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a b s t r a c t 

Hydrogen sulfide (H 2 S), a gaseous signalling molecule, is important in numerous physiological and pathophys- 
iological processes. Despite its initial identification as an environmental toxin, H 2 S is now well described as an 
essential physiological molecule that is finely balanced to maintain cellular functions, especially in modulating 
mitochondrial activity. Mitochondria are responsible for the oxidation of H 2 S and its safe elimination while main- 
taining mitochondrial biogenesis. H 2 S oxidation in mitochondria generates various reactive sulfur species that 
could post-translationally modify proteins by sulfhydration. Sulfhydrated proteins participate in many regula- 
tory activities either by direct interactions in the electron transport chain or indirect regulation by epigenetics. 
These investigations explain the importance of research of H 2 S as a therapeutic molecule beyond the traditional 
understanding as a protective role through its anti-inflammatory and antioxidant properties. This review focuses 
on highlighting the significant involvement of the H 2 S pathway in vascular diseases and current H 2 S donors for 
therapeutic use under development. 
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. Introduction 

The endothelium is formed by a monolayer of endothelial cells lo-
ated in the inner layer of the vascular wall and continuously exposed
o hemodynamic shearing forces, circulating molecules in the blood and
ediators released from underlying smooth muscle cells. Disturbances
Abbreviations: AR, androgen receptor; AMPK, 5’-adenosine monophosphate-activa  

TP, adenosine triphosphate; b.End3 cells, brain-derived microvascular endothelial  

DKN2A, cyclin-dependent kinase inhibitor 2A; CAT, catalase; CSE KO, cystathionin  

yl disulfide; DATS, diallyl trisulfide; DNA, deoxyribonucleic acid; DJ-1, known as P  

ndothelial nitric oxide synthase; EA.hy926 cells, human umbilical vein cell line; F  

ydrogenase; GATA3, GATA binding protein 3; GSH, glutathione; GYY4137, mor- p  

uman embryonic kidney 293 cells; HUVECs, human umbilical vein endothelial cel  

nterferon regulatory factor-1; Keap1, Kelch-like ECH-associated protein 1; KATP AT  

rogenase; MAPK, mitogen-activated protein kinase; Mn-SOD, manganese-dependent  

xygen species; mPTP, mitochondrial permeability transition pore; Na2S, sodium su  

lear factor erythroid 2-related factor 2; NMDAR1 subunit, N-methyl-D-aspartate re  

eported; ox-LDL, oxidised low-density lipoprotein; PARP, Poly (ADP-ribose) polyme  

ide 3-kinase; PINK1, PTEN-induced kinase 1; PGC, peroxisome proliferator-activated  

TEN, phosphatase and tensin homolog deleted on chromosome ten; PTP1B, protei  

roliferator-activated receptor- 𝛾 coactivator-related protein; RAGE, receptor for adva  

pecificity protein 1; VEGFR, receptor of vascular endothelial growth factor; TRPV6  

one marrow mesenchymal; SIRT1, sirtuin 1; SIRT3, sirtuin 3; USP8, ubiquitin specifi
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ted protein kinase; Akt, protein kinase B; ATP5A1, 𝛼-subunit of ATP synthase;
cells; Bax, apoptosis regulator BAX; Bcl-2, B-cell lymphoma 2; Ca2 + , calcium;
e 𝛾-lyase knockout; COX, cyclooxygenase; Cys, cysteine residues; DADS, dial-
arkinson disease protein 7 (PARK7); Drfp1, dynamin related protein 1; eNOS,
is1, mitochondrial fission 1 protein; GAPDH, glyceraldehyde 3-phosphate de-
holin-4-ium 4-methoxyphenyl-morpholino-phosphinodithioate; HEK293 cells,

ls; HO-1, heme oxygenase-1; ILs, interleukins; IFN 𝛾, interferon gamma; IRF-1,
P, sensitive potassium channel; KLF5, krüppel-like factor 5; LDH, lactate dehy-
 superoxide dismutase; MEK1, map kinase-1; MitoROS, mitochondrial reactive
lfide; NaHS, sodium hydrosulfide; Nrf1, nuclear respiratory factor 1; Nrf2, nu-
ceptor; NOX4, NADPH oxidase 4; NF-KB, nuclear factor-k betta cells; NR, not
rase; PPAR 𝛾, peroxisome proliferator-activated receptor- 𝛾; PI3K, phosphoinosi-
 receptor- 𝛾 coactivator; PP1c, protein phosphatase-1; PC, pyruvate carboxylase;
n tyrosine phosphatase 1B; PP2A, protein phosphatase 2A; PPRC, peroxisome
nced glycation end-products; Runx2, runt-related transcription factor 2; Sp-1,
, transient receptor potential cation channel subfamily V member 6; BMMSC,
c peptidase 8 USP8. 

o the physiological status of the endothelium lead to activated endothe-
ial cells that culminate in vascular dysfunction [1] . Dysfunctional en-
othelium contributes to a pro-inflammatory and pro-thrombotic phe-
otype, which causes disturbances to endothelial homeostasis and im-
air vasodilation-vasocontraction [ 1 , 2 ]. Consequently, endothelial dys-
unction has been described as a hallmark for developing several patho-
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hysiological conditions, including atherosclerosis, diabetes, stroke and
geing-related diseases [ 1 , 3 , 4 ]. Endothelial dysfunction appears to be
 consequence, at least in part, of increased production of highly re-
ctive oxygen and nitrogen species, which are byproducts of normal
etabolism of oxygen. Endothelial cells are exposed to the highest oxy-

en levels in the blood and mainly generate ATP via aerobic glycolysis
5] . Therefore, endothelium is less dependent on mitochondrial oxida-
ive phosphorylation than most cells using the tricarboxylic acid cycle,
iding cells to survive in highly oxygenated environment with a con-
rolled production of mitochondrial reactive oxygen species (ROS). In
his regulated environment, endothelium maintains the regulation of
ascular relaxation and vascular smooth muscle dilation by sustained
itric oxide (NO) production. In addition to NO, there are two more
ases: carbon monoxide (CO) [6] and hydrogen sulfide (H 2 S) that have
een subsequently identified as gasotransmitters. Many evidence sug-
est that the vasoprotective effect of H 2 S either as a direct antioxidant
r via indirect mechanisms. The study of H 2 S as a physiological medi-
tor began with discovering its endogenous production and bioactive
roperties in mammals [7–9] . Further developments in later years led
o the re-evaluation of H 2 S from a toxic molecule to a protective gaseous
ignalling mediator when present at low concentrations [10] , putting it
n a par with the NO and CO [ 11 , 12 ]. 

