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 The Cyber-Physical Machine Tool (CPMT) is a promising solution for the next 

generation of machine tool digitalization and servitization due to its excellent 

interconnection, intelligence, adaptability, and autonomy. The rapid development of next-

generation information technologies, such as the Internet of Things (IoT) and artificial 

intelligence (AI), provided richer services for CPMT but also led to problems of idle on-

site computing resources, and excessive pressure on the cloud, slow service response and 

poor privacy. To solve the above problems, this paper proposes a cloud-edge 

collaboration-based CPMT architecture, which makes full use of the computing resources 

of existing devices in the industrial sites, offloads digital twin (DT) modeling and data 

processing from the cloud to the edge, and provides microservice interfaces for users at 

the edge. Given the limited computing resources available in the field and the demand 

for latency-sensitive applications, task offloading methods aimed at response speed and 

load balancing are proposed, respectively. Finally, a case of machine tool Prognostics and 

Health Management (PHM) service is presented, in which the proposed method is used 

to perform tool wear monitoring, prediction, and health management. 



 

1 Introduction 

Machine tools have always played a decisive role in 

the field of manufacturing [1]. Their performance directly 

affects the quality and efficiency of the products. [2]. 

With the deep integration of a new generation of 

information technology (IT) and advanced manufacturing 

technology, machine tools have gradually evolved from 

the initial Machine Tool 1.0, which is machine-driven but 

human-operated, into the current Machine Tool 3.0, 

which is computer numerically controlled, on the way to 

the era of Machine Tool 4.0. The rapid development of 

intelligent manufacturing and Industry 4.0 demand 

Machine Tool 4.0 to be more intelligent, well 

interconnected, more flexible, and more autonomous [3]. 

As a typical representative of Machine Tool 4.0, Cyber-

Physical Machine Tool (CPMT) [4] integrates the 

machine tools and manufacturing processes with 

computation and networking based on the digital twin 

(DT) technology, which aims to transform machine tools 

from physical products to product-service systems and 

cloud resources. 

As the kernel of CPMT, DT digitally creates a 

machine mirror for physical machine tools to provide 

real-time supervision and feedback control on the 

machine tool status and machining process, enabling the 

integration of the physical world with the cyber world. 

Most of the traditional architectures of DT are based on 

"cloud-end" [5,6]. In other words, the device is only 

responsible for performing production tasks and 

collecting real-time data, while all data processing tasks 

are uploaded to the cloud. However, with the arrival of 

the Internet of Everything (IoE) era and the rapid 

evolution of intelligent algorithms, the scale of data and 

computation in industrial sites have increased 

dramatically. Cloud computing may fail to process 

various and massive sensed data in a timely manner, 

resulting in intolerable delays [7,8] and inability to meet 

the demand for real-time data interaction [9], eventually 

causing the isolation of physical machine tools from their 

mirrors in the DT machines. In addition, the construction 

and application of cloud platforms in the industrial field 

have lagged far behind their theoretical development [10]. 

Moreover, numerous edge devices with computing 

capabilities have already been deployed into industrial 

sites before the emergence of cloud computing. 

Considering the aim of the existing equipment assets 

in industrial sites and the excellent performance of edge 

computing is to provide low latency, high bandwidth, and 

mass accessible devices [11–13], this paper utilizes edge 

computing to compensate for the deficiencies of cloud 

computing and proposes a cloud-edge collaboration-

based CPMT, which further enhances the digitalization 

and servitization of machine tools. The main 

contributions of this paper are as follows. 

 An architecture of cloud edge collaboration-based 

CPMT is proposed. 

 Explored task offloading technique to improve 

responsiveness. 

 A task offloading algorithm is proposed to provide 

load balancing while maintaining system real-time 

and throughput rate requirements, ensuring CPMT 

scalability and supporting horizontal integration of 

machine tools. 

 An application service case of cloud-edge 

collaboration based CPMT based on cloud-edge 

collaboration is given to validate the feasibility and 

advantages. 

The rest of this paper is arranged as follows. Section 

2 reviews the development of CPMT and the latest works 

on cloud edge collaboration in academia and industry. 

Section 3 profiles the architecture of the cloud-edge 

collaboration-based CPMT. Section 4 depicts two 

specific algorithms for deploying CPMT through cloud-

edge collaboration. Section 5 presents an application case. 

Section 6 concludes this paper and offers suggestions for 

further research. 

2 Related works 

Machine tools are involved in almost all 

manufacturing processes and have occupied an iconic 

position in the manufacturing industry since their 

introduction. To a large extent, the development of 

machine tool technology mirrored that of the industrial 

revolution. With the advent of the new era of Industry 4.0, 

the digitalization and servitization of machine tools are 

becoming an emerging research trend [14]. This section 

reviews the evolution of CPMT, provides a 

comprehensive overview of the work and technologies 

related to cloud-edge collaboration, and further identifies 

the research gaps. 

Xu [3] reviewed the history of machine tools, 

pointed out that the development of machine tools should 

come to the era of Machine Tool 4.0, innovatively put 

forward the conceptual model of CPMT, and briefly 

introduced the critical components and functions of 



 

CPMT, which the total vertical and horizontal integration 

of machine tools can be achieved. On this basis, Liu et al. 

[4] clarified the definition of CPMT, stating that CPMT 

combines a machine tool, machining processes, 

computing, and a network in which embedded computing 

monitors and controls the machining process via feedback 

loops. The machining process can influence computing 

and vice versa. Moreover, a generic system architecture 

for CPMT was also suggested [2], which looked at the 

development techniques for the DT of machine tool 

(MTDT), the kernel of CPMT, in detail, providing 

directions for converting current CNC machine tools to 

CPMT. Deng et al. [15] deployed a wireless sensor 

network (WSN) on an open CNC system and extended it 

to CPMT, enabling real-time supervision and control of 

the processing. To solve the problem of interacting with 

heterogeneous data from multiple sources, Liu et al. [16] 

proposed an MTConnect-based CPMT architecture, 

including Physical devices, Networks, machine tool 

cyber twin and cloud. Moreover, a prototype system was 

designed based on the proposed architecture to deliver 

unified and efficient data communication, fusion, and 

management. Zhu et al. [17] proposed a user-centered 

CPMT information provision model that divides CPMT 

into Physical machine tools and processes, MTDT, 

Cloud-based services, and Human-Machine Interfaces 

(HMIs). It provided and distributed pertinent information 

and data to the correct users in the proper scenarios and 

at the right time and further increased the efficiency and 

productivity of CPMT. 

