and D-deCoSim, over large-scale dynamic graphs. The D-CoSim algo-

rithm, apart from supporting fast dynamic CoSimRank retrieval on evolving graphs, can also

be implemented on static graphs for accelerating similarity search. In this chapter, we propose

an e�cient scheme based on D-CoSim, named F-CoSim, that can dramatically speed up the

CoSimRank search over large-scale static graphs. Furthermore, we propose several optimisation

operations to speed up the F-CoSim algorithm without losing any accuracy.

4.1 Introduction

In the last decade, with the development of digital technology, humans have stepped into

the age of information. To e�ciently organise incremental information (nodes) and relations

(edges), displaying them in a graph structure is a feasible operation. Moreover, identifying

similar objects on a graph is a fundamental operation for extracting information from a large-

scale graph. Thus, there is a growing need to automatically, e�ciently and e�ectively derive

similarity scores over large-scale graphs.

Following are several examples of similarity search in real-world applications, motivating the

need for e�cient algorithms to handle such assessment over large-scale static graphs.

Application 1 (Location-based Online Social Networks). Location-based online social

network is a location-based social networking website where users share their locations by check-

ing in. The friendship network is undirected and collected using some public APIs. The location-

based online social network consists of users’ location information (nodes) and friendship rela-

tion between users (edges). Thus, a location-based online social network can not only express

the location of users but also display the interaction between them. A similarity search over
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location-based online social networks plays an essential role in people’s lives. Especially when

the COVID-19 virus is spreading globally, similarity search plays a vital role in tracking patients,

and forecasting and predicting infectious disease epidemics.

Generally, the size of a location-based online social network of a city/country is huge; thus,

it is a tremendous challenge to perform a similarity retrieval over it e�ciently. This chapter

proposes an e�cient and accurate similarity search algorithm over large-scale networks to solve

this problem.

Application 2 (Road Networks). Building a road network graph model is a fundamental

method to deploy information on local authority roads, motorways and trunk roads. It has

become more and more critical due to rapidly increasing urbanisation and development of in-

frastructure. Intersections and endpoints are expressed as nodes, and roads connecting these

intersections or endpoints are represented as edges. The community search over road networks

has become increasingly important in several real-life applications such as urban/city planning

(Rui, 2013; R. Zhang, Rong, Wu, & Zhuo, 2020; Xiangxue, Lunhui, & Kaixun, 2019), social

studies on local communities (Cannistraci, Alanis-Lobato, & Ravasi, 2013), and community

recommendations by real estate agencies (Liu & Wang, 2016). However, the existing similar-

ity search algorithms that retrieve similarity scores over large-scale networks are not e�cient

enough. This chapter leverages a fast algorithm to retrieve similarity scores over large-scale

graphs.

4.1.1 Motivation

As mentioned earlier, a similarity search on a graph structure is widely used in our daily life,

for example, web mining (Zheng, Zou, Lian, Wang, & Zhao, 2014), research on protein structure

(J. Kim, Choi, & Li, 2019), recommendation system (Catherine & Cohen, 2016), patient tracking

(J. Wu, 2021), etc. Due to the wide application of similarity search algorithms, an algorithm that

can accurately reflect the similarity scores between node pair of large-scale graphs is essential.

At the same time, with the development of society, the data in actual applications will become

more prominent. Therefore, a similarity detection algorithm that can accurately and e�ciently

process and analyse big data is urgently needed.

Apart from the ine�ciency in handling evolving dynamic graphs (Chapter 3), previous works

on similarity search based on topology structure have the following limitations.
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Firstly, we found that some existing similarity detection algorithms face an issue called “zero

issue”. “Zero issue” refers to the notion that similarity scores of some node pairs should not be

zero, but due to the limitation settings of similarity search algorithms, the similarity scores of

some node pairs are equal to 0. The fundamental similarity search algorithm, SimRank (Jeh &

Widom, 2002), indeed faces this issue. In the SimRank algorithm, for any two nodes a and b

((a, b) œ V), if there does not exist any symmetric in-link path of node pair (a, b), the similarity

score of the node pair s(a, b) is 0. Furthermore, even if the similarity score of the node pair (a, b)

is not equal to 0, s(a, b) may still partially miss all the information due to dis-symmetric in-link

paths for node pair (a, b). Thus, similarity search algorithms with a “zero issue” would miss

partial information of graphs. In this way, the similarity search scores of a graph that displays

the graph’s information partially may lead to some wrong decisions. For example, when we use

SimRank to perform a similarity search on location-based online social networks, the results

of SimRank algorithm are used to track patients and circulate situation forecast. In this case,

incomplete similarity scores may lead to wrong prediction. To address this issue, we propose an

algorithm that generates CoSimRank scores of large-scale static graphs. Unlike the SimRank

algorithm, which only captures the first meeting time of two random surfaces, CoSimRank

can capture all meeting times of two random surfaces. CoSimRank scores are, therefore, more

reliable than SimRank scores.

Secondly, the existing works on similarity search on graphs may also have computation

e�ciency issues. The pioneering research by Sascha Rothe et al. proposed an e�cient local

algorithm, CoSimRank (Rothe & Schütze, 2014), that computes each CoSimRank score from

the sum of the dot product of two personalised pagerank vectors. As we mentioned before, a

CoSimRank score can capture all the meeting times of two random surfaces, making the results

of CoSimRank more reliable than SimRank. However, since the CoSimRank algorithm (Rothe

& Schütze, 2014) needs to go through “all the meeting times” of two random surfaces, it takes

more time to sample all the meeting paths of two coalescing random walks; this process makes

the approach slower compared to SimRank. The CoSimRank algorithm entails O(Kdn) time

and O(dn) memory to compute a single pair similarity score on a static graph with n nodes and

d average degree after K iterations. In a real application, it is essential to retrieve similarity

scores instantly. Consider, for example, a recommendation system, where a user wants to buy a

product similar to the previous one. If the recommendation list takes a long time to show the

F,WANG,PhD Thesis,Aston University 2021. 96



results, it will lose its reference. This chapter proposes an e�cient similarity search algorithm

that can retrieve CoSimRank scores with respect to a query on million-edge graphs within a

second.

Moreover, most existing works on similarity search devised low-rank decomposition methods

to update all pairs of similarity scores that are not scalable on large-scale graphs. (Yu & McCann,

2015a) proposed a fast similarity search algorithm on graphs, called Co-Simmate. Co-Simmate

can retrieve similarity scores on small graphs e�ciently, but it needs O(n2) memory to store

the decomposed matrices. However, since it requires repeated squaring memory, Co-Simmate

cannot be implemented on large-scale graphs.

These limitations of existing works motivate us to propose an e�cient, e�ective and accurate

similarity search algorithm for large-scale graphs with small memory usage.

Problem ( Calculate CoSimRank scores on Static Large Graphs).

Given: a graph G, and a query set Q = {q1, q2, · · · }

Retrieve: the CoSimRank scores with respect to Q on G quickly and

accurately.

To speed up the computation of CoSimRank scores S over the static graph G, (i) F-CoSim

first needs to find a “spanning polytree” T over G; (ii) on the “spanning polytree” T , we devise a

fast approach to compute the CoSimRank scores S(T ) of T ; (iii) on (G°T ), we employ D-CoSim

to compute the changes of S(T ) with respect to the delta graph (G°T )(Chapter 3). With these

ideas, F-CoSim has the following salient features:

• Fast: F-CoSim is an order of a magnitude faster than the best-known competitors on static

graphs.

• Accurate: F-CoSim does not compromise on accuracy for speed.

• Scalable: Our schemes require only linear memory space and scale well on million-node

graphs.

In a nutshell, static F-CoSim allows for e�cient and accurate handling a myriad of SimRank-

based applications (Fogaras & Rácz, 2005; Zhao, Han, & Sun, 2009; Sun, Han, Yan, Yu, & Wu,

2011; Lin, Lyu, & King, 2006).
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4.1.2 Chapter Outlines

In this chapter, my main contributions are listed as follow:

Section 4.2 In this section, we characterise the di�erences between spanning polytree and

spanning tree. Then, we propose a schema to extract spanning polytrees from graphs.

Section 4.3 This section introduces a novel operation to produce CoSimRank scores of a span-

ning polytree. We compute similarity search scores of spanning polytrees level by level,

owing to the special structure of spanning polytrees.

Section 4.4 Based on the CoSimRank scores of spanning polytrees, we propose a fast and

accurate similarity search algorithm, F-CoSim, on large-scale networks. In this algorithm,

we recall the D-CoSim algorithm to generate �S, which comes from the di�erent areas of

the spanning polytree and the original graph.

Section 4.5 In this section, we propose three di�erent schemes to optimize F-CoSim on large-

scale graphs.

Section 4.5.1 We implement the Heapsort process to speed up the operation of extracting

spanning polytrees from the graphs. The optimised method of extracting spanning

polytree can more e�ciently extract spanning polytrees from the graphs with fewer

levels.

Section 4.5.2 In this section, we leverage an e�cient single-source CoSimRank score

retrieval of spanning polytree. Since F-CoSim is a single-source similarity search al-

gorithm, it can e�ciently show the relationship of the query. To e�ciently compute

the similarity scores with respect to query q over graphs, we compute single-source

CoSimRank scores of spanning polytrees that can significantly reduce redundant com-

putations.

Section 4.5.3 In this section, we implement parallel computing to speed up the F-CoSim

algorithm on large-scale graphs. Since the similarity search of each level of a span-

ning polytree is independent, it can be implemented by an independent processor

simultaneously.

Section 4.6 In this section, we conduct extensive experiments on real and large datasets.

Through these experiments, we demonstrate the following facts. (1) Our e�cient similarity
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search algorithm, F-CoSim, outperforms state-of-the-art approaches on static graphs with

a speed-up of up to 9.8 times. (2) F-CoSim shows great advantage on memory e�ciency

to CSM. (3) F-CoSim does not compromise on accuracy for speed. (4) The optimizations

of F-CoSim, Opt_F-CoSim algorithm, is more e�cient than F-CoSim algorithm.

4.2 Why Spanning Polytree is Irreplaceable

In this section, we introduce the notions of a spanning tree and spanning polytree. Further-

more, we illustrate the reason why only spanning polytrees can be implemented in our similarity

search algorithm on large-scale static graphs.

The Di�erences Between Spanning Polytree and Spanning Tree.

Extracting a spanning tree from a graph is a fundamental operation method in the practical

application of the graph theory. There are several vivid live examples such as cluster analy-

sis (Y. Wang, Yu, Gu, & Shun, 2021; Kireyeu, 2021), water supply network design (Vegas Niño,

Martínez Alzamora, & Tzatchkov, 2021), electrical grid system optimization (Gupta, Khod-

abakhsh, Mortagy, & Nikolova, 2021), civil network routing protocol (Z. Wang, Chen, & Li,

2021), etc.

Definition 5 (Spanning Tree). A spanning tree T of a connected graph G is a subgraph of

G that includes every vertex of G, covering it with the minimum possible number of edges. T ,

therefore, contains no cycles, and cannot be disconnected.

According to Definition 5, for every connected and undirected graph G, at least one spanning

tree T exists. On the contrary, no spanning tree exists in a disconnected graph, as all vertices

cannot be spanned in a single subgraph.

The spanning tree T of a graph G has the following general properties (G1 - G7) (Gross &

Tucker, 2009; Gross, Yellen, & Anderson, 2018):

G1 For every connected graph G, the number of spanning tree N(T ) Ø 1.

G2 Any spanning tree T of graph G has the same number of vertices and edges.

G3 There is no loop in a spanning tree.

G4 Spanning tree T is minimally connected, as removing any one edge of T would cause the

subgraph to be disconnected.
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G5 Spanning tree T is maximal acyclic, as adding an edge to a spanning tree T would create a

cycle (loop) in the subgraph.

G6 There is at least one spanning tree T in any connected and undirected graph.

G7 In a directed graph G, the minimum spanning tree T has minimum edge weight.

A spanning tree has the following mathematical properties (M1 - M3):

M1 The number of the edge of a spanning tree T is (n ≠ 1), where n is the number of vertices

of graph G.

M2 In a complete graph G, if maximum e ≠ n + 1 edges from the graph are removed, then a

spanning tree can be constructed, where e is the number of edges, and n is the number of

nodes on the graph.

M3 In a complete graph G, there are a maximum of n
(n≠2) spanning trees.

These essential properties are what make spanning trees widely applicable in practical ap-

plications (e.g., network redundancy, telecommunication networks). However, spanning trees

have a significant limitation when applied in a topological structure. When an undirected graph

is converted to a directed graph, there is no guarantee that the spanning tree will exist. The

algorithm (similarity search over large-scale static graphs) presented later in this chapter 4.4

needs to cover directed graphs. The similarity search algorithm involving the extraction of

spanning trees will lose its generality if the existence of a spanning tree in all directed graphs is

not guaranteed. This limitation of spanning trees will prevent them from being widely used in

practical directed networks. To overcome this limitation, a spanning polytree is generated for

the similarity search algorithm.

Definition 6 (Spanning Polytree). A spanning polytree T of a connected graph G is a sub-

graph of G that includes every node of G, with a maximal set of edges of G that contains no

undirected cycles if we replace all the directed edges of T with undirected edges.

Intuitively, in contrast with the traditional definition of a spanning tree, in which each node

has only one parent node, our spanning polytree is a generalised notion of the spanning tree

from undirected graphs to directed ones. Each node may have more than one parent nodes. We

F,WANG,PhD Thesis,Aston University 2021. 100



Figure 4.1: Extract a spanning tree and spanning polytree from the undirected G

introduce the spanning polytree because, when G is a directed graph, its traditional spanning

tree does not always exist, but a spanning polytree of G always exists.

For instance, in Figure 4.1, the undirected graph G has both a spanning tree and a spanning

polytree. One of its spanning trees is precisely the same as the spanning polytree. According to

the general properties of a spanning tree (G6), the spanning tree of the undirected graph G is

not unique. In Figure 4.1, there is another spanning polytree T
Õ of G (e.g., < b ≠ a ≠ d ≠ c >,

< b ≠ a ≠ c ≠ d >).

However, after the undirected graph is converted to a directed graph, the spanning tree will

not always exist. as shown in Figure 4.2.

Figure 4.2: Extract a spanning tree and spanning polytree from the directed G

Based on the operation of spanning trees, there is no subgraph of directed graph G that can

cover all vertices with a maximum set of edges of G that contains no directed cycles. There are no

conventional trees that span G, but one can find a spanning polytree T that spans G. Figure 4.2

clearly shows the di�erence between spanning tree and spanning polytree, and explains why a

spanning polytree is irreplaceable in a similarity search algorithm over large-scale graphs.
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If G is an undirected graph, the spanning polytree in Definition 6 reduces to a traditional

spanning tree.

To identify a spanning polytree T over a given graph G, we devise a fast heuristic approach

based on breadth-first search (BFS) in Procedure 1. Our central idea is as follows. First, we set

v to the node with the maximum out-degree in G, start with v as root, push v into an empty

queue, and initialise T to empty set. Next, for each iteration, we dequeue v, add the unvisited

incoming and outgoing edges of v into T , enqueue the unvisited in- and out-neighbours of v, and

then set v to the next node in queue. The iteration continues until the queue becomes empty.

Finally, the resulting output T is a spanning polytree of G. The complexity of Procedure 1 is

dominated by the BFS search, which is O(n + m) time and O(n + m) memory on a graph with

n nodes and m edges.

Procedure 1: Find_Spanning_PolyTree (G)
Input : a graph G.

Output: a spanning polytree T of G.

22 initialise T := ? ;

44 foreach weakly connected component Gwcc ™ G do

66 U.Enqueue(a node of maximum out-degree in Gwcc);

88 while U ”= ? do

1010 set node v := U.Dequeue() ;

1212 T := T fi {unvisited in- and out-links of v} ;

1414 forall w œ {unvisited in- and out-neighbors of v} do U.Enqueue(w);

1616 return T ;

4.3 Computing CoSimRank Scores of Spanning Polytrees

Apart from supporting the quick dynamic CoSimRank retrieval on evolving graphs, D-CoSim,

presented in the previous chapter, can also be applied to static graphs for accelerating CoSim-

Rank search. Based on D-CoSim, we next propose an e�cient scheme, F-CoSim, that dramati-

cally speeds up CoSimRank search over static graphs. Given a static graph G and a query set Q,

F-CoSim retrieves the CoSimRank scores S[:, Q] over G based on three ideas. First, we propose a

quick method to find a “spanning polytree” T of G so that G decomposes into G = T ü (G°T );
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this can be viewed as the old T plus its update (G ° T ).

Key Observation. Due to its particular “polytree” structure, we notice that the CoSimRank

scores are relatively easier to compute. Therefore, we propose a novel and quicker algorithm to

retrieve the CoSimRank scores S(T )[:, Q] over the “spanning polytree”. Finally, to compute the

CoSimRank scores S over G, we regard T as the old graph and G°T as the updated graph to T ,

and then apply our dynamic D-CoSim to compute S(T ) changes in response to the graph update

(G ° T ). With the above, F-CoSim enables a notable speed-up in the CoSimRank search over

static graphs, which is achieved by our e�cient method to retrieve S(T )[:, Q] over the “spanning

polytree” and our quick D-CoSim to compute the changes to S(T ) with respect to (G ° T ). We

shall elaborate on these ideas in the following pages.

Having identified the spanning polytree T of graph G, we can decompose G into two parts:

G = T ü (G ° T ). Due to the particular acyclic structure of T , there is a more e�cient way

to retrieve the CoSimRank scores of the spanning polytree T . Our key observation is that, if

the nodes of T are organised in level order, the adjacency matrix A of T will exhibit a block

superdiagonal structure, which leads to the CoSimRank scores of T , S(T ), displaying a block

diagonal structure. Consequently, any two nodes at di�erent levels of T have zero CoSimRank

scores. Moreover, the CoSimRank scores of the nodes at the same level of T can be immediately

derived from those at the previous level, based on the following theorem:

Theorem 12 (CoSimRank on Polytree T ). Given a polytree T with nodes organised in level

order, let nl be the number of nodes at level l (l = 1, · · · , L). The CoSimRank scores of T , S(T ),

are computed level by level as follows:

S(T ) = diag(S1, S2, · · · , SL) with S1 = In1 and

Sl = CAT
l≠1,lSl≠1Al≠1,l + Inl (l = 2, · · · , L)

(4.1)

where L is the number of levels in T ; S(T ) is a diagonal block matrix with each block Sl being

the CoSimRank scores of n
2
l pairs of nodes at level l; Al≠1,l is the (nl≠1 ◊nl) column-normalised

adjacency matrix of the subgraph between level (l ≠ 1) and level l of T ; and Inl is the nl ◊ nl

identity matrix.

Proof. Since T is a polytree, two surfers starting at di�erent levels cannot meet at a common

node through equal-length steps. Thus, only node-pairs at the same level have non-zero scores,

leading to the diagonal block structure of S(T ).
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Figure 4.3: Decompose G into a spanning polytree T and �G (= G ° T )

To compute l-th diagonal block Sl, by S = CAT SA + I, we have

C

S

WWWWWWWWWWWWWWWWWWWU

0 A1,2 · · · 0

0 0 . . . ...

...
... . . . AL≠1,L

0 0 · · · 0

T

XXXXXXXXXXXXXXXXXXXV

T
S

WWWWWWWWWWWWWWWWWWWWWU

S1 0 · · · 0

0 S2 · · · 0

...
... . . . ...

0 0 · · · SL

T

XXXXXXXXXXXXXXXXXXXXXV

S

WWWWWWWWWWWWWWWWWWWU

0 A1,2 · · · 0

0 0 . . . ...

...
... . . . AL≠1,L

0 0 · · · 0

T

XXXXXXXXXXXXXXXXXXXV

+

S

WWWWWWWWWWWWWWWWWWWWWU

In1 0 · · · 0

0 In2 · · · 0

...
... . . . ...

0 0 · · · InL

T

XXXXXXXXXXXXXXXXXXXXXV

=

S

WWWWWWWWWWWWWWWWWWWWU

In1 0 · · · 0

0 CAT
1,2S1A1,2 + In2 · · · 0

... . . . . . . ...

0 0 · · · CAT
L≠1,LSL≠1AL≠1,L + InL

T

XXXXXXXXXXXXXXXXXXXXV

=

S

WWWWWWWWWWWWWWWWWWWWWU

S1 0 · · · 0

0 S2 · · · 0

...
... . . . ...

0 0 · · · SL

T

XXXXXXXXXXXXXXXXXXXXXV

¸ ˚˙ ˝
diag(S1,S2,··· ,SL)

Since the corresponding diagonal blocks are equal in the last equality, Eq.(4.1) holds.

Theorem 12 gives a quick and accurate approach for a CoSimRank search on a spanning

polytree in a level-by-level style. The CoSimRank scores at level l are immediately computed

from those at level (l ≠ 1). Retrieving each block Sl at level l via Eq.(4.1), only requires

O(nl(nl≠1 + nl)) time and O(n2
l ) memory, as opposed to the original method, which entails

O(K(m + n)nl) time and O(m + n) memory to retrieve n
2
l pairs of Sl scores. Since nl π n =

n1 + n2 + · · · + nL, the complexity improvement of our approach is significant.

Example 12. Consider the spanning polytree T in Figure 4.3. Theorem 12 computes the CoSim-

Rank S(T ) of T as follows:
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As Level 1 of T has two nodes {a, b}, Eq.(4.1) initialises as:

S1 =

S

WWWWWWWU

(a) (b)

(a) 1 0

(b) 0 1

T

XXXXXXXV

Since A1,2 = [ .5 0
.5 0 ] and A2,3 = [ 1 .5 1

0 .5 0 ], the CoSimRank similarity of nodes {c, d} at Level 2 is

computed from S1:

S2 = 0.6AT
1,2S1A1,2 + I2 =

S

WWWWWWWU

(c) (d)

(c) 1.3 0

(d) 0 1

T

XXXXXXXV

Next, the CoSimRank similarity of nodes {e, f, g} at Level 3 is computed from S2:

S3 = 0.6AT
2,3S2A2,3 + I3 =

S

WWWWWWWWWWWWWWU

(e) (f) (g)

(e) 1.78 0.39 0.78

(f) 0.39 1.34 0.39

(g) 0.78 0.39 1.78

T

XXXXXXXXXXXXXXV

Thus, the CoSimRank scores S(T ) = diag(S1, S2, S3).

