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Abstract
At the very heart of turbulent fluid flows are many interacting vortices that
produce a chaotic and seemingly unpredictable velocity field. Gaining new
insight into the complex motion of vortices and how they can lead to topological
changes of flows is of fundamental importance in our strive to understand turbu-
lence. Our aim is form an understanding of vortex interactions by investigating
the dynamics of point vortex dipoles interacting with a hierarchy of vortex struc-
tures using the idealized point vortex model. Motivated by its close analogy to
the dynamics of quantum vortices in Bose–Einstein condensates, we present
new results on dipole size evolution, stability properties of vortex clusters, and
the role of dipole–cluster interactions in turbulent mixing in 2D quantum tur-
bulence. In particular, we discover a mechanism of rapid cluster disintegration
analogous to a time-reversed self-similar vortex collapse solution.

Keywords: vortex dynamics, point vortex model, vortex interactions, vortex
clusters
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(Some figures may appear in colour only in the online journal)

1. Introduction

The point vortex model is an Hamiltonian system arising from the consideration of infinites-
imally small patches of constant vorticity known as point vortices, that evolve in a self-
prescribed irrotational flow by inverting the curl operator using the Biot–Savart law [1].
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A system of point vortices constitutes a weak solution of the 2D Euler equations [2], underlin-
ing the importance of point vortices to the study of classical 2D turbulence [3]. The model’s
usefulness to describe ideal 2D flows arises from the fact that vortices in 2D behave like point-
like objects advected by the resulting velocity field. Fundamentally, the vortex gas dynamics
of the point vortex system can be characterized by a series of scattering and collisions between
vortex structures. Subsequently, the point vortex model has been used extensively to model
vortex dynamics of 2D flows [4–7], used in kinetic theories for equilibrium 2D turbulence
to understand long time equilibrium states [8–10], or been the focus of studies around the
possible creation of an Onsager condensate [11–13], where same-signed point vortices clus-
ter leading to negative temperature states, in analogy to spectral condensation in classical 2D
turbulence [14, 15].

The most natural system to compare with the point-vortex model is that of quantum tur-
bulence arising in Bose–Einstein condensates. Here quantum mechanical effects lead to tur-
bulence being a tangle of quasi-1D quantum vortices each identical in structure, with fixed
circulation in units of the quantum circulation κ and extremely thin vortex cores of the order of
∼1 μm. In 2D and quasi-2D realizations of quantum turbulence one observes point vortex-like
dynamics in a uniform condensate with sound [16]. This system has been routinely [17–20]
modeled using an Euler-like description provided by the point vortex model with the added rule
of vortex annihilation to mimic the role of the so-called quantum pressure. It is thought that
the inclusion of the vortex annihilation process is important [13] in leading to the long-term
formation of an Onsager condensate. This is still an immensely important and open problem
within the fluid dynamics and statistical mechanic communities [21, 22]. A natural question
is what are the fundamental processes that lead to mutual approaches of oppositely signed
vortices resulting in vortex annihilation in these systems?

In this article, we argue that vortex dipoles are fundamental to this picture. In high tem-
perature states it is conjectured that the system is composed of a sea of tightly formed
dipoles that are propagating quickly through the system, while at low temperatures, the
system tends to orientate into large-scale clusters of same-signed vortices, or an Onsager
condensate. At temperatures in between, we expect to have a mixed state, composed of
both vortex clusters and dipoles, with dipoles acting as the high temperature component
or noise in the system. As outlined by Salman and Maestrini [13], the process of vortex
annihilation between vortex and anti-vortex pairs is a key mechanism for pushing the sys-
tem toward lower temperatures. Such a vortex annihilation only occurs if the vortices in a
vortex/anti-vortex pair (or dipole) are sufficiently close together, of the order of the vortex core
radius, meaning that they are either already tightly grouped or have been dynamically pushed
together.

Dipoles appear among all temperature states of larger vortex systems and are the struc-
tures that perform the majority of the turbulent mixing due to their fast propagation across the
system scattering and colliding with other vortex structures, this means that dipoles are statis-
tically more likely to be involved in collisions and to cause topological changes of the vortex
state.

The structure of this article is as follows: in section 1.1 we introduce the 2D point vortex
model in the Hamiltonian formulation first described by Kirchhoff [1] and set out the core
mathematical formalism used in our study. In section 2 we briefly review the seminal work
of Aref [5] on three vortex interactions involving the scattering of a dipole via a third isolated
vortex before extending his study to consider the dipole periapsis during the scattering process.
In section 3 we broaden our study to the analysis of the integrable and chaotic four vortex
interaction in dipole–dipole collisions first studied by Aref and collaborators [7, 23, 24] to
examine the non-trivial properties of the dipole dynamics during evolution, before finally in
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section 4 we investigate the interaction of a dipole with a m-vortex cluster and compare the
dynamics to those of a general three vortex interaction of a dipole and an isolated vortex of
circulation mκ with m an integer such that m � 2 and κ the base circulation used in the point
vortex model. Section 5 summarizes our results and give some exciting perspectives on the
future direction of this work.

1.1. The point vortex model

The point vortex model is a system of N point particles of constant circulation that each generate
a corresponding velocity field computed by inverting the curl operator in the vorticity–velocity
relation using the Biot–Savart law. The system evolves according to the collective velocity
field generated by all N point vortices. This system can be expressed in Hamiltonian form
with the position xi = (xi, yi) of each point vortex, labeled by the index i, evolved through
the point vortex evolution equations κi ẋi = ∂H/∂yi, κiẏi = −∂H/∂xi, with Hamiltonian H
given by

H = − 1
2π

N∑
i=1

N∑
j=1, j<i

κiκ j ln
(
lij
)
, (1)

where κi is the circulation of point vortex i, xij = xi − x j and yij = yi − y j are the x and y
distances between two point vortices labeled as i and j, with the square of their distance
defined by l2ij = x2

ij + y2
ij. Here we denote the temporal derivative of a function f by ḟ = d f /dt.

Consequently, the corresponding equations of motion of an individual vortex position can be
expressed as

ẋi = − 1
2π

N∑
j=1, j�=i

κ jyij

l2ij
, ẏi =

1
2π

N∑
j=1, j�=i

κ jxij

l2ij
. (2)

In the infinite domain, the point vortex system possesses a set of symmetries; namely, spatial
translations in x and y, and any arbitrary rotation around a fixed point, that will not lead to any
change in the overall dynamics of the system. These inherent symmetries can be mapped onto
conservation laws through Noether’s theorem [25] which relates the respective symmetries to
the conservation of the linear momentum P and angular momentum M respectively:

P = (Px , Py) =

(
N∑

i=1

κixi,
N∑

i=1

κiyi

)
, M =

N∑
i=1

κi

(
x2

i + y2
i

)
. (3)

The conservation of the linear momentum imply that the central point of circulation xΓ =
(xΓ, yΓ) = (1/Γtot)

(
Px , Py

)
, becomes a fixed point of the vortex dynamics with the total circu-

lation Γtot of the point vortex system defined by Γtot =
∑N

i=1κi.
The equations of motion (2) constitute a 2N dynamical system supported by four con-

servation laws: the Hamiltonian (1), the two linear momentum coordinates, and the angular
momentum (3), meaning that the point vortex system in the infinite domain then has a total of
2N − 4 degrees of freedom.

For small N, it is often convenient to study the point vortex model in a description where the
dynamics of the system is specified by the vortex separation distances lij between pairs of point
vortices and not by the specific frame coordinates. Re-expressing (2) using the conservation
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laws leads to an evolution equation for the square of the separation distances lij [5]:

dl2ij
dt

=
2
π

N∑
k=1,k �=i,k �= j

κkεi jkAi jk

(
1
l2jk

− 1
l2ki

)
, (4)

where εi jk is the Levi-Civita symbol that indicates the orientation of the triangle spanned by the
three vortices i, j, k, taking values −1 if i, j, k are orientated in a clockwise fashion and +1 if
anti-clockwise. Ai jk represents the area of the triangle created by the three vortices i, j, k which
can be computed by Heron’s formula using the known lengths of the triangle sides Ai jk =√

p(p− li j)(p− lik)(p− l jk) with p = (li j + lik + l jk)/2 representing the semi-perimeter of the
triangle spanned by the vortices. We can construct a coordinate-free conservation law from the
original linear and angular momenta, which we denote as R

R = ΓtotM − |P|2 =

N∑
i=1

N∑
j=1, j<i

κiκ jl
2
i j. (5)

The separation length description yields a dynamical system of N(N − 1)/2 degrees of freedom
with two conservation laws: (1) and (5), leading to N(N − 1)/2 − 2 overall degrees of freedom.

1.2. Numerical simulations of the point vortex model

In all of the following work, we perform numerical simulation of the point vortex model
(2) in a infinite 2D domain using an adaptive fourth-order Dormand–Prince Runge–Kutta
method, details of which can be found in reference [26]. All simulations are performed using
an adaptive time-stepping scheme because we found that it was essential for the conserva-
tion of the Hamiltonian (1) and momentum (3). In all our simulations, we set the point vortex
circulations κi = ±1, and a maximum time-step of Δt � 10−3. In all simulations we com-
pute the relative error of conserved quantities to ensure an acceptable level of accuracy is
maintained, we define the relative error for the Hamiltonian at time t as |H(t) − H(0)|/H(0)
where H(t) is the Hamiltonian at time t and H(0) is the computed Hamiltonian from the initial
condition.