Cloud computing has plenteous computational and 

storage resources for complex big data analysis, but its 

real-time behavior is poor. Edge computing reduces the 

pressure on the cloud by concentrating computation and 

services close to the data source. Therefore, many 

algorithms have been proposed to offload the task to 

improve performance or reduce energy consumption. Cao 

et al. [18] proposed a multi-agent deep reinforcement 

learning scheme that enables edge devices to work 

together and significantly reduce computational latency. 

Liu et al. [19] proposed a holistic offloading method that 

minimizes the latency by determining whether to offload 

the tasks waiting in the buffer through a one-dimensional 

search algorithm. Joshi et al. [20] proposed an energy-

efficient task offloading with delay awareness, trading off 

between energy consumption and latency in 

communication. Tang et al. [21] performed dynamic 

resource allocation between the edge and the cloud, using 

an optimal algorithm to transfer data from the cloud to the 

edge and assign resources to them. Qi et al. [22] analyzed 

the different requirements and uses of data generated at 

the unit-level, system-level, and complex system-level at 

the time scale for CPS and DT. They then proposed ideal 

solutions for intelligent manufacturing, which utilize 

edge computing, fog computing, and cloud computing at 

different-level CPS and DT. Yang et al. [23] proposed an 

open, scalable architecture for intelligent cloud 

manufacturing systems with collaborative edge and cloud 

computing to support the real-time response of latency-

sensitive applications by deploying hierarchical edge 

gateways. Zhang et al. [24] focus on the computation 

efficiency of the twin established, developed a cyber-

physical machine tool based on edge computing 

techniques, which detect anomalies in edge data in terms 

of both monadic outliers in the edge data itself and 

multivariate parameter correlations between edge units, 

shortening the mapping latency and reducing the 

workload in the cloud. 

Current research shows that academia and industry 

strive to implement the digitalization and servitization of 

machine tools. However, most previous research focuses 

on creating DT models of machine tools, with less 

research on DT in the machining process. Meanwhile, 

most of the specific services provided by CPMT rely on 

the cloud. Nonetheless, this cloud-centric data processing 

in industrial sites may cause information lags due to 

bandwidth and transmission delays, resulting in 

information desynchronization between physical space 

and cyberspace. Relying on cloud computing alone to 

implement CPMT is too idealistic. At present, edge 

computing technology is quickly evolving, and the cloud-

edge cooperation technique may achieve the synergistic 

coupling between edge computing and cloud computing 

and unlock the value of data [25], which is widely applied 

in various industries. However, in the application of 

CPMT, edge computing is only used at the data fusion 

stage [24], which does not maximize the utility of cloud-

edge collaboration. This paper innovatively proposes a 

CPMT architecture based on cloud-edge collaboration to 

address the above problems. It provides new ideas and 

ways for the servitization transformation of existing 

machine tools by exploiting the complementary 

properties of edge computing and cloud computing. 



 

 

Fig. 1 Architecture of Cloud-edge collaboration-based CPMT

3 Cloud-edge collaboration-based CPMT 

3.1 Overall architecture 

This section provides an overall architecture of 

cloud-edge collaboration-based CPMT. As shown in Fig. 

1, the overall architecture consists of three layers: 

physical layer, cyber layer, and application layer. In the 

figure, the red arrows represent data transfer, while the 

green arrows represent result feedback. The physical 

layer covers all the physical items of CPMT. The cyber 

layer is the crux of this architecture, where the physical 

CNC machine tool is virtualized as the corresponding 

MTDT through cloud computing and edge computing. By 

describing CNC machine tools' multidimensional and 

multiscale characteristics, MTDT, driven by real-time 

data, can accurately depict machine tools' actual behavior 

and operating state. MTDT infers the future operating 

state and trends of the behavioral characteristics of 

machine tools and machining processes via iterative 

model and data operations. Moreover, use them to support 

essential services such as prediction, evaluation, and 

optimization of machine tools and machining processes 

[26,27]. MTDT modeling can be divided into two parts 

[28,29]: visual 3D modeling and semantic modeling. 

Fig.1 shows the 3D visualization model we built for a 

typical machine tool VMC850 in our previous work. The 

semantic model [29,30] indicates structured management 

of collected data and analysis processing. The cyber layer 

performs feedback control of the physical layer through 

MTDT and provides an external service interface via 

APIs to support the servitization of the machine tool. The 

final layer is the application layer, which provides cloud 

services and microservices to third-party users. 

The most vital distinction between the proposed 

architecture and traditional architectures of CPMT 

depends on its focus on cloud-edge collaboration. 

Compared to traditional cloud-based CPMT [2,15,16], 

the cloud-edge collaborative mode can fully utilize the 

computing resources of existing equipment in the 

workshop, thus maximizing the value of edge computing 

and the cloud [31]. Cloud-centric servers have an 

immense size, with high computing power, reliability, and 

scalability [32,33]. However, with the rapid development 

of IoE, users are more demanding on service 

responsiveness and security. Although cloud computing 

can provide an efficient computing platform for 

processing big data, the network bandwidth growth rate 

at this stage can no longer match the explosive growth of 

data [34]. The cost of network bandwidth is also 

decreases slower than the cost of hardware resources such 

as CPU and memory. A single cloud-based computing 

mode cannot satisfy users' demands for real-time security 

and low power consumption [35]. As a complement and 

extension of cloud computing, edge computing makes 



 

full use of idle device resources and harnesses the 

computing power of endpoints at the network edge. It 

relieves pressure on network bandwidth and data centers 

by absorbing part or whole of the computing tasks, solves 

the problem of data transmission latency, improves 

service response time, and enhances data security by 

limiting the exploitation of private data inside the firewall. 

