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ABSTRACT With the rapid development of information and sensor technology, the data-driven remaining
useful lifetime (RUL) prediction methods have been acquired a successful development. Nowadays, the
data-driven RUL methods are focused on estimating the RUL value. However, it is more important to
quantify the uncertainty associated with the RUL value. This is because increasingly complex industrial
systems would arise various sources of uncertainty. This article proposes a novel distributional RUL
prediction method, which aims at quantifying the RUL uncertainty by identifying the confidence interval
with the cumulative distribution function (CDF). The proposed learning method has been built based
on quantile regression and implemented from a distributional perspective under the deep neural network
framework. The results of the run-to-failure degradation experiments of rolling bearing demonstrate the
effectiveness and good performance of the proposed method compared to other state-of-the-art methods.
The visualization results obtained by t-SNE technology have been investigated to further verify the
effectiveness and generalization ability of the proposed method.

INDEX TERMS Deep learning, distributional remaining useful lifetime (RUL) prediction, quantile
regression, rolling bearing, uncertainty.

I. INTRODUCTION

PROGNOSTICS and health management (PHM) tech-
niques play a vital role in the condition-based mainte-

nance of large industrial equipment, which could prevent
unexpected failure and reduce downtime to achieve the
purposes of saving the maintenance cost, maximizing the
working time, safety, and reliability [1], [2]. The remain-
ing useful lifetime (RUL) prediction is generally known as
estimating the time before the machine completely fails and
is used to support PHM in producing reasonable mainte-
nance plans and strategies [3], [4], [5], [6]. Therefore, it
is imperative that the RUL prediction method provides a
precise estimation. However, the prediction of future con-
ditions and precise RUL are significantly challenging from
the massive data obtained from the operating systems due
to the increasing complexity of industrial equipment.

As one of the advanced RUL methods, the model-based
methods have proved their effectiveness in many studies [7],
[8], [9]. They rely on accurate physical laws and knowledge
of the degradation process for the machine system. However,
it is very difficult to build an accurate physical degrada-
tion model in many industrial applications. The performance,
robustness, and generalization of the model-based prediction
model would be significantly decreased because of the more
and more complexity of the modern industry [2], [4].

Meanwhile, the current real-world industrial system has
been turned into a data-rich environment with the devel-
opment of the Internet of Things (IoT). The data-driven
methods of RUL prediction have been widely investigated
and applied based on massive monitoring data, for instance,
vibration, current, temperature, etc. As one of the power-
ful data-driven approaches, deep learning has been proposed
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to develop RUL prediction algorithm in recent years and
achieve great results, for instance, deep neural network
(DNN) [10], deep belief network (DBN) [11], [12], con-
volutional neural network (CNN) [13], [14], [15], [16],
long short-term memory (LSTM) [17], [18], [19], [20],
and their combinations [21], [22]. Moreover, some spe-
cial deep models, such as the deep adversarial neural
networks [23] and normalizing flow-embedded sequence-to-
sequence model [24], have been developed for estimating
RUL. Differently from the model-based approaches, the
degradation models within these data-driven methods are
independent of the prior knowledge and they could be
learned from the available data. Therefore, they are easier
to use and capable of handling the large industrial machine
prediction problem, whose degradation model is too complex
to establish.
Nevertheless, these methods focus on estimating the RUL

value without considering the various types of uncertainty
inherent in the degradation process. These uncertainties
need to be carefully considered in order to arrive at reli-
able and accurate predictions of the RUL values. This is
always the case for RUL prediction in industrial applica-
tions [25]. Therefore, quantifying the uncertainty of RUL
would be as important as estimating the RUL value.
Moreover, predicting RUL with confidence interval could
support human-expert making maintenance decisions more
comprehensively. Recently, there are limited data-driven
approaches considering the uncertainty in the RUL prediction
process. Wang et al. [26] proposed to use variational infer-
ence for quantifying the uncertainty of RUL prediction
after training the recurrent CNN. Zhao et al. [27] built a
probabilistic RUL prediction framework and used the prob-
ability density function (PDF) as the quantified uncertainty.
Pang et al. [28] proposed a Bayesian inference model for
updating the posterior distributions of model parameters and
calculating the confidence interval for uncertainty.
However, the existing approaches cannot directly quantify