H 2 S can be synthesized by both endothelial cells and vascular smooth
uscle cells within the vascular wall. The production of H 2 S has shown

o 100-1000 fold higher in smooth muscle (nanomolar) as compared to
ndothelial cell lines (picomolar) allowing H 2 S to act as a smooth muscle
elaxant [13] . In mammals, the desulfhydration of the amino acid cys-
eine is considered as a major source of H 2 S through the transsulfuration
athway mediated by two cytosolic enzymes, cystathionine- 𝛽-synthase
CBS), cystathionine 𝛾-lyase (CSE) and the mitochondrial enzyme, 3-
ercaptopyruvate sulfurtransferase (3-MST). Once generated, H 2 S is

elieved to function as a secondary messenger, and its signalling func-
ions have been explored, including its ability to reduce free radicals,
nteractions with metal centers in the active sites of proteins and post-
ranslational modification of thiol groups in cysteine residues [ 14 , 15 ].

hilst the involvement of H 2 S has been described in almost every cell
nd tissue type, its ability to relieve endothelial dysfunction has gained
uch interest in physiology and pathophysiology [16–18] . 

. Biogenesis and metabolism of H 2 S 

.1. Biogenesis of H 2 S 

The intracellular H 2 S concentration is maintained at a low steady-
tate through a balance between its biogenesis and metabolism [19] .
n mammals, endogenous H 2 S production is catalysed primarily by
he transsulfuration pathway ( Fig. 1 A) [19] . While the pyridoxal-5´-
hosphate-dependent CBS and CSE are mainly located in the cytoplasm,
he pyridoxal-5´-phosphate-independent 3-MST enzyme resides in both
itochondria and cytoplasmic compartments [20] , and utilizes a dif-

erent enzymatic reactions to produce H 2 S. In addition, enzymatic ac-
ivity of cysteine aminotransferase (CAT) produces 3-mercaptopyruvate
3-MP), which is subsequently used by mitochondrial 3-MST for H 2 S
roduction. 

In mammals, the activity of CBS is commonly found in the brain and
entral nervous system [ 21 , 22 ]; preferentially expressed in the glia and
strocytes [23] . While CSE is the main H 2 S -producing enzyme in the
ardiovascular system, H 2 S-generating 3-MST enzyme is ubiquitously
xpressed in all tissues [24] . Unlike CBS and CSE, 3-MST is regulated
n a redox-state dependent-manner rather than by transcriptional regu-
ation [25] . 3-MST contains a redox-sensitive cysteine in its active site
Cys 247 ) that is modified to cysteine sulfenate, resulting activity loss
nder oxidative stress [26] . This also works in favor of restoring cel-
ular redox state by increasing the availability of cysteine to produce
ellular antioxidants such as thioredoxin (Trx) and glutathione (GSH),
ontributing for the cellular redox homeostasis. 3-MST exhibits its activ-
2 
ty in combination with another mitochondrial enzyme, CAT, and there
s a growing interest in the CAT: MST axis for H 2 S synthesis and cell
etabolic rewiring [ 14 , 15 ]. Especially, H 2 S synthesis through this path-
ay is shown to highly dependent on GSH levels [16] interconnecting

ysteine bioavailability for protein synthesis and cellular redox status.
he potential role of 3-MST and CAT on endothelial cell bioenergetics
nd metabolism has been recently reported through 3-MST inhibition
tudies [27] . Silencing 3-MST suppressed the angiogenesis by decreas-
ng mitochondrial respiration, mitochondrial adenosine triphosphate
ATP) production and perturbed the entire endothelial cell metabolome
27] . 

Although there is an apparent overlap in tissue localization, the ac-
ivity of these enzymes can vary under specific conditions. For instance,
SE can be translocated to the mitochondria under the regulation of
om20 in mitochondrial membrane [28] . Since the cysteine level inside
itochondria is about three times than in the cytosol, mitochondrial

ranslocation of CSE increases mitochondrial H 2 S production and ATP
roduction [28] . The accumulation of CBS in mitochondria increased
 2 S, which prevented cytochrome c (Cyt c) release from mitochon-
ria and decreased hypoxia-induced ROS generation [29] . Therefore,
ndogenous H 2 S was identified as an important regulator of energy pro-
uction in mammalian cells when the oxygen supply is limited, such as
n hypoxic conditions. This action of H 2 S was also observed in hiber-
ating animals where metabolic depression is apparent. In addition to
eing formed enzymatically from the substrate cysteine, hibernating an-
mals regenerate H 2 S from its oxidation products, including thiosulfate
nd polysulfides [ 30 , 31 ]. This protective mechanism not only facilitated
TP production during hibernation, but also preserved free cysteine for
ynthesis of a major antioxidant, GSH [30] . 

In addition to the above-mentioned enzymes, recent reports show a
ourth enzymatic pathway regulated by peroxisomal enzyme, D-amino
cid oxidase (DAO) that uses D-cysteine instead of L-cysteine as a sub-
trate to produce 3MP, which is a substrate for 3-MST [24] . Since the
xpression of DAO is organ specific, the usage of D-cystine to produce
 2 S is high in tissues such as the kidney and the cerebellum [ 24 , 25 ].
or example, the production of H 2 S from D-cysteine in the kidney is 60
imes higher than that from L-cysteine [25] . Therefore, administration
f D-cysteine has been suggested as a therapeutic approach to deliver
 2 S to specific tissues [32] . 

The level of endogenous H 2 S production is variable depending on
oth the tissue and experimental conditions used. Endogenous levels of
 2 S have been measured as 10-15 nM in murine brain, but higher con-
entrations of 1 μM were observed in the murine aorta [33] . In vascular
issue, the endogenous production in rat aorta and mesenteric artery are
nferior compared to the rat tail artery and ileum [34] . In healthy hu-
ans, plasma levels were found to be between 70 -125 μM [35] . These

ariations in the H 2 S content suggest that specific tissues demand higher
roduction, which is associated with effective metabolic machinery to
void the accumulation of the gaseous molecule and ultimately toxicity
36] . 

.2. Metabolism and oxidation of H 2 S 

Mitochondrial enzymes play a central role in the catabolism and ox-
dation of H 2 S, which regulates its steady-state levels. The oxidation of
 2 S begins in the mitochondrial matrix and is completed in the inter-
itochondrial membrane space through tightly regulated mitochondrial

ulfide oxidation pathway ( Fig. 1 B) [37] . In the mitochondrial matrix,
 2 S is oxidised by a cluster of mitochondrial enzymes, otherwise known
s sulfide oxidation unit (SOU) that consists of sulfide quinone oxidore-
uctase (SQR), ethylmalonic encephalopathy 1 (ETHE1 or persulfide
ioxygenase, PDO), Thiosulfate sulfurtransferase (TST) and sulfite ox-
dase (SO) [ 38 , 39 ]. H 2 S is oxidised by SQR to generate a sulfane sulfur
S 0 ) by forming a persulfide (R-SSH). This reaction causes the release
f two electrons, which are transferred to the electron transport chain
ETC) via coenzyme Q (CoQ). Persulfide is then oxidised by ETHE1 to
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Fig. 1. Cellular pathways leading to H 2 S synthesis and oxidation. A) CBS catalyses the first step in transsulfuration by converting homocysteine to cystathione, which 
is subsequently cleaved into cysteine and 𝛼‐ketobutyrate by CSE. Mitochondrial 3-MST generates H 2 S via CAT, using L-cysteine and requires the transfer of sulfur 
from a persulfide (RSSH). Persulfides can also act as a source of H 2 S with the aid of reductants such as GSH. B) H 2 S oxidation occurs in mitochondria. H 2 S-reduced 
SQR generates persulfide by accepting a thiol (R-SH). This persulfide is then oxidised to short-lived sulfite (SO 3 

2 − ) via ETHE1 and rapidly convert to thiosulfate 
(S 2 O 3 

2 − ) and sulfate (SO 4 
2 − ) by thiosulfate sulfurtransferase (TST) and SO, respectively. 
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roduce sulfite and further oxidised to SO 4 
2 − by SO or to S 2 O 3 

2 − by TST
40] . 