2. Three vortex system: dipole–vortex collisions

The three vortex system has been shown to be integrable, with the phase space dynamics char-
acterized by Novikov [4] and Aref [5]. Our interest is in the examination of the special case
in which a dipole interacts with a third isolated point vortex. In terms of turbulent flows com-
posed of a dilute system of point vortices, we expect the dipole–vortex collision to be the
most common interaction and hence the most important type of interaction in terms of vortex
mixing. The dipole–vortex scattering problem was originally studied by Aref in his seminal
work [5], where Aref applied the phase space formalism of Novikov [4] to first characterize
regions of direct and exchange scattering, and then determine analytically the dipole scattering
angle. Apart from a brief review of the mathematical formalism used by Novikov and Aref in
the present section, we leave the precise details of calculations of the dipole scattering angles
(with an unseen mistake corrected) to the supplementary material (https://stacks.iop.org/JPA/
55/385702/mmedia).

The dipole–vortex scattering process can be fully characterized by the setup depicted in
figure 1; we introduce a vertically orientated vortex dipole composed of oppositely signed
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Figure 1. The initial setup of the dipole–vortex interaction. The red circles indicate
positions of the positive circulation κ point vortices, while the blue circle indicates the
negative circulation −κ point vortex.

vortices labeled 1 and 2 with circulations κ1 = κ > 0 and κ2 = −κ respectively that are situ-
ated a horizontal distance L from a third isolated point vortex 3 of positive circulation κ3 = κ.
We limit ourselves to point vortices of identical circulation magnitude to keep our analogy
with quantum vortices in Bose–Einstein condensates. Vortices 1 and 2 of the vortex dipole
are a vertical distance d from each other. We define an impact parameter ρ that quantifies the
vertical distance of the midpoint of the vortex dipole to the center of circulation xΓ = (0, 0)
which we have set as the origin of our coordinate frame. This results in the following values
of the conserved quantities: Hamiltonian H = −(κ2/2π) ln

[
(l13)/(l12l23)

]
→

L→∞
(κ2/4π) ln

(
d2
)

and the linear and angular momenta result in P = (0, 0), M = κ(d2 + 2ρd) leading to the
conversed value of R = κ2(d2 + 2ρd). Also as the three lengths between any two vortices
form a triangle, we must also have the following geometric constraints l12 � l13 + l23, l13 �
l12 + l23, and l23 � l12 + l13. We consider the dipole–vortex interaction process in the limits
of d, ρ � L to ensure that the initial propagation of the dipole is unaffected by the presence
of the third isolated vortex. The phase space analysis of Aref shows there are two types of
interaction possible; direct scattering for large |ρ| where the dipole propagates past vortex 2
with only a deflection in propagation angle occurring, and exchange scattering for small |ρ|
where the dipole positive vortex and isolated vortex exchange, disturbing the initial dipole
structure.

We denote the exact moment of any exchange scattering as the exchange point in this case,
the exchange point is defined when the two distances l12 = l23. Furthermore, we can also define
the critical point of the interaction as the moment during the interaction where the dipole size
is at a local minimum or maximum, of particular interest are the inter-vortex lengths at this
point, which we represent as l∗i j. Note that because of the simple nature of the three vortex
collision, the exchange point and the critical point occur simultaneously, but in more com-
plicated collisions involving more than three point vortices this may not necessarily be the
case. Similarly for direct scattering, the critical point of (4) arises when all three point vor-
tices become collinear with the value of the area of the triangle spanned by the three vortices
A123 vanishing. At this moment, one either has l13 = l12 + l23 (for ρ > 0) or l23 = l12 + l13 (for
ρ < 0). At the interface between the direct and exchange scattering regions we expect that the
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Table 1. Parameter ranges of both ρ, d and θ corresponding to scattering types of the
three regions of the three vortex interaction defined in figure 1. Region II has been
split into two sub regions defined by the sign of C, although the same scattering type
is observed in these regions.

Region C range θ range Impact parameter range Scattering type

I C > 0 1/3 < θ < ∞ −∞ < ρ/d < −1 Direct
IIa C > 0 0 < θ < 1/3 −1 < ρ/d < −1/2 Exchange
IIb C < 0 0 < θ < 8/3 −1/2 < ρ/d < 7/2 Exchange
III C < 0 8/3 < θ < ∞ 7/2 < ρ/d < ∞ Direct

vortices will be trapped in a bounded state of constant rotation as was shown previously by
Aref [5].

Following the works of [4, 5], we introduce dimensionless variables bi for i = 1, 2, 3 defined
in terms of the square of the inter-vortex lengths b1 = l223/(κC), b2 = −l213/(κC), b3 =
l212/(κC), where C is a constant of motion derived from the previous conserved quantity
R, similarly we attain the conserved quantity θ from the Hamiltonian H: θ = |b2|/(b1b3) =
κ|C| exp

(
−4πH/κ2

)
. From this and the vortex separation equation of motion (4), the equation

of motion for b2 is found in order to encapsulate the interaction as a whole

ḃ2 =

⎧⎪⎪⎨
⎪⎪⎩
±

√
θ

Cπb2

√
(α− b2)(β − b2)(γ − b2) for C > 0,

±
√
θ

Cπb2

√
(b2 − ᾱ)

(
b2 − β̄

)
(b2 − γ̄) for C < 0,

(6)

with α, β, γ and ᾱ, β̄, γ̄ all functions of θ, giving the roots of the equation of motion ḃ2 for the
respective values of C. We give the full procedure of introducing dimensionless coordinates and
their relation to real-space vortex dynamics in the supplementary material. From consideration
of which root is encountered first from the initial state defined at t →−∞ we can determine
the boundary of the scattering regions with respect to parameters C and θ. This is displayed in
table 1. Note that although the roots β and β̄ also correspond to the condition l12 = l23, b2 will
always reach one of the other two sets of roots first due to our initial vortex setup defined as
the dipole situated away at infinity. For the dipole scattering process that we have defined it is
only possible to reach these roots in the special cases of θ = 1/3 and θ = 8/3 when β = γ and
β̄ = γ̄ respectively. In these cases the point vortices form a quasi-stable equilateral triangle or
collinear structure that exhibits rigid-body rotation about the center of circulation (confirmed
by our numerical computations).

2.1. Dipole–vortex scattering

Aref [5] used the formalism presented above to determine analytical results for the dipole
scattering angle after interaction with the third isolated point vortex. The analytical results
of Aref are re-derived in the supplementary material with a small mistake corrected, and are
plotted in figure 2 in comparison with numerical results. All numerical simulations in the
dipole–vortex case are performed such that the relative error of the Hamiltonian is conserved to
10−12. Our definition of the scattering angle is only defined for modulo 2π, however in figure 2
we have unraveled the scattering angle to better display the meaning of the asymptotes. Pos-
itive values of Δφ2 indicate an anti-clockwise deflection. We observe excellent agreement
between the theoretical results given in the supplementary material (black dashed curve) and
the numerical data (red circles). For large values of the normalized impact parameter ρ/d
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Figure 2. Unwinded scattering angle of the negatively signed point vortex in the
dipole–vortex interaction with respect to the normalized impact parameter ρ/d. Numer-
ical results using the point vortex model (2) are given by red circles, while the theo-
retical predictions are plotted as the black dashed curve. Also marked are the regions
corresponding to different scattering processes as presented in table 1.

we observe minimal deflection of the dipole as expected. As the impact parameter shrinks,
corresponding to a more direct, head on, propagation of the dipole towards the isolated vor-
tex we observe two clear asymptotes, one between regions I and IIa and another between
regions IIb and III indicating the boundaries between the direct and exchange scattering
regions. The asymptotes correspond to locking of the three vortices into either an equilat-
eral triangle or a quasi-stable collinear structure that undergoes continual rotation—hence
the tend toward an infinite scattering angle. Region IIa and IIb correspond to exchange
scattering where we observe an almost −sinh like behavior. We note that figure 2 slightly
differs from what was originally presented in [5] (figure 11) due to a sign error made in
that paper. These calculations have been corrected and can be found in the supplementary
material.

2.2. Dipole size and the periapsis

As well as quantifying the angle of deflection of a dipole with a third vortex, it is also impor-
tant to examine the dipole size during its propagation. This is an essential piece of dynamical
information if one draws a connection of point vortices to quantum vortices in Bose–Einstein
condensates because quantum vortices can undergo a process of annihilation if they proceed
to interact within a critical distance to each other. Approximately this occurs at the order of the
quantum vortex core radius or healing length ξ ∼ 1 μm. Consequently, the process of vortex
annihilation leads to the reduction of the number of vortices and the generation of sound in
Bose–Einstein condensates [16], which can dramatically change the vortex topology of the
turbulence.
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Table 2. Vortex separations at the periapsis of the three vortex scattering setup given
in terms of the impact parameter ρ and the initial dipole separation d for each region
of interaction. Values are leading order results taken in the limits of initial far dipole
separation: ρ � L and d � L.

