

Task offloading in Cloud-Edge Collaboration-based Cyber Physical

Machine Tool

Chuting Wanga,b, Ruifeng Guob,Haoyu Yua,b, Yi Hub, Chao Liu c, Changyi Dengd*

a University of Chinese Academy of Sciences, Beijing 100049, PR China

b Shenyang Institute of Computing Technology Chinese Academy of Sciences, Shenyang 110168, PR China

c College of Engineering and Physical Sciences, Aston University, Birmingham B47ET, UK

d Institute of Software , China Industrial Control Systems Cyber Emergency Response Team, Beijing 100040, PR China

ARTICLE INFO ABSTRACT

Keywords:

Cyber-Physical Machine

Tool

Digital twin

Cloud-edge collaboration

Task offloading

 The Cyber-Physical Machine Tool (CPMT) is a promising solution for the next

generation of machine tool digitalization and servitization due to its excellent

interconnection, intelligence, adaptability, and autonomy. The rapid development of next-

generation information technologies, such as the Internet of Things (IoT) and artificial

intelligence (AI), provided richer services for CPMT but also led to problems of idle on-

site computing resources, and excessive pressure on the cloud, slow service response and

poor privacy. To solve the above problems, this paper proposes a cloud-edge

collaboration-based CPMT architecture, which makes full use of the computing resources

of existing devices in the industrial sites, offloads digital twin (DT) modeling and data

processing from the cloud to the edge, and provides microservice interfaces for users at

the edge. Given the limited computing resources available in the field and the demand

for latency-sensitive applications, task offloading methods aimed at response speed and

load balancing are proposed, respectively. Finally, a case of machine tool Prognostics and

Health Management (PHM) service is presented, in which the proposed method is used

to perform tool wear monitoring, prediction, and health management.

1 Introduction

Machine tools have always played a decisive role in

the field of manufacturing [1]. Their performance directly

affects the quality and efficiency of the products. [2].

With the deep integration of a new generation of

information technology (IT) and advanced manufacturing

technology, machine tools have gradually evolved from

the initial Machine Tool 1.0, which is machine-driven but

human-operated, into the current Machine Tool 3.0,

which is computer numerically controlled, on the way to

the era of Machine Tool 4.0. The rapid development of

intelligent manufacturing and Industry 4.0 demand

Machine Tool 4.0 to be more intelligent, well

interconnected, more flexible, and more autonomous [3].

As a typical representative of Machine Tool 4.0, Cyber-

Physical Machine Tool (CPMT) [4] integrates the

machine tools and manufacturing processes with

computation and networking based on the digital twin

(DT) technology, which aims to transform machine tools

from physical products to product-service systems and

cloud resources.

As the kernel of CPMT, DT digitally creates a

machine mirror for physical machine tools to provide

real-time supervision and feedback control on the

machine tool status and machining process, enabling the

integration of the physical world with the cyber world.

Most of the traditional architectures of DT are based on

"cloud-end" [5,6]. In other words, the device is only

responsible for performing production tasks and

collecting real-time data, while all data processing tasks

are uploaded to the cloud. However, with the arrival of

the Internet of Everything (IoE) era and the rapid

evolution of intelligent algorithms, the scale of data and

computation in industrial sites have increased

dramatically. Cloud computing may fail to process

various and massive sensed data in a timely manner,

resulting in intolerable delays [7,8] and inability to meet

the demand for real-time data interaction [9], eventually

causing the isolation of physical machine tools from their

mirrors in the DT machines. In addition, the construction

and application of cloud platforms in the industrial field

have lagged far behind their theoretical development [10].

Moreover, numerous edge devices with computing

capabilities have already been deployed into industrial

sites before the emergence of cloud computing.

Considering the aim of the existing equipment assets

in industrial sites and the excellent performance of edge

computing is to provide low latency, high bandwidth, and

mass accessible devices [11–13], this paper utilizes edge

computing to compensate for the deficiencies of cloud

computing and proposes a cloud-edge collaboration-

based CPMT, which further enhances the digitalization

and servitization of machine tools. The main

contributions of this paper are as follows.

 An architecture of cloud edge collaboration-based

CPMT is proposed.

 Explored task offloading technique to improve

responsiveness.

 A task offloading algorithm is proposed to provide

load balancing while maintaining system real-time

and throughput rate requirements, ensuring CPMT

scalability and supporting horizontal integration of

machine tools.

 An application service case of cloud-edge

collaboration based CPMT based on cloud-edge

collaboration is given to validate the feasibility and

advantages.