4.4 F-CoSim over Large-Scale Network

After CoSimRank S(T ) of the polytree T is computed, F-CoSim next computes the CoSim-

Rank changes �S with respect to the graph �G (= G°T ), by utilising our dynamical D-CoSim

algorithm defined in Chapter 3. Finally, the two parts (S(T ) and �S) are added together, which

produces the CoSimRank S of the original graph G, i.e., S = S(T ) + �S.

Algorithm. To optimise the CoSimRank search over static graphs, Theorem 12 is incorporated

to D-CoSim. Precisely, to compute the CoSimRank scores S over G, we first apply Procedure 1

to find a spanning polytree T over G, which decomposes G into G = T ü (G ° T ). Then, by
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Theorem 12, we compute CoSimRank scores ST over T . Finally, we use our dynamic algorithm

D-CoSim to compute the changes �S to ST in response to the graph update G°T . The resulting

scores (�S + ST ) are the CoSimRank scores S over G.

Based on the above, Algorithm 2 provides our complete static scheme, F-CoSim, which

incorporates Theorem 12 and our dynamic D-CoSim algorithm. F-CoSim, thus, consists of three

phases:

(i) Finding a spanning polytree T over G (line 2),

(ii) Retrieving CoSimRank S(T ) on T (lines 4–15),

(iii) Computing CoSimRank changes �S in answer to (G ° T ) (lines 17–21).

Algorithm 2: F-CoSim (G, C, Q, K)
Input : graph G, decay factor C,

query set Q, #-iteration K

Output: CoSimRank scores S[:, Q] in G.

22 set T := Find_Spanning_PolyTree(G)

44 set LQ := maximum level of the query node of Q in T

66 initialise S1 = In1

88 for l = 2 to LQ do

1010 set nl := the number of nodes at level l in T

1212 Al≠1,l is (nl≠1◊nl) col-normalised adjacency block:

13 Al≠1,l[i, j] = 1/deg≠
j if ÷(i æ j) œ T ; or 0 otherwise

1515 compute Sl := CAT
l≠1,lSl≠1Al≠1,l + Inl

1717 compute �S[:, Q] := D-CoSim (T, G ° T, C, Q, K)

1919 compute S[:, Q] = diag(S1, S2, · · · , SL)[:, Q] + �S[:, Q];

2121 return S[:, Q];

Example 13. Recall G in Figure 4.3. To retrieve S[:, c] on G, F-CoSim first decomposes G =

T ü (G ° T ). Then, it computes the CoSimRank S(T )[:, c] of T , as shown in Example 12:

S(T )[:, c] =

S

WU

(a) (b) (c) (d) (e) (f) (g)

(c) 0 0 1.3 0 0 0 0

T

XVT

Next, F-CoSim invokes D-CoSim (Line 17) to compute the CoSimRank increment
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�S[:, c] with respect to delta graph (G ° T ):

�S[:, c] = [0, .15, .045, 0, .03, .0225, .045]T .

To save space, we omit the calculation details here. The complete schema of D-CoSim can be

found in Chapter 3.

Finally, the CoSimRank score S[:, c] of G (Line 19) is

S[:, c] = S(T )[:, c] + �S[:, c] = [0, .15, 1.345, 0, .03, .0225, .045]T

Correctness. Next, we show that F-CoSim correctly returns the CoSimRank scores S[:, Q] on

G.

Theorem 13. Given graph G, the resulting S returned by Line 21 of F-CoSim is the correct

CoSimRank scores over G.

Proof. Let S(T ) be the CoSimRank scores of the polytree T , and A(T ) be the column-normalised

adjacency matrix of T . According to Line 2 of F-CoSim, after T is retrieved from G, the column-

normalised adjacency matrix A of G is decomposed into two parts (A(T ) and �A):

A = A(T ) + �A where �A , A ≠ A(T ) (4.2)

Theorem 12 guarantees that the CoSimRank score of T , denoted as S(T ) (, diag(S1, · · · , SL)),

obtained by Lines 4–15 of F-CoSim, is the correct CoSimRank of T , i.e., S(T ) satisfies the

CoSimRank definition:

S(T ) = CA(T )T S(T )A(T ) + I (4.3)

where S(T ) , diag(S1, · · · , SL).

Moreover, our correctness proof of D-CoSim in Theorem 12 guarantees that, by viewing T

as the old graph, and (G ° T ) as the graph update to T , the value of �S from calling D-CoSim

(Line 17 of F-CoSim) is the correct CoSimRank increments with respect to the update (G ° T )

to T . This means that �S satisfies CoSimRank definition:

S(T ) + �S = C · (A(T ) + �A)T
· (S(T ) + �S)·

· (A(T ) + �A) + I (4.4)

According to Line 19, the CoSimRank returned by F-CoSim is:

S = diag(S1, · · · , SL) + �S = S(T ) + �S (4.5)
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Plugging Eqs.(4.3) and (4.4) into (4.5) produces

S = CAT SA + I.

Thus, S satisfies the CoSimRank definition, i.e., S, returned by F-CoSim, is the correct CoSim-

Rank of G.

Complexity. Given a query set Q, the time of F-CoSim in each of the three phase is O(n + m),

O(
qLQ

l=2 nl(nl≠1 + nl)), and O(K(m + np°|Q|)), respectively, where n and m are the number

of nodes and edges of the graph, respectively, LQ is the maximum level of the query node Q

in T , and p° is the number of update pieces in �G. Since LQ Æ L π n, nl≠1 + nl π n, and

p° π m ≠ n in practice, it requires O(n max2ÆlÆLQ{nl≠1 + nl} + K(m + np°|Q|)) time in total,

as opposed to the O(Kn(m+ |Q|n)) time of the original method, to assess n◊ |Q| pairs of scores

S[:, Q].

The memory space of F-CoSim in each phase is O(m+n), O(m+
qLQ

l=1 nl
2), and O(m+Kn),

respectively. Thus, the total memory is bounded by O(m + (K + max1ÆlÆLQ{nl})n). It can

be seen that F-CoSim requires less memory and time compared to the existing CoSimRank

algorithm. In the next section, we will present that the performance of F-CoSim can be further

optimized.

4.5 Further E�ciency Improvement

When F-CoSim is applied in large-scale graphs, we find two parts of the algorithm that can

be improved to speed up the algorithm. Inspired by the parallel computing, we also propose an

accelerated algorithm based on F-CoSim algorithm.

The first one is the operational method of extracting spanning polytrees from graphs. In

Section 4.2, the breadth-first search(BFS) method is used to extract spanning polytrees from

graphs. Later in this section, we propose a more e�cient heuristic approach to achieve the same

goal with less time consumption.

The other part is the second step of the F-CoSim algorithm, i.e., computing CoSimRank

scores on polytree T . The final result of the F-CoSim algorithm is a single column with respect

to query. Thus, if the result of the CoSimRank score on polytree T is a single source, it will

improve the e�ciency of F-CoSim. The following subsection will elaborate on these ideas.
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4.5.1 The Optimisation of Spanning Polytree Extraction.

To extract spanning polytrees from a graph G, the breadth-first search method or the depth-

first search operation methods can be used. The breadth-first search method(BFS) has been

used in Procedure 1.

The BFS method is an algorithm for searching a tree structure from a network. The searching

starts from a tree root node, and then explores all the nodes at the present depth. This operation

is repeated until all the nodes have been explored. The depth-first search (DFS) is the same

as the BFS. It starts at the tree root node and traverses a tree or graph from the parent node

down to its children and grandchildren nodes in a single path until it reaches a dead end. When

there are no more nodes to visit in a path, the DFS algorithm backtracks to a point where it can

choose another path to take. It will repeat the process over and over until all nodes have been

explored. Both DFS and BFS methods can implement tree extraction well; however, there is

another method – Heapsort, which can extract a tree from a graph more e�ciently than the two.

Since the F-CoSim algorithm needs to calculate the CoSimRank scores of spanning polytrees level

by level, it is better to reduce the levels of polytree, which will significantly reduce the repetition

of computations, and consequently reduce time consumption.

To identify a spanning polytree over a given graph with fewer polytree levels, we propose a

more e�cient heuristic approach based on Procedure 1. Here, we adapt the key idea of a heapsort

to improve the e�ciency of Procedure 1. Heapsort is an advanced selection, comparison-based

sorting algorithm. It separates the pool of whole nodes into two parts, sorted and unsorted

nodes. The basic idea of a heapsort is to choose the largest node from the unsorted part and

insert it into the sorted part. It avoids exploring nodes in the sorted part, which significantly

reduces the sort time consumption. When implementing this critical idea of a heapsort in the

extraction of a spanning polytree, we choose the node with the most out-neighbours as the

polytree root node. We always give priority to the node which has a larger out-degree. These

operations repeat until all nodes have been explored.

To identify a spanning polytree T over a given graph G more e�ciently, we devise a better

heuristic approach based on the heapsort method in Procedure 2. The central idea of Procedure 2

is as follows. First, same as Procedure 1, we set v to the node with the maximum out-degree

in G, set the node v as root, push v into a sorted queue, and initialise T set to empty. Next,

for each iteration, we dequeue v, add the unsorted incoming and outgoing edges of v into T ,
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Figure 4.4: Comparison of Opt_Find_Spanning_PolyTree and Find_Spanning_PolyTree Algorithm
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enqueue the unvisited in- and out-neighbours of v with the number of in- and out-degree orders,

and set v to the next node in queue. The iteration continues until the set U becomes empty.

Finally, the resulting output T is a spanning polytree of G. The complexity of Procedure 1 is

dominated by the heapsort, which takes O(nlogn) time on a graph with n nodes and m edges.

Procedure 2: Opt_Find_Spanning_PolyTree (G)
Input : a graph G.

Output: a spanning polytree T of G.

22 initialise T := ? ;

44 foreach weakly connected component Gwcc ™ G do

66 U.Enqueue(a node of maximum out-degree in Gwcc);

88 while U ”= ? do

1010 set node v := U.Dequeue() ;

1212 T := T fi {unsorted in- and out-links of v} ;

1414 forall t do h;

15 e w œ {sort unvisited in- and out-neighbors of v with larger in- and out-degree}

U.Enqueue(w)

1717 return T ;

Take the example from Figure 4.4 to describe the merit of the Opt_Find_Spanning_PolyTree

algorithm. In Figure 4.4, there is a given graph G with eight nodes. Extracting spanning

polytree T from graph G can be done by the two operations we discussed earlier. The results

of the two algorithms are di�erent. The spanning polytree extracted by Procedure 2 has three

levels, whereas the spanning polytree extracted using the Find_Spanning_PolyTree algorithm has

five levels. According to Theorem 12, the number of polytree levels decides the call number of

computing the CoSimRank scores of a spanning polytree algorithm. Therefore, the fewer levels

that the polytree has, the fewer CoSimRank scores of a spanning polytree need to be computed,

and the lesser computation time will be consumed. At the same time, the number of cut edges

of a graph G grows with the increasing number of polytree levels, so we need to call D-CoSim

algorithm once for each update brunch.

In conclusion, the Opt_Find_Spanning_PolyTree algorithm, with fewer polytree levels, is

more e�cient than the Find_Spanning_PolyTree algorithm. For the F-CoSim algorithm, extract-

ing a spanning polytree with fewer levels can reduce the call number of computation algorithms,
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which could significantly improve its e�ciency.

4.5.2 E�cient Single-Source CoSimRank Scores’ Retrieval of Spanning Poly-

tree.

After identifying a spanning polytree T of a graph G with the Opt_Find_Spanning_PolyTree

algorithm, we can decompose graph G into two parts: G = T ü (G ° T ). According to the

design of the F-CoSim algorithm, computing the CoSimRank scores of a spanning polytree

requires calculating the similarity scores of all node pairs at each level. However, F-CoSim

is an algorithm that evaluates the similarity scores of single-source queries; therefore, some

information from all node pairs of the spanning polytree is useless, which means it will reduce

the e�ciency of the algorithm. To bridge this gap, we propose a novel algorithm to calculate

single-source CoSimRank scores of each level of a spanning polytree.

Theorem 14. Given a graph G, q is a query, and Lq is the level of the spanning polytree where

query q located Lq Æ L, the single-source CoSimRank score [SLq ]ú,q is computed by:

[SLq ]ú,q
= vLq≠1 (4.6)

where vector v is iterated as:
Y
_]

_[

v0 = uLq≠1

vl = CAT
l,l+1vl≠1 + uLq≠l≠1

(’ l = 1, · · · , Lq ≠ 1)

and ul can be generated by:
Y
_]

_[

u0 = eq

ul = ALq≠l,Lq≠l+1ul≠1

(’ l = 1, · · · , Lq ≠ 1)

Proof. We want to show that [SLq ]ú,q obtained from Equation 4.6 is exactly equal to the result

of Equation 4.1.

First, Equation 4.6 can be expressed as:

[SLq ]ú,q
= eq +

ÿLq≠1
l=1 (C l

Ÿl

i=1 AT
Lq≠i,Lq≠i+1ul)

where ul is replaced by ALq≠l,Lq≠l+1 · · · ALq≠1,Lq · eq.
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Next, according to the equation of vl from Theorem 14, we continue the iterative calculation

vl, with respect to ’ l = 1, · · · , Lq ≠ 1, so it can be written as:

vLq = eq +
ÿLq≠1

l=1 (C l
Ÿl

i=1 AT
Lq≠i,Lq≠i+1ul)

Then, taking the equation vl = CAT
l,l+1vl≠1 + uLq≠l≠1 with fixed variable l, and multiplying

C
Lq≠l≠1 rLq≠l≠1

i=1 AT
Lq≠i,Lq≠i+1 on both sides of vl, it can be shown as:

C
Lq≠l≠1 ŸLq≠l≠1

i=1 AT
Lq≠i,Lq≠i+1vl = C

Lq≠l≠1 ŸLq≠l≠1
i=1 AT

Lq≠i,Lq≠i+1vl≠1

+ cLq≠l≠1 ŸLq≠l≠1
i=1 AT

Lq≠i,Lq≠i+1uLq≠l≠1

Then,
qLq≠1

l=0 (•) can be added on both sides, and expressed as:
ÿLq≠1

l=1 C
Lq≠l≠1 ŸLq≠l≠1

i=1 AT
Lq≠i,Lq≠i+1vl

¸ ˚˙ ˝
=vLq+1+

qLq≠2
l=1 CLq≠l≠1 rLq≠l≠1

i=1 AT
Lq≠i,Lq≠i+1vl

=
ÿLq≠1

l=1 C
Lq≠l

ŸLq≠l≠1
i=1 AT

Lq≠i,Lq≠i+1vl≠1
¸ ˚˙ ˝

=
qLq≠2

l=0 CLq≠l≠1 rLq≠l≠1
i=1 AT

Lq≠i,Lq≠i+1vl

+
ÿLq≠1

l=1 C
Lq≠l≠1 ŸLq≠l≠1

i=1 AT
Lq≠i,Lq≠i+1uLq≠l≠1

¸ ˚˙ ˝
=

qLq≠2
l=1 Cl

rl

i=1 AT
Lq≠i,Lq≠i+1ul+eq

Finally, we remove
qLq≠2

l=1 C
Lq≠l≠1 rLq≠l≠1

i=1 AT
Lq≠i,Lq≠i+1vl from both sides and obtain:

vLq≠1 = C
Lq≠1 ŸLq≠1

i=1 AT
Lq≠i,Lq≠i+1v0 +

ÿLq≠2
l=1 C

l
Ÿl

i=1 AT
Lq≠i,Lq≠i+1ul + eq

= eq +
ÿLq≠1

l=1 C
l
Ÿl

i=1 AT
Lq≠i,Lq≠i+1ul

It is easy to find that this equation is exactly same as

[SLq ]ú,q
= CAT

Lq≠1,Lq
[CAT

Lq≠2,Lq≠1[CAT
Lq≠3,Lq≠2[· · · [CAT

1,2A1,2 · · · ALq≠1,Lq eq+

A2,3 · · · ALq≠3,Lq≠2ALq≠2,Lq≠1ALq≠1,Lq eq] + · · · ALq≠3,Lq≠2ALq≠2,Lq≠1ALq≠1,Lq Bq]

+ ALq≠2,Lq≠1ALq≠1,Lq eq] + ALq≠1,Lq eq] + eq

= eq +
ÿLq≠1

l=1 (C l
Ÿl

i=1 AT
Lq≠i,Lq≠i+1

ŸLq≠1
j=Lq≠l

Aj,j+1eq)

Example 14. Recall Example 12. Here, we take column 2 of the second level of the spanning

tree in Figure 4.3 as the query. According to Theorem 14, the CoSimRank scores [S3]ú,2 of T

can be calculated as follows:

The adjacency matrix of the spanning polytree can be written as: A1,2 = [ 0.5 0
0.5 0 ] and A2,3 =

[ 1 0.5 1
0 0.5 0 ].
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Based on the adjacency matrix and Theorem 14, we apply successive substitution to vl and

ul, and yield:

k ul vl

0 u0 := eq

5
0 1 0

6T

v0 := u2 [0.25 0.25]
T

1 u1 := A2,3u0 [0.5 0.5]
T

v1 := CA1,2v0 + u1 [0.65 0.5]
T

2 u2 := A1,2u1 [0.25 0.25]
T

v2 := CA2,3v1 + u0 [0.39 1.34 0.39]
T

where [S3]ú,2 = v2. Thus, CoSimRank scores [S3]ú,2 = [ 0.39 1.34 0.39 ]T .

To combine these improvements (i.e., Opt_Find_Spanning_PolyTree algorithm and single-

source similarity search of a spanning polytree) with the F-CoSim algorithm, we can obtain a

more optimized F-CoSim algorithm. Here, we named it as Opt_F-CoSim.

The optimized algorithm is explained in detail as Procedure 3.

The critical improvements of Opt_Find_Spanning_PolyTree algorithm are:

(i) The Opt_Find_Spanning_PolyTree algorithm takes the place of Find_Spanning_PolyTree

algorithm (Line 2). It can extract a spanning polytree T from a graph G with less levels more

e�ciently. The number of polytree levels decides the number of similarity search algorithm calls

over a spanning polytree, which can greatly reduce the computation complicity and improve the

e�ciency of F-CoSim algorithm.

(ii) We can convert an all pairs similarity search into a single-source similarity search over a

spanning polytree. According to the F-CoSim algorithm, after a spanning polytree is extracted

from graph G, it calculates all node pairs CoSimRank scores of each level of spanning polytree T .

However, to compute the single-source similarity scores of graph G, with respect to query q, the

algorithm does not need all node pairs information of the spanning polytree. Thus, calculating

the single-source similarity scores of a spanning polytree can greatly reduce redundancy in

computation. At the same time, the time complexity of the F-CoSim algorithm can be drastically

reduced.

4.5.3 Parallel Computing

Parallel computing is an e�ective technique to solve extremely large and complex problems

with less time consumption (Almasi & Gottlieb, 1994). The critical and fundamental method of

parallel computing involves breaking down large questions into smaller and independent parts
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Algorithm 3: Opt_F-CoSim (G, C, Q, K)
Input : graph G, decay factor C,

query set Q, #-iteration K

Output: CoSimRank scores S[:, Q] in G.

22 set T := Opt_Find_Spanning_PolyTree(G)

44 set LQ := maximum level of the query node of Q in T

66 initialise S1 = In1

88 for l = 2 to LQ do

1010 set nl := the number of nodes at level l in T

1212 Al≠1,l is (nl≠1◊nl) col-normalised adjacency block:

13 Al≠1,l[i, j] = 1/deg≠
j if ÷(i æ j) œ T ; or 0 otherwise

1515 initialise u0 :=ej

1717 for l = 2 to LQ do

18 ul = ALq≠l,Lq≠l+1ul≠1

2020 initialise v0 := uLQ

2222 for l = 2 to LQ do

23 vl = CAT
l,l+1vl≠1 + uLq≠l≠1 free vl≠1 and uLQ≠l≠1

2525 Then S(T)[:, Q] = vLQ

2727 compute �S[:, Q] := D-CoSim (T, G ° T, C, Q, K)

2929 compute S[:, Q] = S(T)[:, Q] + �S[:, Q];

3131 return S[:, Q];
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that generally have the same properties and computational requirements. Each smaller part of

the large problem is simultaneously processed by an independent processor. These processors

communicate via shared memory. Finally, the results from each processor are combined as part

of the result of the overall problem. Based on the fundamental design of parallel computing, we

can find that the most important goal of the technique is to use more independent processors

(computation power) to quickly and accurately solve the overall large and complex problem.

Inspired by the definition of parallel computing, we propose a novel algorithm to speed up

the F-CoSim algorithm when it is applied over large-scale networks. We name it as F-CoSim-Para

algorithm.

The first step of the F-CoSim-Para algorithm is to reasonably decompose a large and complex

network into small chunks. In order to do so e�ciently, we refer to METIS (Karypis & Kumar,

1998). METIS is a software package, which includes various multilevel algorithms, for e�cient

and reasonable graph partitioning. The steps of METIS’ multilevel algorithms are as follows.

(i) Generate a sequence of graphs to coarsen the large graph. They can be denoted as

(G0, · · · , Gi, Gj , · · · , GN ), where 0 Æ i Æ j Æ N , and G0 is the original large graph. The

number of nodes in Gj is smaller than the number of nodes in Gi.

(ii) Generate a partition of graph GN .

(iii) Following the order of (GN , · · · , G1, G0), project the partition back and refine it with

each graph respectively.

The final partition, which is obtained from Step (iii), is the graph partition. The implemen-

tation method of METIS can be found in Appendix A.2.

Leveraging the graph partition from METIS, the large graph is divided into several indepen-

dent parts and some cut edges. For the F-CoSim-Para algorithm, the next step is to take the

cut edges as graph updates, and each chunk of the original graph as a small graph to compute

CoSimRank scores respectively. The CoSimRank scores of each chunk are computed simulta-

neously (parallel computing). This step greatly increases the time e�ciency of the F-CoSim

algorithm, since it adds computational power to execute the CoSimRank score of each chunk

simultaneously. Then all CoSimRank score matrices are put into the diagonal matrix, which is

the CoSimRank scores of the original graph without cut edges.