Apart from oxidation, H 2 S can also be catabolized through methy-
ation, a cytosolic process that yields methanethiol that can be fur-
her methylated to dimethyl sulfide (non-toxic compound) via thiol S-
ethyltransferase (TSMT) [41] . Metabolically, dimethyl sulfide serves

s a substrate for rhodanese forming thiocyanate (SCN¯) and sulfate,
hich is the major end-product of H 2 S clearance [42] . Another H 2 S

atabolism pathway includes H 2 S-scavenging by metalloproteins such
s methemoglobin, forming sulfhemoglobin or forming disulfides such
s oxidised glutathione (GSSG) [43] . H 2 S biosynthesis and oxidation
athways are also connected to other metabolic pathways such as ser-
ne biosynthesis, the folate cycle, and the nucleotides metabolism [44] .
herefore, fine-tuned H 2 S synthesis and oxidation is important not only
o maintain cellular bioenergetics but also for cellular metabolic profile.

. Implications of H 2 S on redox balance 

It is now evident that there are a number of mechanisms whereby
 2 S can potentially influence redox balance. While some reactions occur
ver a relatively short timescale such as free radical scavenge and in-
eractions with the electron transport chain, other H 2 S induced changes
ight operate on a longer timescale. Long-term effectors of H 2 S includes

xygen-sensitive regulation of mitochondrial functions by translocating
SE or CBS under hypoxic conditions [29] . Rapid and long term effectors
f H 2 S-mediated O 2 sensing in cells and tissue is extensively reviewed
n Olson, 2015 [45] . In addition, H 2 S-mediated post translational mod-
fication of cysteine thiol groups in target proteins via S-sulfhydration
also termed as persulfidation), will be described below. 

.1. H 2 S as an antioxidant 

The regulatory mechanisms of H 2 S on endothelial cells as an antiox-
dant could be via several pathways; it can quench free radicals as a
hemical reductant, increase intracellular antioxidants such as GSH and
edoxins or scavenge free radicals by increasing the expression of en-
ymatic antioxidants such as nuclear factor erythroid 2-related factor
 (Nrf2), superoxide dismutase (SOD), CAT or glutathione peroxidase
3 
GPx) [16] . Depending on the local concentration, H 2 S can acts as an
ntioxidant towards ROS and reactive nitrogen species (RNS) such as
ypochlorous acid, hydrogen peroxide, lipid hydroperoxides, superox-
de and peroxynitrite [46] . Even though the calculated rate constants
or the reactions between hydrosulfide (HS - ) and ROS/ RNS are highly
avorable, very low physiological concentrations [47] suggest that H 2 S
as little importance as a direct antioxidant in humans. 

In addition to be a precursor for H 2 S, cysteine is also the source of
SH production. H 2 S in extracellular space has been shown to increase
SH production by inducing a reduction of cystine into cysteine [48] .
 2 S treatments is suggested to enhance 𝛾-glutamyl cysteine synthetase
 𝛾-GCS) activity to increase cellular GSH synthesis and augments the
ocalization of GSH to mitochondria. Since GSH is not synthesised in
itochondria, authors suggested an important role of H 2 S by enhancing

ystine/cysteine transporters and redistribution of GSH to mitochondria
48] . As described before, H 2 S induced GSH production also observed in
ther mammals during hibernation as a protective mechanism against
xidative stress [30] . 

H 2 S administrations has shown to increase other antioxidant pro-
eins such as Trx-1 via Nrf-2 pathway. H 2 S-dependent cardioprotection
as observed in a mouse model of ischemia-induced heart failure, where
rx-1 is upregulated at both gene and protein levels [49] . H 2 S is able
o regulate the activity of several members of the sirtuin (SIRT) family
hat catalyses post-translational modifications of both histone and non-
istone proteins. H 2 S increased the expression of SIRT1 in an oxidative
tress induced cardiomyocytes [ 50 , 51 ] and induced cardio protection
n diabetic rat model [52] . Cardiomyocytes treated with the SIRT1 in-
ibitors reverted the antioxidant protection induced by H 2 S indicating
he importance of SIRT pathway in cells [51] . H 2 S also shown to induce
ther members of SIRT family such as SIRT3; a major regulator of mito-
hondrial function [53] and nuclear located SIRT6 [54] , to exert either
hysiological or pathophysiological effects. 

.2. H 2 S and mitochondrial respiratory oxidation 

The influence on mitochondrial respiratory chain is one of the main
athways that H 2 S helps to maintain the cellular redox balance. The
bsence or reduced ability of O to act as the terminal electron accep-
2 
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n  
or such as in hypoxic conditions could prevent electron flow along the
espiratory chain followed by accumulation of H 2 S in mitochondria. A
ecent report described a genetic defect in SQR gene in patients with
eigh syndrome. Patients presented with abrogated SQR enzyme activ-
ty and decreased mitochondrial complex IV activity with intermittent
ccumulation of H 2 S [55] . Excess accumulation of H 2 S was also reported
n patients with pathogenic variants in ETHE1 [56] . Both CoQ deficient
n vitro and in vivo models caused a reduction in SQR levels and activ-
ty leading to an impairment of H 2 S oxidation with accumulation of H 2 S
nd depletion of the GSH system [57] . However, the regulation and in-
erplay between these pathways is still a developing field. Recent studies
uggest that CoQ supplementation increases SQR expression, thus induc-
ng the H 2 S oxidation pathway whilst down-regulating CSE and CBS in
he transsulfuration pathway [44] . 

The pathological consequences of H 2 S accumulation are associated
ith its capacity to exhibit toxicity at high concentrations by binding

he copper center and blocking cytochrome oxidase (complex IV), com-
romising the functioning of the mitochondrial ETC [36] . H 2 S interacts
ith ETC via two ways: firstly by transferring sulfide-derived electrons
t the level of complex III via the reduced quinone and into the complex
V via reduced Cyt c [58] ; secondly by transferring electrons to ETC via
yt c that bypass the complex III to increase ATP synthesis [59] . During
he process of H 2 S mediated Cyt c reduction, generation of a mixture
f reactive sulfur species (RSS) including SO 3 

·− , SO 2 
·− , H 2 S 2 

·− was ob-
erved [58] . Due to their highly reactive nature, these products readily
educe O 2 to form superoxide and then H 2 O 2 . In turn, H 2 O 2 and reac-
ive sulfur species reoxidised Cyt c to its original state for further H 2 S
emoval [58] . 