the uncertainty of RUL, and they still need to implement fur-
ther processing in order to identify the uncertainty interval.
In traditional data-driven RUL learning algorithms, the pri-
mary focus is to train the model based on the RUL value
as the label, but it discards the label information of the
RUL uncertainty. The main motivation of this article is to
introduce a new data-driven method that takes full advan-
tage of utilizing RUL uncertain information to support the
learning procedure. Inspired by the idea that there are more
benefits to learning an approximate distribution rather than
an approximate value [29], we propose a new distributional
remaining useful life prediction method with a DNN and
quantile regression. The proposed method could directly out-
put the cumulative distribution function (CDF) and calculate
the confidence interval for estimating the uncertainty of RUL.
The main contributions are summarized as follows.

1) The distributional learning method has been proposed
for distributional RUL prediction and implemented by

quantile regression optimization. The quantile regres-
sion loss has been deduced following the theory of the
Wasserstein metric, which is designed to calculate the
divergence of inverse CDF between parameterized and
target distribution.

2) The proposed distributional RUL prediction method
has been implemented by using the deep learning
framework with the learning method from a distri-
butional perspective. With the support of the quantile
distribution and Dirac delta function, it could directly
quantify uncertainty and calculate the confidence
interval.

3) The novel quantile Huber loss (QH-loss) function has
been designed and utilized to optimize the proposed
deep model of distributional RUL prediction by the
stochastic gradient descent (SGD) method. It com-
bines the advantages of quantile regression loss and
Huber loss. The comparison experiment demonstrates
that QH-loss is outperforming the typical MSE and
mean absolute error (MAE).

4) The effectiveness and performance of the proposed
method have been verified using the run-to-failure
degradation experiment of rolling bearings under dif-
ferent working conditions. The visualization results
demonstrate the high generalization ability for the
proposed method with different feature mapping.

II. THEORETICAL FRAMEWORK OF
PROPOSED METHOD
First, we define the new distributional RUL prediction
problem. To solve this problem from the data-driven perspec-
tive, we deduce the learning method from a distributional
perspective according to quantile regression optimization.
The Wasserstein metric is the theoretical basis for construct-
ing the quantile regression.

A. DEFINITION OF DISTRIBUTIONAL RUL PREDICTION
For the classical RUL prediction, the theoretical formula is

Y = f (X|θ) (1)

where Y denotes the ground-truth RUL value, X denotes the
observation, and f denotes the prediction function with the
parameter θ . The output of (1) is the RUL value. However,
we expect to output the quantified uncertainty in this work.
Therefore, we redefine a new distributional RUL prediction,
which could directly output RUL uncertainty as a distribution
function. The specific definition is to replace the RUL value
Y with a certain distribution of Z whose expectation is the
value Y

Y := E[Z(X)] = E[F(X|θ)]. (2)

This equation also defines that such distribution Z could be
characterized by the conditional distribution function F with
parameter θ .
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B. WASSERSTEIN METRIC
The Wasserstein metric is used as the evaluation method for
two different distributions, which has the mathematic prop-
erty of continuous and differentiable almost everywhere [30],
[31], [32]. It is the basic theory for deducing the quantile
regression loss function. Müller [33] took it as the metric of
Lp on inverse CDF (inverse CDF). Therefore, the Wasserstein
metric Wp can be defined as

Wp(Y,U) =
(∫ 1

0
|F−1
Y (q)− F−1

U (q)|pdω
)1/p

(3)

where for a random variable Y , the inverse CDF F−1
Y of q

is expressed as follows:

F−1
Y (q) := inf{y ∈ R : q ≤ FY(y)} (4)

where FY(y) = Pr(Y ≤ y) is the CDF of random variable Y .