Region l∗12 l∗13 l∗23

I d

(
1
4 + 1

2
ρ
d − 1

2

√
− 7

4 − 3 ρ
d + ρ2

d2

)
d
(
− ρ

d − 1
2

)
d

(
1
4 + 1

2
ρ
d + 1

2

√
− 7

4 − 3 ρ
d + ρ2

d2

)

IIa d

√
1 +

√
2
(
1 + ρ

d

)
d
(

1 +
√

2
(
1 + ρ

d

))
d

√
1 +

√
2
(
1 + ρ

d

)
IIb d

√
1 +

√
2
(
1 + ρ

d

)
d
(

1 +
√

2
(
1 + ρ

d

))
d

√
1 +

√
2
(
1 + ρ

d

)
III d

(
1
4 + 1

2
ρ
d − 1

2

√
− 7

4 − 3 ρ
d + ρ2

d2

)
d
(
ρ
d + 1

2

)
d

(
1
4 + 1

2
ρ
d + 1

2

√
− 7

4 − 3 ρ
d + ρ2

d2

)

Subsequently, in this subsection, we will focus on two main quantities: the periapsis—a
term borrowed from celestial mechanics meaning the distance of closest approach—and the
final dipole size post-interaction. In the case of the dipole–vortex interaction considered here,
the final dipole size (post-interaction at t →∞) will trivially equal d due to energy conserva-
tion of the system. The periapsis, can be determined via the roots of (6), as these correspond
to critical points of the differential equation for l̇ 2

i j for all the inter-vortex distances. For the
dipole–vortex interaction the critical points for all the inter-vortex length occur at the same
moment t∗. The critical points of (4) will then be local minimum or maximum lengths of the
inter-vortex distances. Depending on the interaction region, we can then compute the local
minimum or maximum inter-vortex lengths of the formed dipole.

We define variables b∗
i representing the critical distance of the ith dimensionless variable,

simple calculations as found in the supplementary material can then determine the value of
b∗

2, the b variable encapsulating the motion, at the periapsis. Once the value of b∗
2 is found at

the periapsis it is straightforward to determine all the lengths between the vortices using the
relationship between b1, b2, b3 or equivalently l12, l13, l23. Careful consideration of the correct
sign in resulting square roots needs to be applied however, but the resulting lengths of the
periapsis of the scattering process in the limit of ρ � L and d � L are given in table 2. We
verify the analytical results against those obtained from numerical computations using the point
vortex model. Results are displayed in figure 3 where excellent agreement is observed partly
due to the analytical results given in table 2 being O((ρ/L)2) and O

(
(d/L)2

)
accurate in the

limit ρ, d � L.
In figure 4 we plot the global minimum and maximum lengths of the vortex dipole pre- and

post-interaction defined at the critical point t∗. The blue and red dashed lines are numerical
measurements, but agree with the theoretical critical inter-vortex distances presented in table 2
and verified in figure 3. We observe that the two figures are identical as the critical values of
the dipole size are defined either at the initial or end states = d or at the critical point t∗. Note
that in region II, post-interaction the dipole is composed of vortex 2 and 3.

What is noteworthy is that in region I, for negative impact parameters ρ/d < −1, the dipole
distance shrinks during propagation, with the minimum distance achieved at the periapsis point
with size l12 = d/2 when ρ = −d. This implies that the three vortex scattering process can
bring dipoles closer together as much as a factor of two (although only temporarily due to
energy conservation leading to the post-interaction dipole size returning to d). Ultimately, this
could be a viable mechanism for vortex annihilation in compressible point vortex like systems
such as Bose–Einstein condensates pushing quantum vortex dipoles close enough for vortex
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Figure 3. Numerical results compared with theoretical predictions of the critical lengths
in the dipole–vortex interaction with respect to the normalized impact parameter ρ/d.
Dashed lines represent the theoretical predictions of each length determined by the crit-
ical points of (4). Markers represent the numerical results for the corresponding lengths
as indicated by the legend. Note the asymptotic cases at ρ/d = −1 and ρ/d = 7/2
corresponding to rigid-body motion.

Figure 4. Numerical results of the minimum and maximum size of the propagating
vortex dipole pre- and post-interaction with the third isolated vortex. The moment of
interaction is defined via the value of t∗ that indicates the critical point. In region II, the
tracked vortex dipole is that composed of vortex 2 and 3.

annihilation to occur as indicated in [16]. In regions IIa and IIb we observe that l12 = l23 at the
critical point confirming the exchange scattering scenario described previously and that the
exchange scattering occurs at the periapsis with a widening of the dipole vortex (in this case
it corresponds to maximum of the dipole distance during the complete interaction). In region
III, a direct scattering interaction for positive impact parameter, the dipole size increases from
its initial size d during its interaction before returning back to size d. At large impact parame-
ters (both positive and negative) the dipole passes by the third vortex at a significant distance

9
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Figure 5. Initial setup of the integrable four vortex interaction, with the initial dipole
separations defined as d, and impact parameter between dipole midpoints represented as
ρ, and horizontal separation between dipoles L.

meaning any three vortex scattering will be negligible with l12 remaining close to the initial
value d.

3. Four vortex system: dipole–dipole collisions

Here we consider the interaction of two identical dipoles, a specific type of four vortex inter-
action. The four vortex system is in general a non-integrable system, hence analytical methods
cannot be applied. However, the dipole–dipole collision has been studied by both Aref and
Eckhardt [23, 24, 27] where special regimes of integrable motion have been identified and the-
oretical expressions for the dipole scattering angles computed [24, 27]. The integrable cases
arise when the linear momentum and the total circulation of the system mutually vanish, cor-
responding to dipoles forming a parallelogram leading to additional symmetries that enable
one to reduce the mathematics of the four vortex system to an integrable three-body problem
similar to that discussed in section 2. In the following two subsections we will discuss both the
integrable and non-integrable dipole–dipole interactions.

3.1. Integrable dipole–dipole scattering

The integrable dipole–dipole collision corresponds to a configuration where two dipoles prop-
agate along the same geometric axis in the form of a parallelogram. As shown in figure 5. The
parallelogram geometry is preserved during evolution leading to an extra geometrical con-
straint on the motion of the four vortices enabling a mathematical reduction of the system to
an effective three body interaction.

Our initial setup, presented in figure 5, considers two direct facing point vortex dipole each
of size d and circulation strengths ±κ. The impact parameter ρ characterizes the vertical dis-
placement between the midpoints of the initial dipole positions. Parameter L describes the
initial horizontal separation between the two dipoles, and it is in the limit of ρ, d � L in which
we consider. Indeed, the parallelogram geometry allows us to exclude consideration of the
fourth vortex from the system using the relations l34 = l12, l14 = l23, and l224 = 2l212 + 2l223 − l213
to arrive at a three vortex scattering problem, albeit with a more complicated Hamiltonian

taking the form H = −(κ2/2π) ln
[(

l13

√
2l212 + 2l223 − l213

)
/
(
l212l223

)]
−−−→
L→∞

(κ2/2π) ln
(
d2
)
.

In the L →∞ limit, the Hamiltonian gives twice the value of the Hamiltonian in the three-
vortex problem in section 2, as an infinitely isolated vortex contributes no energy to the system.
The corresponding momentum for the integrable dipole–dipole interaction vanishes giving
P = (0, 0), M = 0, and leads to R = 0 if all four vortices are considered.

10
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Table 3. Parameter ranges of C, θ, and ρ/d by interaction region and the corresponding
scattering types of the four vortex interaction, similar to 1. Region II has been split into
two sub regions defined by the sign of C with both regions IIa and IIb exhibiting exchange
scattering.

Region C range θ range Impact parameter range Scattering type

I C > 0 2/3 < θ ρ/d < −1 Direct
IIa C > 0 0 < θ < 2/3 −1 < ρ/d < 0 Exchange
IIb C < 0 0 < θ < 2/3 0 < ρ/d < 1 Exchange
III C < 0 2/3 < θ 1 < ρ/d Direct

Here, it is appropriate to use an effective momentum Reff = 2κ2ρd by considering only the
contributions to R from the three vortices 1, 2, and 3 as the position of the fourth vortex (say
vortex 4) are slave variables to those of the other three due to the conserved parallelogram
symmetry, thus forming the extra conserved quantity Reff .

As in the three vortex case, scattering is encapsulated through the dimensionless variable
b2 as these vortices can not form a dipole and so can be used to track the interaction. Hence
we introduce dimensionless variables as in the three vortex case, with C defined as in the three
vortex case and a slightly different formula for θ on account of the more complicated Hamil-
tonian θ =

√
b2(b2 − 6)/(b1b3) = κ|C| exp

(
−2πH/κ2

)
. From consideration of the equation

of motion between positive vortices 1 and 3 using (4) with the already discussed geometric
constraints and dimensionless bi variables as in the three vortex case we attain the equation of
motion for b2

ḃ2 =

⎧⎪⎪⎨
⎪⎪⎩

2
√
θ

Cπ
√

b2(b2 − 6)

√
(b2 − α)(b2 − β)(b2 − γ) for C > 0,

2
√
θ

Cπ
√

b2(b2 − 6)

√
(ᾱ− b2)(β̄ − b2)(γ̄ − b2) for C < 0.