.3. H 2 S-Induced protein sulfhydration 

Owing to its unique sulfur containing functional -SH, cysteine
esidues play a ubiquitous role in protein structure and function. Cys-
eine thiol groups react with ROS, RNS or reactive sulfur species
RSS) to produce various post translational modifications on proteins
 60 , 61 ]. While oxidative modifications such as S-nitrosylation (-SNO), S-
ulfenylation (-SOH) are reversible modifications, higher modifications
sulfonic acids) result protein or enzyme deactivation [62] . Sulfhydra-
ion is a reversible post-translational modification resulting from the
onversion of a thiol group (R-SH) to a persulfides (R-SSH) [63] . How-
ver, as reductants, H 2 S or HS - cannot directly react with protein thiols.
ulfhydration can occur by nucleophilic attack of an HS¯ anion on the
ulfur atoms of disulfides, -SNOs or -SOH, as well as by transsulfation
eactions. RSS)generated as a result of H 2 S oxidation can react with
rotein thiols to generate protein sulfhydrates (persulfidates). Sulfhy-
ration could change the original function of proteins, serving as im-
ortant switchers or regulators in many physiological and pathophysio-
ogical processes. 

.3.1. Sulfhydration of cytosolic proteins 

Research now demonstrates that RSS could sulfhydrate proteins un-
er physiological conditions, accounting for 10-25% of liver proteins, in-
luding actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase
GAPDH) [14] . This highly abundant post-translational modification has
hown to affect a variety of cellular signalling and biological pathways
 Table 1 ). Sulfhydration can modify enzymatic activity of proteins, ac-
ivity of ion channels, nuclear localization of proteins [10] . For example,
ndothelial nitric oxide synthase (eNOS), which causes vasodilation, can
ulfhydrate the same cystine residue (Cys 443) that undergoes nitrosy-
ation. H 2 S releasing donors increased eNOS activity by eNOS dimeriza-
ion via sulfhydration dependent mechanism [64] . Another protein that
oses its nitosylation site to sulfhydration in the presence of H 2 S is the
hosphatase and tensin homolog deleted on chromosome ten (PTEN).
TEN is a phosphatase that suppresses the activity of the class I phos-
hoinositide 3-kinase/AKT signalling pathway. Sulfhydration of PTEN
4 
as shown to inhibit its enzymatic activity under physiological condi-
ions [65] . The regulation of ion channels by means of post-translational
odification enables cells to respond to changing environments. Sulfhy-
ration activated ATP-sensitive potassium (K ATP ) ion channels that con-
rol membrane potential and cellular excitability [66] and Ca 2 + flux via
ultiple Ca 2 + transient receptor potential (TRP) ion channels [67] . H 2 S-

nduced sulfhydration has been reviewed previously in relations to its
iverse roles in pathophysiological processes [68] . 

.3.2. Sulfhydration of mitochondrial proteins 

Change to mitochondrial activity were either observed as direct
ulfhydration of mitochondrial proteins or through indirect actions of
ulfhydrated cytosolic proteins. Módis and collaborators found that
ulfhydration of alpha subunit of ATP synthase (ATP5A1) at Cys 244 

nd Cys 294 in response to H 2 S exposure [69] , where the modification
ncreased ATP synthase activity and stimulated mitochondrial bioen-
rgetics in HEK293 and HepG2 cells. This observation was also con-
rmed by reduced levels of sulfhydrated ATP5A1 and ATP synthase ac-
ivity in the livers of CSE knockout mice [69] . While this is an inter-
sting observation, it remains to be examined whether S-sulfhydration
f ATP synthase occurs in other cell types and their exact functional
ole. S-sulfhydration of interferon regulatory factor 1 (IRF-1), a mito-
hondrial transcriptional factor that is involved in mitochondrial bio-
enesis pathway, enhances mitochondrial DNA replication and cellular
ioenergetics via modification of TFAM promoter [70] . Thereby sulfhy-
ration mediates epigenetic regulation of TFAM, which leads to pro-
otion of methylation and maintenance of mitochondrial DNA. SIRTs

nzymes and PARPs can utilize NAD 

+ , a cofactor required for mitochon-
rial function that is upregulated by H 2 S in the vascular endothelium
71] . Sulfhydration of SIRT3 enhance its catalytic activity leading to
eduction of mitochondria dysfunction, improvement of mitochondrial
TC performance and ATP production in the vasculature [72 , 73] . The
a 2 + /calmodulin-dependent protein kinase II (CaMKII) is a key regula-
or of calcium signaling in health and disease. Treatment with H 2 S in-
ucer drugs, S-propyl-L-cysteine (SPRC) or sodium hydrosulfide (NaHS),
ttenuated the development of heart failure in animals and preserved
itochondrial function via sulfhydration of CaMKII at Cys 6 [74] . The

ntrinsic apoptotic pathway is initiated by the release of Cyt c, a mito-
hondrial intermembrane space protein, to the cytoplasm. H 2 S in known
o regulate Cyt c release by maintaining mitochondrial membrane po-
ential ( ΔΨm) [75] . Vitvitsky et al, 2018 showed that reduction of Cyt
 by H 2 S increased the formation of RSS allowing the proteins in close
roximity, such as procaspase 9 to be sulfhydrated [58] . 

Nonetheless, it is important to maintain intracellular sulfanesulfur
omeostasis. In this context, redox systems such as thioredoxin (Trx)/
rx reductase (TrxR1) and glutaredoxin (Grx)/glutathione reductase
GR)/GSH play a vital role. Elevated levels of protein sulfhydration was
bserved in mouse livers where hepatocytes lack both TrxR1 and GR
uggesting the importance of reducing systems [76] . The increased Trx
evels is associated with HIV-1 infection and these patients had signifi-
antly lower total sulfanesulfur levels compared to patients treated with
ntiretroviral therapy. This evidence suggests a role for the mitochon-
rial Trx system as regulator of protein sulfhydration [77] . 

Thus, by enhancing mitochondrial cellular function and bioenerget-
cs via target protein sulfhydration, H 2 S helps to protect mitochondria
gainst a variety of stressors. The advent of H 2 S releasing drugs, espe-
ially mitochondrial-targeted, should permit considerable insight into
his field. 

. Therapeutic strategies for H 2 S donors 

Considering the mounting evidence of potential therapeutic option
n a range of conditions, a wide range of commercially available H 2 S
onors including sulfide-containing salts, H 2 S-releasing prodrugs and
atural products containing sulfur have been investigated [107] . Com-
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Table 1 

Sulfhydrated proteins involved in a range of cellular functions. Effects of sulfhydration on the activity of identified proteins involved and its cellular and subcellular 
function. (NR: not reported). 