C. LEARNING FROM DISTRIBUTIONAL PERSPECTIVE
The proposed method is going to predict the quantiles of
the target distribution, where qi = 1/N, for i = 1, . . . ,N.
So, it is called a quantile distribution ZQ, which has a fixed
N. The discrete values derived from its CDF are τ1 . . . , τN ,
where τi = (i/N) for i = 1, . . . ,N, these also represent the
cumulative probabilities with a certain distribution. Then,
the quantile distribution Zθ ∈ ZQ projects the observation x
to a probability distribution supported by the parameterized
model θi(x), which is defined as

Zθ (x) :=
N∑
i=1

δθi(x) (5)

where δz is a Dirac delta function at z ∈ R. This reformula-
tion allows us to learn the distributional prediction model by
using the Wasserstein metric and implement it by quantile
regression [34].

1) QUANTILE PROJECTION

The distributional learning is projected to a parameterized
quantile distribution optimization, it quantifies the projec-
tion of a random distribution Z ∈ Z into ZQ, which is
expressed as

arg min
Zθ∈ZQ

W1(Z,Zθ ). (6)

Assume that Y is the bounded target distribution and U is
a quantile distribution based on the Dirac delta function,
shown in (5), with the support z1, . . . , zN . Accordingly, the
Wasserstein metric is

W1(Y,U) =
N∑
i=1

∫ τi

τi−1

|F−1
Y (ω)− zi|dω. (7)

When τi−1, τi ∈ [0, 1] with τi−1 < τi, if F−1 is the
inverse CDF, then F−1((τi−1 + τi)/2) is always a valid
value; meanwhile, if F−1 is continuous at (τi−1 + τi)/2,
then F−1((τi−1 + τi)/2) is the unique value. Therefore, we

use the quantile midpoints which is τ̂i = (τi−1 + τi)/2
where 1 ≤ i ≤ N, then minimizing W1(Y,U) is obtained
by zi = F−1

Y (τ̂i)

2) QUANTILE REGRESSION

Quantile regression or conditional quantile regression could
approximate the quantile function of distribution or condi-
tional distributions, which is an effective method to solve
the distributional learning problem [35]. The parameterized
distributional model would be trained by minimizing the
quantile regression loss, which is defined as

Lτ
QR := EẐ∼Z

[
ρτ

(
Ẑ − z

)]
,where

ρτ (u) = u
(
τ − δ{u<0}

) ∀u ∈ R. (8)

z : {z1, z2, . . . , zN} denotes the values of the quantile function
F−1
Z (τ ), where τ ∈ [0, 1] . This objective function is convex

and asymmetric, which could control overestimation errors
with weight coefficient τ and underestimation errors with
1− τ during the training procedure [34].

III. IMPLEMENTATION OF PROPOSED METHOD WITH
DEEP LEARNING FRAMEWORK
In this section, we implement the distributional RUL
prediction method according to the theoretical framework
of distributional learning which is proposed in Section II.
The overall architecture of our proposed distributional RUL
prediction model is shown in Fig. 1. The data-driven RUL
prediction framework is generally divided into three steps
after acquiring the data: 1) constructing the labels based on
the health indicators; 2) training the prediction model of
RUL with the labeled data; and 3) testing the performance
of the optimized model by using the unseen data.
In the first step, the root mean square (RMS) feature is

selected as the health indicator, and then the first prediction
time (FPT) is determined. The labeling for the normal period
is constant, and the linearly decreasing function is built for
labeling the degradation period. The training step uses the
data from the degradation period of vibration and their labels.
The DNN is used as the estimating function to directly output
the quantile distribution. The new QH-loss has been proposed
to optimize the parameter of the DNN. After the training
process, the total new unseen test data, including the normal
and degradation period of vibration data are directly put into
the deep model. As the outputs are the quantile distributions,
we can directly obtain the RUL confidence interval for every
time period.