The last step of the F-CoSim-Para algorithm is to use the D-CoSim algorithm to calculate

the updated CoSimRank scores with respect to the cut edges.
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Figure 4.5: Parallel Computing

Example 15. In Figure 4.5, given is a graph G with eight nodes; take node e as query. Decay

factor C = 0.6 and iteration number K = 4. Following F-CoSim-Para algorithm, the CoSimRank

scores of the graph can be retrieved as follows.

First, follow the METIS method to separate the graph into two partitions (i.e., part1 and

part2); and the cut edges are È(d, g) æ aÍ. It can be seen from Figure 4.5 that the two partitions

of the graph are: part1 = [ a b c h ]Õ, and part2 = [ d e f g ]Õ. Then, based on the graph’s partition,

the adjacency matrix of each part can be expressed as:

Apart1 =

S

U
0 1/3 1/2 1
0 0 0 0
0 1/3 0 0
0 1/3 1/2 0

T

V , Apart2 =

S

U
0 1 1/2 1/3
0 0 1/2 1/3
0 0 0 1/3
0 0 0 0

T

V

Then, distributing the computation of CoSimRank scores of each part to di�erent and indepen-

dent processors and performing the tasks in parallel, we obtain:

Spart1 =
5 1 0 0 0

0 1.306 0.29 0.2
0 0.29 1.39 0.3
0 0.2 0.3 1.6

6
Spart2 =

5 1 0 0 0
0 1.6 0.3 0.2
0 0.3 1.39 0.29
0 0.2 0.29 1.306

6

Leveraging the CoSimRank scores of each part, the two CoSimRank score matrices are put into a

diagonal matrix, which is the similarity search result of the original graph without the cut edges.
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It is

Spart =
Ë Spart1 0

0 Spart2

È
=

S

WWU

1 0 0 0 0 0 0 0
0 1.306 0.29 0.2 0 0 0 0
0 0.29 1.39 0.3 0 0 0 0
0 0.2 0.3 1.6 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1.6 0.3 0.2
0 0 0 0 0 0.3 1.39 0.29
0 0 0 0 0 0.2 0.29 1.306

T

XXV

Furthermore, follow the D-CoSim algorithm to calculate �S with respect to the cut edges’ chunk

�Ga = È(d, g) æ aÍ in answer to query e,

�S[:, e] =
ÿ3

k=0 C
k(p(k)[e](t(k))T + t(k)[e](p(k))T ) = [ 0 0.29 0.39 0.3 0.39 0.09 0.045 0.03 ]T

Finally, the CoSimRank scores of the original graph can be calculated by adding Spart and �S,

S[:, e] = Spart[:, e] + �S[:, e] = [ 0 0.29 0.39 0.3 1.39 0.09 0.045 0.03 ]T

4.6 Experimental Evaluation

In this section, we present an experimental study on actual and large-scale datasets to

evaluate the advantages of our similarity search algorithm, F-CoSim. Furthermore, we evaluate

the Opt_F-CoSim algorithm (F-CoSim with the two optimisations) on realistic and large-scale

datasets. Three metrics evaluate the performance e�ciency:

(a) Running Time. On static graphs, F-CoSim shows more e�ciency than the best-known

CoSimRank approach. Opt_F-CoSim takes less time than F-CoSim on networks.

(b) Memory Space. F-CoSim and Opt_F-CoSim only require linear memory and scale well on

million-node graphs.

(c) Accuracy. F-CoSim and Opt_F-CoSim do not compromise any accuracy for the speedup.

4.6.1 Experimental Setting

Datasets. We implement our similarity search algorithms over three real datasets, including:

ca-HepPh (HP), email-EuAll (EE) and wiki-Talk (WT). Apart from these three datasets, we also

evaluate Procedure 2 on as-735 (AS), web-Google (WG) and soc-LiveJournal (LJ). Thus, there

are six realistic datasets involved in this chapter. The size of each dataset has been illustrated in

Table 3.2. The first dataset, AS, is an undirected graph, whereas the others are directed graphs.

Table 3.2 shows that the size of datasets is sorted from small to large. The smallest graph is AS

with 7716 nodes and 26467 edges, and the most extensive graph is LJ, which has more than a

million nodes and edges. More details of each dataset can be found in Section 3.4.1.
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All experiments are conducted on a PC with an Intel Core i7-6700 3.40GHz CPU and 64GB

memory compiled by VC++.

Compared Algorithms. We implement F-CoSim and Opt_F-CoSim over static graphs, and

compare it with two state-of-art CoSimRank competitors:

(a) CSR, a method by (Rothe & Schütze, 2014) that retrieves a CoSimRank score from the

sum of the dot product of two Personalised PageRank vectors; and

(b) CSM, a repeated-squaring method by (Yu & McCann, 2015a) that cuts down the number

of CoSimRank iterations.

Parameters. We chose the following parameters by default:

(a) the decay factor C = 0.8,

(b) the number of iterations K = 5,

as previously used in (Rothe & Schütze, 2014).

4.6.2 Experimental Results

In this section, we present the results of the experiments to show the superiority of our

algorithm, F-CoSim over realistic and large-scale graphs. Then we show the experimental results

of the optimisation algorithms F-CoSim. The performance e�ciency is separated into three

aspects: time e�ciency, memory e�ciency and accuracy.

4.6.2.1 Experimental Results of F-CoSim

In this subsection, we compare the F-CoSim algorithm with state-of-the-art similarity search

algorithms over three large-scale datasets. The results have been separated into three parts:

time e�ciency, memory e�ciency and accuracy.

Time E�ciency. We first implement our algorithm F-CoSim and baseline algorithms on three

realistic datasets to compare their time e�ciency.

Figure 4.6 shows the time e�ciency of F-CoSim on static graphs. We report that the results

on three datasets, and the trends on other datasets are similar. Figure 4.6 compares the time of

F-CoSim with CSR and CSM on each dataset. We discern that F-CoSim consistently outperforms

CSR by speedup of up to 9.8x (on EE). Thus, using our spanning polytree for a quick CoSimRank

search is e�ective (Theorem 13). Moreover, CSM is the fastest algorithm on HP dataset, but

this method only survives on small-scale graphs due to its high memory storage requirement on
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Figure 4.6: Time E�ciency on Static Graph

account of repeated squaring. In contrast, F-CoSim scales well on million-edge graphs (e.g., WT

EE).

Figure 4.7: Time E�ciency: Phases in F-CoSim

Since F-CoSim encompasses three phases (Algorithm 2), Figure 4.7 details the time allo-

cated in each phase per dataset. We see that among these phases, Phase 2 (computing S(T )

on spanning polytree T ) takes the smallest portion; Phase 1 (finding T from G), the second

smallest; and Phase 3 (computing �S with respect to G°T ), the largest. This agrees well with

our complexity analysis of Algorithm 2, where the time of Phase 2, O(
qLQ

l=2 nl(nl≠1 + nl)), is

independent of the graph size n, unlike Phases 1 and 3 that hinge on n (∫ nl).

Memory E�ciency. This subsection shows the memory e�ciency of F-CoSim and the other

baseline algorithms, and the memory cost of each step of the F-CoSim algorithm.
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Figure 4.8: Memory E�ciency & Scalability of F-CoSim

Figure 4.8 depicts the memory e�ciency of F-CoSim on three real datasets in comparison

with CSR and CSM. On each dataset, we randomly select |Q| = 500 queries. Figure 4.8 shows the

average memory cost in response to one query. The memory of F-CoSim on static graphs shows

a similar tendency. F-CoSim and CSR show comparable memory e�ciency on the three datasets,

however, CSM costs 2 order-of-magnitude memory space than F-CoSim on HP. CSM cannot be

implemented on EE and WTbecause of the expensive memory cost. In contrast, F-CoSim works

well on the large-scale datasets (EE and WT), which illustrates the scalability of F-CoSim.

Figure 4.9: Memory E�ciency: Phases in F-CoSim

Figure 4.9 shows the memory usage at each phase of F-CoSim on each dataset. We use

abbreviations to denote the three steps of the F-CoSim algorithm separately. P1-Find T is

the first step of the F-CoSim algorithm, which is extracting spanning spanning polytree from
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graphs. P2-S(T ) is the second step, which involves computing the CoSimRank scores of a

spanning polytree. P3-�S is the last step, which is the computation of �S. From the results,

we see that Phase 1 (finding T ) has the lowest memory as it is based on a linear BFS search.

Phase 2 (computing S(T ) on T ) requires a larger memory than Phase 1 to store the resulting

S(T )[:, Q] due to its overheads. Phase 3 takes the most memory space to generate �S using the

D-CoSim algorithm. These findings agree with our memory analysis in Algorithm 2.

Figure 4.10: Memory E�ciency: Phases in F-CoSim

Accuracy. We evaluate the accuracy of F-CoSim, relative to the original CSR, on real datasets.

We randomly pick various query sets with its size |Q| varying from 1000 to 3000. For each query

set Q, based on the CoSimRank scores S[:, Q] from F-CoSim, we measure the results of their

similarity ranking via NDCG (Normalised Discounted Cumulative Gain) (Y. Wang et al., 2013):

NDCGQ@k = 1
|Q|

q|Q|
q=1

!
Zk,j

qk
x=1

2S[x,q]≠1
log2(1+x)

"

where Zk,j is a normalisation factor that is the DCG ranking result obtained using the original

method of CSR. Thus, NDCG = 1 implies that the CoSimRank ranking of the compared algo-

rithm perfectly matches that of CSR, with no accuracy loss. Figure 4.10 shows the accuracy of

F-CoSim via NDCG for top k = 1000 CoSimRank ranking scores on AS. The trends on other

datasets are similar to this. To save space, we omit these trends here. From the results, we

notice that for each query set Q, the NDCG of F-CoSim is 1, thus implying that F-CoSim does

not sacrifice any accuracy for its speedup. This verifies the correctness of Theorem 12.
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4.6.2.2 Experimental Results of the Optimisation F-CoSim Algorithm

In this subsection, we evaluate the optimisation F-CoSim algorithm, Opt_F-CoSim, and

demonstrate that it can greatly outperform F-CoSim on large-scale datasets on account of the

two optimization technologies we adopted. The performance e�ciency is also evaluated from

three aspects: time e�ciency, memory e�ciency and accuracy.

Time E�ciency. We evaluate Procedure 2, single-source similarity search on a spanning

polytree algorithm and Algorithm 3 on realistic datasets.

We first implement Procedure 1 and Procedure 2 on six realistic and large datasets to compare

their time e�ciency.

Figure 4.11: Time E�ciency Comparison of Procedure 1 and Procedure 2

Figure 4.11 shows the time cost of Procedure 1 (Find_Spanning_Polytree(G)) and Pro-

cedure 2 (Opt_Find_Spanning_Polytree(G)) over six datasets. The bar chart in Figure 4.11

shows the time cost of the two procedures, and the line chart shows the number of polytree

levels of two procedures. The Opt_Find_Spanning_Polytree(G) procedure is 1.3x faster than

the Find_Spanning_Polytree(G) procedure on AS, and the remaining datasets show a similar

trend. It was also found that Procedure 2 is quicker than Procedure 1 in terms of perfor-

mance on all six datasets. Moreover, the number of polytree levels a�ects the time e�ciency

of the similarity search over spanning polytree. Thus, the less number of polytree levels, the
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less time the similarity search algorithm over a spanning polytree takes. The line chart in

Figure 4.11 shows the number of polytree levels of the two procedures. The value of the

black line (Opt_Find_Spanning_Polytree(G)) is always smaller or equal to the dotted line

(Find_Spanning_Polytree(G)). Thus, for the number of polytree levels, Procedure 2 can ex-

tract a spanning polytree more e�ciently than Procedure 1 with fewer polytree levels. The

experimental results of Figure 4.11 agree with the procedure analysis in Section 4.5.1.

Figure 4.12: Time E�ciency Comparison of P2-S(T ) and Opt_P2-S(T )

Figure 4.12 shows the time e�ciency of the similarity search and single-source similarity

search on a spanning polytree algorithm over four datasets, AS, HP, EE and WT. P2-S(T )

represents the second step of the F-CoSim algorithm, which is computing the CoSimRank scores

of a spanning polytree. Opt_P2-S(T ) is the optimization algorithm based on P2-S(T ), and

it is a single-source similarity search algorithm for a spanning polytree. Generating similarity

scores of a spanning polytree is the second phase of F-CoSim. The results of the similarity

search over a spanning polytree need to be added with �S[:, Q]; thus, the partial results of the

similarity scores of a spanning polytree are required for the final results with respect to a query

set. Figure 4.12 shows that the single source similarity search algorithm runs faster than the

original similarity search algorithm. It is 3.9x faster than the original similarity search algorithm

on EE.

Next, we evaluate the Opt_F-CoSim algorithm over three datasets. Opt_F-CoSim adopts the

Opt_Find_Spanning_Polytree(G) procedure and the algorithm for a single-source similarity
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search on a spanning polytree, which replaces Find_Spanning_Polytree(G) and the original

algorithm for a similarity search on a spanning polytree, F-CoSim.

Figure 4.13: Time E�ciency Comparison of F-CoSim and Opt_F-CoSim

Figure 4.13 shows the time e�ciency of F-CoSim and Opt_F-CoSim on three datasets (HP,

EE and WT). We randomly select |Q| = 500 queries. The results in Figure 4.13 are the average

time cost with respect to one query. The Opt_F-CoSim algorithm works faster than the F-CoSim

algorithm on all three datasets. For example, Opt_F-CoSim algorithm is 1.2x faster than F-CoSim

algorithm on EE.

Memory E�ciency. Figure 4.14 shows the memory e�ciency of P2-S(T ) and Opt_P2-S(T ).

P2-S(T ) is the second phase of the F-CoSim algorithm, and Opt_P2-S(T ) is the optimized

version of P2-S(T ). As illustrated in Figure 4.14, Opt_P2-S(T ) consumes less memory space

than P2-S(T ) in case of all four datasets. For the computation of Opt_P2-S(T ) in Procedure 2,

the variables v and u are cleared after we get the CoSimRank scores of a spanning polytree in

response to the query.

Figure 4.14 shows the memory e�ciency of the F-CoSim and Opt_F-CoSim algorithms on

three datasets. Opt_F-CoSim is approximately one order-of-magnitude more memory e�cient

than F-CoSim on HP, and shows a similar trend in its memory e�ciency on the remaining
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Figure 4.14: Memory E�ciency Comparison of P2-S(T ) and Opt_P2-S(T )

Figure 4.15: Memory E�ciency Comparison of F-CoSim and Opt_F-CoSim
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datasets as well. Thus, Figure 4.14 shows that the two optimisation algorithms have improved

the original F-CoSim algorithm.

Accuracy. We use the same accuracy evaluation method as D-CoSim, i.e., NDCG (Nor-

malised Discounted Cumulative Gain) (Y. Wang et al., 2013), to evaluate the accuracy of the

Opt_F-CoSim algorithm. The NDCG method has been explained in detail in Section 4.6.2.2.

Figure 4.16: Accuracy of F-CoSim and Opt_F-CoSim

Here, we take the similar setting of NDCG as mentioned in Section 4.6.2.2. First, we ran-

domly select di�erent sizes of query sets (|Q| = 1000, |Q| = 2000 and |Q| = 3000). Then, we

compare the results of F-CoSim and Opt_F-CoSim with the top k = 1000 CoSimRank ranking

scores on AS. The trends on the remaining datasets are similar, and therefore have been omitted

here. We recall the F-CoSim algorithm and show the results of its accuracy test in the figure.

Figure 4.16 shows that all NDCGs of Opt_F-CoSim are equal to 1, which is the same as the

F-CoSim algorithm. This means that the F-CoSim algorithm does not sacrifice any accuracy

for speedup. The Opt_F-CoSim algorithm is the optimisation of F-CoSim with better time and

memory e�ciency, also keeps exact accuracy.

4.7 Related Work

There is a growing body of research on SimRank (the variant of CoSimRank) on static

graphs (Yu, Zhang, Lin, Zhang, & Le, 2012b; Sarlós et al., 2006; Nguyen, Tomeo, Di Noia, &

Di Sciascio, 2015; Fogaras & Rácz, 2005; Tian & Xiao, 2016; Kusumoto et al., 2014; Fujiwara
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et al., 2013; C. Li et al., 2010; Lizorkin, Velikhov, Grinev, & Turdakov, 2010; Jeh & Widom,

2002). The optimisation techniques suggested by these studies can be classified into three broad

categories.

The first one is Monte Carlo sampling (Fogaras & Rácz, 2005; Sarlós et al., 2006; Tian &

Xiao, 2016; Kusumoto et al., 2014). (Fogaras & Rácz, 2005) propose a quick similarity search

algorithm , PSimRank, to retrieve a single pair SimRank score of two given vertices using the

Monte Carlo simulation. The algorithm given by (Fogaras & Rácz, 2005) extended to multi-step

neighborhoods with better theoretical characteristics and the Jaccard coe�cient. (Sarlós et al.,

2006) achieved unrestricted personalization by combining rounding and randomized sketching

techniques in the dynamic programming of (Jeh & Widom, 2003). Furthermore, the algorithm

proposed by (Sarlós et al., 2006) improved disk usage and communication complexity bounds

of (Fogaras & Rácz, 2005). (Kusumoto et al., 2014) proposed a “linear” recursive framework

that can e�ciently compute a single-pair SimRank score the Monte Carlo simulation. The

algorithm proposed by (Kusumoto et al., 2014) has a similar goal as (Fogaras & Rácz, 2005),

but (Kusumoto et al., 2014) algorithm has better accuracy and memory e�ciency than (Fogaras

& Rácz, 2005). (Tian & Xiao, 2016) proposed an e�cient index structure for SimRank, called

SLING. The time complexity of SLING for single pair and single-source SimRank scores are

O(1/‘) and O(n/‘) respectively, which is faster than PSimRank.

The second category is matrix-based methods (Fujiwara et al., 2013; C. Li et al., 2010). (C. Li

et al., 2010) proposed a non-iterative form for the SimRank algorithm by using the Kronecker

product and vectorization operators. To speed up the non-iterative SimRank algorithm, (C. Li

et al., 2010) also developed approximate SimRank computation algorithms that are probably

e�cient with accuracy sacrifice. (Fujiwara et al., 2013) proposed an e�cient top-k approximate

algorithm, SimMat, based on the Sylvester equation to retrieve the SimRank scores of a given

query. SimMat can also identify nodes whose SimRank scores are higher than the threshold

e�ciently.

The third category is iterative schemes (Yu, Zhang, et al., 2012b; Lizorkin et al., 2010;

Jeh & Widom, 2002). The algorithm by (Jeh & Widom, 2002) is the most fundamental itera-

tive similarity search algorithm over static graphs, and is called SimRank. SimRank has been

successfully used in many practical applications, such as link prediction, web mining, and col-

laborative tagging analysis. The details of SimRank can be found in Section 3.2.1. However,
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although SimRank is known as a converge algorithm, when implemented in realistic applications,

SimRank performs a finite number of iterative similarity searches. There may be a potential

di�erence in the final SimRank scores of a practical application and its theoretical similarity

scores. To fix this gap, (Lizorkin et al., 2010) presented a technique to estimate the accuracy of

iterative SimRank computing. This technique can retrieve the iteration numbers of SimRank’s

computation to achieve the required accuracy. (Lizorkin et al., 2010) also provided a systematic

improvement in order to reduce the computation complexity of SimRank. Unlike the technique

proposed by (Lizorkin et al., 2010) to achieve a speedup using a partial sum function for amor-

tization. (Yu, Zhang, et al., 2012b) proposed the SimFusion+ algorithm based on the notion

of the UniFied Adjacency Matrix. SimFusion+ improves the time e�ciency to O(km) and the

memory e�ciency to O(kn), which is more e�cient than (Lizorkin et al., 2010).

Among the above existing works, the sampling approach, SLING (Tian & Xiao, 2016), is

the best-of-breed SimRank algorithm on static graphs. However, their techniques, if applied to

CoSimRank, are not fast, as the performance gain of SLING relies on aggregating only the first

meeting time of two coalescing walks, as opposed to CoSimRank, which aggregates all their

meeting times.

4.8 Conclusion

In this chapter, we discuss the issues that are missing in CoSimRank, such as computation

e�ciency and scalability, with an intention to facilitate a broader application of CoSimRank.

To address these issues, we apply D-CoSim to static graphs by proposing F-CoSim to speed up

large-scale static CoSimRank retrieval. On static graphs, our quick and accurate algorithm,

F-CoSim, greatly speeds up CoSimRank retrieval based on three ideas: Given graph G, we (a)

find a “spanning polytree” T of G; (b) design an e�cient algorithm to retrieve CoSimRank

scores S(T ) over T ; and (c) apply D-CoSim to evaluate the changes to S(T ) in response to

delta graph (G ° T ); and (d) propose a technique for faster extraction of a spanning poly-

tree from a graph with fewer levels number in order to speed up F-CoSim. Since F-CoSim

is a single-source similarity search algorithm, changing the second phase of F-CoSim from all

nodes pairs similarity search S(T ) over T to single-source similarity search S(T )[:, q] over T

will speed up the F-CoSim algorithm. Based on these two optimization techniques, we propose

the Opt_F-CoSim algorithm. Furthermore, inspired by parallel computing, we also propose the
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F-CoSim_Para algorithm for more e�cient computation of F-CoSim. Our empirical studies on

various real datasets demonstrate that (a) F-CoSim outperforms state-of-the-art approaches on

static graphs, with a speedup of up to 9.8 times; (b) F-CoSim retains comparable linear memory,

and scale on million-node graphs, with no compromise of accuracy for the speedup. (c) The

results after implementing Opt_Find_Spanning_Polytree on six realistic datasets show that

Opt_Find_Spanning_Polytree is more e�cient than Find_Spanning_Polytree. (d) Opt_F-CoSim

outperforms F-CoSim on static graphs with a speedup of approximately 1.2 times (time e�-

ciency), and approximately one order-of-magnitude memory e�ciency.