General Function Protein Sulfhydrated Modified Cysteine Cellular Effect Reference 

Cell Signalling eNOS 443 Promotes eNOS phosphorylation and dimerization [64] 
GAPDH 150, 156, 152 Inhibition of GAPDH catalytic activity and enhanced nuclear 

translocation 
[14] [78] 

PC 265 Promotes gluconeogenesis [79] 
PTEN 71, 124 Inhibits s-nitrosylation of PTEN [65] 
PTP1B 215 Inhibits PTP1B activity and thereby promotes PERK activity 

under ER stress 
[80] 

PP1c 127 Promote eIF 𝛼 phosphorylation resulting in inhibition of 
general protein synthesis 

[81] 

PPAR 𝛾 139 Increases PPAR 𝛾 nuclear accumulation, induce adipogenesis [82] 
RAGE 259, 301 Prevents RAGE-mediated oxidant pathological effects [83] 
Sp1 68, 75 Enhances VEGFR2 expression and maintain vascular 

homeostasis 
[84] 

SUR1 subunit of K ATP 6, 26 Activates K ATP channel [66] 
SUR2B subunit of K ATP 24, 1455 Reduces the tyrosine nitration of Kir6.1 [85] 
TRPV6 172, 329 Induces Ca 2 + influx and maintains bone homeostasis [67] 
Hrd1 115 Regulates VAMP3 ubiquitylation and prevents CD36 

translocation 
[86] 

Transcription Factors SIRT1 NR Increases its deacetylase activity, reduced its degradation 
and endothelial inflammation 

[87] 

GATA3 84/182, 84/248 Inhibits GATA3 nuclear translocation and differentiation of 
splenocytes 

[88] 

Keap1 151 Activates Nrf2-target signalling and ameliorates cellular 
oxidative stress 

[89–91] 

Apoptosis and Cell proliferation Kir6.1 subunit of K ATP channel 43 Stimulates vasorelaxation and hyperpolarization [92] 
MEK1 341 Stimulates nuclear translocation of phosphorylated ERK 

leading to PARP-1 activation and repair DNA damage 
[93] 

AR 611, 614 Inhibits AR-DNA binding activity and AR dimerization, 
which suppress cancer proliferation 

[94] 

Akt 77 Contributes to activation of protein kinase GSK3 𝛽 [95] 
Caspase 3 163 Inhibits protein activity [96] 
p65 subunit of NF-KB 38 Anti-apoptotic actions in liver and inhibits ox-LDL-induced 

macrophage inflammation 
[ 97 , 98 ] 

Runx2 123, 132 Promotes osteoblast differentiation and maturation [99] 

Mitochondrial Function ATP5A1 244, 294 Stimulates ATP synthase activity [69] 
DJ-1 106 Prevents irreversible oxidation of DJ-1 to maintain 

mitochondrial redox balance 
[100] 

IRF-1 53 Increases TFAM expression to maintain mitochondrial DNA 
replication 

[70] 

LDHA 163 Stimulates LDH activity by increasing NAD + generation and 
enhances mitochondrial bioenergetics 

[101] 

PP2A NR Inhibits PP2A activity, which leads to AMP kinase activation [102] 
p66Shc 59 Prevents mitochondrial reactive oxygen species production [103] 
Parkin 59, 95, 182 Activates E3-ubiquitin ligase activity of parkin, which 

induces degradation of misfolded proteins and reduces 
neuron cell death 

[104] 

PPRC NR Promotes murine mitochondrial biogenesis [105] 
PGC-1 𝛼 NR Stimulates mitochondrial biogenesis [105] 
SIRT3 256, 259, 280, 283 Increases deacetylase activity and improves mitochondrial 

function 
[53] 

USP8 NR Increases association of parkin with USP8, which promotes 
mitophagy 

[106] 

m  

l

4

 

a  

T  

e  

t  

a  

(  

u  

b  

t  

d  

[  

e
 

H  

a  

f  

a  

w  

w  

r
 

b  

d  

f  
on H 2 S donors and their specific vascular effects at the subcellular
evel are summarised in Table 2 . 

.1. General H 2 S donors 

Sulfide-containing salts such as NaHS and disodium sulfide (Na 2 S)
re common fast releasing H 2 S donors used in vitro and in vitro.
hese donors have displayed cytoprotective actions in vascular mod-
ls through direct modulation of mitochondrial biogenesis and func-
ion [ 105 , 108 , 109 ]. Lawesson’s reagent has been widely used to gener-
te H 2 S-releasing compounds. For example, commonly used GYY4137
morpholin-4-ium-4-methoxyphenyl phosphinodithioate) is synthesised
pon reaction with morpholine [110] . GYY4137 is water soluble and is
elieved to release H 2 S at a controlled rate under physiological condi-
ions. Furthermore, H S release from GYY4137 is pH and temperature
2 

5 
ependent, with a greater release at acidic pH’s and higher temperatures
110] . In vascular endothelium, GYY4137 can protect mitochondria and
ndothelial cells from oxidative stress [111] . 

Allium vegetables, such as garlic and onion are known to contain
 2 S generating molecules. Garlic contains 𝛾-glutamyl-S-allyl-L-cysteine
nd S-allyl-L-cysteine sulfoxides able to generate H 2 S by chemical trans-
ormation [112] . Diallyl disulfide (DADS) and diallyl trisulfide (DATS)
re both derived from garlic and act as H 2 S donors when they react
ith biological thiols including GSH. However, whereas cell treatment
ith DADS observed impaired mitochondrial function [113] and DATS

educed mitochondrial ROS production [114] . 
A novel H 2 S prodrug, SG1002 has been observed to promote H 2 S

ioavailability in heart failure patients [115] . In a murine model with in-
uced transverse aortic constriction, SG1002 preserved cardiac function
ollowing activation of a VEGF-Akt-eNOS-NO-cGMP signalling path-
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Table 2 

H 2 S donors. Summary of H 2 S donors and their effects on cellular function with a focus on mitochondrial activity. ↑ Denotes activation or increase, ↓ Denotes 
attenuation or decrease. 

Compound Model Target Outcome References 

Na 2 S (10-500 μg kg − 1 ) (1-50 μM) Mice cardiomyocytes Mitochondrial ETC, Mitochondrial 
Complex II 

↑ mitochondria 
function/appearance ↓myocardial 
infarct size, inflammation, 
apoptosis 

[108] 

GYY4137 (12.5-100 μM) EA.hy926 cells Redox steady state, SIRT3 
expression, MAPK 
phosphorylation, Antioxidant 
enzymes 

↑ endothelial function, 
mitochondria respiratory 
capacity/membrane potential 
↓oxidative stress, apoptosis 

[90] 

(100 μM) HPAEC cells PI3K pathway and Redox steady 
state 

↑ alveolar network formation, 
mitochondrial membrane potential 
↓oxidative stress, apoptosis 

[133] 

(0.25 mg kg − 1 250 μM) Mice glomerular endothelial cells NMDA-R1 subunit, mPTP channel 
Ca 2 + channel Mitochondrial 
cyclophilin D 

↓ renal injury, oxidative stress 
Mitigate Ca 2 + channel expression 
Prevent mPTP opening 

[134] 

NaHS (100-300 μM) Rat cardiomyocytes Redox steady state, Antioxidant 
enzymes, Mitochondrial Complex 
IV 

↓ ischemia/reperfusion injury, 
oxidative stress 

[135] 

(50-300 μM) b.End3 microvascular endothelial 
cell diabetic rats 

Cellular DNA and PARP pathway, 
Mitochondrial membrane 
potential, Redox steady state 

↑ mitochondrial and cellular 
function 

[109] 