(7)

As in the dipole–vortex interaction we have three sets of roots for ḃ2, either α, β, γ or ᾱ, β̄, γ̄
depending on what sign the quantity C takes. Note that these are not the same roots as found
in the dipole vortex case, one can consult the supplementary material for full expressions of
the roots in this case, as well as the equation of motion derivation and the relation to physical
dynamics. From this we give in table 3 the four regions of interaction and the parameter ranges
in which they apply.

The boundary case θ = 2/3 corresponds to vortices of the same sign colliding on exactly
opposite trajectories, leading to a double Havelock ring configuration [28] whereupon vortices

form a rhombus with diagonals of length d
√

2
√

2 − 1 and larger diagonal d
√

2
√

2 + 1 rotat-
ing about the center with constant angular velocity φ̇ = ±(κ/2πd2)(3 +

√
2). When C > 0 at

the limit case we have the positive signed vortices colliding along opposite trajectories, it is
these vortices that then form the smaller diagonal and we then have anti-clockwise rotation
of the rhombus, thus vortices take the negative value of angular velocity. Conversely, in the
case that C < 0 it is the negative vortices that collide on opposite trajectories, which then form
the smaller diagonal, and then clockwise rotation is observed. Also, the case when C = 0 cor-
responds to two vortex dipoles colliding head on and is analogous to a vortex ring colliding
head on with a wall using the technique of images. As is expected in this kind of interaction
the exchange scattering leads to new dipoles scattered at right angles to the propagation of the
original dipoles.
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Figure 6. Critical vortex separation lengths in the integrable dipole–dipole interaction.
Theoretical results are plotted as dashed curves given by the formulas in table 4 with
numerical results as colored symbols. The background is shaded and labeled according
to the regions in table 3. Boundaries between regions represented as dashed gray lines
indicate the change from exchange and direct scattering process.

The scattering angle of a vortex dipole in the integrable dipole–dipole interaction has been
found by Eckhardt and Aref [24], we compare this against numerical simulation data and find
total agreement, so the derivation will not be repeated here. As in the dipole–vortex case,
all simulations are performed such that the relative error of the Hamiltonian is conserved
within 10−12.

Now we will examine the evolution of the dipole size in the integrable dipole–dipole colli-
sion. By considering the root first reached by b2, we can, by analysis equivalent to that already
performed in subsection 2.2, determine the periapsis of the variable b2 across the parameter
space. As in the dipole–vortex case, here intervortex lengths will reach their extremum values
at the critical point simultaneously. This is due to the reduction of the system down into an
effective three vortex interaction. Our results at the critical lengths of the vortex configuration
are presented in table 4. Separations for vortices with the fourth vortex are dependent on the
vortex separations between other vortices on account of the additional geometric constraints
and can easily be recovered from the aforementioned conditions. As such they are not presented
here.

In figure 6 we plot the theoretical predictions of the critical vortex separation lengths pre-
sented in table 4 against numerical data obtained from our simulations. We observe complete
agreement between theory and numerical data across all regions of parameter space. We can
ascertain that the initial dipole composed of vortices 1 and 2 shrinks experiencing a direct scat-
tering process when the parameters are in region I and III with the closest critical distance being
attained when the impact parameter ρ/d = −1. Interestingly, the minimal dipole size across
the parameter space is larger than what can be produced in the dipole–vortex interaction at
a distance of l12 = 0.79d as opposed to d/2. Interestingly, at the same value of the impact
parameter ρ/d = −1 the two positive point vortices 1 and 3 approach even closer at a distance
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Table 4. Critical vortex separation lengths of the reduced three vortex system in the
integrable dipole–dipole collision categorized by the regions defined in table 3.

Region l∗12 l∗13 l∗23

I d

√
− ρ

d

√
1 + 1

4
ρ2

d2 − 1
2
ρ2

d2 d

√
− ρ

d

[√
4 + ρ2

d2 − 2

]
d

√
− ρ

d

√
1 + 1

4
ρ2

d2 + 1
2
ρ2

d2

IIa d 4

√
2 + 2

√
1 − ρ2

d2 d

√
2 ρ

d + 2
√

2

√
1 +

√
1 − ρ2

d2 d 4

√
2 + 2

√
1 − ρ2

d2

IIb d 4

√
2 + 2

√
1 − ρ2

d2 d

√
2 ρ

d + 2
√

2

√
1 +

√
1 − ρ2

d2 d 4

√
2 + 2

√
1 − ρ2

d2

III d

√
ρ
d

√
1 + 1

4
ρ2

d2 − 1
2
ρ2

d2 d

√
ρ
d

[√
4 + ρ2

d2 + 2

]
d

√
ρ
d

√
1 + 1

4
ρ2

d2 + 1
2
ρ2

d2

Figure 7. Numerical results of the minimum and maximum size of the propagating vor-
tex dipole pre- and post-interaction defined as the moment t∗ that the critical point is
reached. Post-interaction we track the vortex dipole that includes the negative point
vortex 2.

of l13 = 0.49d at a point where the vortex configuration is in a complicated and tight four vor-
tex structure. In regions IIa and IIb, we observe exchange scattering (l12 = l23) and where the
two dipoles come together and exchange vortices creating two new sets of dipoles that then
propagate away with both new dipoles relaxing back to their initial sizes of d as ensured by the
conservation of energy.

Indeed, the long-time dynamics of the system after scattering is that of two oppositely prop-
agating dipoles of equal size d due to the geometric constraint of the parallelogram (which we
have confirmed numerically). In general, this behavior does not occur in the non-integrable
dipole–dipole collision that we will investigate in the next subsection.

In figure 7 we show the minimum and maximum distances of the vortex dipole involv-
ing point vortex 2. We observe qualitatively similar behavior to the integrable dipole–vortex
collision with the dipole shrinking during direct scattering, but growing during exchange scat-
tering. The pre- and post-interaction symmetry arises due to the critical points occurring at the
moment of collinearity or exchange (see in the next subsection that this is not necessarily the
case in general).
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Figure 8. Setup of the non-integrable four vortex dipole–dipole collision defined by two
parameters, the ratio of the dipole separations from the origin δL = L1/L2, and the angle
of incidence ψ. The four vortices are arranged such that two dipoles of size d with both
orientated such that their trajectories intersect at the origin.

3.2. Non-integrable dipole–dipole scattering

The general non-integrable equally-sized, equal circulation dipole–dipole setup is displayed
in figure 8. Here, two dipoles of size d are situated away from the origin by distance L1 and L2

respectively and orientated with respect to each other by an angle ψ around the origin.
The general initial configuration is fully given by the angle ψ ∈ [0, 2π) and the lengths

L1, L2 ∈ (0,∞). As we are interested in the limit of L1, L2 →∞, we define the ratio δL =
L1/L2, as the limit is taken. Moreover, due to the symmetry of the problem, we find that the
transformation of ψ → 2π − ψ leads to the original configuration if we relabel vortices 1 ↔
3 and 2 ↔ 4 respectively. As this configuration is non-integrable for ψ �= π [23, 24] we are
unable to use analytical methods as in subsection 3.1. Therefore our investigation will be solely
numerical in nature. In [23] Eckhardt performed a brief numerical study highlighting the rich
dynamics of two interacting dipoles in the non-integrable case for both direct and exchange
scattering scenarios. Our goal is to extend this numerical study and examine other aspects of
the dipole dynamics, such as the dipole scattering angle and the evolution of the dipole size
during and after interaction.

The initial vortex configuration of figure 8 gives the following conserved quantities in the
limit L1, L2 →∞: H →

L→∞
κ2

2π ln
(
d2
)

which leads to the usual value of the Hamiltonian

for two infinitely separated dipoles of size d, and linear momentum
P = {−κd sin(ψ),−κd[1 + cos(ψ)]}, and angular momentum M = 0, leading to
R = −2κ2d2[1 + cos(ψ)]. The values of the linear momentum P and subsequently R
are related to the orientation of the right-hand side dipole in the upper half plane. A simple
translation of the angle ψ can ensure that the linear momentum vanishes and the integrable
four vortex case with C = 0 is recovered.

We perform a series of numerical simulations of the point vortex model with initial con-
ditions as presented in figure 8 for several values in the parameter space of ψ and δL with
L1, L2 � d. All numerical simulations are performed in the non-integrable case such that the
relative error of the Hamiltonian is conserved within 10−10.