A. FPT DETERMINATION AND RUL LABELING METHOD
In order to construct the labels of bearing data, the FPT
should be first determined. In this work, we follow the simple
and effective way proposed in [16] to calculate the FPT. The
mean μ and standard deviation δ are calculated from the
early normal period of the RMS of each vibration sample.
The FPT is confirmed when the feature RMS value ft − μ

successive outside the 3δ, which can be expressed as follows:

|ft+i − μ| > 3δ (9)
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FIGURE 1. Architecture of distributional RUL prediction.

where i = 0, 1, 2 and only if all these sequence features
ft+i satisfied (9), the current time t would be set as FPT.
As shown in Fig. 2(a) and (b), the FTP is determined to be
74 based on the proposed method for the original vibration
signal of the overall period of the lifecycle.
Once the FPT has been decided, the ground-truth RUL

label for the overall life cycle could be shaped in a segmental
linear function, which is shown in Fig. 2(c). It consists of
two periods: 1) the normal period is a constant and 2) the
degradation period is a linearly decreasing function, which
represents the life percentage of a machine. As one of the
RUL labeling methods, it is a simple and effective way
and has been proposed in many studies [13], [16], [36],
[37]. For this kind of labeling method, only the labeled
degradation date is used for training the prediction model. It
should be noticed that the FPT could affect the performance
of the prediction model. Therefore, comparing experiment
has been carried out in Section IV-D for demonstrating the
effects.

B. PROPOSED NETWORK STRUCTURE
After obtaining the ground true RUL labels of training data,
the DNN has been proposed as the foundation of the dis-
tributional RUL prediction model. As shown in Fig. 1, the
labeled data is used for training the proposed model, then
the model would be directly tested by the unseen data. There
are two parts in the network structure, including featuring
mapping with parameter θFM and predictor with parame-
ter θPD. The feature mapping is designed to extract the
essential features of original sequence data. These features

FIGURE 2. FPT determination and ground-truth RUL labeling with the proposed
method. (a) Original vibration; (b) RMS; and (c) RUL.

are learned during the training process and presented in
high-level representation in each layer. The basic block is
the convolution layer [38] or its advanced variants [39], [40].
The performance and effects of different kinds of basic
blocks have been compared and analyzed in Section IV-E.
Meanwhile, the predictor is designed to output the RUL dis-
tribution directly, and it consists of two linear layers and the
ReLU activation function. Different from the typical RUL
structure based on a neural network taking one node in the
final layer, we propose to take N nodes in the final layer,
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Algorithm 1 Learning Procedure
Require: source data X, mini-batch size m, training steps n, learning

rate α.
1: Initialize the parameters θFM and θPD.
2: for epo = 1, . . . , n do
3: Sample mini-batch {xi, yi}mi=1 from X
4: Build target distribution FZ(z|y, σ ) based on y
5: Calculate the inverse CDF F−1

Z (τ̂i)
6: θFM, θPD ← θFM, θPD − α∇LQH
7: end for

which represent the N quantile midpoints τ̂i of the target
CDF, where 1 ≤ i ≤ N.

C. LEARNING PROCEDURE
During the training procedure, the SGD is used to optimize
the parameters θFM and θPD in the proposed DNN structure.
In this work, a new QH-loss is proposed and built based
on the quantile regression loss of (8) and typical Huber
loss [41]. The Huber loss is defined as

Lκ(u) =
{

1
2u

2, if|u| ≤ κ

κ
(
|u| − 1

2κ
)
, otherwise

(10)

then the QH-loss has been designed as the combination of
the Huber loss and quantile regression loss, that is

ρκ
τ (u) = |τ − δu<0|Lκ(u). (11)

However, the ground-truth RUL label y is a value, but
a distribution function should be the target distribution for
calculating the QH-loss. As a result, we design the CDF of
target distribution FZ(z|y) based on y by using the Gaussian
distribution function, which is

FZ(z|y, σ ) = 1

σ
√

2π

∫ z

−∞
exp

(
− (t − y)2

2σ 2

)
dt. (12)

Finally, QH-loss LQH for the proposed distributional RUL
prediction network can be calculated by

LQH =
N∑
i=1

E

[
ρκ

τ̂i

(
F−1
Z

(
τ̂i

)− P(
M

(
τ̂i|x

)))]
(13)

where M denotes the feature mapping, P denotes the pre-
dictor, and then P(M(τ̂i|x)) denotes the output of quantile
distribution at every quantile τ̂i. The learning procedure of
our distributional RUL prediction model has been summa-
rized in Algorithm .