(10 μM) HEK293 cell CSE KO mice ATP5A1 sulfhydration ↑ mitochondrial bioenergetics [69] 

(30 μM) CSE KO mice hepatocytes Mitochondrial DNA and Complex 
V, Nrf2/1- transcription factors, 
PPRC, PGC-1 𝛽, Tfam expressions/ 
activity 

↑ mitochondrial biogenesis ↓ tissue 
damage 

[105] 

(100 μM) Rat aortic endothelial cells Redox steady state, Antioxidant 
enzymes, Apoptosis pathway, 
Mitochondrial fission/fussion 
pathway, PINK1/Parkin signalling 

↑ mitochondrial membrane 
potential, mitophagy ↓ oxidative 
stress, apoptosis 

[136] 

AP39 (30-300 nM) b.End3 mice microvascular 
endothelial cells 

Mitochondrial ETC activity and 
complexes II/III, Redox steady 
state, LDH pathway 

↑ mitochondria activity ↓ oxidative 
stress, hyperglycemic injury 

[ 130 , 129 ] 

(1 μmol kg − 1 ) Sprague Dawley rats Akt/ eNOS phosphorylation, PTP 
channel 

↓ infarct size, renal inflammation ↑ 
post-ischaemic recovery 

[137] 

(10 ng/ml) HUVECs SRSF2 and CDKN2A genetic 
expression, Cytokines expression 

↓ inflammation, senescence [131] 

AP123 (30-300 nM) b.End3 mice microvascular 
endothelial cells 

Mitochondrial ETC activity and 
complexes II/III, Redox steady 
state, LDH pathway 

↑ mitochondria activity ↓ oxidative 
stress, hyperglycemic injury 

[130] 

DADS (1 mM) CD-1 mice cells Redox steady state, Antioxidant 
enzymes 

↑ lipid peroxidation, mitochondria 
membrane depolarization, 
oxidative stress 

[113] 

50 mg kg − 1 25 μM Sprague-Dawley rats H9c2 cells PGC1 𝛼/Tfam/Nrf2/eNOS 
expressions, Apoptosis pathway, 
Antioxidant enzymes, 𝛼-skeletan 
actin expression, Citric acid cycle 

↑ mitochondrial 
function/apoptosis/ biogenesis, 
NO bioavailability ↓oxidative 
stress, cardiac hypertrophy 

[138] 

DATS (100 μM) HUVECs Redox steady state, Apoptosis 
pathway, AMPK pathway, 
mitochondrial dynamic and 
membrane potential 

↑ mitochondria function ↓
mitochondrial 
apoptosis × mitochondrial fission 

[114] 

SG-1002 20 mg kg − 1 CSE KO mice Akt/eNOS phosphorylation, 
VEGF/NOX4/HO-1 expression 

↓ oxidative stress, fibrosis, cardiac 
enlargement, mitochondria 
function 

[139] 

20 mg kg − 1 CSE KO mice H9c2 cardiomyocytes AMPK phosphorylation, 
mitochondrial DNA, PGC-1 𝛼
pathway 

↑ mitochondria 
respiration/biogenesis/ content 

[102] 

ATB-337 (10-50 μmol kg − 1 ) Wistar rats COXs/ TNF- 𝛼 activity ↓ inflammation. Platelet 
aggregation, intestinal tissue 
damage, gastric mucosa injury 

[140] 

ATB-429 (25-130 mg kg − 1 ) Mice Cytokine expression ↓ inflammation, severity of colitis [141] 

ATB-346 (16 mg kg − 1 ) Mice COX-2 activity ↓ intestinal manipulation. [142] 

( continued on next page ) 
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Table 2 ( continued ) 

Compound Model Target Outcome References 

ATB-352 (4.6-46 mg kg − 1 ) Mice Involvement of the endogenous 
cannabinoid system 

↓ gastrointestinal toxicity and 
nociceptive response to noxious 
stimuli 

[143] 

SG-1002 (20-40 mg kg-1 day-1) Mice VEGF-Akt-eNOS-NO-cGMP 
signalling pathway 

↑ cardiac function [144] 

GIC-1001 (30-60 mg kg-1) Mice Activation of peripheral opioids 
receptors 

↓ nociceptive response to noxious 
stimuli 

[145] 

MZe786 
(20 mg kg-1) 

Mice Rescuing mitochondrial activity ↓ hypertension and renal damage ↑ 
cardiac mitochondrial biogenesis 
and antioxidant defence 

[ 121 , 146 , 147 ] 

Sodium thiosulphate (0.15 g/250 
ml over 15 min) 

Humans Anti-inflammatory and antioxidant 
effects are linked to its reaction 
with mitochondrial thiosulfate 
sulfurtransferase 

↓ systolic blood pressure an hour 
after administration ↑ cardio 
protection 

[148] 

ACS94 (20 mg kg-1) Sprague-Dawley male rats Metabolic pathways relating to 
Hcys, Cys, GSH (by TSP pathway) 

↑ GSH and circulating H 2 S ↓
Homocysteine 

[149] 

ACS6 (10pM-1μM) PAECs Adenylyl cyclase-PKA pathway ↑ NADPH, cAMP ↓Superoxide 
formation and phosphodiesterase 
type 5 activity 

[150] 

ACS67 (5 μl of 4 nM solution RGC-5 Attenuates the process of 
oxidative-induced RGC-5 cell death 

↑ GSH ↓ H 2 O 2 -induced toxicity [151] 

ACS84 (0.25-10 μM) BV-2, neurons isolated from 

hippocampus of Sprague Dawley 
rats 

Phosphorylation of p38- and JNK ↑ Mitochondria function ↓
cytotoxicity and inflammation 

[152] 
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ay in cardiomyocytes. Furthermore, mitochondrial functions were pre-
erved, oxidative stress was attenuated, and increased myocardial vas-
ular density were observed following the administration of SG1002.
tudies demonstrate that H 2 S treatments could stimulates endothelial
ell proliferation, migration and tube formation in vitro [116] . H 2 S in-
erventions were associated with an increase in vascular endothelial
rowth factor (VEGF) expression and activation of its receptor, stim-
lating angiogenesis in vivo [117] . 

Previous work by Wang and colleagues demonstrated that the in-
ibition of CSE results in the increased production of antiangiogenic
actors, such as soluble Fms-Like Tyrosine Kinase-1 (sFlt-1) and soluble
ndoglin (sEng) and the administration of H 2 S donors had been shown to
uppress sFlt-1 and sEng in endothelial cells [118] . Antiangiogenic fac-
ors such as sFlt-1 could inhibit the mitochondrial respiration and pro-
ote mitochondrial-specific superoxide production in endothelial cells

119] . Recently we described how H 2 S produced by CSE pathway main-
ains endothelial mitochondrial bioenergetics and loss of CSE increases
he production of mitochondrial-specific superoxide [120] . MZe786, the
DTOH H 2 S donor linked with aspirin, has been explored and observed

o improve outcomes in mice with a compromised CSE pathway and/or
n increased expression of sFlt-1. MZe786 was employed in both HO-1
aploid deficient (Hmox1 + / − ) pregnant mice in a high sFlt-1 environ-
ent and a refined reduced uterine perfusion pressure (RUPP) model to
imic preeclampsia in C57Bl/6 J mice [ 121 , 122 ]. MZe786 was found to

orrect the induced preeclampsia state by reducing blood pressure and
enal damage. Additionally, the overexpression of sFlt-1 has been ob-
erved to inhibit cardiac mitochondrial activity in the same Hmox1 + / −
ouse model [123] . Moreover, MZe786 was found to rescue mitochon-
rial activity by stimulating cardiac mitochondrial biogenesis and an-
ioxidant defence in Hmox1 − / − mice and in Hmox1 + / − mice exposed
o a high sFlt-1 environment thus improving outcomes. 