For future works, we will extend our CoSimRank scheme to decentralised environments for

picture evaluation and patient tracking systems, for example, picture semantic similarity search

(M. Zhang et al., 2021), image-rich web sets similarity integration (Muni Manasa & Farooq,

n.d.), and virus spreading prediction (Colliri & Zhao, 2020).
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5 An Axiomatic Role Similarity Search Over
Networks

Networks are ubiquitous in our daily life. For instance, let us think of social networks (Everett,

1985). The social network for each of us is made up of interactions and connections between

people. Humans are social animals, just like what John Donne’s No Man Is An Island says:

“No man is an island entire of itself; every man is a piece of the continent, a part

of the main; if a clod be washed away by the sea, Europe is the less, as well as if

a promontory were, as well as any manor of thy friends or of thine own were; any

man’s death diminishes me, because I am involved in mankind. And therefore never

send to know for whom the bell tolls; it tolls for thee.” - John Donn No Man Is An

Island

With the continuous development of electronic communication technology in the past decade,

people’s social networks have been greatly expanded. People do not need to communicate face-

to-face or be introduced by a friend to establish contacts for the social network. In recent

years, people have been using mobile phones, computers and other devices to establish contact

with others through chat software, online shopping sites, social medial sites or apps. The

development of networks leads to exponential growth of people’s social networks. Therefore,

the similarity detection algorithm for the network structure is urgently needed. The results

of similarity detection can greatly improve people’s quality of life, such as big data research,

scenario prediction etc.

In the previous two chapters, we presented how the CoSimRank scores can be calculated

e�ciently from a large static or dynamic graph. CoSimRank (or any other SimRank-liked sim-

ilarity measures) is mainly used to measure if two single nodes in graphs are similar. Apart

from SimRank-liked similarity measures, there is another kind of very popular graph-theoretic

similarity measures, which is the role similarity. Role similarity aims to address the role (auto-
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morphic) equivalence of pairwise similarity. This chapter presents an innovative role similarity

search algorithm over networks.

5.1 Introduction

Graph structures (networks) commonly exist in our daily life, such as protein and neural

structure in the field of biological science (Rao, Devi, Kaladhar, Sridhar, & Rao, 2009), Amazon

and Google scholar recommendation system in Internet surfing (Shahabi, Banaei-Kashani, Chen,

& McLeod, 2001) and Facebook network and family relationship structure graph in social life (da

Silva Villaca, de Paula, Pasquini, & Magalhaes, 2013). Thus, the research on extracting useful

information based on topology structure becomes extremely important.

Role similarity analysis (Everett, 1985) is an essential method for analysing real complex

graph structures, especially for a social network, as it can accurately capture structural infor-

mation from a network. The most basic principle for role similarity search is that two nodes have

a similar role only if they interact with similar objects. As presented in previous chapters, on

the basis of this recursive node similarity search principle, many research works have been con-

ducted on similarity search over networks, such as Personalised PageRank (Haveliwala, 2003),

SimRank (Jeh & Widom, 2002) etc. These similarity search scores and algorithms can capture

the structural equivalence from graphs. However, they cannot generate the role similarity scores

based on the graph topology.

There are two significant challenges (Lee, 2012) we have to face when we transfer our study

focus from the structural equality-enforcing similarity algorithms to the role similarity algo-

rithms. The first is how to define the roles in the graph structure, and the second is how to

conduct the roles’ similarity search based on graph topology. For the definition of “role” based

on graphs, the set of relationships between an individual and others is referred to as a role. For

the definition of role similarity search over networks, given a graph G = (V, E), for a node v,

the set of all edges incident to it, i.e. v ([u1, u2, · · · , udegv ] æ v) œ E, is the role of v in graph

theory. Intuitively, for example, if two people share the same relationships in a social network,

they play the same roles.

The method of defining the role similarity is to detective the role equivalence. In the study

of the role similarity, there are four types of role equivalence, including structural equivalence,

automorphic equivalence, equitable partition and regular equivalence. In this chapter, we have
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Figure 5.1: A Social Network of A Project Studio With Three Levels (Level 1: project manager/associate project

manager; Level 2: senior sta�s; Level 3: junior sta�s).

mainly considered the automorphic equivalence for the role similarity search.

Next, we have used an example to illustrate the application, significance of role and role

similarity detection based on graph topology in our daily life.

Figure 5.1 is a typical social network of a project team. The nodes in the figure represent

the employees who participate in the project, and the edges are the interactions and connections

between employees. The complete project team is divided into three groups according to the

di�erent tasks being taken. The members of each group are separated into three job levels

in consonance with their di�erent positions, which are project managers or associate project

managers (level 1), senior employees (level 2), and junior sta�s (level 3). A member’s position

in this project is considered as his/her role. A role similarity detection algorithm aims to

quickly and precisely find out the nodes which play the similar roles as a given query node

in the social network, and This is an algorithm that takes a node as the query and generates

the role similarity scores between all nodes in the graph and the query node, which is called

a single-source role similarity searching algorithm. For example, taking the node J3 as the

query, [J4.J5, J6, J7, J1, J2] should have higher role similarity scores with J3 comparing with

other nodes like S1 or M1 since they have the similar role in the project as J3 (i.e., junior
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sta�s).

The following are some practical examples of role similarity detection. They demonstrate the

necessity for more precise role similarity search algorithms to handle topology-based assessments

over large networks.

Application 1 (Co-authorship Network).

A co-authorship network is a social network where the authors who participated in one or

more publication are linked to each other through an indirect path. The role similarity detection

in the co-authorship network is an important application. In the co-authorship network, each

author can be defined as a node, and an edge is added between authors if they have worked

together on a publication. The RoleSim algorithm (Rothe & Schütze, 2014) can be applied over

a co-authorship network. According to the definition of RoleSim, “an author’s role depends re-

cursively on the number of connections to other authors and the roles of those others”. However,

the results of the RoleSim algorithm can be improved since the algorithm only captures partial

information from the neighbour nodes in a graph.

Application 2 (Recommendation Systems of an eCommerce Website). The continuous

development of internet has changed people’s lifestyles to a large extent. Over the years, the

user numbers of major online shopping sites, such as Amazon and eBay, have increased exponen-

tially. At the same time, the types and quantities of online selling products are also increasing

substantially. Targeted item recommendations can save users’ shopping time while promoting

product sales. The analysis of the users‘ role similarity helps in refining the recommendation

system (Diao, Wang, Alsarra, Yen, & Bastani, 2019). In an eCommerce website, each registered

user can be defined as a node; an edge can be added between users if they have purchased the

same product. The role similarity search algorithm can divide users into di�erent equivalence

groups and recommend products to a user if other users in the same group have purchased them.

5.1.1 Motivation

The pioneering research on role analysis on networks was conducted by Jin (Lee, 2012).

Jin’s role similarity search algorithm, known as RoleSim, computed each similarity score from the

average of maximum matching values of in-neighbours. While having addressed the automorphic

equivalence of pairwise similarity successfully, Jin’s RoleSim algorithm has several limitations.

Limitation 1 (Accuracy). The role similarity score of RoleSim is computed by calculating
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the maximum matching (Gabow, Kaplan, & Tarjan, 2001) of neighbours’ similarity score matrix

which is limited by Eq. 5.3. In RoleSim, the maximum matching problem is solved by using

solutions of the “assignment problem” (Burkard, Dell’Amico, & Martello, 2012). The assignment

problem is a well-known combinatorial optimisation problem. The problem instance has some

workers and jobs. Any worker can be assigned any job but with di�erent cost. Each worker can

only do one job, and each job can only be done by one worker. It is required that the workers

be assigned di�erent jobs in such a way that the total cost of the assignment is minimised.

When the maximum matching algorithm is applied in the role similarity search algorithm,

some useful connection information in the graph is ignored. There are two primary causes

for this potential information loss. First, the assignment problem requires that the number

of workers and jobs be the same, meaning the assignment matrix has to be a square matrix.

For this reason, the RoleSim search algorithm requires the in-neighbour matching matrix be a

square matrix as well. When the in-neighbour score matrix is not a square, i.e. the number

of rows di�ers from the number of columns, the RoleSim algorithm discards those in-neighbour

nodes representing the extra rows/columns in the matrix from the matching selection process.

Furthermore, though an in-neighbour is included in the matching selection process, some of its

similarity scores are ignored, as the RoleSim algorithm requires only one value to be extracted

from each row and each column of the in-neighbour score matrix.

Therefore, these two factors can compromise on the accuracy of the RoleSim algorithm and

may lead to unclear role classification. To bridge this gap, we proposed a novel role-based

similarity search algorithm FaRS on networks. Example 16 and Figure 5.3 have been taken as

examples to illustrate the accuracy limitations of the RoleSim algorithm.

Example 16. Given a graph G = (V, E) and two nodes (u, v) œ V , the in-neighbour set of the

node u is I(u) = a, b, c, and the in-neighbour set of v is I(v) = d, e, f, g, h in the graph. The

maximum matching result of the in-neighbour matrix of node-pair (u, v) is shown in Figure 5.2,

where M
k
i denotes the top k maximum matching result on i

th row. As evident from Figure 5.2,

the maximum matching results of the in-neighbour matrix, which are cycled by a solid square,

are as follows: M
1(u, v) =

q
iœI(u) M

1
i = M

1
a + M

1
b + M

1
c .

M
1(u, v) is the first-order maximum matching result of node pair (u, v) in-neighbour matrix

produced by RoleSim. The result of M
1(u, v) shows that it only captures information (solid

square) from column (d, e, f) (green area), and the information in column (g, h) is ignored (red
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Figure 5.2: In-Neighbour Matrix of Node-Pair (u, v)

area). The particular reason for RoleSim missing the information in the red area is that the in-

degree of node u is smaller than the in-degree of node v, and maximum matching only captures

the smaller in-degree information from the in-neighbour matrix. It means that RoleSim can only

capture the mindeg
≠(u, v) = min(deg

≠
u , deg

≠
v ) row/column information from the node-pair’s in-

neighbour matrix. Especially, when deg
≠
u ”= deg

≠
v ,

the (maxdeg
≠(u, v) ≠ mindeg

≠(u, v)) nodes’ in-neighbours-related information will be ignored,

which leads to accuracy issues.

Recalling the example in Figure 5.1, we used it to show that the accuracy of the RoleSim

algorithm needs to be improved. We take node J3 as a query in the project team social network.

The role similarity search results produce by using the RoleSim algorithm and our proposed FaRS

algorithm are shown in Figure 5.3. The details of FaRS have been presented later in this chapter.

In Figure 5.3, the table on the right shows the role similarity results produced by the RoleSim

algorithm in response to the query J3, and the left table is the results of the FaRS algorithm

with respect to query J3. In the right table (RoleSim algorithm), the role similarity search

scores between the node J3 and [M6, J3, J5, J7, J1, J2, J4, J6] are the same, which actually

implies that the node J3 and the nodes in the set [M6, J3, J5, J7, J1, J2, J4, J6] all belong to

the same role classification. However, [J3, J5, J7, J1, J2, J4, J6] certainly belong to the junior

sta� classification (level 3), but M6 belongs to the manager classification (level 1). Therefore,

the results of RoleSim may exit error points that need to be fixed.

The results produced by our newly proposed algorithm FaRS (the right table in Figure 5.3)

can reflect this fact correctly.

Another accuracy problem of the RoleSim algorithm is that it cannot recognise the structural
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Figure 5.3: The role similarity search results of RoleSim and FaRS

equivalence (group classification in Figure 5.1). In the left table (FaRS) in Figure 5.3, unlike

RoleSim where J1 to J7 have the same role similarity search scores, the scores produced by FaRS

are di�erent and therefore, the similarity levels can be ordered and ranked. Among them, the

role similarity scores between node J3 and nodes [J4, J5] are 0.4, and both [J4, J5] belong to

group 2. Similarly, we can recognise [J6, J7] and [J3, J1, J2] belonging to group 1 and group 3

respectively. Note that even J3 and [J1, J2] have di�erent the in-neighbour (the in-neighbour of

node J3 is node S3 and the in-neighbour of [J1, J2] is node S1), but because both nodes S3 and

S1 belong to group 1, J3 and [J1, J2] are structurally more closed. FaRS can recognize this fact,

which can be seen in the results of FaRS (FaRS(J1, J3) = FaRS(J2, J3) = FaRS(J3, J3)).

This example fully illustrates that FaRS not only corrects the RoleSim error point and improves

the accuracy of automorphic equivalence, but also yields structural equivalence, which is com-

pletely ignored by RoleSim.

Limitation 2 (Computational E�ciency).

The definition of single-source search is to target a node of a graph and retrieve the similarity

relationship between this node and all other nodes in this graph. For example, in the case of

the Amazon recommendation system (Linden et al., 2001), users search a product on Amazon,

and the product can be taken as a query, and then the system shows the products most relevant
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to this query in the recommendation list. Single-source search plays an increasingly critical

role in our daily life; thus, an e�cient single-source role similarity search algorithm over graphs

needs to be developed urgently. However, the RoleSim algorithm is quite time-consuming when

computing similarity scores between a random query with all objects in graphs, as it has futile

computations. At the same time, the computation of repeated maximum matching algorithm

is time-consuming. Therefore, significantly reducing the call number of maximum matching

algorithm is a vital acceleration method.

The FaRS algorithm which we propose in this chapter conducts a single-source role similarity

search based on graph topology, which can e�ciently role similarity search scores over large

graphs.

Limitation 3 (Dynamic Graph).

As discussed in Chapter 3, in many real applications, the structure of graphs evolves con-

stantly. Taking the Facebook social network as an example, the number of users (nodes of the

graph) and the relationship between any two users (edges of the graph) are changing all the

time. Thus, an e�cient and accurate role similarity search algorithm over dynamic graphs is

essential to our life. However, there exists little research on role similarity search over dynamic

graphs. The existing role similarity search algorithms like RoleSim face the same performance

challenge as CoSimRank (Chapter 3) when they are applied over dynamic graphs. The reason

is that when a graph undergoes changes, even slight ones such as one node or one edge being

added into the graph, the RoleSim algorithm needs to recompute the similarity scores of all node

pairs in the graphs, which is extremely time-consuming. This prompts us to find an accurate

and e�cient algorithm to compute the role similarity scores over dynamic graphs.

To address these limitations of the existing role similarity search algorithms, this chapter

mainly solves the following questions.

Problem (Accurate Single-Source Role Similarity Search Based On Graph Topol-

ogy).

Given: a connected graph G = (V, E), where V represents the set of nodes and E denotes

the set of edges in graph G and a query q œ V.

Retrieve: the role similarity scores with respect to q on graph G quickly and accurately.
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To improve the accuracy of the RoleSim algorithm, FaRS, an innovative role similarity search

algorithm has been proposed in this chapter. Here, � represents the maximum order of the

maximum matching applied in the role similarity search algorithm. 0 < � < n, n is the number

of nodes in graphs. We computed the similarity scores between a random query q with all other

objects in graph G. It was found that the FaRS algorithm can capture more useful information

from the in-neighbours similarity score matrix; thus, the role of each node can be reflected more

accurately in the network. � = 2 is an exceptional case of FaRS algorithm, and we called the

FaRS as Sec-RoleSim when we set � = 2. The details of Sec-RoleSim have been illustrated in

Section 5.3.2.

Then, we proposed Opt_FaRS – an optimisation algorithm of FaRS with two acceleration

techniques, which are the P-speedup approach and the Out-speedup approach. These accelera-

tion technologies can greatly reduce the number of calls of the maximum matching algorithm.

Therefore, when the single-source role similarity values of a graph are calculated, a part of

the results of the maximum matching algorithm for some node pairs can be shared with other

node pairs, and our acceleration technology extracts and reuses these interim results to reduce

repetitive calculations.

Finally, since FaRS is a single-source role similarity search algorithm over graphs, we found

that it can be applied on dynamic graphs.

FaRS and Opt_FaRS have the following distinguishing qualities based on the aforementioned

concepts.

• Accurate. FaRS and Opt_FaRS have more accurate role classification results than the

best-known competitors.

• Fast FaRS can e�ciently compute single-source role similarity search results over graphs.

Opt_FaRS, as an optimisation of FaRS, can further improve the performance, as it can

extract shared information to greatly reduce the repetitive computation.

• Dynamic. FaRS and Opt_FaRS are single-source role similarity search algorithm over

networks, and they can be applied over dynamic graphs with pre-processes.

• Index-free. Our schemes do not need extra disk space for storing indexing results.

To sum up, FaRS and Opt_FaRS enable the more accurate and faster handling of a wide

range of role-based similarity search applications (Rothe & Schütze, 2014; Shao et al., 2019; Lin,
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Lyu, & King, 2012).

5.1.2 Chapter Outlines

The rest of this chapter is organised as follows:

Chapter 5.2 In this section, we recall the current RoleSim algorithm (Rothe & Schütze, 2014)

and analyse the limitations of the algorithm while applying them over graphs.

Chapter 5.3 We propose an accurate role similarity search algorithm FaRS based on graph

topology in this section. We also prove the convergence, uniqueness, symmetry, bounded-

ness and triangular inequality of the FaRS algorithm.

Chapter 5.4 In this section, we propose the Opt_FaRS algorithm, which optimised FaRS.

Opt_FaRS consists of two accelerating components:

tracking path extraction we record the tracking path starting from the query node.

pre-computation we use the p-speedup and out-speedup approach to e�ciently retrieve

the candidate pool of each level.

Chapter 5.5 We implement the Opt_FaRS algorithm over dynamic graphs. It comprises the

following main steps: (i) chunking the updated part of the graphs into groups, with each

group combining all the updated ends with the same node; (ii) updating the adjacency

matrix of the dynamic graphs in response to each updated chunk; (iii) implementing the

Opt_FaRS algorithm with the new adjacency matrix.

Chapter 5.6 We conduct several experiments on real datasets to demonstrate that our FaRS

and Opt_FaRS algorithms are steadily becoming more accurate than the two state-of-the-

art CoSimRank competitors (CSR (Rothe & Schütze, 2014) and RS (Rothe & Schütze,

2014)). The experimental results also show that our algorithm Opt_FaRS does not scarify

accuracy for speeding up.

5.2 Preliminary

In this section, we define some notations used in this paper, and revisit formulae and proper-

ties of the RoleSim algorithm. RoleSim, investigated by (Rothe & Schütze, 2014), is an attractive
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node-pair role similarity search algorithm over networks (graphs). The RoleSim algorithm was

founded on the recursive philosophy that “two nodes have the same role if they interact with

equivalent sets of neighbours”. Thus, the algorithm retrieves the role similarity scores and per-

forms role classification based on how node pairs interact with others.

In general, there are four types of equivalence in the analysis of network similarity: struc-

ture equivalence, automorphic equivalence, exact colouration and regular equivalence (Rothe &

Schütze, 2014). Among them, the most fundamental equivalence for role similarity is automor-

phic equivalence. RoleSim can produce the real-valued role similarity measure which confirmed

automorphic equivalence. Before revisiting RoleSim in details, the basic intuition and several

notations used in this paper are introduced first.

Given is a connected graph G = (V, E), where V represents the set of nodes in G and E

denotes the edges in G, respectively. The neighbour definition of node v(v œ V) can be found in

Definition 3 (Chapter 3). In Definition 3, I(v) and O(v) are the in-neighbour set and the out-

neighbour set of the node v in the graph, respectively. deg
≠
v /deg

+
v is the in-degree/out-degree of v

in the graph, respectively. Here, we defined mindeg
≠(u, v) as the smaller in-degrees of node u and

node v, mathematically, mindeg
≠(u, v) = min(deg

≠
u , deg

≠
v ). We also defined maxdeg

≠(u, v) =

max(deg
≠
u , deg

≠
v ). M(i, j) is the maximum matching (Yannakakis & Gavril, 1980) result of

the in-neighbour matrix of node pair (i, j). Take the nodes pair (S1, J1) in Figure 5.1 as an

example: deg
≠
S1 = 2, mindeg

≠(S1, J1) = min(2, 1) = 1, and maxdeg
≠(S1, J1) = max(2, 1) = 2.

The definition of maximum matching is shown as follows.

Definition 7 (Maximum Matching). Given two node sets u and v and the value of each

node-pair (i, j|i œ u, j œ v) is ci,j, maximum matching can be stated as the maximum total

value:

Maxm(u, v) =
ÿ|u|

i=1

ÿ|v|
j=1 ci,jxi,j (5.1)

where xi,j =

Y
_]

_[

1 if i
th

node of u is assigned to the j
th

node of v;

0 if i
th

node of u is not assigned to the j
th

node of v.

at the same time, Eq (5.1) subject to the constrain:

•
q|u|

i=1 xi,j = 1(j = 1, 2, · · · , |v|), which means for each node in v, only j
th node assigned to

i
th node in u.

•
q|v|

j=1 xi,j = 1(i = 1, 2, · · · , |u|), which means for each node in u, only i
th node assigned to
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j
th node in u.

here |u| and |v| represent the number of nodes in node sets u and v, respectively. In this chapter,

M(i, j) = Maxm(I(i), I(j)).

RoleSim is founded on the concept of maximal matching of neighbor similarity, where the

similarity between nodes are recursively defined as the average similarity of the maximum weight

matching between their neighbours. The maximum matching algorithm (Yannakakis & Gavril,

1980) forms the basis of the job assignment problem, which is a combinatorial optimisation

algorithm to solve the problem in polynomial time. In this paper, M(i, j) denotes a maximum

matching result of the in-neighbour matrix of node pair (i, j), i.e M(i, j) = M(I(i), I(j)).

The abbreviation rs represents the role similarity score of two nodes in the RoleSim algorithm.

Mathematically, the formula of the RoleSim algorithm for retrieving the role similarity score of

two nodes (u, v) œ G can be written as follows:

rs(u, v) = (1 ≠ C) max
M(j,i)

q
(x,y)œM(j,i) rs(x, y)

deg
≠
i + deg

≠
j ≠ |M(j, i)|

+ C (5.2)

where C is the decay factor (0 < C < 1). deg
≠
i + deg

≠
j ≠ mindeg

≠(i, j) equal to maxdeg
≠(u, v).