D. MEASURE INDICATORS
In this article, the prediction performance of the RUL
model is quantitatively evaluated using the MAE, RMS error
(RMSE), and R2 score, which are

MAE = 1

Q

Q∑
i=1

|ŷi − yi| (14)

RMSE =
√√√√ 1

Q

Q∑
i=1

(
ŷi − yi

)2 (15)

FIGURE 3. XJTU testbed of bearing degradation experiment.

R2 = 1−
∑Q

i=1

(
ŷi − yi

)2∑Q
i=1(ȳ− yi)2

(16)

where Q is the number of testing samples, ŷi denotes the pre-
dicted RUL value, yi denotes the true value of RUL (label),
and ȳ denotes the mean of all the true RUL value.

IV. EXPERIMENTS
A. DATA SET DESCRIPTION
The data set was acquired from the testbed built by the
Xi’an Jiaotong University (XJTU), which is designed for the
degradation experiment of rolling bearing [42]. As shown in
Fig. 3, the testbed is composed of a controller for motor
speed and loader force and a test bench body with motor,
spindle, support, experimental bearing, and loader. The test
bearing is installed on the outside of the test bench and the
loader is directly forced on the outer race of the bearing.
The vibration signal across the whole life cycle of the test
bearing is collected by two accelerometers (PCB 352C33)
which are located on the house of the bearing at 12 and
9 o’clock positions. The experiments have been conducted
under three different conditions, the bearing type is LDK
UER204 ball bearing. The detailed pieces of information of
all experiments and their actual lifetimes are summarized in
Table 1. The vibration data of each run-to-failure bearing
experiment has been recorded every minute, the sampling
frequency is 25.6 kHz and the length of each sample is equal
to 32 768 (approximate 1.28 s). Three bearings of the overall
life cycle vibration signal for three different conditions are
shown in Fig. 4.

B. DATA PREPROCESSING
1) NORMALIZATION

As shown in Table 1, the experimental actual lifetimes indi-
cate that there are significant variations even under the same
working conditions. To reduce a certain amount of difference,
we first use the z − score method to normalize the overall
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FIGURE 4. Original vibration signal of three run-to-failure bearing experiments during the overall life cycle. (a) Bearing-1 of Condition-1. (b) Bearing-1 of Condition-2.
(c) Bearing-1 of Condition-3.

TABLE 1. Detailed information of the data set.

life cycle vibration signal for each bearing experiment, the
normalization equation is defined as follows:

x̂ti =
xti − μi

δi
(17)

where x̂ti and xti are the normalized vibration signal and
original vibration signal at time t of the ith set of experiment,
respectively; μi and δi are the mean value and standard
deviation of ith set of experiment, respectively. Furthermore,
it is obvious that we could not directly use the actual lifetime
values as the target labels because the huge gap between the
actual lifetimes varies from 42 to 2496 min. Therefore, we
normalize the actual lifetime at every collection point in the
range of [1, 0] by the following equation:

yti =
{

1, if t ≤ FTPi
ActLifei−t

RULi
, if FTPi < t ≤ ActLifei

(18)

where yti denotes the normalized ground-truth RUL value;
and ActLifei is the actual lifetime of ith set of experiment.
In this work, we use the normalized yti as the label for
training the proposed model. Then, the predicted RUL value
PredRULti can be calculated by

PredRULti = ŷti × RULi (19)

where ŷti is the predicted normalized RUL value from the
deep model.

FIGURE 5. Actual lifetime statistic analysis.

TABLE 2. FPTs and RULs.