Cloud-based architectures can provide non-real-time 

services such as condition monitoring, process planning, 

and remote maintenance, while edge computing-based 

architectures enable real-time services such as error 

compensation, surface roughness prediction, and 

anomaly detection [14]. In this paper, we adopt the cloud-

edge collaboration approach to drive CPMT in order to 

enhance the serviceability of machine tools. More details 

about the cloud-edge collaboration-based CPMT are 

explicated in the section below. 

3.2 Physical devices 

This paper extends the cloud-based CPMT by 

deploying a series of edge devices. Fig. 2 presents the 

physical devices of the CPMT based on cloud-edge 

collaboration. The end devices contain CNC machine 

components and data acquisition devices. Components 

such as CNC controllers provide internal data about the 

machine, such as spindle speed, axis position and velocity, 

program information, and system information. Data 

acquisition devices, including sensors for vibration, 

temperature, and acoustic emission (AE), access external 

data to the CPMT. 

 

Fig. 2 Physical devices of the CPMT 

The real-time data collected during manufacturing is 

sent to the edge and cloud for further analysis through 

various communication protocols and interfaces. The 

cloud and edge devices carry the kernel of CPMT, the 

MTDT, which is the basis for the intelligence and 

servitization of CNC machines. As shown in Fig. 2, the 

edge nodes are composed of devices with specific 

computing capabilities such as Raspberry Pi, NANOBOX, 

IPCs, and FPGAs. In order to efficiently gather 

heterogeneous manufacturing data and transfer it to the 

edge server or cloud for resource virtualization and 

decision analysis, the edge gateway supports standardized 

data communication methods such as MTConnect and 

OPC UA to eliminate data heterogeneity [9,36,37] and 

enable efficient data interaction. The edge server cluster 

contains numerous servers serving different purposes, 

including Cloud Core and Edge Core, in addition to the 

basic compute and storage modules. Cloud Core reports 

the status of edge resources to the Master node in the 

cloud and issues cloud commands to Edge Core, while 

Edge Core manages the edge resources. The Edge nodes 

collaborate with the Edge Server Cluster to process data 

from the end devices and upload essential and valuable 

product information to the cloud for storage and analysis. 

The cloud server cluster consolidates, stores, and 

shares the data. The Master, as the control node, is 

responsible for resource scheduling, management, and 

control of the entire cluster. 



 

3.3 Cyber layer 

The Cyber layer establishes and deploys the MTDT 

through cloud-edge collaboration. In contrast to 

traditional CNC machine tools, the MTDT of CPMT 

achieves a profound integration of the model and data by 

constructing a digital mapping of the machine tool. 

MTDT reflects the geometric and physical characteristics, 

behavioral coupling relationships, and evolutionary rules 

of CNC machine tools and machining processes [36] and 

forms an integrated decision that feeds back to guide 

machining toward closed-loop optimization. Based on the 

five-dimensional model theory of the digital twin [38–40], 

we divide MTDT into three main modules: the 

information model, the mechanism model, and the 

database. Among them, the information model reflects 

the coupling between components and systems by 

portraying the logical structure of the machine tool and 

provides standardized and scalable data management [41]. 

The mechanism model is built by applying artificial 

intelligence (AI) algorithms to data processing and 

combining them with expert experience and domain 

knowledge to jointly build a comprehensive high-fidelity 

and high-accuracy model that can reflect the behavior and 

rules of physical entities in order to transform a large 

amount of raw machine tool data into meaningful 

information to support machine tool service. Databases 

provide secure, reliable, and adequate storage and 

management of real-time data and valuable historical 

information generated by machining. 

 
Fig. 3 Cyber layer 

CNC machine tools involve multiple subsystems, 

such as electrical and mechanical, among which there are 

coupling relationships [42]. In our previous work [37,43], 

a generic information model for machine tools was built 

by analyzing the hierarchical structure of CNC machine 

tools. Considering the composability of DT models [36], 

the edge side can flexibly extract and combine models 

without building a complete MTDT. This paper provides 

a reference model of MTDT driven by cloud and edge 

computing in collaboration, as shown in Fig. 3. A 

complete machine tool information model is formed in 

the cloud, integrating historical data and valuable 

information to build an expert knowledge base of CNC 

machine tools. Cloud computing has more substantial 

arithmetic power to optimize algorithms by training 

models and formulate task offloading strategies. The edge 

builds or downloads DT models according to the service 

requirements and allocates them to different edge devices 

respectively to realize the application of DT in different 

stages and scenarios. Ultimately, the related cloud 

services or microservices are provided by API. The 

collaborative cloud-edge approach improves the 

efficiency of DT modeling and lowers the application 

threshold simultaneously. 

In Fig. 3, the red arrows indicate the data transfer, 

and the green arrows indicate result feedback. The 

mechanism model, consisting of algorithms for 

simulation, optimization, Prognostics and Health 

Management (PHM), obtains specific standardized data 

directly from the information model for analysis and 

processing and feeds the results back to the information 

model, which issues commands to the CNC controller to 

automatically adjust machining or provide adequate 

decision support to the operator. CNC machine 

characteristics are not static during machining. To ensure 

the reliability/faithfulness of the model, the MTDT is 

continuously updated. In Fig. 3, the orange arrows are 

used to indicate model updates while the blue arrows are 

used to indicate model offloading. The cloud trains the 

model with time-stamped historical data from the edge 

and offloads the optimized model to the edge. The edge 

processes real-time data from end devices to improve 

service responsiveness. In this layer, we allocate 

computational tasks by developing an offloading strategy, 

the details of which are discussed in Section 4. 