We begin by characterizing regions of direct and exchange scattering by monitoring dipole
composition in the long time limit. A map of the interaction types observed is presented in
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figure 9. The majority of exchange scattering occurs in a star shaped region (yellow) cen-
tered around ψ = π and δL = 1. This is to be expected as for values of δL ≈ 1 the two dipoles
will be orientated in such a way that a collision with dipoles becoming very close will occur
for any angle ψ. Moreover, if ψ ≈ π then we are close to the integrable dipole–dipole col-
lision with small impact parameter which indicates that an exchange scatter process will be
likely. We observed in both the integrable dipole–dipole collision as well as the dipole–vortex
collision that exchange scattering typically occurs when dipoles undergo extreme collisions
with another vortex. Outside the internal star region (light blue), we observe that the dipole
propagation paths are such that an extreme collision is unlikely and a direct scattering pro-
cess occurs with the two dipoles interacting from a distance leading to a slight deflection
in their prorogation path without destabilizing the dipole structure. Interestingly, there are
regions of exchange scattering close to ψ = 0 and ψ = 2π that swoop out toward the cen-
ter. We have highlighted six specific interactions (a–f) in our parameter space in which we
display the observed vortex interactions. In figure 10 we plot the trajectories of the four vor-
tices during interaction at these specific parameter points. Figure 10(a) shows the two dipoles
missing each other with very little deflection due to the small value of δL ≈ 0.7. Figures 10(b)
and (c) are two types of exchange scattering where a pair of vortices are exchanged between
the dipoles. Notice how the interaction is different in figure 10(c) (which is situated close
to the boundary between direct and exchange scattering) displaying a complicated rotation
between the two dipoles close to the moment of exchange. Interestingly, if we take another
point close to the direct and exchange boundary figure 10(d) we observe similar but more
prolonged four vortex dynamics composed of a rotational dance before the two dipoles prop-
agate away. It is this swirling motion that leads to extremely large values of scattering angle
for the interaction. Moreover, notice that the relative sizes of the two dipole have changed
after undergoing the direct scattering which was something banned in the integrable cases.
In figures 10(e) and (f) we take two sets parameters close to the ψ = 0 and ψ = 2π bound-
aries. This means that both dipoles in both realizations are close to propagating along the same
axis. We observe in figure 9 that both (e) and (f) border the swooping exchange regions mean-
ing that the type of orientation is sensitive to the scattering process. We see an indication of
this in figures 10(e) and (f) where the former is exchange scattering and the latter is direct
scattering. In both cases (e) and (f) a dipole begins propagating behind the initial dipole, at
a very small incidence angle, whereupon as the system evolves the behind dipole eventually
catches up to the dipole in front. If parameters are such that they reside on one of the swooping
‘shark-fin’ exchange scattering curves, we then observe exchange scattering as shown in (e).
Otherwise for parameters off this curve we see the behind dipole deflecting the front dipole
off the initial trajectory with no exchange of vortices, as seen in (f), with both dipoles prop-
agating off in a direct scattering process. We observe, in both cases (e) and (f), a change in
the final dipole sizes (one increasing, the other decreasing in size). The relative change of the
dipole sizes is controlled by the conservation of the Hamiltonian as the final state when the
dipoles are infinitely separated must still lead to H = (κ2/2π)ln(d2) (we will discuss more on
this later).

There are also now two different boundary interactions that occur at the border between
exchange and direct scattering. The first, indicated in figure 10(c), corresponds to Havelock’s
alternating vortex rings [28] that has already been encountered in the integrable case
(section 3.1). The type of interaction observed in figure 10(d) however has not been encoun-
tered before: the motion consists of vortices 1, 2 and 3 forming a rotating structure made up of
a two positive and one negative vortex giving a quasi-stable three vortex structure with a total
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Figure 9. Colormap of the type of interaction observed in the non-integrable
dipole–dipole collision across the parameter space. Light blue regions indicate parame-
ter regions of direct scattering while regions of yellow correspond to exchange scattering
where the initial dipoles exchange vortices during the interaction. Six particular regions
of interest have been highlighted and labeled (a)–(f). The boundary between main direct
and exchange scattering regions are marked by gray dashed curves.

Figure 10. Vortex trajectories from six parameter sets (top row, left to right) (a)
ψ = 1.5, L = 0.7, (b) ψ = 2.9, L = 0.95, (c) ψ = 2.955 325, L = 0.7, (bottom row,
left to right) (d) ψ = 1.5, L = 0.964 925, (e) ψ = 0.031 4159, L = 0.7, and (f) ψ −
6.273 17, L = 0.7. Labels s and f indicate the start and finishing points of the simu-
lation. The dark red and blue curves correspond to vortices 1 and 2, with the pink and
light blue curves vortices 3 and 4.

circulation of κ, which then essentially forms a vortex/anti-vortex pair with the remaining vor-
tex 4 until the structure eventually destabilizes and returns to two coherent dipoles of differing
sizes.

As with the previous numerical simulations, we track the direction of propagation of vor-
tex 2 and determine the corresponding deflection angle Δφ2 = limt→∞ φ2(t) − limt→−∞ φ2(t)
measured only after sufficient time has elapsed post-interaction to ensure that the vortex dipole
is isolated and is propagating only via self-interaction. The scattering angle results are pre-
sented in figure 11. Notice that in the direct scattering regions, there is very little deflection
of the dipole propagation direction when compared to the dipole–vortex collision. This is
a consequence of interaction strength (velocity) of a dipole decaying as ∝ 1/r2, while for
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Figure 11. Heatmap of the scattering angle of the dipole–dipole interaction over the
parameter space. Results are visualized as a colorbar centered at zero, which is taken as
the horizontal axis. Region boundaries between direct/exchange scattering are marked
by gray dashed curves.

a single vortex the decay is ∝ 1/r. This means that the far-field interaction between two
dipoles is weaker than what is experienced in the dipole–vortex scattering process and so
significant scattering only occur when the two dipoles are close or directly impacting. Conse-
quently, we observe significant scattering mainly in or close to the central exchange scattering
region. The inner exchange scattering region is predominantly blue meaning that after an
exchange of vortices, the vortex dipole containing vortex 2 exhibits a negative angle deflec-
tion, i.e. a clockwise deflection. There is a small band of positive angle deflection along
the direct-exchange border region as indicted by the realization displayed in figure 10(d). A
small band of red is observed in the upper left region of the inner exchange region. Notice
the sharp transition from red to dark blue which is due to the 2π winding of our deflection
angle.

Overall, the scattering between two equal strength dipoles is much more regular than what
is observed for dipoles of different strengths. Indeed, the chaotic scattering studied by Aref
and Pomphrey [7] is not observed here. With that being said, there are significant jumps in
the scattering angle Δφ2 at particular points in the parameter space, most notably close to the
boundary of the inner direct-exchange region in the upper left-hand quadrant. The dynamics
of the interaction in these cases involve a longer four vortex interaction that includes repeated
rotation of the vortex system, e.g. the cases presented in figures 10(c) and (d), and is simi-
lar in style to the integrable four vortex case where these boundaries regions correspond to
Havelock’s double alternating rings [28].

Ultimately, we observe that in the dipole–dipole collision that the direct scattering process
is less effective compared to the dipole–vortex collision due to the reduced far-field strength of
a dipole compared to an isolated vortex. However, in the dipole–dipole case, the exchange scat-
tering process is significantly more disruptive to the initial state showing a variety of complex
four vortex interactions.

In figure 12 we plot the minimum and maximum dipole size pre- and post-interaction
defined by the time t∗ which is the time for which the length l13 reaches a critical point,
with pre-interaction defined as the phase of motion t < t∗ and t > t∗ defined as the post-
interaction phase. We observe that the initial dipole size l12 can reduce in magnitude within
the pre-interaction stage during a direct scattering process, in particular with parameters close
to the direct-exchange boundary. In the exchange region, we observe that the minimal distance
remains l12/d = 1 which indicate that the dipole grows, as indicated by the red coloring in
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Figure 12. Minimal (left) and maximal (right) dipole lengths pre- (top) and post-
interaction (bottom) in the non-integrable dipole–dipole collision.

Figure 13. Final dipole separations post-interaction of each vortex dipole (identified by
containing vortex 1 or 3). Each heatmap shows the normalized dipole size by the initial
dipole separation d. The boundary between the main direct-exchange region is shown
by the gray dashed curve.

the maximal distance pre-interaction (figure 12 top right). Interestingly, post-exchange inter-
action we have cases of the newly formed dipole either shrinking (ψ�π) or enlarging (ψ � π)
depending on the initial condition parameters.

In figure 13 we plot the final dipole sizes after interaction. Due to the conservation of H =
(κ2/2π)ln(d2), the final state is always of two dipoles of sizes d1 and d2 such that d1d2 = d2.
This because each dipole contributes (κ2/2π)ln(di), i = 1, 2 to the system energy. This can
be observed in figure 13 from the symmetry of the two dipole distances. We confirmed that
the product of the normalized distances equals 1 for all values of the parameter ψ and δL.
Moreover, by averaging over the parameter range, we also confirm that there is no preference
in the creation of larger or small dipoles, with the average distance being equal to d. For the non-
integrable dipole–dipole collision, the closest a dipole can form is of size 0.016d at parameters
ψ = 6.283 19 and δL = 1.001 88, which is an extreme configuration of two closely chasing
vortex dipole aligned along the same axis of propagation.
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In summary, the non-integrable dipole–dipole collision is the simplest collision where it
is possible for a dipole to become significantly smaller or larger than the initial dipole after
interaction. In the non-integrable dipole–dipole collision energy conservation is maintained
by the relative (opposing) change of the second dipole size. We also see the most complex
interactions occurring near the direct-exchange boundary. This is no more apparent than in
the non-integrable dipole–dipole collision where we have shown examples of a wide array of
complex interactions involving the formation of quasi-stable three vortex structures and the
like. Furthermore, we have shown that direct scattering of a dipole is stronger when with an
isolated vortex due to the weaker decay (∝ 1/r) of an isolated vortex compared to a secondary
dipole ∝ 1/r2.