2) FPT DETERMINATION

Based on the proposed FPT determination method, we cal-
culate the FPT for each bearing of three different conditions.
The RUL is calculated by using the actual lifetime minus
FPT. The results for all experiment scenarios are shown in
Table 2, and the unit is minutes. Moreover, the average time
of normal and degradation period for three conditions has
been computed, the results are displayed in Fig. 5, which
indicate the average lifetime of the experimental bearing
will be significantly influenced by the normal period by the
varying force and speed.

C. IMPLEMENTATION DETAILS
The proposed DNN structure is shown in Table 3, which
consists of feature mapping and predictor. In the predictor,
there are two layers, the first one is the linear layers with 128
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TABLE 3. Details of network structure with CNN-base as feature mapping.

TABLE 4. Default hyperparameters of the proposed method.

nodes following the ReLU function and another linear layer
with Nτ nodes is the direct output of the quantile distribution
of the Dirac delta function. The CNN-base is selected as the
feature mapping, which has five convolution blocks proposed
in [43]. This structure is used in the following experiment
section for demonstrating the proposed distributional RUL
prediction. Other kinds of feature mappings are included in
Tables 7–9 of the Appendix and the state-of-the-art methods
have been tested and analyzed in Section IV-E. In the present
work, each sample has 2560 points drawn from the original
vibration signal at each minute, which has been considered
as the input of the proposed model. The sampling method
of the vibration signal is following [44] to resegment each
original vibration with certain overlapping. Meanwhile, only
the labeled date of the degradation period is used for training,
but the whole period of unseen data would be tested and
analyzed.
All the experiments are tested on a computer with

one Nvidia GeForce GTX 2060 GPU, one Intel Core i7-
10750 H CPU of 2.60 GHz, and 16 GB of memory.

TABLE 5. Experiment scenarios for testing distribution RUL prediction.

The default values of hyperparameters are given in
Table 4.

D. DISTRIBUTIONAL RUL PREDICTION USING
PROPOSED METHOD
In order to demonstrate the performance of the proposed
method, three experiment scenarios have been decided to
test the distribution RUL prediction model first. As shown
in Table 5, Bearing-1 of each condition is selected as the
unseen data for testing, while the rest of the Bearings 2, 3,
and 4 are set to the training data.

1) RESULTS AND ANALYSIS

The results of prediction RUL distribution are shown in
Fig. 6, and the quantified indicators of three scenarios can
be found in Table 6. In Fig. 6, the color of each time step is
determined by the output of the proposed model. The blue
represents the normal condition of the bearing, while the red
means the bearing is close to the end of its lifetime. The
visualization results of distributional RUL indicate that the
proposed method can predict not only the RUL value but
also the uncertainty at each time step with high performance.
All vibration data in the normal period are predicted with
a high RUL confidence interval, especially for the second
and third scenarios, which is shown in Fig. 6(b) and (c).
For the degradation period of the unseen testing data, the
learned deep model can directly identify the decreasing pro-
cess without any support from data and its label within the
testing scenarios. The prediction of the first scenarios shown
in Fig. 6(a) has more fluctuations, the reason is that it was
running in the harshest working condition. The prediction
are more stable in Fig. 6(b) and (c). From the selected CDF
prediction at the degradation process, it can be noticed that
the confidence interval will reduce with the RUL value close
to zero. Based on the results, it is obvious that the optimized
model can predict the normal period accurately, the essen-
tial rule of degradation period has been learned from the
other three training data sets, and the uncertainty reduces
as the RUL decrease. The trained deep model did not see
any data from the testing scenarios during the training pro-
cess, but it still perform very well. This result demonstrates
that the proposed method can learn the essential function
under the same condition, which proves its generalization
capability. Fig. 7 shows the QH-loss and the three measure
indicators (MAE, RMSE, R2) during the training procedure.
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TABLE 6. Quantitative results of other data-driven methods and different feature mapping structures.

TABLE 7. Details of the feature mapping structure of CNN-3 [44].

It indicates that the new QH-loss can effectively converge
and the plausibility of using this loss as the evaluation
criterion.