The upper denominator in Eq. (5.2) is the maximum matching results of the in-neighbour matrix

of node-pair (u, v). To prevent the formula from being divided by zero, the RoleSim score is

designed as C when deg
≠
i or deg

≠
j equals 0. This is not like SimRank (Jeh & Widom, 2002) or

CoSimRank (Rothe & Schütze, 2014), where if the in-degree of node u or node v is zero, the

similarity score between the two nodes is defined as 0 in both algorithms.

The current algorithms compute the role similarity score of RoleSim iteratively as the fol-

lowing steps.

The first phase is the initialisation of the role similarity search scores matrix. The second

phase is to calculate the role similarity score between the node pair (u, v) œ V at the k
th iteration

with the role similarity scores of the (k ≠ 1)th iteration.

rsk(u, v) = (1 ≠ C) Mk≠1(u, v)
maxdeg≠(u, v) + C (5.3)

The symbol k denotes the iteration times. Mk≠1(u, v) denotes the maximum matching results

of the in-neihgbour matrix of node-pair (u, v) at the (k≠1)th iteration. The in-neighbour matrix

of node pair (u, v) is constituted by the I(u)th row and the I(v)th column of rsk≠1. The second

phase is repeated until the convergence of all node-pair role similarity scores.
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The RoleSim algorithm has the following properties, which are stated in (Rothe & Schütze,

2014):

1. Boundedness: The similarity score rs(ú, ú) always exists and is unique, and C Æ rs(ú, ú) Æ

1.

2. Monotone Convergence: The value of rsk(ú, ú) is the upper bound of rsK(ú, ú), i.e., rsk(ú, ú) Ø

rsk+1(ú, ú).

3. Convergence: The result of RoleSim is converging to rs(ú, ú), i.e., when k approaches

infinity, limkæŒrsk(ú, ú) = rs(ú, ú).

4. Triangle inequality: The RoleSim algorithm meets the requirement of the triangle in-

equality.

Later, we will prove that these properties are also held in our algorithm FaRS and Opt_FaRS

(Section 5.3).

5.3 Proposed Schema

In this section, FaRS, a single-source role similarity search algorithm over graphs, has been

presented. Compared with the RoleSim algorithm, FaRS is better at discovering and categorising

the nodes of graphs. Here, � represents the maximum order of the maximum matching applied

in the role similarity search algorithm. Since the di�erent values of � in FaRS do not a�ect

the properties of the FaRS algorithm presented in this thesis, we used a special case of FaRS –

Sec-RoleSim, which was the FaRS role similarity search algorithm with � = 2, to demonstrate the

process of FaRS. Furthermore, the proofs of various FaRS algorithm properties are illustrated

by Sec-RoleSim to save space.

5.3.1 FaRS: A Role-Based Similarity Algorithm Over Graphs

This subsection details our accurate and e�cient role similarity search algorithm, FaRS. As

reviewed in the previous section, the well-known role similarity algorithm RoleSim retrieves node-

pair role similarity scores by capturing the maximum matching of the node pair in-neighbour

matrix. The maximum matching algorithm (Yannakakis & Gavril, 1980) forms the basis of the
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assignment problem, which is a combinatorial optimisation algorithm to solve the problem in

polynomial time. The most fundamental principle of the assignment problem is that “there are

u tasks and v sta�s in a company, assigning works depends on the rule that each task only can

be done by one sta� and each sta� only can do one task so that the totally cost of company is

minimum”. The maximum matching technique can be used in the RoleSim algorithm. It means

that RoleSim can only capture the mindeg
≠(u, v) = min(deg

≠
u , deg

≠
v ) row/column information

from the node-pair in-neighbour matrix. Especially, when deg
≠
i ”= deg

≠
j , the (maxdeg

≠(u, v) ≠

mindeg
≠(u, v)) nodes’ in-neighbours-related information will be ignored. This limitation of the

RoleSim algorithm leads to accuracy issues.

To perform more accurate role-based similarity search, we propose FaRS algorithm. To

distinguish the single-source role similarity scores in the equation of FaRS (Eqs. 5.4), here

RS�(setA, q) represents single query role similarity scores between setA œ V and query q,

RS�(setA, setB) is role similarity scores matrix between setA and setB œ V, and RS
�(u, v) is

the role similarity score of node pair (u, v), and � represents the number of the best matching

in maximum matching applied (i.e, top � maximum matching pairs are selected) in the role

similarity search algorithm.

Theorem 15 (FaRS). Given a connected graph G, and a query q œ V , the FaRS role similarity

scores with respect to q are defined as:

RS�(:, q) = (1 ≠ C)( max
M1(:,q)

ÿ
(x,y)œM1(:,q) RS

�(x, y) + ⁄

max
M2(:,q)

ÿ
(x,y)œM2(:,q) RS

�(x, y) + · · · + ⁄
(�≠1)

· max
M�(:,q)

ÿ
(x,y)œM�(:,q) RS

�(x, y))

£(1 + ⁄ + · · · + ⁄
(�≠1))(deg≠

i=1:n + deg≠
q ≠ mindeg

≠(:, q))) + C

(5.4)

where M
�(:, q) is the top �th order maximum matching of the in-neighbour matrix of nodes

(i = 1 : n) and query q. ⁄ is the normalisation coe�cient (0 Æ ⁄ Æ 1). £ denotes the division

of the values of the corresponding positions of two vectors. deg≠
i=1:n is a vector whose values are

in-degree of node i(i œ V). deg≠
q is a vector, and all its values are in-degree of node q. |M(:, q)|

is a vector, and the values of this vector are the minimum value of node-pair [(i, q)|i œ V].

Theorem 15 shows that the FaRS role similarity algorithm captures �th order maximum

matching values from a node pair in-neighbour matrix, which can guarantee more accuracy

than RoleSim. To prevent dividing zero from numerator in Eqs. 5.4, some special cases are
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included in the equation:
Y
_______]

_______[

RS
�(u, q) = C deg

≠
u = 0 or deg

≠
q = 0

RS�(:, q) = Cn◊1 deg
≠
q = 0

Next, Example 17 is used to illustrate the di�erence between the RoleSim algorithm and the

FaRS algorithm.

Example 17. Recall Figure 5.2, when we use the FaRS algorithm to retrieve the role similarity

search scores between the node pair (u, v), we first set � = 2. Setting � = 2 actually means

that the role similarity scores should be calculated by the top 2 maximum matching values. In

Figure 5.2, the first order of maximum matching values (the largest matching values) are marked

by a solid square. The second-order (the second largest) maximum matching of the in-neighbour

matrix are nodes M
2
i (i œ I(u)) (denoted as a dotted square). The result of second-order maxi-

mum matching of the in-neighbour matrix of node pair (u, v) is as follows:

M
2(u, v) =

ÿ

iœI(u)
M

2
i = M

2
a + M

2
b + M

2
c

M
2
b and M

2
c can successfully extract information from nodes g and h (red area), which are

ignored by the first-order maximum matching (solid square) adopted by RoleSim. Based on the

values of top � = 2 maximum matching, we can generate the role similarity scores for node pair

(u, v) using Eq. (5.4).

It is worth mentioning that the FaRS algorithm not only captures the information from

the first-order maximum matching of the node pair in-neighbour matrix (green area) but also

extracts information from the red area by generating the second-order maximum matching. In

Example 17, the � has been set as 2, and it already captures more useful information (red area)

than RoleSim. Actually, the parameter � in the FaRS algorithm ranges to [1, n], and the larger

the parameter � is, the more information will be extracted from node pair in-neighbour matrix

and the more accurate FaRS will be.

Lemma 4. Given an in-neighbour matrix of a node pair (u, v) œ G, M
1 is the top bound of

M
� (1 Æ � Æ mindeg

≠(u, v)), and they are in decreasing order, i.e., The order of top-k perfect

matching is as follows: M
1

Ø M
2

Ø · · · Ø M
“.
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Proof. The particular reason for Lemma 4 is the requirement of the maximum matching tech-

nique. According to the definition of maximum matching in Definition 7, the maximum matching

technique is the method to find the perfect matching of a matrix; thus, M
1 is the best match-

ing, and it is exact and unique. For the second-order maximum matching of a matrix, the

matched values are di�erent from the first-order maximum matching. The second-order maxi-

mum matching, which is based on the first maximum matching, changes several node pairs from

the first maximum matching node-pairs; it re-matches them to find a new best matching (apart

from the matching found in M
1). Thus, M

2
Æ M

1. The circumstance is the same as the rest

�th (1 < � < mindeg
≠(u, v)) order maximum matching, so we have M

1
Ø M

2
Ø · · · Ø M

“ .

The coe�cients of top �th order maximum matching in Equation 5.4 are (1, ⁄, . . . , ⁄
�≠1),

respectively, which are in decreasing order as well.

Computation Of FaRS.

The value of the FaRS can be calculated iteratively and satisfies convergence. Here, we define

the total iteration numbers of the algorithm is K, and the each iteration is represented by k

(K = maximum(k)). The computation phases are presented as follows.

The first phase is the initialisation. Set RS�
0 = onesn◊n. Then the single-source FaRS role

similarity scores with respect to query q at iteration k are computed by the following:

RS�
k (:, q) = (1 ≠ C)(M1

k≠1(:, q) + ⁄ · M
2
k≠1(:, q)+

· · · + ⁄
(�≠1)

· M
�
k≠1(:, q)) £ (1 + ⁄ + · · · + ⁄

(�≠1))maxdeg≠(:, q) + C

(5.5)

The second phase is repeated until the result is convergent.

Note that the algorithm computes the role similarity scores by using the top � maximum

matching values. The other method of capturing more information from the remain matrix

is to remove the top best matching values from the in-neighbours matrix first and then to

find the maximum matching of the remaining matrix (we named the role similarity algorithm

using this method as FaRS_N). According to the experimental results conducted in Section 5.6,

the accuracy of FaRS_N is not as good as FaRS. Therefore, our algorithm chooses the top �

maximum matching method to retrieve the role similarity scores with respect to a query. As

mentioned before, the parameter � is range to [1, n]. The di�erent values of the parameter �

do not a�ect the properties of the FaRS algorithm. Thus, we next details the FaRS algorithm

with � = 2, and we called it the Sec-RoleSim algorithm. Furthermore, we evaluat the axiomatic
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properties of the FaRS algorithm by using Sec-RoleSim as an example to save space.

5.3.2 Sec-RoleSim: Role-Based Similarity Search algorithm Based On Graph

Topology

In this subsection, we have illustrated the Sec-RoleSim algorithm in details first. Then, by

using Sec-RoleSim as the example, we introduced some axiomatic properties of FaRS and proved

them.

The definition of Sec-RoleSim is presented here first.

Theorem 16. Given a graph G = (V, E) and a query q, the role similarity scores with respect

to q can be generated as follows:

RS2(:, q) = (1 ≠ C) max
M1(:,q)

ÿ
(x,y)œM1(:,q) RS

2(x, y)+

⁄ · max
M2(:,q)

ÿ
(x,y)œM2(:,q) RS

2(x, y)

£(1 + ⁄)(deg≠
i=1:n + deg≠

q ≠ |M(:, q)|) + C

(5.6)

Next, we showed the computational phases of Sec-RoleSim based on graph topology as fol-

lows. First, the initial value of Sec-RoleSim algorithm was set as RS2
0 = onesn◊n, where n is

the number of nodes in the graph.

RS2
k(:, q) = (1 ≠ C)(M1

k≠1(:, q) + ⁄ · M
2
k≠1(:, q))

£(1 + ⁄)maxdeg≠(:, q) + C

(5.7)

After presenting the FaRS algorithm, its convergence is discussed next.

Theorem 17. Convergence: Given a directed graph G and any query q œ G, the Sec-RoleSim

role similarity search algorithm is converged with the initialisation of RS
2
k=0 = Onesn◊n, and

the iterative computation of the Sec-RoleSim algorithm with respect to query q at iteration k

satisfies the following:

lim
kæŒ

RS2
k(:, q) = RS2(:, q)

Proof. Here, we need to illustrate that as k approaches infinity, the role similarity scores of RS2
k(:

, q) converge to RS2(:, q). First, we prov the convergence of node-pair role similarity search score,

which means if a node i from V is randomly selected, limkæŒ RS
2
k(i, q) = RS

2(i, q)(i œ V).
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It can be observed that

Mk(i, q) ≠ M(i, q) (5.8)

=
ÿ

(x,y)œMk≠1(i,q) RS
2
k≠1(x, y) ≠

ÿ
(xÕ,yÕ)œM(i,q) RS

2(xÕ
, y

Õ)

Based on Lemma 4, M(i, q) is larger than Mk≠1(i, q), so Eqs. (5.8) can be written as follows:

Æ mindeg
≠(i, q)max(x,y)œMk≠1(i,q)(RS

2
k≠1(x, y) ≠ RS

2(x, y)) (5.9)

Then, the di�erence between RS
2
k(i, q) and RS

2(i, q) can be expressed as follows: (Eq (5.10)).

Here, RS
2
k(i, q) denotes the Sec-RoleSim role similarity scores with respect to query q at k

th

iteration:

Á
k(i, q) = RS

2
k(i, q) ≠ RS

2(i, q)

= C
M

1
k≠1(i, q) + ⁄M

2
k≠1(i, q)

(1 + ⁄)maxdeg
≠(i, q)

+ (1 ≠ C) (5.10)

≠ (C M
1(i, q) + ⁄M

2(i, q)
(1 + ⁄)maxdeg

≠(i, q)
+ (1 ≠ C))

= C
(M1

k≠1(i, q) ≠ M
1(i, q)) + ⁄(M2

k≠1(i, q) ≠ M
2(i, q))

(1 + ⁄)maxdeg
≠(i, q)

Substitute Eqs. (5.9) into Eqs. 5.10:

Æ C(
mindeg

≠(i, q)max(x,y)œM1
k≠1(i,q)(RS

2
k≠1(x, y) ≠ RS

2(x, y))
(1 + ⁄)maxdeg≠(i, q)

+ ⁄

mindeg
≠(i, q)max(x,y)œM2

k≠1(i,q)(RS
2
k≠1(x, y) ≠ RS

2(x, y))
(1 + ⁄)maxdeg≠(i, q) ) (5.11)

Æ C

(1 + ⁄)mindeg
≠(i, q)max(x,y)œM1

k≠1(i,q)(RS
2
k≠1(x, y) ≠ RS

2(x, y))
(1 + ⁄)maxdeg≠(i, q)

assume that:

RS
2
k≠1(xú

, y
ú) ≠ RS

2(xú
, y

ú) (5.12)

= max(x,y)œM1
k≠1(i,q)(RS

2
k≠1(x, y) ≠ RS

2(x, y))
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Thus, combining Eqs. (5.10) and Eqs. (5.12), we obtain:

Ák(i, q) = RS
2
k(i, q) ≠ RS

2(i, q)

Æ C
mindeg

≠(i, q)
maxdeg

≠(i, q)
(RS

2
k≠1(xú

k≠1, y
ú
k≠1) ≠ RS

2(xú
k≠1, y

ú
k≠1))

* mindeg
≠(i, q)

maxdeg
≠(i, q)

Æ 1

Æ C(RS
2
k≠1(xú

k≠1, y
ú
k≠1) ≠ RS

2(xú
k≠1, y

ú
k≠1)) (5.13)

· · ·

Æ Ck(RS
2
0(xú

0, y
ú
0) ≠ RS

2(xú
0, y

ú
0))

Æ Ck+1 * RS
2(xú

0, y
ú
0) Ø C

Since for any random node i(i œ V), limkæŒ RS
2
k(i, q) = RS

2(i, q)(i œ V) is proved.

Thus, limkæŒ RS2
k(:, q) = RS2(:, q) is true.

As we mentioned at the beginning of Subsection 5.3.2, the structural and properties of FaRS

and Sec-RoleSim are the same. Sec-RoleSim is the specical case of FaRS with � = 2. Thus, the

convergence proof of Sec-RoleSim can be easily extended to FaRS with di�erent values of �. The

proof of FaRS convergence has been omitted here to save space. In conclusion, FaRS is also a

convergence algorithm.

5.3.3 The Axiomatic Properties of Sec-RoleSim

Recall that the RoleSim algorithm (Rothe & Schütze, 2014) has several axiomatic properties,

including symmetry, monotone convergence, boundedness and triangle inequality. FaRS and

Sec-RoleSim also have the axiomatic properties that are similar to that of the RoleSim algorithm.

Next, we detailed these axiomatic properties of FaRS (Sec-RoleSim) along with proof. Since FaRS

and Sec-RoleSim are essentially the same and the di�erence between them is the value of �, the

proof of each property is generated using Sec-RoleSim for easier readability.

Theorem 18. Symmetry: Given a graph G = (V, E) and a randomly selected query q, the

role similarity scores generated by Eqs. 5.7 satisfy the following:

RS2
k(:, q) = RS2

k(q, :)
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Proof. We prove Theorem 18 by using the computation formula of Sec-RoleSim. In Eqs. (5.7),

the role similarity scores are generated by extracting the information from the node-pair in-

neighbour matrix. For any node u œ V, the in-neighbour matrix of node-pair (u, q) and node-

pair (q, u) are the same. Thus, the top two maximum matching results of node-pair (u, q) and

node-pair (q, u) are the same, i.e., M
1(u, q) = M

1(q, u) and M
2(u, q) = M

2(q, u). Substituting

the idea into Eqs. (5.7), we have the following:

RS
2
k(u, q) = (1 ≠ C)

M
1
k≠1(u, q) + ⁄M

2
k≠1(u, q)

(1 + ⁄)maxdeg≠(u, q)

= (1 ≠ C)
M

1
k≠1(q, u) + ⁄M

2
k≠1(q, u)

(1 + ⁄)maxdeg≠(q, u)

= RS
2
k(q, u)

Since node u belongs to V, RS2
k(:, q) = RS2

k(q, :).

Theorem 19. Monotone Convergence: Given a graph G = (V, E), a randomly selected

query q and an iteration number k, the role similarity scores generated by Eqs. 5.7 satisfy the

following:

RS2
k(:, q) Æ RS2

k≠1(:, q)

Proof. We proved Theorem 19 by using the mathematical induction method. We randomly

selected a node u(u œ V) and aimed to prove RS2
k(u, q) Æ RS2

k≠1(u, q). First, the role similarity

values are initialised to be 1 when k = 0. Therefore, we had RS2
0(u, q) = 1. For the next

iteration k = 1, Eqs. (5.7) for the node-pair (u, q) at iteration (k = 1) was as follows:

RS
2
1(u, q) = (1 ≠ C)M

1
0(u, q) + ⁄M

2
0(u, q)

(1 + ⁄)maxdeg≠(u, q) + C

Æ (1 ≠ C) (1 + ⁄)mindeg
≠(u, q)

(1 + ⁄)maxdeg≠(u, q)
¸ ˚˙ ˝

Æ1

+C

Æ 1 = RS
2
0(u, q)

Thus, Theorem 19 holds when k = 1.

Next, we assumed that Theorem 19 is true at the iteration k, i.e., RS2
k(u, q) Æ RS2

k≠1(u, q).

We then set the iteration number to be (k + 1). Eqs. (5.7) for the node-pair (u, q) at iteration

(k + 1) is as follows:

RS
2
k+1(u, q) = (1 ≠ C)M

1
k(u, q) + ⁄M

2
k(u, q)

(1 + ⁄)maxdeg≠(u, q) + C (5.14)
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M
1
k(u, q) and M

2
k(u, q) are generated from the values of RS

2
k≠1. Since RS2

k(:, q) Æ RS2
k≠1(:, q),

so Eqs. 5.14 can be written as follows:

RS
2
k+1(u, q) Æ (1 ≠ C)

M
1
k≠1(u, q) + ⁄M

2
k≠1(u, q)

(1 + ⁄)maxdeg≠(u, q) + C

= RS
2
k(u, q)

We have RS
2
k+1(u, q) Æ RS

2
k(u, q). Since u œ V, RS2

k(:, q) Æ RS2
k≠1(:, q).

Therefore, we have proved that if Theorem 19 is true at the iteration K, the next iteration

(k + 1) can also be generated. Thus, Theorem 19 is true for all K.

Theorem 20. Boundedness: Given a graph G = (V, E) and a randomly selected query q, the

role similarity scores generated by Eqs. 5.7 satisfy the following:

Cn◊1 Æ RS2
k(:, q) Æ 1n◊1

Cn◊1 is a vector whose values are all C, and 1n◊1 = ones(n, 1).

Proof. We proved Theorem 20 by showing that for any node u œ V, C Æ RS2
k(u, q) Æ 1. First,

we initialised RS2
k = ones(n, n), and n is the number of nodes of the graph. Eqs. 5.7 is as

follows:
RS

2
k(u, q) = (1 ≠ C)

M
1
k≠1(u, q) + ⁄M

2
k≠1(u, q)

(1 + ⁄)maxdeg≠(u, q) + C

Æ (1 ≠ C) (1 + ⁄)mindeg
≠(u, q)

(1 + ⁄)maxdeg≠(u, q)
¸ ˚˙ ˝

0ÆúÆ1

+C

Æ 1

And if the in-degree of node pair (u, q) equals zero, then RS
2
k(u, q) = C. Thus, C Æ RS

2
k(u, q) Æ

1 is true. Since node u œ V, Cn◊1 Æ RS2
k(:, q) Æ 1n◊1.

Theorem 21. Triangle inequality: Given a graph G = (V, E) and a randomly selected query

q, for any nodes (a, b) œ V, the role similarity scores satisfy the following:

dk(a, b) Æ dk(a, q) + dk(b, q) (5.15)

where dk(a, q) = 1 ≠ RS
2
k(a, q).
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Proof. We prove Theorem 21 by using the mathematical induction method. Since dk(a, q) =

1 ≠ RS
2
k(a, q), Eqs. (5.15) can be rewritten as follows:

dk(a, q) + dk(b, q) Æ dk(a, b)

Ì dk(a, q) = 1 ≠ RS
2
k(a, q)

1 ≠ RS
2
k(a, q) + 1 ≠ RS

2
k(b, q) ≠ 1 + RS

2
k(a, b) Æ 0

Ì

RS
2
k(a, q) + RS

2
k(b, q) ≠ RS

2
k(a, b) Æ 1 (5.16)

Then, we need Eqs. 5.16 to hold.