4. The dipole–cluster collisions

In this section we investigate the interaction of a dipole with an m-sized cluster, that is, a
coherent vortex structure consisting of m same-sign vortices. To be more specific, we study
symmetric clusters with m = 2, 3, 4 identical vortices labeled Cm. Of particular interest here are
questions of cluster stability, approximation by comparison with the dipole–vortex interaction,
new types of interaction that may be possible in such systems, and the distribution of dipole
sizes for such systems. These problems can be considered the most complex of the basic vortex
structure interactions due to the additional degrees of freedom, and will be more relevant to
large vortex configurations that more appropriately resemble turbulent flow.

4.1. Dipole–cluster scattering

A schematic of the initial configuration used in the dipole–cluster collision is presented in
figure 14. The idealized and symmetric structures of the vortex cluster Cm for values m = 1, 2, 3
are also presented. The system is initialized such that a dipole of size d is situated a large
distance L from the cluster, propagating toward the self-induced rotating m-vortex cluster.
The impact parameter ρ is defined as the vertical distance from the center of the cluster to
the dipole. Each m-vortex cluster is configured as a regular convex m-sided polygon, such
that the counter-clockwise rotation of the cluster circumscribes a circle of diameter d. Con-
sequently, we introduce an additional variable ξ that represents the rotational phase of the
cluster, with ξ = 0 taken as the cluster oriented as displayed in figure 14, and hence, each clus-
ter will have rotational symmetry isomorphic to the cyclic group of order m. Simulations are
performed in the cluster cases such that the relative error of the Hamiltonian is conserved to
at least 10−10.

For each simulation of the dipole–cluster collision we perform comparative simulations
with the corresponding dipole-mκ-vortex collision which is a similar set up as shown in
figure 14, but with the cluster labeled C replaced by a single positive point vortex of circu-
lation mκ for m = 2, 3, 4, whose interaction with the dipole should directly correspond to a
generalized three vortex dipole–vortex collision similar in behavior to what we analyzed in
section 2. We expect that for large values of the impact parameters ρ that the two setups will
result in similar characteristics due to the mean-field interactions of the cluster being closely
approximated by a single vortex of circulation mκ. For smaller impact parameters, the analogy
will not be so clear. The cluster structure permits ‘vortex stretching’ in the sense that the clus-
ter vortices are free to rearrange themselves. Sample trajectories of the complex interactions
observed in the vortex–cluster simulations of C3 are presented in figure 15, where we observe
the familiar behaviors of direct and exchange scattering in the top row.
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Figure 14. Initial setup of the dipole–cluster collision. Vortices 1 and 2 form a dipole of
size d situated a distance L from the cluster C. The quantity ρ acts as an impact parameter,
measuring the vertical distance from the center of the vortex dipole to the center of
circulation. The cluster structures C2, C3, C4 are presented on the right.

Figure 15. Sample trajectories of the dipole and C3 interaction for four parameter sets.
The dipole is initialized a distance of L = 15 in each case such that the phase of the
cluster is the same for each trajectory, we then have impact parameters as such; top
left ρ/d = −5, top right ρ/d = 0.25, bottom left ρ/d = 0.275, bottom right ρ/d = 5.
Dipole vortices 1 and 2 are given as red and blue curves respectively, while the remaining
3 vortices initially forming the cluster are given as green curves. Where not immediately
obvious the start and finish points of the simulation are denoted as s and f.

The bottom two trajectories demonstrate more complex interactions not previously possible.
The bottom left shows the cluster breaking up into two C2 clusters, rotating in a continual
expanding spiral in long-range interaction with the lone anti-vortex. This never-ending spiral
expansion is reminiscent of a time-reversed trajectory of a self-similar vortex collapse [29]. If
the time-reversed form of our trajectory is considered, we would observe three vortex structures
spiraling toward the center of vorticity, with this process eventually interrupted as a tight dipole
structure is created which then propagates off to infinity. This may be due to the vortex collapse
solution being unstable, avoiding a true collapse if slightly perturbed, leading instead to a
dramatic change in the distribution of vortex structures. In the bottom right we have an example
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Figure 16. Colormaps of the dipole–cluster interaction types across the phase ξ and ρ/d
for m = 2, 3, 4 (left, center, right). Bottom row are zoomed images of the top row. Direct
scattering and exchange scattering are marked in blue and yellow respectively, while the
new pseudo-exchange interaction type is marked in brown.

of what we label a pseudo-exchange interaction: where the dipole undergoes a series of vortex
exchanges with vortices of the cluster, but ultimately leaves the cluster as a coherent dipole
composed of the same initial two vortices.

Of the four example interactions presented in figure 15, it is only possible to replicate the
direct scattering and pseudo-exchange dynamics in the corresponding dipole-mκ-vortex colli-
sion, as these are the only interactions where the fine internal structure of the cluster does not
influence evolution of the system. A complex exchange cannot occur because the third isolated
vortex is of stronger circulation than the anti-vortex meaning that a vortex dipole cannot be cre-
ated. Interestingly, the generalized dipole-mκ-vortex collision remains an integrable system,
giving hope for new analytical results that are applicable for vortex–cluster collisions for large
impact parameters.

In figure 16 we plot a color-map indicating the types of vortex interactions observed in the
dipole–cluster scattering process with respect to the impact parameter ρ and cluster phase ξ.
For large impact parameters and all values of m we see a clear transition from a direct scattering
process to a pseudo-exchange that varies little across the phase ξ. This follows from the three
vortex interaction as the internal cluster dynamics does not matter significantly when ρ is not
close to 0, so the mean field dynamics can be approximated by an mκ-vortex. However, there
are interesting regions close to ρ = 0 across all cluster simulations where a narrow band of
exchange interactions is spread between the border of direct and pseudo-exchange.

In the bottom row of figure 16 we plot zoomed images of the interaction types around this
region along the bottom row. Around ρ/d = 0 we observe complex band of interaction types
composed of exchange and pseudo-exchangescattering interlaced with direct scattering. As the
cluster size increases, this band is stretch diagonally across parameter space, wrapping around
multiple times in the C3 or C4 cases due to periodicity of ξ.

Moreover, as the strength of the cluster, m, increases, we observe that this complex region
has an extruding tail that becomes thinner meaning that an increasing majority of the parame-
ter space becomes either direct scattering or pseudo-exchange scattering, which by definition
implies that the vortices on the incoming dipole and scattered (out-going) dipole are the same.
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Figure 17. The dipole–cluster (markers indicating different phases) and dipole-mκ-
vortex (solid blue curve) scattering angles compared for m = 2, 3, 4. Regions I and III
indicate direct scattering and region II pseudo-exchange scattering in the dipole-mκ-
vortex simulations. Vertical gray dashed lines indicate numerically observed boundaries
between the regions of interaction.

The tail is mottled with patches of pseudo-exchange scattering which appear at a scale compa-
rable to our resolution used in scanning the parameter space. Therefore, there is a possibility
that these could comprise of even finer detail. What is particularly surprising is how thin the
exchange area is: fractions of the original dipole separation distance d. This indicates that it is
very unlikely the dipole ends up permanently exchanging vortices with the cluster in these types
of interaction; for most of the parameter range we will observe the original dipole propagating
away post interaction.

4.2. Scattering angles

In figure 17 we plot the dipole–cluster and dipole-m-vortex scattering angles versus the normal-
ized impact parameter ρ/d. Each subfigure displays the numerical data for the cluster Cm with
m = 2, 3, 4 (left, middle, right) for three sets of cluster phases ξ, labeled by Cξ

m, as well as the
phase-averaged scattering angles 〈Cξ

m〉. For m = 2, we plot three phases uniformly distributed
over ξ ∈ [0, π), for m = 3, we plot three phases uniformly distributed over ξ ∈

[
0, 2π/3

)
, and

for m = 4, we plot three phases uniformly distributed over ξ ∈
[
0, π/2

)
. The scattering angles

are also compared to those of the respective dipole-m-vortex simulations—in the case for
m = 3 we exclude data if the dipole does not remain coherent. The background colors indi-
cate the direct (regions I and III) and exchange (region II) scattering regions observed in the
corresponding dipole-mκ-vortex simulations, whose scattering angles we also plot via the blue
curves. We observe remarkable agreement between the scattering angles observed in the clus-
ter and mκ-vortex simulations across all impact parameter values. Indeed, we observe only
minor discrepancies close to the asymptotic region close to ρ/d = 0 in a small band of impact
parameter values of width approximately d. It is in fact quite surprising that the agreement is so
good even for ρ/d close to 0 where the vortex dipole collides head on towards the vortex cluster
where we would expect that the extra degrees of freedom provided by the cluster would lead
to more exotic interaction behavior. At the extremes of the impact parameter range presented
we observe indistinguishable deviations between the cluster and mκ-vortex data confirming
our hypothesis that for large impact parameters the three vortex description is an appropriate
approximation.