3.4 Application layer 

The application layer is the final layer of the cloud-

edge collaboration CPMT architecture. After processing 

the data in the Cyber layer, various cloud and edge 

computing-driven services can be implemented to meet 



 

the needs of process optimization and production quality 

control, such as PHM, 3D visualization, and condition 

monitoring. The application layer also provides various 

types of HMIs to facilitate the interaction of different 

stakeholders (e.g., machine operators, maintenance 

personnel, shop floor managers, machine tool 

manufacturers) with the CNC machine to further promote 

the digitalization and service-orientation of the machine. 

4 Methodologies of cloud edge collaboration for CPMT 

CPMT collects data and analyzes it through MTDT. 

Most existing CPMT models [5] transfer the collected 

data directly to the cloud center for storage and analysis. 

However, in CPMT deployments, numerous computing 

resources of edge devices on the shop floor are idle. 

Therefore, the centralized data processing model adopted 

in the CPMT conceptual model needs to be adapted 

accordingly by migrating computational tasks with high 

real-time requirements to the edge. Thus, while relieving 

network bandwidth pressure and reducing the load on 

cloud datacenters, the existing devices are fully utilized 

to provide more convenient computing resources for 

industrial field data analysis. 

In this section, we first establish a system model for 

the task offloading problem of CPMT and then present 

two task offloading algorithms for task response speed 

and load balancing requirements, respectively. 

4.1 System model 

The primary purpose of this work is to minimize 

service delay under the proposed framework. Service 

delay [44] is the time required to complete a task request. 

The edge is sited between the end devices and the cloud, 

which contains massive devices with computing power 

and can handle most service requests to reduce the overall 

service delay. 

 
Fig. 4 Task processing flow 

Fig. 4 illustrates the task processing flow for the 

proposed framework work. This paper aims to process 

latency-sensitive tasks at the edge as much as possible. 

That means the cloud only trains models and handles the 

tasks that cannot be handled at the edge. Most of the real-

time services provided by CPMT, such as tool wear 

monitoring and fault diagnosis, rely on machine learning 

algorithms represented by Deep Neural Networks (DNN). 

Therefore, this paper assumes that all tasks are machine 

learning tasks that pre-trained DNN model processes in 

the cloud, and the output is obtained by performing 

inference. After data capture, the tasks are sliced, and the 

corresponding container pipeline is created for each 

model slice and evaluated. Finally, the tasks are 

distributed between the edge nodes and the edge servers 

according to the offloading requirements. 

1) Network model 

The normalized network model in this paper is 

defined as follows: the set of edge nodes is ℕ，ℕ =

{𝑁𝑖|i = 1,2, … , N}，|ℕ| = N . Any node 𝑁𝑖 ∈ ℕ  holds a 

task 𝑅. If a single node holds multiple tasks, the node can 

be split into multiple virtual nodes, and each node holds 

only one task. Tasks can be executed locally (edge node) 

or offloaded to an edge server, and the results are 

transmitted back to the edge node. It is assumed that the 

selected server contains the resources required for task 

execution. 

2) Task model 

The task is sliced according to the neural network 

structure, and the task R  is split into n subtasks, 𝑅 =

{𝑅𝑖|𝑖 = 1,2, … , 𝑛}. 𝐷𝑖 denotes the size of the output data 

after the execution of subtask 𝑅𝑖. 𝑙𝑅denotes the deadline 

of task 𝑅 . Each task 𝑅  can be left local (edge node), 

offloaded to the server as a whole, or partially offloaded 

to the edge server for execution. The task segment point 

is denoted as 𝑗, which is located after the 𝑗th subtask has 

been executed. For different types of neural network 

layers, different layer configurations can lead to 

significant variations in latency. Kang [45] et al. varied 

the configurable parameters of various neural network 

layers and measured the latency of each configuration to 

construct latency prediction models for each type of layer 

so that the latency of the DNN constituent layers could be 

estimated without executing the DNN. Based on this, the 

latency of a node executing subtask 𝑅𝑖   is denoted as 

𝑓𝑛𝑜𝑑𝑒(𝑅𝑖)and the latency of a server executing subtask 𝑅𝑖 

is denoted as 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖),where 𝑖 = 1,2, … , 𝑛. 

The service delay 𝑇𝑅  of task 𝑅  consists of node 

execution latency, server execution latency and 

transmission delay. Where the edge node task execution 

delay is: 



 

 
𝑡𝑛𝑜𝑑𝑒 =∑ 𝑓𝑛𝑜𝑑𝑒(𝑅𝑖)

𝑗

𝑖=0
 

(1) 

The edge server execution delay is: 

 
𝑡𝑠𝑒𝑟𝑣𝑒𝑟 =∑ 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖)

𝑛

𝑖=j+1
 

(2) 

The data is transmitted between the node and the 

server and the transmission delay can be calculated 

according to the Shannon formula as: 

 𝑡𝑡𝑟𝑎𝑛
= 𝐷𝑖 B log 2(1 + 𝑝𝑖|ℎ𝑖|

2 𝜎2⁄ )⁄  

(3) 

B is the available bandwidth between the node and 

the server, 𝑝𝑖  is the transmit power of node 𝑖 , ℎ𝑖  is the 

channel gain, and 𝜎2 is the white Gaussian noise power 

inside the channel. 

In order to make full use of edge node resources and 

reduce data discard, this paper processes the task through 

Multiple Instruction stream Single Data stream (MISD) 

pipeline structure. 

 

Fig. 5 MISD pipeline structure 

As shown in Fig. 5, the nodes execute in parallel, and 

the server executes serially by non-preemptive CPU 

allocation. Every timeslice τ elapses, the system outputs 

a set of processing results,τ = max{𝑡𝑛𝑜𝑑𝑒 , 𝑡𝑡𝑟𝑎𝑛, 𝑡𝑠𝑒𝑟𝑣𝑒𝑟}. 

When the pipeline is stable and fully loaded, the highest 

speed of data processing results can be guaranteed within 

each timeslice [46]. At this point, the system throughput 

rate 𝜃 = 1 τ⁄ , and a higher throughput rate means fewer 

data is discarded. 