Sodium thiosulfate in its role as a H 2 S producer shows beneficial
roperties and is currently being investigated in phase I trial for poten-
ial benefits in patients with acute coronary syndrome and undergoing
oronary angiography [124] . Furthermore, anti-inflammatory and an-
ioxidant effects of thiosulfate are linked to mitochondrial thiosulfate
 a

7 
ulfotransferase induced sulfur transfer to GSH and thioredoxin, thus
romoting thiol-dependent antioxidative mechanisms [125] . In addi-
ion to these H 2 S generators, currently available endogenous inducers of
 2 S-generating enzymes include S-adenosylmethionine (SAM), epider-
al growth factors (EGF), S-nitroso-N-acetylpenicillamine (SNAP) and
icroRNAs-21 [ 21 , 23 , 126 , 127 ]. Recently, it was reported that admin-

stration of SAM could potentially inhibit vascular endothelial growth
actor-A-related diseases induced by adverse effects of long-term treat-
ent of levodopa (L-dopa) [128] . 

.2. Mitochondrial targeted H 2 S donors 

More recently, special attention has been given to the mitochondrial
argeted drugs. Mitochondrial-targeted H 2 S donors, including AP39 and
P123, improved mitochondrial function in glucose oxidase-induced
xidative stress in endothelial cells and restored vascular homeostasis
129] . AP39 treatment attenuated endothelial senescence and protects
gainst oxidative stress in acute renal injury and hyperglycemic injury
 130 , 131 ]. Both AP39 and AP123 have been observed to decrease hyper-
olarisation of the mitochondrial membrane and inhibit mitochondrial
xidant production whilst increasing the electron transport at respira-
ory complex III thus improving cellular metabolism [132] . Therefore,
nvestigating the role of H 2 S on mitochondrial activity in endothelial
ells should increase our understanding of future drug targets. 

. Involvement of H 2 S in vascular diseases 

Endothelial dysfunction is ubiquitously observed in both arteries and
mall vessels in multiple vascular disorders. It is known that H 2 S con-
ributes to vascular protection, specifically, reduced levels of plasma
 2 S have been observed in many pathological conditions such as stroke

153] , diabetes [154] , pulmonary hypertension [155] , portal hyperten-
ion [156] , chronic obstructive pulmonary disease [157] and age-related
iseases [158] . Evidence on the roles of H 2 S in these pathologies is also
ccumulating ( Fig. 2 ), as discussed below. 
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Fig. 2. The disease association with endothelial dysfunction and H 2 S. Endothelial cell dysfunction is characterized by disturbed redox balance and increased in- 
flammatory reactions within the blood vessel wall. Other contributing factors such as induction of apoptotic pathways and disrupted mitochondrial function further 
exacerbate changes to vascular tone. Endothelial dysfunction reflects a phenotype that is attributed to many vascular and cardiovascular diseases. 
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.1. Cardiovascular diseases (CVDs) 

CVDs have been the leading cause of mortalities and are accounted
or majority of all deaths worldwide [159] . Over the last decade, in-
reasing evidence has demonstrated that H 2 S plays important roles in
aintaining cardiovascular homeostasis [ 4 , 41 ]. In vivo studies demon-

trated that disruption of CSE pathway in mice, the major H 2 S produc-
ng enzyme in cardiovascular system, leads to enhanced atherosclerosis
160] and endothelial dysfunction [2] . Clinical evidence showed that
ignificant changes in CSE/ H 2 S pathway are associated with heart fail-
re, atherosclerosis, myocardial ischemia and diabetes [161] , suggest-
ng that dysregulation of CSE/H 2 S pathway is implicated in the patho-
enesis of CVDs. Furthermore, administration of H 2 S donor or manip-
lation of endogenous H 2 S production improves cardiovascular func-
ion and disease outcomes in a range of animal CVD models, includ-
ng atherosclerosis, heart failure and myocardial infarction [162 , 108] .
he beneficial effects of H 2 S are mediated through its roles of anti-

nflammation, anti-apoptosis, anti-oxidative stress and proangiogenic,
ighlighting the therapeutic potentials of H 2 S in CVDs. 

.2. Atherosclerosis 

Atherosclerosis is a leading risk factor for cardiovascular diseases,
eading to narrowing and hardening of arteries as a consequence of fatty
laque formation in the artery wall; consequently H 2 S has been investi-
ated as an attractive therapeutic option against atherosclerosis [163] .
ani et al. demonstrated that CSE knockout mice fed with a high-fat diet

eveloped an endothelial dysfunction–related atherosclerosis phenotype
hich included oxidative stress and excessive expression of adhesion
olecules [164] . In an ApoE − / − murine atherosclerotic experimental
odel, lower H 2 S levels and lower CSE expression were reported. These

n vivo disturbances were significantly abolished by exogenous H 2 S ad-
inistration [165] . Administration of H 2 S or overexpression of CSE de-

reased inflammatory markers through NF- 𝜅B downregulation that ame-
8 
iorated the atherosclerotic lesion [166] and reduced pro-inflammatory
ytokine production [152] . In addition, oxidative stress-induced mito-
hondrial dysfunction in vascular cells is considered to play a role in
he pathogenesis of atherosclerosis [167] . The excessive superoxide pro-
uction by mitochondria can trigger a pro-inflammatory response in
he vascular wall that ultimately leads to atherosclerosis development
 168 , 169 ]. H 2 S releasing compound, diallyl trisulfide treatment reduced
itochondrial oxidative stress and improved vasculature offering thera-
eutic route against atherosclerosis [170] . Alternatively, treatment with
 2 S might protect the vascular wall by increasing NO bioavailability

160] . 