The rest of this paper is arranged as follows. Section

2 reviews the development of CPMT and the latest works

on cloud edge collaboration in academia and industry.

Section 3 profiles the architecture of the cloud-edge

collaboration-based CPMT. Section 4 depicts two

specific algorithms for deploying CPMT through cloud-

edge collaboration. Section 5 presents an application case.

Section 6 concludes this paper and offers suggestions for

further research.

2 Related works

Machine tools are involved in almost all

manufacturing processes and have occupied an iconic

position in the manufacturing industry since their

introduction. To a large extent, the development of

machine tool technology mirrored that of the industrial

revolution. With the advent of the new era of Industry 4.0,

the digitalization and servitization of machine tools are

becoming an emerging research trend [14]. This section

reviews the evolution of CPMT, provides a

comprehensive overview of the work and technologies

related to cloud-edge collaboration, and further identifies

the research gaps.

Xu [3] reviewed the history of machine tools,

pointed out that the development of machine tools should

come to the era of Machine Tool 4.0, innovatively put

forward the conceptual model of CPMT, and briefly

introduced the critical components and functions of

CPMT, which the total vertical and horizontal integration

of machine tools can be achieved. On this basis, Liu et al.

[4] clarified the definition of CPMT, stating that CPMT

combines a machine tool, machining processes,

computing, and a network in which embedded computing

monitors and controls the machining process via feedback

loops. The machining process can influence computing

and vice versa. Moreover, a generic system architecture

for CPMT was also suggested [2], which looked at the

development techniques for the DT of machine tool

(MTDT), the kernel of CPMT, in detail, providing

directions for converting current CNC machine tools to

CPMT. Deng et al. [15] deployed a wireless sensor

network (WSN) on an open CNC system and extended it

to CPMT, enabling real-time supervision and control of

the processing. To solve the problem of interacting with

heterogeneous data from multiple sources, Liu et al. [16]

proposed an MTConnect-based CPMT architecture,

including Physical devices, Networks, machine tool

cyber twin and cloud. Moreover, a prototype system was

designed based on the proposed architecture to deliver

unified and efficient data communication, fusion, and

management. Zhu et al. [17] proposed a user-centered

CPMT information provision model that divides CPMT

into Physical machine tools and processes, MTDT,

Cloud-based services, and Human-Machine Interfaces

(HMIs). It provided and distributed pertinent information

and data to the correct users in the proper scenarios and

at the right time and further increased the efficiency and

productivity of CPMT.

Cloud computing has plenteous computational and

storage resources for complex big data analysis, but its

real-time behavior is poor. Edge computing reduces the

pressure on the cloud by concentrating computation and

services close to the data source. Therefore, many

algorithms have been proposed to offload the task to

improve performance or reduce energy consumption. Cao

et al. [18] proposed a multi-agent deep reinforcement

learning scheme that enables edge devices to work

together and significantly reduce computational latency.

Liu et al. [19] proposed a holistic offloading method that

minimizes the latency by determining whether to offload

the tasks waiting in the buffer through a one-dimensional

search algorithm. Joshi et al. [20] proposed an energy-

efficient task offloading with delay awareness, trading off

between energy consumption and latency in

communication. Tang et al. [21] performed dynamic

resource allocation between the edge and the cloud, using

an optimal algorithm to transfer data from the cloud to the

edge and assign resources to them. Qi et al. [22] analyzed

the different requirements and uses of data generated at

the unit-level, system-level, and complex system-level at

the time scale for CPS and DT. They then proposed ideal

solutions for intelligent manufacturing, which utilize

edge computing, fog computing, and cloud computing at

different-level CPS and DT. Yang et al. [23] proposed an

open, scalable architecture for intelligent cloud

manufacturing systems with collaborative edge and cloud

computing to support the real-time response of latency-

sensitive applications by deploying hierarchical edge

gateways. Zhang et al. [24] focus on the computation

efficiency of the twin established, developed a cyber-

physical machine tool based on edge computing

techniques, which detect anomalies in edge data in terms

of both monadic outliers in the edge data itself and

multivariate parameter correlations between edge units,

shortening the mapping latency and reducing the

workload in the cloud.