4.2 Offloading strategy 

The offloading segment point of a DNN model 

depends on its topology, which is reflected in the variation 

in computation and data size at each layer. In addition, 

dynamic factors such as network state and device load can 

also affect the choice of offloading segment points. We 

propose an approach that intelligently slices tasks and 

formulates offloading strategies. It includes two phases, 

static configuration, and service execution. In the static 

configuration phase, the edge nodes and servers are 

configured to obtain the delay prediction model of the 

DNN layer spectrum from the cloud database and store it 

on the corresponding nodes and servers. In the service 

execution phase, the system analyzes the DNN layer 

types, extracts its configurations, and uses the stored 

prediction models to value the delay of each layer's 

execution delay on the nodes and servers. Furthermore, 

an offloading strategy for specific optimization goals 

(response speed/load balance) is formulated by 

combining the current network conditions. Finally, the 

DNN is executed by distributing tasks across nodes and 

servers according to the offload policy developed. 

4.2.1 Offloading strategy1: Fastest Response 

Task response speed is an essential indicator of 

service quality and a vital optimization goal for edge 

computing task offloading, and Algorithm 1 develops an 

offloading strategy to improve the response speed. Fig. 6 

shows three possible scenarios when a new task arrives at 

the server: a) the server is busy, and the new task needs to 

wait for the previous task to complete; b) the new task 

arrives without waiting for the server, but the server 

incurs idle time; c) the server happens to be idle when the 

task arrives. Note that the server execution delay of 

previous tasks is 𝑚𝑡𝑠𝑒𝑟𝑣𝑒𝑟 , then service delay of task 𝑅, 

𝑇𝑅 = max{𝑡𝑛𝑜𝑑𝑒 + 𝑡𝑡𝑟𝑎𝑛 , 𝑚𝑡𝑠𝑒𝑟𝑣𝑒𝑟} + 𝑡𝑠𝑒𝑟𝑣𝑒𝑟 .The detailed 

offloading process is as follows. 

 

Fig. 6 Three possible scenarios when a new task arrives at the 

server 

Algorithm 1 Offloading Strategy: Fastest Response 

1: Input: 

2: N：number of the subtasks 

3: {𝑅𝑖|𝑖 = 1, … ,𝑁}：the i-th subtask 

4: 𝐷𝑖 : output data size of 𝑅𝑖  
5: 𝑓(𝑆𝑖): latency of executing 𝑅𝑖 
6: 𝑙: deadline of task R 



 

7: 𝐵: current available bandwidth 

8: 𝑚: current number of nodes that connect to the server 

9: Output: 

10: Offloading Strategy: the offloading segment point 

𝐽𝑏𝑒𝑠𝑡 
11: procedure 

12: for each 𝑖 in 1,…,N do 

13:    𝑇𝑁𝑖 ← 𝑓𝑛𝑜𝑑𝑒(𝑅𝑖); 
14:    𝑇𝑆𝑖 ← 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖); 
15: end for   

16: Let 𝑇𝑅 ← 𝑙, 𝐽𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙; 
17: for 𝑗 = 0, 𝑗 ≤ 𝑁, 𝑗 = 𝑗 + 1 do  

18:    𝑡𝑛𝑜𝑑𝑒 = ∑ 𝑇𝑁𝑖
𝑗
𝑖=0 ; 

19:    𝑡𝑠𝑒𝑟𝑣𝑒𝑟 = ∑ 𝑇𝑆𝑖
𝑁
𝑖=𝑗+1 ; 

20:    𝑡𝑡𝑟𝑎𝑛 = 𝐷𝑖 B log 2(1 + 𝑝𝑖|ℎ𝑖|
2 𝜎2⁄ )⁄ ; 

21:    𝑇𝑗 = max{𝑡𝑛𝑜𝑑𝑒 + 𝑡𝑡𝑟𝑎𝑛 , 𝑚𝑡𝑠𝑒𝑟𝑣𝑒𝑟} + 𝑡𝑠𝑒𝑟𝑣𝑒𝑟 ; 

22:    if 𝑇𝑗 ≤ 𝑇𝑅  then 

23:        𝑇𝑅 ← 𝑇𝑗; 

24:        𝐽𝑏𝑒𝑠𝑡 ← 𝑗; 
25:    end if 

26: end for 

27: if 𝐽𝑏𝑒𝑠𝑡 = 𝑛𝑢𝑙𝑙 then 

28:     Send task R to the Cloud for processing; 

29: end if; 

30: return 𝐽𝑏𝑒𝑠𝑡 

When a new task R arrives, we slice it into N 

subtasks at the beginning and initialize the execution 

delay of each subtask at the node and server, denoted 

𝑇𝑁𝑖and 𝑇𝑆𝑖 , respectively (Line 12-15 in Alg. 1). Next, we 

try to slice the tasks at each candidate segment point and 

calculate the corresponding service delay 𝑇𝑗  according to 

the model in Section 4.1 (lines 17-21 of Alg. 1). Finally, 

we compare the service delay corresponding to each 

candidate segment point and select the one with the 

shortest service delay as the output of the discharged 

segment point (Line 22-25 in Alg.1). Note that if the 

service delay corresponding to all candidate segment 

points exceeds the task delay, the edge cannot process the 

task R and send it to the cloud (Line 27-29 in Alg.1). 

4.2.2 Offloading strategy2: Load Balance 

As we know, the computational power of edge 

servers is much better than that of edge nodes, and in 

order to ensure the response speed of node tasks, 

Algorithm 1 tends to migrate most of the tasks to the 

server. However, the number of edge nodes on the shop 

floor is often more significant than the number of edge 

servers. This offloading method may cause the servers to 

be overloaded, and there may be no server resources 

available when new tasks are accessed, which is not 

conducive to system scalability and will result in the 

waste of a large amount of node computing resources. In 

order to avoid the above puzzles, we propose a new task 

offloading algorithm to maximize the number of server 

access nodes based on the real-time performance and 

throughput rate guarantee of tasks. The specific algorithm 

is as follows. 