To do that, first we initialise the role similarity scores at the iteration k = 0, as RS
2
0 =

Onesn◊n. Here, n is the number of nodes in the graph. When k = 0, Eqs. 5.16 can be written

as follows:

RS
2
0(a, q) + RS

2
0(b, q) ≠ RS

2
0(a, b) = 1 + 1 ≠ 1 Æ 1

Thus, when iteration k = 0, Eqs. 5.16 holds. Next, we assume that Eqs. 5.16 holds at the k
th

iteration; then, we need to prove that Eqs. 5.16 also holds at the (k + 1)th iteration.

RS
2
k+1(a, q) + RS

2
k+1(b, q) ≠ RS

2
k+1(a, b)

= (1 ≠ C)M
1
k(a, q) + ⁄M

2
k(a, q)

(1 + ⁄)maxdeg≠(a, q) + C + (1 ≠ C)M
1
k(b, q) + ⁄M

2
k(b, q)

(1 + ⁄)maxdeg≠(b, q) + C

≠ (1 ≠ C)M
1
k(a, b) + ⁄M

2
k(a, b)

(1 + ⁄)maxdeg≠(a, b) ≠ C

= (1 ≠ C)
(1 + ⁄)

Q

ccca

M
1
k(a, q) + ⁄M

2
k(a, q)

maxdeg≠(a, q) + M
1
k(b, q) + ⁄M

2
k(b, q)

maxdeg≠(b, q)

≠
M

1
k(a, b) + ⁄M

2
k(a, b)

maxdeg≠(a, b)

R

dddb + C

Æ
(1 ≠ C)
(1 + ⁄)

A
(1 + ⁄)mindeg

≠(a, q)
maxdeg≠(a, q) + (1 + ⁄)mindeg

≠(b, q)
maxdeg≠(b, q) ≠

(1 + ⁄)mindeg
≠(a, b)

maxdeg≠(a, b)

B

= (1 + C)
A

mindeg
≠(a, q)

maxdeg≠(a, q) + mindeg
≠(b, q)

maxdeg≠(b, q) ≠
mindeg

≠(a, b)
maxdeg≠(a, b)

B

+ C (5.17)

There are three cases to be considered for Eqs.5.17, including the following: deg
≠
a Æ deg

≠
b Æ

deg
≠
q , deg

≠
b Æ deg

≠
a Æ deg

≠
q and deg

≠
a Æ deg

≠
q Æ deg

≠
b . For the case deg

≠
a Æ deg

≠
b Æ deg

≠
q ,
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Eqs.5.17 can be written as follows:

Æ (1 ≠ C)
A

mindeg
≠(a, q)

maxdeg≠(a, q) + mindeg
≠(b, q)

maxdeg≠(b, q) ≠
mindeg

≠(a, b)
maxdeg≠(a, b)

B

+ C

Ì deg≠
a Æ deg≠

b Æ deg≠
q

= (1 ≠ C)
A

deg≠
a

deg≠
q

+ deg≠
b

deg≠
q

≠
deg≠

a

deg≠
b

B

+ C

= (1 ≠ C)
A

deg≠
a + deg≠

b

deg≠
q

≠
deg≠

a

deg≠
b

B

+ C

Ì deg≠
a Æ deg≠

b Æ deg≠
q

Æ (1 ≠ C)
A

deg≠
a + deg≠

b

deg≠
b

≠
deg≠

a

deg≠
b

B

+ C = (1 ≠ C)
A

deg≠
b

deg≠
b

B

+ C = 1

Thus, RS
2
k+1(a, q) + RS

2
k+1(b, q) ≠ RS

2
k+1(a, b) Æ 1 holds when deg

≠
a Æ deg

≠
b Æ deg

≠
q .

Next, we consider the second case where deg
≠
b Æ deg

≠
a Æ deg

≠
q , and Eqs.5.17 can be written

as follows:

= (1 ≠ C)
A

deg≠
a

deg≠
q

+ deg≠
b

deg≠
q

≠
deg≠

b

deg≠
a

B

+ C

= (1 ≠ C)
A

deg≠
a + deg≠

b

deg≠
q

≠
deg≠

b

deg≠
a

B

+ C

Ì deg≠
b Æ deg≠

a Æ deg≠
q

Æ (1 ≠ C)
A

deg≠
a + deg≠

b

deg≠
a

≠
deg≠

b

deg≠
a

B

+ C = (1 ≠ C)
A

deg≠
a

deg≠
a

B

+ C = 1

Thus, RS
2
k+1(a, q) + RS

2
k+1(b, q) ≠ RS

2
k+1(a, b) Æ 1 also holds when deg

≠
b Æ deg

≠
a Æ deg

≠
q .

The last case was deg
≠
a Æ deg

≠
q Æ deg

≠
b , and Eqs.5.17 can be written as follows:

= (1 ≠ C)
A

deg≠
a

deg≠
q

+
deg≠

q

deg≠
b

≠
deg≠

a

deg≠
b

B

+ C

= (1 ≠ C)
A

deg≠
q ≠ deg≠

a

deg≠
b

+ deg≠
a

deg≠
q

B

+ C

Ì deg≠
a Æ deg≠

q Æ deg≠
b

Æ (1 ≠ C)
A

deg≠
q ≠ deg≠

a

deg≠
q

+ deg≠
a

deg≠
q

B

+ C = (1 ≠ C)
A

deg≠
q

deg≠
q

B

+ C = 1

Thus, RS
2
k+1(a, q) + RS

2
k+1(b, q) ≠ RS

2
k+1(a, b) Æ 1 holds when deg

≠
a Æ deg

≠
q Æ deg

≠
b .

The proof of three cases above showed that RS
2
k+1(a, q) + RS

2
k+1(b, q) ≠ RS

2
k+1(a, b) Æ 1,

which means RS
2
k(a, q)+RS

2
k(b, q)≠RS

2
k(a, b) Æ 1. This implies d

k(a, q)+d
k(b, q) Æ d

k(a, b).
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In this section, the FaRS and Sec-RoleSim algorithm are defined. Theorem 17 guarantees the

uniqueness and exactness of Sec-RoleSim, Theorem 18 to Theorem 21 present some properties of

FaRS and Sec-RoleSim. In the next section, we introduce two speed-up techniques for accelerating

the Sec-RoleSim algorithm based on graph topology.

5.4 EFFICIENT COMPUTATION

In this section, we introduce two speed-up techniques for accelerating the computation of

FaRS. These proposed speed-up approaches can considerably minimise the number of calls of

the maximum matching algorithm in FaRS, and also extract “shared” information to reduce

repetitive operations. The final accelerate algorithm is named as Opt_FaRS.

5.4.1 Pruning Approach

Opt_FaRS consists of two stages: the pre-processing measure, and the iterative computation.

The pre-processing measure includes the tracking path extraction and the computation of the

candidate pool.

Definition 8 (Multi-Hop Backward Tracking Path). Given a connected graph G = (V, E),

a query q œ V and the number of iterations K defined in FaRS, the tracking path P with respect

to query q is P(q) =< p
1
, p

2
. . . , p

L
>, where p

i is the i
th-hop backward tracking nodes set with

respect to query q, and it is iteratively defined as follows:
Y
_______]

_______[

p
1 = {q}

p
l = {I(x1)

t
I(x2) · · ·

t
I(x|pl≠1|) | x

1
, x

2
, . . . x

|pl≠1|
œ p

l≠1
}

(5.18)

L is the actual iteration numbers of the FaRS algorithm before the convergence, which can also

be called the level of the tracking path. It satisfies the condition of 1 Æ L Æ K. The repeated

nodes in p
l need to be removed from the set to retain the uniqueness.

Example 18. Given a graph G with five nodes, a query q = d, and the number of iteration K = 5

in Figure 5.4 (the left side), the generated track paths according to Eqs.(5.18) are presented in

Figure 5.4 (the right side).
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Figure 5.4: Left side: Example of Graph G. Right side: Multi-Hop Backward Tracking Path of the Graph G

In Figure 5.4, the track path is a traverse staring from the query node d. Based on Defini-

tion 8, the second track path is the in-neighbour nodes of query node d; thus, we have p
2 = {b, c}.

The tracking path is determined by the query node and the structure of the graph. To generate

p
3, according to Eqs.(5.18), we have the following: p

3 = I(p2) = I(b) fi I(c) = {a, a, b, c}.

Removing the repeated elements, the final result is p
3 = {a, b, c}. p

4 and p
5 can be calculated

similarly. It is worth mentioning that the tracking path stopped at p
5 = [a] and the in-degree of

node a is zero, which guarantee the convergence.

The purposes of extracting the tracking path of G with respect to query q are twofold: firstly,

it can significantly reduce the calculation of some useless information. After getting the tracking

path, in each iteration of role similarity scores calculation, FaRS does not need to calculate the

role similarity value of all node pairs any more. Instead, it only needs to calculate the role

similarity scores of the corresponding columns, and the corresponding columns are determined

by the nodes set pl. secondly it is possible to reduce the number of iterations of FaRS. When

the level number L of the tracking path is less than the given iteration number K, we only need

to iterate L times. This is because that according to the graph structure, after iterating L times,

the role similarity scores converge, which means Fa_RS�
k = Fa_RS�

L (L Æ k Æ K).

Leveraging the track path of graph G, we illustrate how to generate candidate pools (CP)

by using the tracking path elements as the index.

The basic idea is that a candidate pool is generated for each iteration with respect to each

tracking path. Each candidate pool is a role similarity search scores matrix that consists of

all the necessary information for the next iteration of FaRS calculation. CP is generated by

iterations, and the number of iterations is determined by the length of the tracking path L and

iteration number K. The elements of each tracking path, pl, determines the column of the
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corresponding CP.

In addition, according to the definition of the FaRS algorithm, it can be seen that FaRS only

captures the information of the node pair in-neighbour matrix for the calculation of the role

similarity score of the node pair. Therefore, the similarity scores of these nodes without out-

neighbours will not a�ect the results of other nodes. Therefore, ignoring the calculation of these

nodes will not a�ect the final single-source role similarity scores. Based on this observation,

the proposed Opt_FaRS algorithm ignores these node rows from each candidate pool, which

greatly reduces the computational complexity. More details of the Opt_FaRS algorithm have

been discussed later in this section.

The candidate pool can be formally defined as follows:

Definition 9 (Candidate pool). Given a track path

P =< p
1
, p

2
. . . , p

L
> of a connected graph G, one candidate pool is defined for each p

l in P. All

candidate pools have a fixed size of rows, which consist of all the nodes in G with out-neighbours,

denoted as out (out = {x œ V|O(x) ”= ÿ}). The column of each candidate pool is determined

by the corresponding tracking path element p
l. At the iteration k of FaRS, the candidate pool,

CPk, can be repre sented as

RS�
k (out, p

l) = CP�
k (l = K ≠ k + 1, 1 < k Æ L)

RS�
k is the role similarity score matrix of all pairs of the graph generated by the FaRS

algorithm. CP�
k is the candidate pool with respect to iteration k.

The size of CP�
k generally is much smaller than RS�

k . This is because the size of the nodes

with out-neighbours (candidate pool’s row) is smaller or equal to the total number of nodes in

a graph, and the length of each element of a track path (candidate pool’s column) are much

smaller then the total number of nodes in a graph (i.e., |out| Æ n and |pl
| π n where n is the

number of nodes in the graph). The previous research on RoleSim need to calculate all the node

pairs’ (n ◊ n) role similarity scores at each iteration. By introducing the concept of candidate

pools, for each iteration, the computation cost of our Opt_FaRS algorithm is reduced by the

range (|out| ◊ |pl
|) of information retrieval.

Next, based on the computation formula of FaRS (Eqs. 5.5) and the definition of the candi-

date pool, Opt_FaRS, an e�cient single-source similarity search algorithm is proposed. Mathe-

matically, Opt_FaRS is shown as follows:
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Theorem 22. Given a connected graph G = (V, E), a random query q and the track path
P =< p

1
, p

2
. . . , p

L
> corresponding to q, the candidate pool with respect to the tracking path at

iteration k can be updated with the following:

RS�
k (out, j) = CP�

k (:, j) = (1 ≠ C)(M1
k≠1(:, j) + ⁄M2

k≠1(:, j)+ (5.19)

· · · + ⁄�≠1M�
k≠1(:, j)) £ (1 + ⁄ + · · · + ⁄�≠1)maxdeg≠(:, j) + C j œ p

L≠k+1

j is a node in track path p
L≠k+1. p

L≠k+1 determine the column index of the candidate pool,

so the candidate pool at iteration k is RS�
k (out, p

L≠k+1) = CP�
k . maxdeg≠(:, j) is a vector

whose values represent the maximum in-degree between node j and each node in out, respectively.

M
�
k≠1(:, j) is a vector, the top � maximum weighted matching of the node pair (i, j) in-neighbour

matrix, where i œ out at iteration (k ≠ 1).

The Opt_FaRS algorithm involves two steps. The first step is to retrieve the tracking path P

of G, which starts from the query q. The next step is to generate the candidate pool with respect

to the tracking path at iteration k. The iteration number k used in Eqs. (5.19) is also the order

of the computation of Opt_FaRS. The order of algorithm computation is opposite to the order

of tracking path P. The number of total iterations K is equal to the track path level number L.

Recalling the example in Figure 5.4, the algorithm should start from p5(k = 1) to p1(k = 5) and

compute from CP�
1 (:, q) to CP�

5 (:, q). It is worth mentioning that the tracking path stopped at

p5 = [a], and the in-degree of node a is zero, which guarantees the convergence. Finally, the role

similarity scores with respect to query q are as follows: Opt_FaRS(:, q) = RS�
K(:, q) = CP�

K ,

here, the size of CP�
K≠1 is |out| ◊ p2, and the size of CP�

K is n ◊ 1(|out| Æ n), then we set

the value of di�erence index between n and out equal to C, This operation ensures that the

CP�
K and RS�

K(:, q) sizes are consistent. Note that when maxdeg≠(out, j) = 0, the result of

Eqs. 5.19 is equal to Cout◊1.

Opt_FaRS omits the useless calculation of the FaRS algorithm without losing any accuracy.

The tracking path schema can exactly extract the set of nodes that has an impact on the

query’s role similarity scores. The nodes set of the tracking path determines the column index

of corresponding CP�
k (j in Eqs. 5.19). Thus, Opt_FaRS only computes the relevant nodes’

similarity scores of query q. Since the nodes without out-neighbours cannot influence other

nodes’ similarity scores, the calculation of these nodes in each iteration is omitted. The set of

nodes with out-neighbours is represented as out. The tracking path and out greatly reduce the

computational complexity without losing accuracy. Since the initialism value of the Opt_FaRS
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algorithm is onesout◊n, when k = 1, the j
th column of the candidate pool can be computed by

the following:

CP�
1 (:, j) = (1 ≠ C)mindeg≠(out, j) £ maxdeg≠(out, j) + C j œ L (5.20)

We can learn from the first generation CP�
1 that the maximum matching algorithm is omitted.

The maximum matching value of each bipartite graph is mindeg≠(|out|, j), respectively. Since

the elements of the initial Opt_FaRS is 1out◊n.

Example 19. Recall Example 18 and Figure 5.4. We have the graph G, query q = d and the

tracking path P of the graph with respect to d. Given that the decay factor is C = 0.2, ⁄ = 0.5,

� = 2 and the role similarity scores of CP2
2 at iteration k = 2.

CP2
2 =

S

WWWWWWWU

(a) (b) (c) (e)

(a) 0.2 0.2 0.2 0.2

(b) 0.2 0.36 0.253 0.28

T

XXXXXXXV

T

Based on this information, we demonstrate how to compute CP2
3 via Eqs.5.19 as follows.

First, we need find out the row and column index of CP2
3. According to the Figure 5.4, the

nodes set of p
3 = [a, b, e]; thus, the column index of CP2

3 is [a, b, e]. All the CP have the same

row indexes as out, which is unchanged from CP2
2 as [a, b, c, e].

Next, we computed the role similarity scores of CP2
3 column by column.

1. (Column a.) The in-degree of node a is zero, so we have CP2
3(out, a) = C4◊1.

2. (Column b.) The second column of CP2
3 is b. The in-neighbour of node b is node a,

and deg
≠
a = 0; thus, CP2

3(out, b) can be quickly calculated(Theorem 22), and the result is

[0.2, 0.36, 0.2533, 0.28]T .

3. (Column e.) Concerning the iterated computation of CP2
3(out, e), details are as follows.

Here, the rectangles of di�erent colours represent the in-neighbour matrix of di�erent node

pairs (red-(b, e), blue-(c, e),green-(e, e)). M
1
3(out, e) is the first-order maximum matching

of each node pair at the iteration k = 3.
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Figure 5.5: Iterated Computation of CP2
3(out, e)

Thus, it is composed of [M1
3(a, e), M

1
3(b, e), M

1
3(c, e), M

1
3(e, e)]T . ’ú’ is the maximum

matching value of each in-neighbour matrix. Figure 5.5 presents the computation details

of CP2
3(out, e), and the result is [0.2, 0.28, 0.335, 0.403]T .

In summary, the role similarity score of CP2
3 has been retrieved as follows:

CP2
3 =

S

WWWWWWWWWWWWWWU

(a) (b) (c) (e)

(a) 0.2 0.2 0.2 0.2

(b) 0.2 0.36 0.2533 0.28

(e) 0.2 0.28 0.335 0.2533

T

XXXXXXXXXXXXXXV

T

We can see from Figure 5.5 that the position of the first maximum matching value (M1) in

each in-neighbour matrix is di�erent from the second maximum matching value (M2). Thus,

second maximum matching can capture more information from the node pair in-neighbour ma-

trix. Furthermore, this example shows that the Opt_FaRS algorithm generate three column role

similarity scores at iteration k = 3 rather than computing the role similarity scores of all node

pairs, which significantly improve the e�ciency of FaRS computation.

Next, we introduce some exceptional cases of Theorem 22, which also contribute positively

to the speed-up.

It can be seen from Eqs.(5.19) that apart from CP�
1 , the number of calls of the maximum

matching algorithm for CP�
k computation is large, which is time-consuming. In order to reduce

the computational complexity of Opt_FaRS, two speed-up approaches for the candidate pool
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computation, one to optimise the column generation and one to optimise the row generation,

have been presented next.

5.4.2 P-speedup approach

Based on Eqs.(5.19), the column indexes of candidate pools are determined by the corre-

sponding track path. Therefore, we named our speed-up approach on column generation as the

P-speedup approach.

There are two exceptional cases of the Opt_FaRS algorithm where Opt_FaRS can retrieve

the role similarity scores without the need of using the maximum matching algorithm.

Definition 10 (exceptional cases). Given a connected graph G(V, E),

• One-hop It includes all these nodes in G whose in-degrees are zero. We define a node i

in G belonging to the one-hop set (denoted as V
(1)), mathematically, as:

V
(1) = {i | deg

≠
i = 0, i œ V }

• Two-hop It includes all these nodes in G whose in-neighbours’ in-degrees are all zero. We

define the two-hop node set (denoted as V
(2)), mathematically as:

V
(1) = {i | deg

≠
I(i) = 0, i œ V }

where the I(i) is the in-neighbour set of node i in the graph.

We observe that when a node of a graph belongs to the aforementioned exceptional cases,

the one-hop set or two-hop set, the value of the candidate pool can be generated directly.

Lemma 5. Given a connected graph G(V, E), query column j(j œ p
k),

• if the node j belongs to one-hop set V(1), the candidate pool value CP�
k (:, j) can be gener-

ated by

CP�
k (:, j) = Cout◊1

Note that the role similarity scores of CP�
k (:, j) will remain the same at all iterations.
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• if the node j belongs to two-hop set V(2), the candidate pool value CP�
k (:, j) can be gener-

ated by

CP�
k (:, j) = (1 ≠ C)(Cmindeg≠(out, j) £ maxdeg≠(out, j) + 1out◊1)

here, 1out◊1 is a vector, whose size is out ◊ 1. {out}
th entries of 1out◊1 is 1, others are

removed. In this exceptional case, the role similarity scores are convergent at the iteration

k = 2.

5.4.3 Out-speedup approach

Based on Lemma 5, the computation of CP�
k was optimised when the column index nodes

belonged to the two exceptional cases. Next, we discuss that the computation of CP�
k can be

further improved based on certain rows of CP�
k matrix. The row indexes of each candidate pool

are determined by out, so the accelerate scheme on the row nodes is named as the out-speedup

approach.

We observe that if a node needs to surf more than two hops to catch the root node of the

graph, the similarity score needs to be generated by the maximum weighted matching algorithm.

As the computation of maximum matching over large-scale graphs with high time complexity,

we propose an optimisation strategy for speeding up the computation of maximum matching of

the node pair in-neighbour matrix (M) in Lemma 6.

Lemma 6. Given a connected graph G(V, E), a query column j (j œ p
k), any node i(i œ out)

and an iteration number k,

1. if the node i belongs to one-hop set V(1), the maximum weighted value Mk(i, j) can be

generated by

Mk(i, j) = 0

2. if the node i belongs to two-hop set V(2), the maximum weighted value Mk(i, j) can be

generated by

Mk(i, j) = C

3. otherwise, the maximum weighted matching of CPk≠1 is generated. Before introducing

the computation method, we have introduced several notions. The maximum matching
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result of CPk≠1 is denoted as M[CPk≠1]. The matched values set of maximum matching

on CPk≠1 is represented by ÊM[CPk≠1]. The in-neighbour matrix of node-pair (i, j) is

defined as Bij. The maximum matching result of Bij is M[Bij ], and the matched values set

of maximum matching on Bij is ÊM[Bij ]. The matched values of CPk≠1 in Bij are defined

as M[Bij , CPk≠1], the number of matched values of CPk≠1 in Bij is |Mk[Bij , CPk≠1]|.

- if the minimum value between deg
≠
i and deg

≠
j is equal to |Mk[Bij , CPk≠1]|, we have

Mk(i, j) = Mk[CPk≠1]

- if the minimum value between deg
≠
i and deg

≠
j is larger than |Mk[Bij , CPk≠1]|,

- the matched values in |Mk[Bij , CPk≠1]| are the maximum value of its column

and row of the bipartite matrix Bij. The value of Mk(i, j) can be generated by

Mk(i, j) = sum(Mk[Bij , CPk≠1]) + Mk[Brem
ij ]

where sum(Mk[Bij , CPk≠1]) is the sum of the matched values between the bipar-

tite graph Bij and Mk[CPk≠1]. We eliminate the matched elements’ rows and

columns from the bipartite graph. We define it as B
rem
ij , and Mk(Brem

ij ) represent

the maximum matching score of the remaining bipartite graph.