2) COMPARISON WITH DIFFERENT LOSS FUNCTIONS

In order to further analyze the proposed QH-loss, the typi-
cal MSE and MAE loss and QH-loss with different Nτ are
selected for comparison. When using MSE, MAE, and QH-
loss (1), only one linear node is set to the last layer, while
the QH-loss (33) and (97) mean that 33 nodes and 97 nodes
are in the last layer, respectively. We use R2 as the compar-
ison index because it is a normalized index only reflecting
the performance but would not vary with the number of
the actual lifetime. The results are shown in Fig. 8, which
demonstrate that the QH-loss performs significantly better
than MSE and MAE under the same structure, and more Nτ

can not only predict the distributional RUL but also lead to
better performance.

3) COMPARISON WITH DIFFERENT FPTS

The proposed method could be obviously affected by the
FPT. The reason is that we only use the degradation period
data to optimize the deep model and the FTP determines

TABLE 8. Details of the feature mapping structure of ResNet-5.

the start point of the degradation period. Therefore, the data
of three unseen test scenarios are selected as examples for
studying the impact of FPT. The current FPT for this sit-
uation is following Table 2. Based on the current FPT, we
move the FPT proportionally between the normal period and
the degradation period, then retrain the model and calculate
the R2 for the test data. The results are shown in Fig. 9(b)
and (c), which indicate that the proposed FPT determination
is reasonable and the performance of the proposed model
will drop dramatically with moving away from the current
FPT. Meanwhile, the FPT shows no major effect on the
performance during the normal period of the first scenarios,
shown in Fig. 9(a). However, the FPT is still sensitive during
the degradation process.
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TABLE 9. Details of the feature mapping structure of DenseNet-5.

E. COMPARISON WITH OTHER DATA-DRIVEN METHODS
AND DIFFERENT FEATURE MAPPING STRUCTURES
In this section, more experiments have been conducted for
comparison and analysis. While one bearing is selected for
testing, the rest three bearings’ data under the same condition
are used for training.
For comparison with the state-of-the-art data-driven RUL

prediction methods, TFR-CNN [14] combines the wavelet
transform (WT) processing the degradation data with
multiscale CNN and MEF-CNN [16] combining short-time
Fourier transform (STFT) with multiscale CNN, have been
selected. Meanwhile, following the typical data-driven RUL
prediction research [13], we also select DNN and LSTM
as the benchmark method for a fair comparison. Comparing
the results shown in Table 6 between the proposed model
of the CNN-base structure and the benchmark methods, it is
obvious that our proposed method is significantly superior
according to the three quantified indicators.
To further study the advantages and disadvantages of

the proposed method, other three different feature mapping
structures have been selected compared with the CNN-base
structure. The detailed structures of CNN-3, ResNet-5, and
DenseNet-5 are summarized in Tables 7–9, respectively.

CNN-3 has three convolution basics, two blocks less than
CNN-base. ResNet-5 and DenseNet-5 have five blocks sim-
ilar to CNN-base, but they are following the structure of
ResNet [39] and DenseNet [40]. The quantified results are
shown in Table 6, which illustrates the proposed method
need feature mapping to have enough complexity of high-
level representation so that the essential features could be
learned during the training process and the obtained model
can perform outstandingly. The results demonstrate that
CNN-base has obtained good performance. Compared with
ResNet-5 and DenseNet-5, it has a more simple structure
and fewer parameters. Therefore, the training speed will be
much quicker using the same computer hardware.

F. FEATURE VISUALIZATION ANALYSIS
For further investigating the effectiveness of our proposed
method and explaining the performance of various fea-
ture mappings on the run-to-failure bearing experiments,
the features of the linear layer before the output layer are
used for visualization. We use the t-SNE [45] technique to
compress these high-dimensional features into 2-D visual
images.
The test scenario of bearing-1 of condition-2 has been