Algorithm 2 Offloading Strategy: Load Balance 

1: Input: 

2: N: number of the subtasks 

3: {𝑅𝑖|𝑖 = 1, … ,𝑁}：the 𝑖 -th subtask 

4: 𝐷𝑖 : output data size of 𝑅𝑖  
5: 𝑓(𝑅𝑖): delay of executing 𝑅𝑖 
6: 𝑙: deadline of task R 

7: 𝐵: current available bandwidth 

8: 𝜃: the threshold of throughput rate 

9: Output: 

10: Offloading Strategy: the offloading segment point 

𝐽𝑏𝑒𝑠𝑡 
11: 𝑀: the number of nodes that can connect to the server 

12: procedure 

13: for each 𝑖 in 1,…,N do 

14:    𝑇𝑁𝑖 ← 𝑓𝑛𝑜𝑑𝑒(𝑅𝑖); 
15:    𝑇𝑆𝑖 ← 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖); 
16: end for 

17: Let 𝐽𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙, Ρ ← ∅ 

18: for 𝑗 = 0, 𝑗 ≤ 𝑁, 𝑗 = 𝑗 + 1do  

19:    𝑡𝑛𝑜𝑑𝑒 = ∑ 𝑇𝑁𝑖
𝑗
𝑖=0 ; 

20:    𝑡𝑠𝑒𝑟𝑣𝑒𝑟 = ∑ 𝑇𝑆𝑖
𝑁
𝑖=𝑗+1 ; 

21:    for 𝑀𝑗=0 do 

22:       𝜏𝑗 = max{𝑡𝑛𝑜𝑑𝑒 , 𝑡𝑡𝑟𝑎𝑛 , 𝑡𝑠𝑒𝑟𝑣𝑒𝑟}, 𝜃𝑗 = 1 𝜏𝑗⁄ ; 

23:       𝑇𝑅 = 𝑡𝑛𝑜𝑑𝑒 + 𝑡𝑡𝑟𝑎𝑛 +𝑀𝑗𝑡𝑠𝑒𝑟𝑣𝑒𝑟 ; 

24:       if 𝑇𝑅 ≤ 𝑙then 

25:         𝑀𝑗 = 𝑀𝑗 + 1; 

26:       end if 

27:    end for 

28:    if 𝜃𝑗 ≥ 𝜃 then 

29:      Ρ ← Ρ ∪ {𝑝𝑗}, 𝑝𝑗 = (𝑗, 𝑀𝑗 , 𝜃𝑗); 

30:    end if 

31: end for 

32: Select the 𝑝𝑗 with maximum 𝑀𝑗  in Ρ 

33: 𝐽𝑏𝑒𝑠𝑡 ← 𝑗 
34: return 𝐽𝑏𝑒𝑠𝑡; 

Similar to Algorithm 1, Algorithm 2 first initializes 

the execution delay of each subtask on the node and 

server (Line 13-16 in Alg.2) and calculates the execution 

delay of the node 𝑡𝑛𝑜𝑑𝑒 and server 𝑡𝑠𝑒𝑟𝑣𝑒𝑟  corresponding 

to each candidate segment point (Line 18-20 in Alg.2). 

The transmission delay is obtained from actual 

measurements, and the throughput rate and service delay 

are calculated according to the system model (Line21-23 

in Alg.2). The algorithm calculates the maximum number 

of server accessible nodes 𝑀𝑗   corresponding to a 

candidate segment point 𝑗  in meeting the real-time 

requirement and stores the candidate segment points 

meeting the throughput rate requirement in the set 𝑃 

(Line 24-31 in Alg.2). Finally, the maximum value of 𝑀𝑗  



 

is searched in the set𝑃, and its corresponding segment 

point is returned as the offloading segment point (Line 

32-34 in Alg.2). 

5 Case Study 

The CNC machine tool is typical of complex and 

sophisticated machining equipment, and its health 

directly impacts product quality and production stability. 

The operator's subjective experience is primarily relied 

upon in the traditional CNC machining process to 

determine the health of the machine tool and perform 

maintenance. However, the CNC machine tools are 

located in a complex environment with complex failure 

information and a high probability of failure. On the one 

hand, failure to troubleshoot or replace components on 

time will result in machine health deterioration, shortened 

life, reduced processing quality, and even significant loss 

of life and property. On the other hand, frequent periodic 

maintenance can result in decreased utilization, wasted 

resources, and uncertainty in an otherwise stable 

manufacturing system [47]. To address the above issues, 

the application layer of cloud edge collaboration-based 

CPMT provides users with PHM services for machine 

tools that combine historical data with machine learning 

algorithms to predict failures or maintenance events in 

advance, thereby significantly reducing downtime and 

maintenance costs. The PHM has become a major 

concern for academia and industry. 

PHM relies on the fault alarm information provided 

by the CNC system to prompt the operator to resolve 

CNC machine obstacles early and quickly to ensure 

smooth production. However, in today's CNC equipment 

manufacturing industry, there is a wide variety of 

machine tools, and in addition to the machine faults 

defined by public standards, there are numerous fault 

messages customized by each machine tool manufacturer. 

This heterogeneous fault information will cause each 

CNC machine tool to become an information island, and 

it is difficult for the workshop or factory to realize the 

unified coding display, archiving, integration, and sharing 

of machine tool fault information. That brings great 

difficulties to the provision of PHM services and the 

hidden danger of equipment reliability for the horizontal 

integration of machine tools. 

 

Fig. 7 Prototype system for cloud-edge collaboration-based CPMT 



 

CPMT builds a DT model of machine tool fault 

based on the historical information of equipment, realizes 

a unified representation of CNC machine tool fault 

information, and provides failure diagnosis and predictive 

maintenance for machine tools by analyzing the changes 

in temperature, load, and position of the environment, 

machining object, and equipment of the machine tool by 

sensor acquisition and computer technology. This section 

takes the machine tool PHM service as an example to 

further demonstrate the feasibility and benefits of the 

proposed cloud edge collaboration-based CPMT, 

including the introduction of the physical devices and 

experimental environment, the establishment and 

deployment of the machine tool fault DT model in the 

cyber layer, and the cutting tool PHM service provided in 

the application layer. 