Current research shows that academia and industry

strive to implement the digitalization and servitization of

machine tools. However, most previous research focuses

on creating DT models of machine tools, with less

research on DT in the machining process. Meanwhile,

most of the specific services provided by CPMT rely on

the cloud. Nonetheless, this cloud-centric data processing

in industrial sites may cause information lags due to

bandwidth and transmission delays, resulting in

information desynchronization between physical space

and cyberspace. Relying on cloud computing alone to

implement CPMT is too idealistic. At present, edge

computing technology is quickly evolving, and the cloud-

edge cooperation technique may achieve the synergistic

coupling between edge computing and cloud computing

and unlock the value of data [25], which is widely applied

in various industries. However, in the application of

CPMT, edge computing is only used at the data fusion

stage [24], which does not maximize the utility of cloud-

edge collaboration. This paper innovatively proposes a

CPMT architecture based on cloud-edge collaboration to

address the above problems. It provides new ideas and

ways for the servitization transformation of existing

machine tools by exploiting the complementary

properties of edge computing and cloud computing.

Fig. 1 Architecture of Cloud-edge collaboration-based CPMT

3 Cloud-edge collaboration-based CPMT

3.1 Overall architecture

This section provides an overall architecture of

cloud-edge collaboration-based CPMT. As shown in Fig.

1, the overall architecture consists of three layers:

physical layer, cyber layer, and application layer. In the

figure, the red arrows represent data transfer, while the

green arrows represent result feedback. The physical

layer covers all the physical items of CPMT. The cyber

layer is the crux of this architecture, where the physical

CNC machine tool is virtualized as the corresponding

MTDT through cloud computing and edge computing. By

describing CNC machine tools' multidimensional and

multiscale characteristics, MTDT, driven by real-time

data, can accurately depict machine tools' actual behavior

and operating state. MTDT infers the future operating

state and trends of the behavioral characteristics of

machine tools and machining processes via iterative

model and data operations. Moreover, use them to support

essential services such as prediction, evaluation, and

optimization of machine tools and machining processes

[26,27]. MTDT modeling can be divided into two parts

[28,29]: visual 3D modeling and semantic modeling.

Fig.1 shows the 3D visualization model we built for a

typical machine tool VMC850 in our previous work. The

semantic model [29,30] indicates structured management

of collected data and analysis processing. The cyber layer

performs feedback control of the physical layer through

MTDT and provides an external service interface via

APIs to support the servitization of the machine tool. The

final layer is the application layer, which provides cloud

services and microservices to third-party users.

The most vital distinction between the proposed

architecture and traditional architectures of CPMT

depends on its focus on cloud-edge collaboration.

Compared to traditional cloud-based CPMT [2,15,16],

the cloud-edge collaborative mode can fully utilize the

computing resources of existing equipment in the

workshop, thus maximizing the value of edge computing

and the cloud [31]. Cloud-centric servers have an

immense size, with high computing power, reliability, and

scalability [32,33]. However, with the rapid development

of IoE, users are more demanding on service

responsiveness and security. Although cloud computing

can provide an efficient computing platform for

processing big data, the network bandwidth growth rate

at this stage can no longer match the explosive growth of

data [34]. The cost of network bandwidth is also

decreases slower than the cost of hardware resources such

as CPU and memory. A single cloud-based computing

mode cannot satisfy users' demands for real-time security

and low power consumption [35]. As a complement and

extension of cloud computing, edge computing makes

full use of idle device resources and harnesses the

computing power of endpoints at the network edge. It

relieves pressure on network bandwidth and data centers

by absorbing part or whole of the computing tasks, solves

the problem of data transmission latency, improves

service response time, and enhances data security by

limiting the exploitation of private data inside the firewall.

Cloud-based architectures can provide non-real-time

services such as condition monitoring, process planning,

and remote maintenance, while edge computing-based

architectures enable real-time services such as error

compensation, surface roughness prediction, and

anomaly detection [14]. In this paper, we adopt the cloud-

edge collaboration approach to drive CPMT in order to

enhance the serviceability of machine tools. More details

about the cloud-edge collaboration-based CPMT are

explicated in the section below.

3.2 Physical devices

This paper extends the cloud-based CPMT by

deploying a series of edge devices. Fig. 2 presents the

physical devices of the CPMT based on cloud-edge

collaboration. The end devices contain CNC machine

components and data acquisition devices. Components

such as CNC controllers provide internal data about the

machine, such as spindle speed, axis position and velocity,

program information, and system information. Data

acquisition devices, including sensors for vibration,

temperature, and acoustic emission (AE), access external

data to the CPMT.