What is most interesting in the pseudo-exchange interaction range is that the final scatter-
ing angle remains close to that of the dipole-mκ-vortex simulation for the same set of impact
parameters even though the types of exchanges cannot occur in the latter case. While a pure
exchange scattering resulting in a new dipole is not technically possible in the dipole-mκ-vortex
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Figure 18. Final dipole separations normalized by the initial dipole separation d of the
dipole–cluster collisions with m = 2 (left), 3 (center), 4 (right). Only for the m = 3 clus-
ter simulations do we observe disintegration of the vortex dipole and the vortex cluster
indicated by regions colored in black.

case (due to the mismatch of circulations), a partial exchange in the form of a pairing of the
anti-vortex to the larger mκ-circulation vortex can occur in region II (not shown) resulting in the
subsequent spiraling of the negative vortex back toward its originalκ-circulation partner with a
second exchange occurring resulting in the formation of the original dipole. This is reminiscent
of the slingshot effect found in Price [30] and is very surprising that such complex dynamics is
observed in both the dipole-mκ-vortex and dipole–cluster collisions. Ultimately, we observe a
scattering angle picture that is qualitatively similar to the dipole–vortex interaction, with two
asymptotes appearing at boundaries between different types of vortex interactions that corre-
spond to infinite rotation of the anti-vortex. The small band of exchange interactions observed
in figure 16 are all located close to the asymptote which makes it difficult for us to distinguish
any unique behavior. Moreover, we see little to no deviation with respect to change in the clus-
ter phase close to ρ/d = 0 where we would expect it to have a significant influence on the
structure of the interaction.

Subsequently, we can conclude that the mκ-circulation vortex approximates the m-cluster
even better than first thought, with seemingly the only significant discrepancies occurring in
the small region of parameter space where the propagating dipole directly collides with the
cluster leading to complex dynamics that we cannot simulate by the dipole-m-vortex collision.
Moreover, even in the latter cases the scatting angle characteristics remain robust except for
rare ‘reversed collapse’ collisions leading to the splitting of the cluster and loss of the outgoing
dipole.

4.3. Final dipole size

In figure 18 we plot the final separation of the post-interaction vortex dipole in the
dipole–cluster collisions that we consider. We measure the dipole separation post-interaction
once the dipole has traversed a distance of at least L + 100d away from any vortex within
the cluster. We observe similar banding that was seen in figure 16 across the same values
of parameters. (For larger impact parameters—not shown—we simply observe that the final
dipole distance relaxing back to d.) The fact that we only observe variability of the dipole
size within a confined region close to ρ/d = 0 is testament to the close approximation to the
dipole-mκ-vortex interaction. This is because in the latter case the dipole cannot change size
after propagating away for the same reason as the vortex–dipole interaction, due to the conser-
vation of energy. This implies that changes in the final dipole size is due to the direct interaction
of the dipole with the core of the cluster. Moreover, as the dipole size changes precisely in the
same banding regions of the interaction type we see that the exchange interaction leads pre-
dominately to a widening of the dipole (regions colored red), while direct scattering leads to
tightening of the dipole (regions colored blue).
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Figure 19. Final cluster separations normalized by the initial dipole separation d of a
dipole colliding with a 2, 3, and 4 cluster respectively, shown as a heatmap against the
general normalized coordinates ρ/d and L/d.

In the case of the three-cluster C3 we note the possibility of the cluster breaking apart such
as the trajectory found in figure 15 (bottom left). This means that there is no coherent dipole
at later times that can be measured and hence in figure 18 we color code these regions as
black. This type of interaction was only observed for C3 cluster interactions. We speculate that
this may be the result of the odd number of vortices, as the disintegration of the C3 cluster
into two expanding C2 clusters is approximate to the time-reversed vortex collapse solution of
three vortices with circulations (−2,−2, 1) as found by Kudela [29], it may be that a similar
collapse solution does not exist for the other cluster collisions and is the reason why we did
not observe similar behavior for C2 and C4. Across our simulations, we observe that in the C2

case we have a maximum final dipole size of 6.18d and minimum of 0.35d, in the C3 case a
maximum of 4.82d and a minimum of 0.15d, and in the C4 case a maximum of 4.16d and a
minimum of 0.11d. This indicates that the larger the cluster the more extreme the dipole vortex
can shrink in size.

Any change in the final dipole size must be compensated by a corresponding change in
the cluster configuration in order to conserve the total energy of the system. In principle, an
increase of the final dipole will result in the expanding of the vortex cluster and vice-versa.

With regards to figure 17 we have significant dipole scattering throughout a large portion
of the parameter range. In figure 18 however, the expansion or contraction of the dipole only
occurs in a very small subsection of this region, and only in the region where the dipole-m-
vortex approximation seems to breaks down during a head on collision. Moreover, it appears
that the size of the region in which the dipole may change size after interaction decreases as
the number of vortices in the cluster increases. For example, in the C2 case the effective range
for change in the dipole size is between −1.5 < ρ/d < 0.6 whereas in the four-cluster case
this is reduced to −0.6 < ρ/d < 0.2, reducing almost a third in size. This is perhaps due to the
increased impulse on the dipole by the cluster reducing the ability of the internal structure of
the cluster to have an effect. This narrowness is in contrast to the same phenomenon observed
in the dipole–dipole interaction which occurred over a relatively large parameter range. In
essence, we conclude that the dipole–dipole collision is much more effective at changing the
dipole size than the assorted dipole–cluster collisions.

We define the cluster size lCm by first computing the center of vorticity of the vortex cluster
and then taking the average vortex separation distances of the vortices within the cluster to that
center lCm = 1/m

∑m
i=1

√
(xi − x̄)2 + (yi − ȳ)2 where x̄ = 1/m

∑m
i=1xi, and ȳ = 1/m

∑m
i=1yi

with the summations taken only over the vortices within the cluster. In figure 19 we plot a
measure of the the final cluster size across the same parameter range as figure 18.

We observe comparable results to those presented in figure 18. In the case of C2 there is
remarkable agreement between the final dipole and cluster sizes as would probably be expected
as the cluster consists of the same number of vortices as a dipole. For m > 2, the cluster has to
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Figure 20. Probability density functions of the final dipole separations in the
dipole–cluster interaction with C2 (left), C3 (middle), and C4 (right).

contract or expand less to result in the equivalent energy offset that a contracting or expand-
ing dipole would produce. This comes clearly from energy conservation as required by the
Hamiltonian, as the product of the lengths between vortices in the cluster must increase pro-
portionally to an increase in the size of the dipole, this means that as the final dipole size
increases/decreases each individual length between cluster vortices has to increase/decrease
less as the number of vortices in the cluster m increases. This behavior is a characteristic of a
dual cascade turbulent system. The vortex interaction can lead to a tightening of a vortex dipole
which is an analogy of creating finer scale fluctuations (direct cascade of enstrophy) in a fluid
flow. This is compensated by a more coherent vortex cluster at the largest scales (inverse cas-
cade of energy). The fact that these two processes occur simultaneously is a principle outlined
by Fjørtoft [31] for the development of a dual cascade between enstrophy and energy in 2D
turbulence.

We additionally check the distribution of the final dipole sizes in the dipole–cluster colli-
sion by scanning over the parameter range. In figure 20 we present kernel density estimation
to approximate the probability density distribution of the final dipole sizes, where in the case
of C3, we take only the numerical values where a coherent dipole remains post-interaction. We
restrict the interval of impact parameters that we used as this removes a delta-function peak
situated at size d due to infinite states in which the dipole propagates past the vortex cluster at
far distances. However, by averaging only across a range of impact parameters −1.5 < ρ < 2
in the C2 case, −1.2 < ρ < 0.5 for C3, −0.8 < ρ < 0.3 in the C4 case we get the sense of
the likelihood of increase or decreasing the dipole size. As first indicated in figure 18 we see
a propensity for the dipole to increase in size after interacting with larger clusters which is
also compensated by the tendency for more smaller dipoles. We compute the expected dipole
size post-interaction from our kernel density estimates which gives 〈final dipole size〉 = 1.07d
for C2, 〈final dipole size〉 = 1.12d for C3, and 〈final dipole size〉 = 1.19d for C4. There
is a slight increase in the mean as the cluster size grows, but in all cases the values are
close to unity, and the likelihood that these values contain minor errors from the parameter
space resolution of our numerical procedure is strong. Therefore, we cannot say for cer-
tain that these values indicate that the expected dipole distance to be significantly different
from unity.