5.1 Physical devices and experimental environment 

Fig. 7 shows the prototype system for cloud-edge 

collaboration-based CPMT. An OPC UA server and a 

machine tool PHM application service are developed 

based on the LinuxCNC open-source platform and 

integrated into the CNC controller. This paper uses 

RaspberryPi 4B as the edge node (end) and SIMATIC 

NANOBOX PC as the edge server to apply in the cloud, 

edge, and end, respectively Kubernetes, KubeEdge, and 

Edge X Foundry platforms to build a cloud-edge 

collaborative environment. As shown in Fig. 7, the cloud 

collects the state information as a model training set to 

train the diagnostic and prediction models. The trained 

models are deployed to the edge nodes and servers. Real-

time data is analyzed at the edge for machine tool fault 

diagnosis and prediction, and the PLC provides fault 

codes to the CNC system or master computer. The user 

indexes the fault code in the fault dictionary database 

through the CNC controller control panel and APIs of the 

cloud services or microservices to obtain fault 

information such as fault name, fault parameters, fault 

rank, fault reflection, and fault handling methods to 

provide decision support to the operator. 

5.2 Cyber layer: MTDT modeling and deployment 

5.2.1 Fault information data dictionary of CNC machine 

tool 

This section establishes the MTDT model based on 

the standard "NC Equipment Fault Information Data 

Dictionary-CNC Machine Tools" (accepted, not yet 

released). First, analyze the fault components and 

hierarchy of CNC machine tool fault information, and 

make uniform fault classification and coding for CNC 

machine tools from different manufacturers. Then, a 

"CNC machine tool fault information data dictionary" is 

established to facilitate users to view the relevant fault 

information of CNC machine tools easily and quickly. 

The CNC machine tool fault information data dictionary 

contains two parts: machine tool fault code and fault 

information card. The fault code is the unique index of the 

machine’s fault information, and the fault information 

card contains the fault code, fault name, fault rank, fault 

parameters, fault reflection, fault content, suggested 

treatment, and system continuation method. 

 

Fig. 8 The information model of the CNC machine tool fault 

The information model of the CNC machine tool 

fault is shown in Fig. 8. Orange shows the fault 

classification of the CNC machine tool. CNC machine 

tool faults can be grouped into four categories: numerical 

controller fault, servo drive and motor fault, functional 

component fault, and machine tool accessories fault. The 

blue indicates the primary catalog of faults, and the purple 

marks the secondary catalog of faults. Coding the CNC 

machine tool fault depending on the information model, 

fault code a total of 9 bits, the first bit shows the 

classification of the fault, the 2-3 bits and 4-5 bits indicate 

the fault of the primary and the secondary catalog, 

respectively, which are coded from 01. The fault that 

cannot be categorized will be the shelter category "Other". 

Bits 6-9 indicate the specific fault information and are 

coded from 0001 onward. If there is no corresponding 

primary or secondary fault directory under the fault 

category, the corresponding position is coded with 00. To 

facilitate understanding, Fig. 9 gives an example of the 

code for "Excessive CNC Temperature". 



 

 
Fig. 9 Example of fault coding 

5.2.2 Cyber layer: modeling and deployment of PHM 

The CNC machine tool is a combination of different 

subsystems and components, and each subsystem and 

subcomponent has its own mechanism model for fault 

diagnosis and prediction. As an essential component of 

CNC machine tools, the health status of tools directly 

affects the quality and accuracy of machining, and the 

usage of the cutting tools is one of the most critical 

concerns of PHM service users. Here we take cutting tool 

wear diagnosis and prediction as an example and 

introduce the method of establishing and deploying the 

DT model of machine tool fault. 

There are many possible disturbing factors for 

cutting tool wear, and each tool has a specific wear curve. 

Direct measurement of tool wear during machining is not 

feasible due to tool occlusion and cutting fluid. In 

addition, there is no accurate physically-based model for 

cutting tool wear assessment. Traditional tool wear 

diagnosis is usually based on workers' experience, and 

this manner may result untimely or excessive 

maintenance. To address the above problems, Sun et al. 

[48] proposed using a residual network (ResNet) to 

monitor tool wear in real-time. The unique shortcut 

structure of the ResNet effectively solves the degradation 

problem that occurs when the neural network model is too 

deep. On top of this, this paper introduces a temporal 

convolutional network (TCN) to predict tool wear, 

considering the importance of predicting tool conditions 

for data-driven smart manufacturing. As shown in Fig. 10, 

the tool's PHM service is supported by the combination 

of ResNet-TCN. The model is trained in the cloud using 

the offline dataset, and the subtasks are divided. Subtask 

1 is the data preprocessing module consisting of Down 

Sample and Wavelet Transform. Subtasks 2-21 are the 

wear monitoring stage, containing one Post-activation 

residual block, eighteen identical Pre-activation residual 

blocks, and one Dense block. Similarly, subtasks 22-25 

are the wear prediction stage, containing three identical 

TCN blocks and one Dense layer. Compared with a fully 

neural network layered task segmentation, this method 

segments subtasks according to the data processing stages 

and residual blocks. It avoids the situation where 

shortcuts cannot be split, and it can effectively simplify 

the segmentation process and provide the algorithm with 

fewer candidate segment points, thereby accelerating the 

offloading speed. 

 

Fig. 10 The PHM model of cutting tool and subtask division 

In this paper, [dataset] the IEEE PHM 2010 

challenge dataset [49] was used to train the model of 

cutting tool wear. The dataset records real-time data from 

a Röders Tech RFM760 high-speed CNC milling 

machine machining a stainless-steel workpiece (HRC-52) 

under the same machining conditions, using 

approximately 315 cutting cycles for the six three-spline 

tungsten carbide ball-tip milling tools, and collecting X-, 

Y-, and Z-axis forces, three-axis accelerations, and 

acoustic emission sensor signals during machining, all 

with a data sampling rate of 50 kHz. 