Fig. 2 Physical devices of the CPMT

The real-time data collected during manufacturing is

sent to the edge and cloud for further analysis through

various communication protocols and interfaces. The

cloud and edge devices carry the kernel of CPMT, the

MTDT, which is the basis for the intelligence and

servitization of CNC machines. As shown in Fig. 2, the

edge nodes are composed of devices with specific

computing capabilities such as Raspberry Pi, NANOBOX,

IPCs, and FPGAs. In order to efficiently gather

heterogeneous manufacturing data and transfer it to the

edge server or cloud for resource virtualization and

decision analysis, the edge gateway supports standardized

data communication methods such as MTConnect and

OPC UA to eliminate data heterogeneity [9,36,37] and

enable efficient data interaction. The edge server cluster

contains numerous servers serving different purposes,

including Cloud Core and Edge Core, in addition to the

basic compute and storage modules. Cloud Core reports

the status of edge resources to the Master node in the

cloud and issues cloud commands to Edge Core, while

Edge Core manages the edge resources. The Edge nodes

collaborate with the Edge Server Cluster to process data

from the end devices and upload essential and valuable

product information to the cloud for storage and analysis.

The cloud server cluster consolidates, stores, and

shares the data. The Master, as the control node, is

responsible for resource scheduling, management, and

control of the entire cluster.

3.3 Cyber layer

The Cyber layer establishes and deploys the MTDT

through cloud-edge collaboration. In contrast to

traditional CNC machine tools, the MTDT of CPMT

achieves a profound integration of the model and data by

constructing a digital mapping of the machine tool.

MTDT reflects the geometric and physical characteristics,

behavioral coupling relationships, and evolutionary rules

of CNC machine tools and machining processes [36] and

forms an integrated decision that feeds back to guide

machining toward closed-loop optimization. Based on the

five-dimensional model theory of the digital twin [38–40],

we divide MTDT into three main modules: the

information model, the mechanism model, and the

database. Among them, the information model reflects

the coupling between components and systems by

portraying the logical structure of the machine tool and

provides standardized and scalable data management [41].

The mechanism model is built by applying artificial

intelligence (AI) algorithms to data processing and

combining them with expert experience and domain

knowledge to jointly build a comprehensive high-fidelity

and high-accuracy model that can reflect the behavior and

rules of physical entities in order to transform a large

amount of raw machine tool data into meaningful

information to support machine tool service. Databases

provide secure, reliable, and adequate storage and

management of real-time data and valuable historical

information generated by machining.

Fig. 3 Cyber layer

CNC machine tools involve multiple subsystems,

such as electrical and mechanical, among which there are

coupling relationships [42]. In our previous work [37,43],

a generic information model for machine tools was built

by analyzing the hierarchical structure of CNC machine

tools. Considering the composability of DT models [36],

the edge side can flexibly extract and combine models

without building a complete MTDT. This paper provides

a reference model of MTDT driven by cloud and edge

computing in collaboration, as shown in Fig. 3. A

complete machine tool information model is formed in

the cloud, integrating historical data and valuable

information to build an expert knowledge base of CNC

machine tools. Cloud computing has more substantial

arithmetic power to optimize algorithms by training

models and formulate task offloading strategies. The edge

builds or downloads DT models according to the service

requirements and allocates them to different edge devices

respectively to realize the application of DT in different

stages and scenarios. Ultimately, the related cloud

services or microservices are provided by API. The

collaborative cloud-edge approach improves the

efficiency of DT modeling and lowers the application

threshold simultaneously.

In Fig. 3, the red arrows indicate the data transfer,

and the green arrows indicate result feedback. The

mechanism model, consisting of algorithms for

simulation, optimization, Prognostics and Health

Management (PHM), obtains specific standardized data

directly from the information model for analysis and

processing and feeds the results back to the information

model, which issues commands to the CNC controller to

automatically adjust machining or provide adequate

decision support to the operator. CNC machine

characteristics are not static during machining. To ensure

the reliability/faithfulness of the model, the MTDT is

continuously updated. In Fig. 3, the orange arrows are

used to indicate model updates while the blue arrows are

used to indicate model offloading. The cloud trains the

model with time-stamped historical data from the edge

and offloads the optimized model to the edge. The edge

processes real-time data from end devices to improve

service responsiveness. In this layer, we allocate

computational tasks by developing an offloading strategy,

the details of which are discussed in Section 4.

3.4 Application layer

The application layer is the final layer of the cloud-

edge collaboration CPMT architecture. After processing

the data in the Cyber layer, various cloud and edge

computing-driven services can be implemented to meet

the needs of process optimization and production quality

control, such as PHM, 3D visualization, and condition

monitoring. The application layer also provides various

types of HMIs to facilitate the interaction of different

stakeholders (e.g., machine operators, maintenance

personnel, shop floor managers, machine tool

manufacturers) with the CNC machine to further promote

the digitalization and service-orientation of the machine.