- otherwise, the value of Mk(i, j) is as follows:

Mk(i, j) = Mk[Bij ]

where Mk[Bij ] is the maximum matching value of the in-neighbour matrix Bij.

Mk(i, j) is the maximum matching value of node pair (i, j) in-neighbour matrix in the iteration

k.

This speed-up approach can significantly improve the performance of the Opt_FaRS algo-

rithm without sacrificing accuracy. For example, if a node pair (i, j) belongs to exceptional

cases, the similarity score Mk(i, j) can be retrieved without the need of performing the maxi-

mum matching computation (Lemma 6. (1) (2)). Furthermore, when node pairs are not belong

to these exceptional cases, we could generate M
k
(i,j) with minimum number of calls of the max-

imum matching computation. The call number is less than |out| rather than n times (n is the

total number of nodes in graphs) (Lemma 6. (3)).
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Algorithm 4: Opt_FaRS (G, C, q, K, ⁄, �)
Input : a graph G, decay factor C, a query set q, #-iteration K, #-maximum matching �, ⁄

Output: exact role similarity scores of query q at the iteration K.

22 generate the tracking path P, and the actual iteration number L = |P|;

44 out = {x œ V|O(x) ”= ÿ};

66 Initialize CP�
0 = ones(out, I(PL));

88 for k = 1 to L do

1010 foreach j œ p
L≠k+1 do

1212 if j œ V(1) then

13 CPk(:, j) = [1 ≠ C]|out|◊1

1515 else if j œ V(2) then

16 CP�
k (:, j) = (1 ≠ C)(Cmindeg≠(out, j) £ maxdeg≠(out, j) + 1out◊1)

1818 else

2020 foreach i œ out do

2222 if i œ V(1) then

2424 Mk(i, j) = 0

2626 else if i œ V(2) then

2828 Mk(i, j) = (1 ≠ C)

3030 else

31 compute maximum matching of CP�
k≠1

3333 if mindeg
≠(i, j) == |Mk[Bij , CPk≠1]| then

3535 Mk(i, j) = Mk[CPk≠1]

3737 else if mindeg
≠(i, j) > |Mk[Bij , CPk≠1]| then

3939 Mk(i, j) = sum(Mk[Bij , CPk≠1]) + Mk[Brem
ij ]

4141 else

42 Mk(i, j) = Mk[Bij ]

4444 return Mk(i, j);

4646 return CPk(:, j);

4848 update CPk;

5050 Opt_FaRS(:, q) = CPL;
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Algorithm 4 integrates all the speed-up techniques of Opt_FaRS we just discussed to achieve

the optimisation of the FaRS algorithm computation.

Algorithm 4 shows the process of Opt_FaRS with two speed-up approaches clearly. Di�erent

lines of Algorithm 4 refer to di�erent underlying formulas and theoretical justifications given in

this chapter. The following list shows the references in detail:

• In the output line, CP�
k is defined in Theorem 22.

• In line 2, the tracking path P is described in Definition 8.

• In line 6, the row indexes of CP0 are determined by the node set out, and the column

indexes are decided by the in-neighbour nodes set of PL.

• The speed-up techniques between line 12 to line 15 refer to Lemma 5.

• The optimisation techniques between the line 20 to line 41 refer to Lemma 6.

In summary, for the final role similarity scores of the q’s column, not all node pairs in each

iteration have an influence on the similarity scores of the q’s column. According to this discovery,

the Opt_FaRS algorithm can accurately extract the node pairs that have an influence on the role

similarity scores of the q’s column in each iteration to avoid the calculation of useless information.

Leveraging the discussed optimisation techniques, Opt_FaRS greatly reduces the call numbers

of the maximum matching algorithm, which is an extremely time-consuming algorithm when

applied on large graphs. The most important advantage of the Opt_FaRS algorithm is that it

significantly improves the computational e�ciency without sacrificing accuracy.

Example 20. Recall the graph G and the tracking path P with respect to query d in Figure 5.4.

Given that the decay factor is C = 0.2, ⁄ = 0.5, � = 1, iteration number K = 5 and the role

similarity scores of candidate pool at iteration k = 4 is

CP1
4 =

S

WWWWWWWU

(a) (b) (c) (e)

(b) 0.2 0.36 0.253 0.28

(c) 0.2 0.253 0.462 0.37

T

XXXXXXXV

T
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Based on this information, we demonstrate how to compute CP1
5 with respect to query d via

Eqs.5.19 as follows.

First, since the in-neighbours of query q is [b, c] and in-degree of node set [b, c] are not equal

to zero, query d /œ (V(1)
, V(2))(Definition 10).

Next, we compute the maximum matching value of the in-neighbour matrix of node pairs

([a, b, c, e], d) row by row.

1. (Row a.) The in-degree of node a is 0, thus a œ V
(1). According to Lemma 6, M

1
5(a, d) =

0.

2. (Row b.) The in-neighbour of node b is node a and a œ V
(1), thus b œ V

(2). According to

Lemma 6, M
1
5(b, d) = 1 ≠ C = 0.2.

3. (Row c.) The in-neighbour of node c is node set [a, b, e], thus c /œ (V(1)
, V(2)). According

to Lemma 6, we need calculate the maximum matching of CP2
4 first, and the value has

been displayed in Figure 5.6.

Figure 5.6: The Maximum Matching Result of CP1
4

The bipartite matrix of node pair (c, d) is Bcd = CP1
4([a, b, e], [b, c]) = [ 0.2 0.36 0.28

0.2 0.253 0.37 ]T . we

can see from Figure 5.6, M[Bcd, CP1
4] is 1 (the red box in CP1

4([a, b, e], [b, c]) is CP1
4(b, b) =

0.36). Thus, for node pair (c, d), |M[Bcd, CP1
4]| is smaller than the min(deg

≠
c , deg

≠
d ) =

min(3, 2) = 2. Based on Lemma 6.(3) M
1
5(c, d) = sum(M4[Bcd, CP1

4]) + M
1
4[Brem

cd ]0.36 +

M [ 0.2
0.342 ] = 0.702.

4. (Row d.) the number of matching value (M[Bdd, CP1
4]) = 2, which is equal to min(deg

≠
d , deg

≠
d ) =

min(2, 2) = 2. Thus, M
1
5(d, d) = M[Bdd, CP1

4] = 0.822.

5. (Row e.) after the extract matched the value from the bipartite matrix of node pair (e, d),

the only remaining number was B
rem
ed = [0.2]; thus, M

1
5(e, d) = 0.36 + 0.2 = 0.56.

Finally, bringing the all values of M
1
5 into Eqs.(5.19) to retrieve the role similarity scores of

query node d yielded the following: CP1
5(:, d) = 0.8 ◊

C 0
0.2
0.73
0.822
0.56

D

£

C 2
2
3
2
2

D

+
C 0.2

0.2
0.2
0.2
0.2

D

=
C 0.2

0.28
0.389
0.529
0.424

D

.
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Example 20 illustrates the speed-up process in detail. For example, to compute the query

role similarity score in the last iteration, the number of maximum matching implemented for

Opt_FaRS is only the half of the FaRS algorithm, which greatly speeds up computation without

sacrificing any accuracy.

5.5 The Application of Opt_FaRS Over Dynamic Graphs

As discussed in Chapter 3, the dynamic graph is a graph subject to a sequence of specific

updates; thus, all updates in the graph are known and unique. In real-world graph applications,

the dynamic graphs played an increasingly critical role in recent decades. In Chapter 3, we pre-

sented D-CoSim, which is a fast and accurate CoSimRank retrieval method on evolving graphs

for the node similarity search. The role similarity search over dynamic graphs is also a necessary

and urgent topic. However, recent research conducted on similarity search on dynamic graphs

is based on the all pairs SimRank algorithm (C. Li et al., 2010) (Yu, Lin, & Zhang, 2014b).

Since SimRank is not an applicable role similarity measure, the existing solutions cannot pre-

cisely extract role similarity on the graph structure. Furthermore, they are expensive in terms

of time and space cost. The Opt_FaRS algorithm we proposed can solve the aforementioned

shortcomings e�ciently.

According to the basic concept of the single-source Opt_FaRS algorithm 5.19, the role sim-

ilarity score of each node in a graph is determined by its in-neighbours. Thus, a chunk of the

updated edges with the same end node can only change one column of role similarity scores of

the old graph similarity score matrix. Therefore, our Opt_FaRS search algorithm can accurately

and e�ciently retrieve the updated column, without the need of recomputing the whole role

similarity score matrix. Furthermore, using the speed-up strategies described in Section 5.4,

the Opt_FaRS algorithm can significantly reduce the call numbers of the maximum matching

algorithm. At the same time, as a result of the usage of the top �th maximum matching of

in-neighbour matrix, the Opt_FaRS algorithm can obtain more information from the graph

structure and generate more accurate results than the RoleSim algorithm(Eqs. 5.3). These

advantages remain when it is applied to dynamic graphs.

The schema for applying the single-source Opt_FaRS algorithm over dynamic graphs has

been introduced in detail in this section.

The first step is to partition the updated part of the dynamic graphs. The update of the
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in-neighbours of a node can change the role similarity score of the corresponding column. The

graph partition groups the updated edges that share the same end node.

Having bunched all updated edges into chunks, we update the adjacency matrix of the graph

next. Each chunk of the updated edges only changes one column of the adjacency matrix. Note

that if the number of nodes in the old graph is smaller than the newly updated graph, the

adjacency matrix should be bordered with new zero columns on the right and new zero rows on

the bottom. On the opposite side, the adjacency matrix should delete the corresponding column

and row from the old adjacency matrix when nodes are deleted from the old graph. Leveraging

the new adjacency matrix, the single-source Opt_FaRS algorithm is called for each chunk of the

updated edges to retrieve new single-source role similarity scores.

Example 21. In Figure 5.7, given the old graph G (solid arrows and solid circle nodes) and a

sequence of updated edges to G (red dashed arrows and red cross), which is represented by ÂG.

Given the query node d, decay factor C = 0.2, exact iteration number L = K = 5, ⁄ = 0.5,

� = 2. Based on the conception of graph partition, the updated edges of the dynamic graph in

Figure 5.7 can be divided into three parts presented on the right side of the figure.

Figure 5.7: Left side: example of old graph G (solid arrows) updated by ÂG (new edge in dashed arrow and deleted

edge with red cross). Right side:the partition of updated edges

We can see from Figure 5.7 that ÂG = Gold + ÂG. The updated edges in Figure 5.4 ÂG can

be written as follows: Gnew = ÂGe fi ÂGd fi ÂGf . Having bunched all updated edges into chunks,

we update the adjacency matrix of the new graph chunk by chunk. Based on the new adjacency

matrix, recall the Opt_FaRS algorithm to update the role similarity scores with respect to query

d.
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5.6 Experimental Evaluation

This section shows an experimental study on real datasets to compare our algorithms

(FaRS and Opt_FaRS) with other baseline algorithms. The experimental results verified the

superiority of the FaRS and Opt_FaRS algorithms based on graph topology.

The performance e�ciency is evaluated using three metrics.

• The first metric is the impact of di�erent coe�cient choices on the accuracy of the FaRS

algorithm.

• The second one is accuracy. FaRS can get more information from the structure of graphs.

The role similarity results of FaRS are more accurate than other algorithms. Opt_FaRS is

an optimisation algorithm based on the FaRS algorithm, and the results of Opt_FaRS are

precisely the same as the results of the FaRS algorithm.

• The last one was time e�ciency. FaRS quickly answers the role similarity search with

respect to the query based on graph topology. Opt_FaRS is much faster than the FaRS

algorithm without loss accuracy.

5.6.1 Experimental Settings

Datasets. We evaluate our algorithm over a group of real-life datasets. We used the following

public datasets:

email-Eu-core-temporal (EU)1. Email data from a prominent European research organisation

is used to create the network. All incoming and outgoing e-mail data between members of the

research institution is anonymised in the network. In a research institute, every employee can be

considered a node. A directed edge u to v appears when employee u sends an email to employee

v. If there is already a directed edge between the node pair (u, v), multiple emails sent between

two employees and reverse emails will no longer generate edges between node pair (u, v) to ensure

the uniqueness and stability of the graph structure. The graph structure provides a separate

directed edge for each receiver when an email is sent to numerous employees simultaneously.

Emails reflect only the internal communications within the organisation, and the dataset does

not include incoming or outgoing messages from other regions of the globe.
1https://snap.stanford.edu/index.html
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This organisation is mainly composed of four departments. The mail exchanges between

members of the four departments in the organisation are represented by four separate networks.

The composition of the four networks is the same as the organisation’s mail exchange network.

For a member of the organisation, the corresponding node index of the organisation’s network

is di�erent from the index in the departmental network.

The size of each dataset has been illustrated in Table 5.1.

Datasets #-Nodes #-Edges Type

email-Eu-core-temporal (EU) 986 24,929 Directed

Department 1 (Dept-1) 309 3,031 Directed

Department 2 (Dept-2) 162 1,772 Directed

Department 3 (Dept-3) 89 1,506 Directed

Department 4 (Dept-4) 142 1,375 Directed

Table 5.1: Description of the Five Datasets

Compared Algorithms. We implemente FaRS and Opt_FaRS over the five real-life datasets,

respectively, and compare them with two state-of-the-art similarity search competitors and an-

other format of FaRS:

(a) CSR, a method developed by (Rothe & Schütze, 2014) that retrieves a CoSimRank score

from the sum of the dot product of two Personalised PageRank vectors;

(b) RoleSim (Rothe & Schütze, 2014), a state-of-the-art role similarity search algorithm,

which generates role similarity scores based on the average value of maximum matching.

(c) FaRS_N, which is another format of the FaRS algorithm that generates role similarity

scores by computing the average maximum matching of the remaining in-neighbour matrix

rather than top � maximum matching(FaRS).

Parameters. We chose the following parameters according to the results of parameter evalua-

tion in Section 5.6.2:

(a) the decay factor C = 0.2,

(b) the number of iterations K = 5,

(c) the order of maximum matching � = 3,

(d) the relative weight ⁄ = 0.7.
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Evaluation Metrics. To evaluate role similarity ranking results on real-life datasets, we used

k-means clustering (Arthur & Vassilvitskii, 2006; Lloyd, 1982; Bock, 2007). K-means clustering

is a vector quantisation technique that seeks to divide n observations into k clusters, with each

observation belonging to the cluster with the closest mean (cluster centres or cluster centroid),

which serves as the cluster’s prototype2.

For ground truth, first, we calculated the role similarity scores matrix using our algorithm

and other baseline algorithms, respectively. Then, k-means clustering was done on di�erent role

similarity scores matrices to divide the data into several groups. According to the characteristics

of the k-means clustering, the role similarity scores between the nodes in each group was higher.

Next, given di�erent queries, the top 20 nodes most similar to the query node in each algorithm

are extracted. At the same time, we identify the group that the query node belongs to, and the

group is divided by k-means clustering. Finally, we need to calculate how many of the 20 nodes

(most similar to the query of each algorithm) are the same as the nodes of the query group. The

higher the overlap ratio, the higher is the accuracy.

All experiments are conducted on a PC with Intel Core i7-6700 3.40GHz CPU and 64GB

memory using Windows 10. Each experiment is repeated five times, with the average results

being shown here.

5.6.2 Experimental Results

In this section, we display the experimental results of comparing our algorithm with other

baseline algorithms over five real-life datasets. The experimental results comprise three parts:

parameter evaluation, accuracy and time e�ciency. We first implemente FaRS over the real-life

dataset to illustrate the better choice of parameter.

Parameter Evaluation. We evaluate two parameters of the FaRS algorithm in this part, ⁄ and

�. The method involved implementing our algorithm over the Dept-3 dataset and comparing the

algorithm’s accuracy with di�erent parameter values. For accuracy evaluation, we generated the

role similarity score matrix of the graph first. Then, we used the k-means clustering (Arthur &

Vassilvitskii, 2006; Lloyd, 1982; Bock, 2007) method to evaluate the accuracy of our algorithm

for di�erent parameter values.
Figure 5.8 depicts the accuracy of the FaRS algorithm in the case of di�erent ⁄ values.

2https://en.wikipedia.org/wiki
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Figure 5.8: FaRS with di�erent ⁄

We implemente the FaRS algorithm over the Dept-3 dataset. The ordinate in Figure 5.8 is

the accuracy ratio. The accuracy ratio is determined by the number of duplicate nodes in

the combination of two nodes sets. A combination is composed of the top 20 nodes with the

highest role similarity scores to the query node. Another combination is composed of nodes

in the same k-means group as the query node. Thus, when more nodes belong to the two

node sets at the same time, the algorithm is more accurate. We select six di�erent ⁄ values

(⁄ = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8]), and six query nodes (Q = [83, 84, 85, 86, 87, 88]) to evaluate

which ⁄ value is more appropriate. From Figure 5.8, we can see that when ⁄ = [0.6, 0.7], the

accurate ratio is relatively high. Especially for query 87, the 20 nodes most similar to query

node 87 belong to the same k-means group with the query. The line chart in Figure 5.8 shows

the average accurate ratio with respect to di�erent ⁄ values, respectively. When ⁄ = 0.7, the

accurate ratio of the FaRS algorithm is relatively highest. So, in future experiments, the value

of ⁄ = 0.7.
Figure 5.9 depicts the accuracy of the FaRS algorithm in the case of di�erent � values. We

implemente the FaRS algorithm over the Dept-3 dataset.

In the experiment, we chose five di�erent (� = [2, 3, 4, 5, 6]) and the query set Q = [70.71, 72, 73, 74].

F,WANG,PhD Thesis,Aston University 2021. 171



Figure 5.9: FaRS with di�erent �

In the FaRS algorithm, � represents that the algorithm needs to calculate the top � maximum

matching values for the role similarity score. Since the grouping of the k-means clustering group

will be di�erent each time, the accuracy of each � value for each query is the average value after

five trials. In Figure 5.9, the bar chart shows the accuracy of the di�erent queries using di�erent

� values in the FaRS algorithm. The line chart is the average of the accurate ratio of five queries

corresponding to a � value. It can be seen from the trend of the line chart that as the � value

increases, the accuracy of the algorithm improves. It is worth mentioning that the accuracy is

greatly improved when � = 3. After � = 3, the increase in accuracy tends to be flat. Therefore,

the algorithm performs best when � = 3 (high accuracy and less time-consuming).

Accurate Evaluation. We next compare the accurate ratio of our algorithms (FaRS and

Opt_FaRS) and the other baseline algorithms over six real-life datasets. In this part, we used

two methods to evaluate the accuracy of the algorithms. The first method is the k-means

clustering mentioned earlier. The second method is to evaluate the accuracy according to the

characteristics of the graph itself. EU is the mail communication network of the employees (core)

of the organisation, which includes the mail communication network of the four departments.

Based on the structure of EU, the role similarity between employees in each department is higher
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than that between employees in di�erent departments. Therefore, EU is divided into five parts,

including department 1 (Dept-1), department 2 (Dept-2), department 3 (Dept-3), department 4

(Dept-4) and the remaining employees. We randomly selecte a node in each part as the query

and then tested the number of nodes in the corresponding department among the first 20 nodes

that are similar to the query in di�erent algorithms. This is an important reason why we select

these datasets to evaluate our algorithms.

First, we use the k-means clustering to test the accuracy of the algorithms on the mail

exchange network of the four departments, respectively. For the k-means clustering of each

algorithm, the partition number k = 6. The length of order list of each algorithm with respect

to the query is 20.

Figure 5.10: Accurate Evaluation of Algorithms Over Four Departments’ Networks

Figure 5.10 shows the accurate ratio of di�erent algorithms on four datasets. The accurate

ratio of the role similarity search of the CSR algorithm is relatively low on each dataset. Next,

the role similarity search accuracy of the RoleSim algorithm is higher than that of the CSR

algorithm but lower than that of the FaRS algorithm. The role similarity detection accuracy of

the FaRS algorithm outperforms the four datasets. The accuracy of the FaRS_N algorithm is

better than that of the RoleSim and CSR algorithms, but it is not as good as that of the FaRS
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algorithm. So, our algorithm uses the top � maximum matching method instead of removing

the value that has been first-order maximum matched and finding the maximum matching value

of the remaining matrix to calculate the role similarity scores.

Figure 5.11: Accurate Evaluation of the Opt_FaRS Algorithm on EU(K-means Clustering Method)

Next, we evaluate the accuracy of our algorithm and other baseline algorithms over the EU

dataset. We randomly selecte four nodes from the four departments as the query set of the

corresponding department. Then, after ranking the top 20 nodes, each algorithm is found to

have the highest role similarity scores to the query. Finally, we test the top 20 nodes of each

algorithm with respect to each query and how many nodes belonged to the query’s corresponding

department. The higher the degree of coincidence, the higher is the accuracy of the algorithm.

Figure 5.11 shows that the FaRS algorithm has always maintained a high degree of accuracy. The

second is the RoleSim algorithm. The accuracy of role similarity search of the CSR algorithm is

always been relatively lower. To sum up the information from Figure 5.10 and Figure 5.11, the

FaRS algorithm outperformed the best-known algorithms CSR and RoleSim over the five real-life

datasets.

Finally, we evaluate the accuracy of Opt_FaRS over the EU dataset. The Opt_FaRS algo-

rithm is an accelerated algorithm based on the FaRS algorithm. Thus, we evaluate the accuracy

of Opt_FaRS relative to the FaRS on Dept-4. We randomly pick up various query sets with

its size |Q| varying from 10 to 30. For each query set Q, based on the role similarity scores
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from Opt_FaRS, we measure their similarity ranking results via NDCG (Normalised Discounted

Cumulative Gain) (Y. Wang et al., 2013)(details in Section 3.4.2.1). Thus, NDCG = 1 implies

that the role similarity ranking of the compared algorithm perfectly matches that of FaRS, with

no loss in accuracy.