The trained model of the cutting tool's PHM is 

deployed according to the offloading strategy proposed in 

Section 4. First, the execution delay of each subtask on 

the nodes and servers is initialized. The execution delay 

of subtasks needs to be initialized only once for the same 

hardware because it is determined solely by the 

computational power of the hardware devices, and the 

delay of each subtask can be obtained from actual 

measurements. Fig. 11 shows each subtask's execution 

delay, data transmission delay, and output data dimension. 



 

 
Fig. 11 Execution delay, transmission delay, and output data 

dimension of subtasks 

 
Fig. 12 The offloading segment points 

The task as of the deadline is set to 500ms, and the 

throughput rate threshold 𝜃 = 30% . The output 

offloading segment points are shown in Fig. 12 according 

to the two offloading strategies, respectively. Blue 

indicates the node execution delay, orange indicates the 

task transmission delay, and green indicates the server 

execution delay. Algorithm 1 uses a single server 

connected to a single node and aims at the fastest response 

for task offloading, so the shortest service delay is 

selected as the offloading segment point. In Fig. 12, the 

pink line points indicate the service delay, and red 

diamonds mark the offloading segment point output by 

Algorithm 1. In other words, when the relationship of 

server-to-node is 1-to-1, the fastest response can be 

obtained by offloading the whole task to the server for 

execution. 

Algorithm 2 aims to balance the load. The candidate 

segment point with the maximum number of nodes 

accessible to the server is selected as the offloading 

segment point while satisfying the real-time demands of 

the task and throughput. The timeslice describes the 

throughput and is indicated by a dashed black dot with a 

throughput threshold corresponding to a 340ms time slice. 

The number above the bar indicates the maximum 

number of accessible nodes of the server corresponding 

to this candidate slice point. The yellow star symbol 

marks the offload segment point produced by Algorithm 

2, i.e., after the first 20 subtasks are left to be processed 

by the node, the remaining subtasks are offloaded to the 

server for processing. At this point, the server can access 

9 nodes, and the throughput rate is 30.58%. 

 
Fig. 13 UI of the application



 

5.3 Application layer: PHM of cutting tool 

This section shows the web-based application where 

the client includes a web browser through which the user 

accesses the PHM application services for the cutting 

tools provided. Fig. 13 shows the user interface (UI) of 

the application we developed, with service modules such 

as workshop management, equipment management, 

statistical analysis, and staff management on the left. 

Furthermore, the PHM module for cutting tools is shown 

here as an example. The main screen (Fig.13 (a)) displays 

tool information, including the ID and name of the 

equipment it belongs to, the ID, name, rated lifespan, and 

served lifespan of the cutting tool. Meanwhile, the 

remaining lifespan of the cutting tool through a 

percentage stacked bar chart, which can help the user 

understand the status of the tool more intuitively. The 

users can search by ID or cutting tool name to display 

information about the specified cutting tool and use the 

corresponding "Manipulate" button to monitor, maintain, 

or view the cutting tool's history faults. 

As shown in Fig. 13, the PHM of a tool provides 

three main functional modules, and Fig.13(b) shows the 

monitoring service. By searching for the tool ID or name 

in the search field, the user can view the graph of the 

cutting tool wear at the bottom of the page. The blue line 

in the graph shows the actual wear value, while the orange 

line shows the prediction wear value. Fig.13 (c) shows the 

user a list of historical faults of the specified cutting tool, 

including the fault timestamp, fault code, and fault name. 

By tapping the "View" button, the user can see the related 

fault information card. The fault information card is 

shown in Fig.13 (d) with "Drastic tool wear" as an 

example. The cutting tool wear threshold has been 

established as the event's trigger condition. When the 

wear value reaches the threshold, the CNC system 

provides the fault code "305000005" through the PLC, 

the screen alarm, and the client prompts the operator 

"Cutting tool reached the end of life, which may affect the 

quality of machining.", and gives suggested treatment to 

help the operator deal with the fault quickly to prevent 

further damage. 

6 Conclusion and future work 

The era of big data-driven manufacturing has urgently 

demanded intelligence, interconnectivity, adaptability, and 

autonomy of machine tools. As a typical representative of 

Machine Tool 4.0, CPMT realizes the feedback control of 

CNC machine tools by building MTDT, helps humans 

understand the state of machine tools, improves product 

quality, and to some extent, completes the transformation of 

machine tool digitization and service. Based on the existing 

CPMT conceptual model and the existing resources of 

industrial field devices, this paper proposes a CPMT 

architecture based on cloud-edge collaboration. It transfers 

the establishment of the DT model and data processing from 

the cloud to the edge and provides microservice interfaces 

to the edge, thus bringing better service quality to users in 

terms of low power consumption, privacy protection, and 

fast response. Then, task offloading methods for speed of 

response and task offloading methods for load balancing are 

proposed considering the limitations of on-premises 

computing resources and the needs of latency-sensitive 

applications. Finally, this paper presents an application case 

of cloud-edge collaboration-based CPMT to provide PHM 

services for machine tools. The work deploys hardware 

devices according to the service requirements, builds the 

corresponding MTDT model, verifies the feasibility of the 

proposed cloud-edge collaboration-based CMPT, and 

demonstrates its benefits and potential through the PHM 

service for cutting tools. 

The objective of this work is to build CPMT 

collaboratively on the cloud side. The current research work 

has made a preliminary discussion on the construction and 

deployment of the CPMT model, and the proposed task 

offloading method needs further enrichment and 

improvement. The directions for future work are 

summarized as follows. 

1) Consider distributed task offloading strategies for 

large-scale edge networks to ensure algorithm scalability 

and prevent single-point failures from affecting the entire 

system. 

2) Accommodate the variability in resource allocation of 

edge servers, i.e., nodes can only offload tasks to the edge 

server containing the required computing resources. 

3) Provide richer application services, integrate more 

artificial intelligence algorithms into the MTDT, and 

develop mobile applications to accommodate different types 

of HMIs. 

4) Explore the operating mechanism of CPMT in physical 

information production systems (CPPS) and consider 

horizontal integration for autonomous cooperation between 

devices. 
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