chosen as the supporting example for investigation. The
visualization results are shown in Fig. 10, the color bar
is changing from 0 (red) to 100 (blue), which represents
the normalized ground-truth RUL label yti but it has been
adjusted from [0,1] to [0,100] by multiplied 100 and rounded
to integer in order to better view. The various feature visual-
ization results of training data, shown in Fig. 10(a), (c), (e),
and (g), demonstrate that the models have been trained well
enough because the labeled features are changing from 100 to
0 regularly and there is no obvious misgrading. The high gen-
eralization ability of the proposed method has been proved by
the results of the unseen test scenario, shown in Fig. 10(b),
(d), (f), and (h). Although the learned model never sees the
test data during the training process, it can still recognize
the various degree of degradation clearly. These visualization
results confirm the quantified results in Table 6, verifying
the outstanding effectiveness and generalization ability of
the proposed method. The visualization figures of training
show the rule of gradual change, which indicates that the
deep model is capable of learning the essential features, oth-
erwise, the feature will be mixed together irregularly. This
proves the effectiveness of the proposed method. The test
visualization figures demonstrate a similar rule to the training
figures, which verifies that the learned model has good gen-
eralization ability and can effectively predict unseen testing
scenarios.

V. CONCLUSION AND DISCUSSION
In this article, a distributional RUL prediction method
has been proposed, which is capable of directly esti-
mating the RUL uncertainty using the DNN framework
and quantile regression loss of distributional learning.
The proposed approach has been verified in the real
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FIGURE 6. Results of distributional RUL prediction for unseen test scenarios. (a) Bearing-1 of Condition-1. (b) Bearing-1 of Condition-2. (c) Bearing-1 of Condition-3.

run-to-failure bearing experiments under three different
working conditions. The main conclusions are summarized as
follows.

1) After the training procedure, the proposed model can
directly predict the RUL value and uncertainty at each
time step for the unseen test scenario. Meanwhile,
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FIGURE 7. QH-loss and three measure indicators during the training procedure.

FIGURE 8. R2 of the different loss functions and different quantile numbers of the
proposed QL-loss.

the novel QH-loss can quickly converge and lead the
optimization to obtain the best model.

2) In comparison with the state-of-the-art data-driven
RUL prediction methods, the proposed model shows
better performance and generalization capabilities.

3) In order to obtain better performance, more con-
volution blocks or the advanced ResNet block and
DenseNet block should be used to construct the DNN
framework.

4) The feature visualization can prove that the model
has been trained well. These results also verify the
outstanding performance and generalization ability of
the proposed method for the unseen test scenario.

The performance of the proposed method has been verified
by a series of experiments and comparisons. However, there
are still certain future directions that can be further investi-
gated to promote and expand the current research, which is
summarized as follows.

1) The FPT has been proved as one of the impact factors
for the performance of the proposed method. However,

FIGURE 9. R2 of different FPTs for three unseen test scenarios. (a) Bearing-1 of
Condition-1. (b) Bearing-1 of Condition-2. (c) Bearing-1 of Condition-3.

the current work only uses a simple and effective way,
and it can possibly be improved by more advanced
FPT determination and RUL labeling method in the
future to calculate a more reasonable FPT for the run-
to-failure bearing experiment.

2) The impact of different kinds of feature mapping struc-
tures has been studied. However, the constructed way
of building the optimal structure should be further
investigated when the data information is unknown
in advance.

3) Currently, our proposed method has been tested in
the unseen test scenario, but the working condition
of training and test data is still consistent. To further
promote the generalization ability, we will extend it to
different working conditions.

APPENDIX
The structures of CNN-3, ResNet-5, and DenseNet-5 that
have been designed for making a comparison with differ-
ent feature mapping structures are shown in Tables 7–9,
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FIGURE 10. t-SNE visualization results of the proposed method with different structures of feature mapping under the test scenario of bearing-1 of condition-2. (a) Training of
CNN-3. (b) Test of CNN-3. (c) Training of CNN-base. (d) Test of CNN-base. (e) Training of ResNet-5. (f) Test of ResNet-5. (g) Training of DenseNet-5. (h) Test of DenseNet-5.

respectively. The comparison results and analysis are sum-
marized in Section IV-E.
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