.3. Diabetes 

Endothelial dysfunction plays an important role in the pathogene-
is of diabetic complications such as vascular dysfunction, nephropa-
hy, retinopathy, neuropathy, and cardiomyopathy. Plasma levels of
 2 S were found to be significantly decreased in patients with type 2
iabetes ( ∼100 μM) when compared with age-matched normal con-
rol subjects ( ∼130 μM) [154] . The same study also reported a reduced
 2 S levels in streptozotocin (STZ)-treated diabetic rats compared with
ontrol Sprague–Dawley rats. Supplementation with H 2 S or L-cysteine
revented secretion of inflammatory cytokines IL-8 and MCP-1 in high-
lucose–treated human U937 monocytes [154] . In contrary, some stud-
es reported that the expression levels and the activities of CSE and CBS
n the pancreas beta cells, as well as plasma H 2 S concentrations are
ncreased in STZ-treated rats [171] . The local increase of H 2 S levels
rolonged pancreatic beta cell survival against high glucose induced cy-
otoxicity [171] . Therefore, more studies exploring this association are
arranted. The potential of exogenous treatment with H 2 S donors has
een explored, showing protection against hyperglycemic stress in both
n vitro and in vivo models [ 154 , 172 , 173 ]. In these models, H 2 S im-
roved diabetes-related complications by inhibiting mitochondrial ox-
dative stress [109] . 
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.4. Hypertension 

Lower circulating levels of H 2 S have also been reported in other
orms of hypertensive disorders, such as pulmonary hypertension
155] and portal hypertension [156] . These findings are further sup-
orted by evidence showing reduced endogenous H 2 S pathways in hy-
ertensive patients, as demonstrated by Greaney et al, 2017 who re-
orted reduced expression of CSE and 3-MST in cutaneous tissue in hy-
ertensive patients [174] . As CSE is the most active H 2 S-producing en-
yme in the vasculature, it is possible that a defective CSE/H 2 S pathway
s responsible for reduced H 2 S production and therefore, the key culprit
n the onset of endothelial dysfunction leading to hypertension. Many
uthors have explored the potential for H 2 S donors to prevent/treat hy-
ertension. In this regard, H 2 S donors have effectively shown to ame-
iorate hypertensive phenotype in many animal models. Intraperitoneal
njections of GYY4137 reversed pulmonary hypertension in rats and
emonstrated that H 2 S suppresses the oxidative stress by enhancing
he activity of the intracellular antioxidants; catalase and mitochondrial
OD [175] . Furthermore, H 2 S protected against the production of mi-
ochondrial reactive oxygen species and apoptosis in pulmonary artery
mooth muscle cells exposed to hypoxia [175] . A high-salt diet, a con-
ributing factor to clinical hypertension, results in vascular apoptosis.
he molecular events associated with an enhanced mitochondrial pro-
ection in the presence of exogenous H 2 S were also demonstrated in
UVEC exposed to a high salt environment. This study showed that ex-
genous H 2 S inhibited apoptosis, reduced superoxide production, Cyt
 release, and caspases expression, as well as restoring mitochondrial
embrane potential [176] . 

.5. Stroke 

Sharing a common defective pathway with other vascular disorders,
schemic stroke has been associated with high blood pressure and en-
othelial dysfunction [177] . Interestingly, the level of endogenous H 2 S
n the brain has been estimated at 50 to 160 μM [178] and some early
tudies reported correlations with high levels of cysteine in serum and
oor clinical outcomes in acute stroke patients [ 179 , 180 ]. Moreover,
un et al, 2007 demonstrated that plasma H 2 S was significantly lower
n patients with stroke, accompanied by elevated blood pressure and
yperhomocysteine [181] . Studies performed in stroke-prone sponta-
eously hypertensive rats, showed that oxidative stress correlated with
ower CBS activity and these events were prevented by the administra-
ion of H 2 S [182] . In terms of the potential mechanisms involved, it
as been reported that the protective effect of H 2 S links to NO activity
eNOS/ NO signaling pathway) to protect against ischemic brain injury
y attenuating oxidative stress and promoting mitochondrial homeosta-
is [183] . Apart from endothelial dysfunction, several other pathological
rocesses contribute to this complex disease. Therefore, H 2 S may play
ifferent roles in the nervous system to the vascular system and further
nvestigations might be needed to get a better understanding of H 2 S in-
eractions [184] . These investigations emphasize the dual role of H 2 S
nd attention to fine balance of H 2 S for therapeutic use. 

.6. Preeclampsia 

Preeclampsia clinically manifests as de novo hypertension often ac-
ompanied by proteinuria after the 20 th week of gestation [185] . While
he pathogenesis of preeclampsia is still not clear, some molecular mech-
nisms such as dysregulation of vascular factors such as sFlt-1 and pla-
ental growth factor (PIGF) are considered key events in the develop-
ent and progression of preeclampsia [186] . It has been proposed that

he CO/HO-1 pathway together with H 2 S-CSE pathway are protective
outes in pregnancy that when defective may result in preeclampsia
athogenesis [187] . Evidence provided by Wang and colleagues showed
hat the expression of CSE was reduced in placentas from preeclamptic
9 
omen [118] . In addition, the inhibition of CSE resulted in elevated cir-
ulating levels of sFlt-1 in mice, while GYY4137 abrogated these effects
118] . Exogenous H 2 S has also shown beneficial effects in protecting
gainst sFlt-1-induced vascular damage. In a study by Holwerda et al.,
 2 S restored sFlt-1-induced hypertension and proteinuria via induction
f VEGF expression in rats [17] . The potential of H 2 S to modulate the an-
iogenic balance in models of preeclampsia has also been demonstrated
y others [ 188 , 189 ]. A link between preeclampsia, H 2 S and mitochon-
ria was demonstrated by Covarrubias et al, 2019 who observed that the
itochondrial H 2 S donor AP39 prevented antiangiogenic factors and

xidative stress response in trophoblasts exposed to hypoxia. These ef-
ects were credited to H 2 S-mediated protection of mitochondrial Cyt c
xidase activity, reduction of superoxide, as well as sFlt-1 levels [190] .
ecently, our lab demonstrated that CSE-derived H 2 S sustains mitochon-
rial bioenergetics and modulates the generation of mitochondrial re-
ctive oxygen species in endothelial cells. In addition, using AP39 as
xogenous H 2 S donor, we showed that H 2 S was metabolized at SQR in
itochondria, contributes to the regulation of sFlt-1 levels [120] . 

. Conclusion 

It is evident that as a gasotransmitter, H 2 S plays a fundamental role
n vascular function and redox biology. However, the field of H 2 S bi-
logy is still a developing area with many unanswered questions from
 2 S biochemistry to its biological functions. H 2 S can act as a substrate
f and an inhibitor within biological pathways depending on concen-
ration. Most research reports on the overall effect of H 2 S but overlook
any intermediatory reactive sulfur species that may result during spe-

ific pathways. For example, the exact mechanism of the sulfhydration
rocess (via H 2 S itself, or, more likely, via intermediary persulfide re-
ctions) remains to be characterised. Given the key involvement of mi-
ochondria in H 2 S oxidation pathway, further research is needed to un-
erstand the fine balance between H 2 S and ROS. The majority of studies
ocused on CSE knockout experiments to explore the H 2 S pathway but
he roles of other H 2 S generating enzymes: CBS, 3-MST or DAO are less
ell defined in relation to mitochondrial function. 

Recently, there is increasing interest in using H 2 S as a therapeu-
ic molecule and a drive to investigate better H 2 S pro-drugs with some
pecially designed to target mitochondria. These are very promising re-
earch avenues for treating many vascular, cardiac, and neurodegenera-
ive diseases. Without a doubt, H 2 S-mitochondrial research will present
nteresting and important new findings in near future and these works
ill benefit understanding of biology and for future therapeutic targets.
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