5. Summary and discussion

We have examined the interaction of a point vortex dipole with a variety of secondary vortex
structures. These results provide important insight into the evolution of larger vortex systems:
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we hypothesize that in large vortex sets, dipole collisions will be the most fundamental interac-
tion mechanism between vortex structures due to the ubiquity of dipoles across all temperature
states and the fact that dipoles are the principle propagating structures. In section 2 we pre-
sented the scattering angle results for the three-vortex dipole–vortex interaction and corrected
an error from [5] in his computation in region III. We investigated the minimal and maximal
dipole separation and showed that while a dipole cannot permanently change its size after
interaction it can temporally grow or shrink for particular impact parameters. Significantly,
we prove that the dipole–vortex interaction can lead to the dipole vortex shrinking down to
a minimum size of d/2 attained when ρ/d = −1 at the critical point of the interaction. In
fact temporary dipole shrinkage is found to occur for parameters ρ/d < −1. This means for
systems where the point vortex analogy makes sense, such as 2D BEC or optical turbulence,
the three vortex interaction could provide a necessary process leading to vortex annihilation
and a reduction in the overall vortex number. This vortex annihilation mechanism is of key
importance when discussing other vortex tangle phenomena, such as vortex reconnections and
sound emission [32] with many works [13, 16, 33] having highlighted the significant role
that the vortex annihilation process has in the mixing of the turbulent states and in decid-
ing the final decay states of the vortex systems. It is worth to note that the presence of sound
in BECs has also been predicted to be a mechanism for the coming together of vortices and
instigating vortex annihilation [16], therefore it would be of interest to see which process is
more efficient in large well-developed tangles. We leave this comparison as a future planned
study.

In section 3.1 we expanded our study to dipole–dipole interactions. For the integrable case,
we observed similar characteristics to the three vortex dipole–vortex interaction. This is due
to the mathematical reduction to a three-body problem similar to the preceding three vortex
interaction with the exception of the more complicated Hamiltonian expression accounting for
the presence of the fourth vortex. We show qualitatively similar scattering behavior but with
less pronounced temporary dipole size fluctuations compared to the interaction with a single
vortex presumably due to the additional fourth vortex that damps the long-range interaction
of the vortex structure. Interestingly, we highlighted several particularly interesting interac-
tions, with one of these being related to the rotating Havelock ring configuration [28] observed
when same-signed vortices collide on oppositely opposed trajectories, and a second being
when the two dipoles interact head on mimicking the interaction of a vortex ring with a solid
boundary.

In section 3.2 we considered non-integrable dipole–dipole configurations where we again
saw the scattering (as in the integrable case) tends to lead to less dipole size fluctuations than
the dipole–vortex collision. We also found that the non-integrable dipole–dipole interaction is
the simplest collision in which persistent dipole growth or shrinkage is possible. We present
a complex array of interactions that can lead to permanent changes in the final dipole size,
where the two final dipoles sizes d1, d2 must grow of shrink according to the relation d2 = d1d2

when infinitely separated due to energy conservation. This has an important physical conse-
quence on the mixing of the vortex tangle and the momentum and energy exchange between
two coherent vortex structures as it is the simplest example in which the vortex structures can
permanently exchange these quantities. When concerned with finding the most effective route
to vortex annihilation, one could conjecture a two-step scenario where the distance between
the oppositely signed vortices is shrinking initially due to the non-integrable dipole–dipole
collisions, which is followed by the final d/2 shrinking due to more frequent dipole–vortex
scattering.

Of course, for a large turbulent vortex flow, a broad variety of vortex structures other than
dipoles and isolated vortices will exist. Therefore, it is prudent to consider what happens when
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dipoles interact with a vortex cluster—we define cluster structures as consisting of more than
two same-sign point vortices. One would expect that the most likely example of cluster inter-
actions will be for a dipole to interact with these vortex clusters as dipoles are the primary
structure propagating quickly across the vortex gas. In section 4 we consider isolated interac-
tions between a point vortex dipole and a symmetric vortex cluster of sizes m = 2, 3, 4. On their
own, clusters of same-signed vortices will freely rotate around their center of vorticity, and in
general (for rationally symmetric clusters) will not translate across the domain by themselves.
Surprisingly, we showed for a significant majority of impact parameters, the dipole–cluster
interactions can be effectively described by a three vortex interaction between a dipole and
a third vortex of circulation mκ. From a far-field prospective this makes sense. At large dis-
tances the propagating dipole only experiences the mean effect of many same-sign vortices
similar to a strong, but isolated, single vortex. In fact, even though we observe more compli-
cated exchange and pseudo-exchange interactions between the dipole and cluster for relatively
small impact parameters (this is due to the extra degrees of freedoms provided by the cluster),
the final state, including the final dipole size and the observed dipole scattering angle, remain
remarkably close to those of the three vortex analogue. Only in a very small band of impact
parameters, that correspond to collisions where the dipole and cluster are very close at inter-
action, where we observe striated regions of direct and exchange scattering, do we observe
any significant discrepancies. Furthermore, these are precisely in those parameter regimes
where there is a significant scattering angle (rapid rotation of more than 2π) and where the
dipole propagates through the center of the cluster interacting with all of the cluster vortices.
In the case of C3 we observed cases of dipole/cluster disintegration leading to ever expand-
ing mixed vortex structures. This is reminiscent of the time-reversed vortex collapse solutions
observed by Kudela [29] in the case of three point vortices with circulations (−2,−2, 1). This
particular collapse solution is interesting as in our simulation, the cluster disintegrates, split-
ting into two two-clusters and a lone negative vortex mimicking the vortex collapse solution
(with opposite circulation signs). This poses questions of stability of the vortex collapse solu-
tion, because in our case, if we reverse time, we do not observe a collapse, but the formation
of a vortex dipole and cluster, meaning that there is a possibility of ‘near collapse’ solutions
that create coherent and stable vortex structures. The particular combination of vortex circula-
tions of the Kudela collapse solution presumably accounts for the lack of cluster disintegration
observed in the dipole interactions with a C2 and C4 clusters as there does not exist a way
to form any vortex collapse solutions with the circulations in these interactions. Thus it is an
interesting open problem whether there exists other vortex configurations that could replicate
time-reversed vortex collapse solutions involving a higher number of point vortices as found
numerically by Kudela [29]. It would be interesting to know the role of the reversed process
in which a tight vortex cluster and dipole quickly appear as a result of partial or frustrated
vortex collapse.

Overall, in the cluster interactions, the added degrees of freedom provided by the additional
vortices means that there are little constraints imposed on the dipole in terms of changing
size. However, we still observe that there is only a significant change when close to the direct
and exchange interaction boundary close to ρ/d = 0. Interestingly, most interactions, apart
from a few exceptions just discussed, still lead to a coherent dipole and a vortex cluster. Any
change in the dipole size, has to be accounted for by a like change in the overall cluster size
due to the energy conservation when the two structures are infinitely apart. The corresponding
change in the cluster size is then proportional to the number of vortices contained within it—as
stipulated by the conservation of energy. (It required less shrinkage of a large cluster to offset
any energy change in the dipole). This process has an interesting ‘dual cascade’ interpretation
where the shrinking dipoles and the tightening clusters manifest an energy cascade to small
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Table 5. Summary of the dynamical quantities in the fundamental interactions in the
point vortex model, with each column giving a different structure that a dipole may
collide with and each row giving a different quantity of interest.

Configuration Three vortex
Four vortex Dipole–cluster

Integrable Non-integrable C2 C3 C4

Minimum dipole distance d/2 (d/
√

2)
√√

5 − 1 0.13d __ __ __
Maximum dipole distance 2d

√
2d 3.05d __ __ __

Maximum final dipole size d d 2.88d 6.18d 4.82d 4.16d
Minimum final dipole size d d 0.016d 0.35d 0.15d 0.11d

〈Final dipole size〉 d d d 1.07d 1.12d 1.19d

scales and the enstrophy cascade to larger scales respectively. In table 5 we provide a summary
of the results of our investigation into dipole sizes across the fundamental interactions that we
consider. Note that dipole sizes during interaction are not given for the cluster Cm cases due
to the difficultly in defining a dipole distance when the dipole interacts with many vortices.
We have investigated only the most basic vortex interactions with a dipole that are likely to
appear in a fully developed turbulent vortex tangle, but we already see interesting dynamics
and processes that could potentially have a significant impact of the topological properties and
structure of a large tangle. We leave it as a future study to examine how common each type of
process is but we imagine that the dipole–vortex, dipole–dipole and dipole–cluster may well be
the most common for relatively random, uncorrelated, and dilute vortex systems. Furthermore,
we have seen evidence that the vortex–cluster interactions appear similar to those of the three
vortex dipole-mκ-vortex interaction that still remains an integrable system with gives hope for
a potential theoretical treatment of vortex interactions using a kinetic theory. Finally, it would
be interesting to investigate the situation of point vortex dynamics in the vicinity of a cluster
of sufficiently large size that it could be represented by a continuous large-scale mean flow.
This could be studied in a kinetic framework similar to [8] where a gas of point vortices were
evolving on a continuous shear flow background.
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