Figure 5.12: Accurate Evaluation of the Opt_FaRS Algorithm (NDCG Method)

From Figure 5.12, we notice that for each query set Q, the NDCGs of Opt_FaRS was 1s,

implying that Opt_FaRS does not sacrifice any accuracy for their speedup. This verify the

correctness of Lemma 6.

Time E�ciency. We evaluate the time e�ciency of our algorithms (FaRS and Opt_FaRS) and

the baseline algorithms over five networks.
Figure 5.13 depicts the time e�ciency of our algorithms (FaRS and Opt_FaRS) and other

baseline algorithms over five di�erent realistic networks . The elapsed time comes from the

computation of single-source role similarity scores for each query. For each dataset, we randomly

take |Q| = 20 queries. The FaRS and RoleSim algorithms have comparable time e�ciency on five

datasets. The CSR algorithm costs relatively less time, but the accuracy of the algorithm for

calculating the role similarity scores is not high. The Opt_FaRS algorithm has great e�ciency,

which is more than the FaRS and RoleSim algorithm over five real-life datasets.

5.7 Related Work

Similarity detection research based on graph structure has been a trendy research topic

in the past decades. Among the research on similarity search over graphs, SimRank (Jeh &

Widom, 2002) has been proposed as the most fundamental similarity search algorithm. The

basic intuition of the algorithm is that “two objects are similar if they are related to similar
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Figure 5.13: Time E�ciency of Algorithms

objects”. Afterwards, many SimRank-based algorithms have been proposed( (Kusumoto et al.,

2014; C. Li et al., 2010; Antonellis, Molina, & Chang, 2008; He, Feng, Li, & Chen, 2010;

P. Li, Liu, Yu, He, & Du, 2010; Lizorkin, Velikhov, Grinev, & Turdakov, 2008b; Ma, Lin, &

Lin, 2011)). Similarity detection based on graph structure can help people live more e�ciently

and conveniently (J. Wu et al., 2021). For example, based on the anonymous online shopping

network generated by the user’s shopping record, the similarity detection on the online shopping

network can automatically generate a recommendation list. This list can greatly increase the

e�ciency of customers in choosing products among the huge number of online products. At the

same time, it can also help merchants to reasonably produce and reserve commodities to avoid

waste.

With the continuous development of similarity detection algorithms on graph structures,

more and more researches have begun to focus on semantic similarity detection on graph struc-

tures( (Everett, 1985; Yu, Iranmanesh, Haldar, Zhang, & Ferhatosmanoglu, 2020; Lee, 2012;

Shao et al., 2019; Lin et al., 2012; Milo, Somech, & Youngmann, 2019; Chen et al., 2021; Rothe

& Schütze, 2014)). Recall the previous example of the online shopping recommendation system.

The similarity detection algorithm can accurately recommend a product list that is closest to

a product. However, role similarity detection can recommend related products based on the
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user’s individual characteristics such as gender, occupation etc. Among the many role similarity

detection algorithms, the RoleSim (Rothe & Schütze, 2014) algorithm stands out. Its basic intu-

ition is that “two nodes have the similar role if they interact with equivalent sets of neighbours”.

The RoleSim algorithm calculates the role similarity value based on the maximum matching

value of the in-neighbours role similarity matrix of the node pair, rather than the average value

of the in-neighbours similarity matrix( (Jeh & Widom, 2002)). The maximum matching algo-

rithm can only extract the information of some node pairs in the matrix. Especially when the

in-degrees of the two nodes are di�erent, part of the in-neighbours information will be directly

ignored. But our algorithm can well capture the information ignored by the RoleSim algorithm

to achieve a more accurate role similarity detection value. At the same time, an accelerated

algorithm is proposed based on the RoleSim algorithm. A threshold is given in the acceleration

algorithm. When calculating the node pair role similarity value, all the in-neighbours similarity

value matrix of the node pairs are no longer used for maximum matching to calculate the role

similarity value, but the in-neighbours similarity value greater than the threshold can be used

for calculation.

Some related researches are derived based on the RoleSim algorithm( (Shao et al., 2019;

Chen et al., 2021; Chen, Lai, Qin, & Lin, 2020)). A seedless de-anonymisation method called

RoleMatch was proposed by (Shao et al., 2019). The RoleMatch algorithm can be divided

into two parts. The first part is the novel role similarity detection algorithm RoleSim++.

RoleSim++ calculates the role similarity value of a node pair based on the maximum matching

value extracted from the in-neighbours and out-neighbours role similarity value matrix of the

node pair, which is di�erent from the RoleSim algorithm. In order to improve the computational

e�ciency of the RoleSim++ algorithm, the –-RoleSim++ algorithm was proposed. The –-

RoleSim++ algorithm gives a threshold value and then only extracts information from the

node pairs’ role similarity scores greater than the threshold, and other node pairs are ignored.

Then, based on the calculated role similarity score, the NeighborMatch matching algorithm was

proposed to find a good mapping between the anonymised network

The most state-of-the-art algorithm for role similarity search is StructSim (Chen et al.,

2020). StructSim calculates the role similarity scores through the maximum matching value

of the horizontal similarity between each k-neighborhood subgraph. In order to improve the

computational e�ciency of the StructSim algorithm, the maximum match in the algorithm is
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replaced with BinCount match. In the BinCount matching algorithm, the index of the nodes of

each layer needs to be recorded. Flajolet-Martin Sketch was proposed to create the index of the

nodes of each layer more e�ciently.

5.8 Conclusion

This chapter propose an accurate role similarity search algorithm FaRS based on graph

topology. We also present an accelerate algorithm, Opt_FaRS, based on FaRS. First, the FaRS

algorithm uses the top � maximum matching values to calculate single-source role similarity

scores. Thus, it can capture more information from node-pair in-neighbour role similarity scores

matrix than the RoleSim algorithm, which guarantees the accuracy of FaRS algorithm. We

also prove the convergence, uniqueness, symmetry, boundedness and triangular inequality of

the FaRS algorithm. Then, we propose an acceleration algorithm based on the FaRS algorithm,

Opt_FaRS. The acceleration algorithm process as follows: (a) starting from the query node,

we record the multi-hop backward tracking path by recording the in-neighbours index of nodes.

(b) filter out nodes set with all nodes whose out-degree is greater than zero. (c) calculate

the role similarity values of each level of candidate pool through the p-speedup and out-speedup

acceleration approaches until convergence. The column index of the candidate pool is determined

by the tracking path index of the corresponding level. The row index of all candidate pools is

determined by the out nodes set. Finally, we implement the Opt_FaRS algorithm over dynamic

graphs. We evaluate our algorithms and the baseline algorithms on five real datasets. The

experimental results show that the FaRS algorithm obtains a more accurate role similarity value

than the baselines algorithms. At the same time, the Opt_FaRS algorithm dramatically improves

the calculation speed of the FaRS algorithm without losing accuracy.
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6 Conclusions and Future Work

This thesis study several e�cient techniques for assessing link-based single-source relevance

on large-scale static and dynamic networks (graphs), including incremental D-CoSim and D-deCoSim

algorithms on large dynamic networks, F-CoSim, Opt_F-CoSim and F-CoSim_Para on large-scale

static networks and the development of a more accurate role relevance scoring algorithm for en-

riching semantics. In Section 6.1 below, we outline the thesis’ primary contributions, and in

Section 6.2, we discuss general avenues for further research stemming from this thesis.

6.1 Thesis Summary

Chapter 1 highlight the need for e�ciently assessing single-source relevance through mo-

tivating applications as well as the challenges and contributions of this thesis. In Chapter 2,

we provide a comprehensive literature review of graph-based similarity search according to the

di�erent types (iterative algorithms, Monte Carlo sampling, matrix-based methods, static al-

gorithms, dynamic algorithms etc.). The main technical contributions of the thesis have been

explained in Chapters 3–5.

• Fast and Accurate Similarity Search Over Evolving Graphs. Chapter 3 propose

e�cient methods for conducting similarity search on large-scale evolving networks. (1)

For large incremental dynamic graphs, a fast and accurate similarity search algorithm,

the D-CoSim algorithm, is presented to generate the similarity scores over incremental

dynamic graphs. (2) For large decremental dynamic graphs, a novel similarity search

algorithm over decremental dynamic graphs, the D-deCoSim algorithm, is proposed as

well. The D-deCoSim algorithm can be divided into two parts: D-deCoSim(Node) over

dynamic graphs with node deletion and D-deCoSim(Edge) over dynamic graphs with edge

deletion. Experiments demonstrate that our algorithm D-CoSim and D-deCoSim steadily

outperform two state-of-the-art CoSimRank competitors (CSR (Rothe & Schütze, 2014)
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and CSM (Yu & McCann, 2015a)) with 3-5 order-of-magnitude(time e�ciency) on real

large-scale datasets. Compared with CoSimRank and CSM algorithms, our algorithms

show a great advantage in memory e�ciency. In particular, CSM cannot be implemented

for large graphs since its memory complexity is O(n2). The experimental results also show

that our algorithms do not compromise on accuracy while increasing the (search) speed.

• Scalability Similarity Search Over Large-Scale Graphs. Chapter 4 presente an

innovative paradigm that supports similarity search over large-scale static graphs. (1)

The single-source F-CoSim algorithm can e�ciently retrieve similarity scores by (a) find-

ing a “spanning polytree” from the graph; (b) designing an e�cient algorithm to retrieve

the CoSimRank scores over a spanning polytree; and (c) applying D-CoSim to evaluate

the changes in response to the di�erence between the spanning polytree and the graph.

(2) To accelerate the F-CoSim algorithm, an e�ective pruning technique is also leveraged

Opt_F-CoSim. Opt_F-CoSim includes three techniques: (a) Opt_Find_Spanning_Polytree;

(b) Single-source similarity search algorithm over spanning polytree; (c) Inspired by par-

allel computing, we propose the novel and fast similarity search algorithm F-CoSim-Para

based on graph topology. We conduct extensive experiments on real and large datasets,

which demonstrate that our e�cient similarity search algorithms, F-CoSim and Opt_F-CoSim,

outperforms state-of-the-art approaches on static graphs with a speed-up of up to 9.8 times,

and the proposed algorithms shows great advantage on memory e�ciency to CSM. The

more important thing is that the proposed algorithms do not compromise on accuracy for

speed.

• An Accurate Role Similarity Search Over Networks. Chapter 5 present a more

accurate paradigm that supports role similarity search over social networks. For static

graphs, the FaRS algorithm uses the top � maximum matching values to calculate single-

source role similarity scores based on graph topology. Additionally, an accelerated algo-

rithm with two e�cient techniques is devised for speeding up FaRS over social networks,

and it is named Opt_FaRS. For dynamic graphs, we propose a diagram to implement

Opt_FaRS over dynamic graphs. Experiments demonstrate that our FaRS and Opt_FaRS

algorithms are steadily becoming more accurate than the two state-of-the-art CoSimRank

competitors (CSR (Rothe & Schütze, 2014) and RS (Rothe & Schütze, 2014)) on real
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datasets. The experimental results also show that our algorithm Opt_FaRS does not scar-

ify accuracy for speeding up.

6.2 Future Avenues

Aside from the specific unresolved questions discussed in individual chapters, there are other

broad directions in which the work described in this thesis could be expanded.

In the big data area, large-scale highly-interconnected graphs pervade our lives. A critical

task in graph mining is to evaluate node importance based on the link structures. Since the

invention of PageRank (Google, 2011), several methods have been proposed for ranking nodes,

as it has essential applications in social community detection (Chamberlain, Levy-Kramer,

Humby, & Deisenroth, 2018), citation analysis (Elleby & Ingwersen, 2010) and recommend

systems (Machado et al., 2014). Among them, Personalised PageRank (PPR) is an appealing

tool for measuring node importance (Rothe & Schütze, 2014).

In contrast to PageRank, which distributes the starting nodes uniformly, PPR walks are

biased towards personal interests. PPR scores can be interpreted by “random surfers”. Given a

set of preference nodes P , a surfer can either jump to an outgoing neighbour with a probability

of (1 ≠ –) or teleport back to a node in P with a probability of –, where – is the teleport

probability. This procedure is performed repeatedly until it converges into a steady state. The

final distribution of the random surfers on nodes is the PPR scores with respect to P .

Most previous studies on PPR (Lofgren, Banerjee, Goel, & Seshadhri, 2014) assumed that

the underlying graph is deterministic. However, many real graphs are often noisy and uncertain

due to various reasons, such as the lack of precise information needs, noisy measurements or

explicit manipulation for privacy purposes. To represent uncertainty in noisy graph data, unlike

traditional studies (Potamias, Bonchi, Gionis, & Kollios, 2010; J. H. Kim, 2017) that assumed the

existence probabilities of individual edges to be independent of each other, the state-of-the-art

literature (J. H. Kim, Li, Candan, & Sapino, 2017) proposed another powerful uncertain graph

model and considered the PPR search problem on this type of uncertainty, where the existence

probabilities within bunches of uncertain edges are mutually dependent. This uncertainty model

is quite useful when one is aware of the existence of an edge but has no idea between which

pairs of nodes the edge exists. For instance, in a social network, we can deduce that one of the

several friends (a set of target nodes) of an individual (a source node) has committed a crime,
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but we do not know which friend. Another example of named entity disambiguation could be an

instance where one may be aware that a name (a source node) referred to in a Wikipedia page

is one of the many named entities (a set of target nodes) in a knowledge base, but one does not

identify which one is the correct entity. Therefore, uncertain graphs modelled by (J. H. Kim et

al., 2017) have many emerging real applications.

Although the uncertain model proposed by (J. H. Kim et al., 2017) is e�ective, it poses

striking challenges for e�cient PPR search over certain graphs. A naive way to evaluate PPR

scores over an uncertain graph G is to enumerate all the possible worlds of G and average out

the PPR scores over each possible world, which is prohibitively expensive. To speed up the

retrieval, the best-of-breed research (J. H. Kim et al., 2017) proposed a fast scheme, uPPR. It

approximates PPR on uncertain graphs at the expense of accuracy. However, uPPR su�ers from

two limitations: (i) uPPR does not always guarantee high accuracy, as it approximates PPR to

only the first order with respect to uncertain edges while neglecting all high-order terms. (ii)

uPPR is not scalable on large uncertain graphs, as it involves a costly pre-computation phase

to materialise the inverse of block matrices for a certain part of the graphs.

Therefore, similarity search over uncertain graphs plays a key role in ranking the objects of

people’s lives. However, existing works have limitations on accuracy and scalability, which can

be integrated as an interesting direction of future work.
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A Configuration METIS

This appendix aims to illustrate the method to configure METIS algorithm in MATLAB.

Considering to implement B_Lin algorithm for graph partition, we need to configure METIS

algorithm (which is illustrated in Section A.1) firstly, we implement both algorithms in MATLAB

2017b. The basic information of machines and compliers is shown in Table A.1.

Table A.1: Basic Information of Configuration METIS

Machine and Compliers Version

Computer System Windows 7 (x64 bit)

C++ Complier Visual Studio 2017 (x64 bit)

MATLAB MATLAB 2017b

CMake CMake (cmake-Gui) 3.10.0

Note that the version of MATLAB, Visual Studio, CMake and computer system may a�ect

the result of compilation. The basic steps to implement METIS in MATLAB on the system

environment are shown in Appendix Table A.1.

A.1 Resource Acquisition

(1) Extract the Patched Version of METIS.

The METIS zip file is available to be downloaded from the following link:

https://github.com/helixhorned/metis/tree/pk.
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There are installation instructions and algorithm C++ programs set in the METIS zip file,

which is shown in Figure A.1. Since the installation instructions that come with the program

package are not clear and detailed enough, thus this section introduces the problems and solu-

tions encountered in using the program package in detail. Note that the location of the zip file

decompression needs to be remembered, which will be used in the following steps.

Figure A.1: Online Source of METIS

Extract the Metismex-master File.

Metismex-master File can be downloaded from the following link:

https://github.com/dgleich/metismex.

Metismex-master file has the compiling methods, and the MATLAB codes of METIS, the details

of metismex-master file are shown in Figure A.2. The decompression location of metismex-

master file should be the same as the METIS zip file.

A.2 Compile METIS algorithm In MATLAB

Leveraging the METIS and metismex-master files, the next step is to compile METIS algo-

rithm in MATLAB.

Generate Visual Studio project by CMake.

As previously stated, the METIS algorithm code set is compiled in C++; hence, in order to

build it in MATLAB, the code set should be pre-processed in CMake.

First, enter the location of the METIS file as the location of the source code. Then create
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Figure A.2: The details of the metismex-master file

a new folder named "output" in the same location as METIS file, and use the location of the

folder as the input location for the build binary file. An example of position input is shown in

Figure A.3.

Figure A.3: Generate Visual Studio project by CMake (Phase 1)

Next, select "Visual Studio 15 2017 x64" to configure and generate the project. After the

project is successfully generated, click "Open Project" to open the project, as shown in Fig-

ure A.4.

Figure A.4: Generate Visual Studio project by CMake (Phase 2)

Redefine clear.

There are a few di�culties in Visual Studio that need to be handled before the library can be

generated as a solution. The METIS code set includes three header files: metisbin.h, metislib.h,

and gk arch.h, all redefine the ’rint’ function for MSVC. Because METIS needs to be compiled

F,WANG,PhD Thesis,Aston University 2021. 196



in MATLAB, the definition of ’rint’ function is not required. Thus, these ’rint’ defining codes

need to be removed from metisbin.h, metislib.h, and gk arch.h, as indicated in Figure A.5.

Figure A.5: Redefinition in Several Header Files of METIS (Phase 1)

The next issue to address is the replacement of ’_thread’ with ’_declspec(thread)’ in the

Klibgk externs.h file. Figure A.6 shows the details of the replacement.

Figure A.6: Redefinition in Several Header Files of METIS (Phase 2)

The next step is to return to the METIS folder’s location and open the METIS.sln file from

the location in Visual Studio. In the “Release” mode, make sure to pick “x64” for the ALL

BUILD target (by clicking “Build” and then “Configuration Manager”). Figure A.7 depicts the

proper environment settings.

Figure A.7: Environment seeting

The project is ready to be compiled, and the last step is to save the solution metis.lib in the
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Release folder.

Build MEX-function in MATLAB

Similar to the METIS file completed in Visual Studio, the metismex file has several issues

that need to be addressed before complying.

Unzip the metixmex-master file into the METIS folder and rename metismex.c to metismex.cpp.

Then, ’include<strings.h>’ should be replaced with ’include<string.h>’, which is after the line

’in-clude<string.h>’. The correct version of the metismex.cpp file is shown in Figure A.8.

Figure A.8: Build MEX-function in MATLAB

Then, go back to MATLAB and run the following command to compile the MEX file, and

the correct result is shown in Figure A.9.

“mex -O -largeArrayDims -DWIN32 -DMSC -DUSE_GKREGEX -I../GKlib -../include -

I../libmetis../ metismex.cpp(the directory location of metis.lib)”

Figure A.9: The code of MEX-file comply in MATLAB

A.3 Conclusion

The MATLAB METIS configuration has been accomplished. To summarise, we used CMake-

Gui to produce the project and then addressed several issues in Visual Studio after downloading

METIS.zip and metismex-master.zip. Then we unzip metis-master.zip into a subfolder of METIS

and correct a few issues, such as redefining ’rint’. Finally, we construct the MEX function in

MATLAB using the appropriate environment.
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B SNAP Compilation

SNAP (Standard Network Analysis Platform) is a robust system for analysing and managing

massive amounts of network data. SNAP’s main code is built in C++, and it scales to enormous

networks with millions of nodes and billions of edges with ease. SNAP’s advantages include the

ability to produce both random and regular graphs and the ability to calculate properties of

big graphs and support attributes on nodes and edges. Another benefit of SNAP is that the

node and edge attribution can change dynamically during the computation. Note that the

application and system vision may a�ect SNAP compilation. The basic information of machines

and compliers is shown in Table B.1.

The steps of SNAP compilation are illustrated as follows.

Resource Acquisition.

The lasted vision (Jul 27, 2017) of SNAP can be downloaded from the following link:

https://snap.stanford.edu/snap/download.html

and the contents of the SNAP resource package are shown in Table B.2:

Comply SNAP with Cygwin.

Install the Cygwin package with the C++ compiler GCC package before making SNAP

compatible with Cygwin. Enter the Snap-4.0 directory of Cygwin, and then run “ make all”

in this directory to compile the core SNAP library and all application examples. The specific

process method is shown in Figure B.1.

Figure B.1: Comply SNAP with Cygwin
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Machine and Compliers Version

Computer System Windows 7 (x64 bit)

C++ Complier Visual Studio 2017 (x64 bit)

MATLAB MATLAB 2017b

CMake CMake (cmake-Gui) 3.10.0

Cygwin Cygwin64 Terminal

Table B.1: Basic Information of SNAP Compilation

Build a New Visual Studio Project.

First, build a new C++ project and configure SNAP in Visual Studio. Then, to change the

character set to Multi-byte in this stage. Moving mouse hover your project and right-click on it.

Go to Properties –> Configuration Properties –> General –> Projects Defaults –> Character

Set –> Select "Use Multi-Byte Character Set". The setting window is shown in Figure B.2.

Figure B.2: Configure SNAP in Visual Studio

Next is to add the location of SNAP into VC++ directories. Moving mouse hover your
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Component Content

snap-core The core SNAP graph library

snap-adv Advanced SNAP components, which is not in the core but used by examples

snap-exp experimental SNAP components (in develepment)

examples small sample applications that demonstrate SNAP functionality

tutorials demonstrating use of various classes

glib-core STL-like library that implements basic data structures,

e.g., vectors(TVec), hash-tables(THash), strings(TStr), provides serialization etc.

test unit tests for various classes

doxygen SNAP reference manuals

Table B.2: Code set of SNAP Compilation
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project and right-click on it. Go to Properties –> Configuration Properties –> VC++ Directories

–> Include Directories. The environment setting window is shown in Figure B.3.

Figure B.3: Add the location of SNAP into VC++ directories

Finally, add Snap.h into head file list of the project, and write #include “Snap.h” in

test_SNAP.main. Input code to call SNAP function. The result is shown in Figure B.4.

Figure B.4: Add SNAP head file into project

SNAP compilation has been done, and the result of example is shown in Figure B.5.
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Figure B.5: The Result of SNAP Example File
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