4 Methodologies of cloud edge collaboration for CPMT

CPMT collects data and analyzes it through MTDT.

Most existing CPMT models [5] transfer the collected

data directly to the cloud center for storage and analysis.

However, in CPMT deployments, numerous computing

resources of edge devices on the shop floor are idle.

Therefore, the centralized data processing model adopted

in the CPMT conceptual model needs to be adapted

accordingly by migrating computational tasks with high

real-time requirements to the edge. Thus, while relieving

network bandwidth pressure and reducing the load on

cloud datacenters, the existing devices are fully utilized

to provide more convenient computing resources for

industrial field data analysis.

In this section, we first establish a system model for

the task offloading problem of CPMT and then present

two task offloading algorithms for task response speed

and load balancing requirements, respectively.

4.1 System model

The primary purpose of this work is to minimize

service delay under the proposed framework. Service

delay [44] is the time required to complete a task request.

The edge is sited between the end devices and the cloud,

which contains massive devices with computing power

and can handle most service requests to reduce the overall

service delay.

Fig. 4 Task processing flow

Fig. 4 illustrates the task processing flow for the

proposed framework work. This paper aims to process

latency-sensitive tasks at the edge as much as possible.

That means the cloud only trains models and handles the

tasks that cannot be handled at the edge. Most of the real-

time services provided by CPMT, such as tool wear

monitoring and fault diagnosis, rely on machine learning

algorithms represented by Deep Neural Networks (DNN).

Therefore, this paper assumes that all tasks are machine

learning tasks that pre-trained DNN model processes in

the cloud, and the output is obtained by performing

inference. After data capture, the tasks are sliced, and the

corresponding container pipeline is created for each

model slice and evaluated. Finally, the tasks are

distributed between the edge nodes and the edge servers

according to the offloading requirements.

1) Network model

The normalized network model in this paper is

defined as follows: the set of edge nodes is ℕ，ℕ =

{𝑁𝑖|i = 1,2, … , N}，|ℕ| = N . Any node 𝑁𝑖 ∈ ℕ holds a

task 𝑅. If a single node holds multiple tasks, the node can

be split into multiple virtual nodes, and each node holds

only one task. Tasks can be executed locally (edge node)

or offloaded to an edge server, and the results are

transmitted back to the edge node. It is assumed that the

selected server contains the resources required for task

execution.

2) Task model

The task is sliced according to the neural network

structure, and the task R is split into n subtasks, 𝑅 =

{𝑅𝑖|𝑖 = 1,2, … , 𝑛}. 𝐷𝑖 denotes the size of the output data

after the execution of subtask 𝑅𝑖. 𝑙𝑅denotes the deadline

of task 𝑅 . Each task 𝑅 can be left local (edge node),

offloaded to the server as a whole, or partially offloaded

to the edge server for execution. The task segment point

is denoted as 𝑗, which is located after the 𝑗th subtask has

been executed. For different types of neural network

layers, different layer configurations can lead to

significant variations in latency. Kang [45] et al. varied

the configurable parameters of various neural network

layers and measured the latency of each configuration to

construct latency prediction models for each type of layer

so that the latency of the DNN constituent layers could be

estimated without executing the DNN. Based on this, the

latency of a node executing subtask 𝑅𝑖 is denoted as

𝑓𝑛𝑜𝑑𝑒(𝑅𝑖)and the latency of a server executing subtask 𝑅𝑖

is denoted as 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖),where 𝑖 = 1,2, … , 𝑛.

The service delay 𝑇𝑅 of task 𝑅 consists of node

execution latency, server execution latency and

transmission delay. Where the edge node task execution

delay is:

𝑡𝑛𝑜𝑑𝑒 =∑ 𝑓𝑛𝑜𝑑𝑒(𝑅𝑖)

𝑗

𝑖=0

(1)

The edge server execution delay is:

𝑡𝑠𝑒𝑟𝑣𝑒𝑟 =∑ 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖)

𝑛

𝑖=j+1

(2)

The data is transmitted between the node and the

server and the transmission delay can be calculated

according to the Shannon formula as:

 𝑡𝑡𝑟𝑎𝑛
= 𝐷𝑖 B log 2(1 + 𝑝𝑖|ℎ𝑖|

2 𝜎2⁄)⁄

(3)

B is the available bandwidth between the node and

the server, 𝑝𝑖 is the transmit power of node 𝑖 , ℎ𝑖 is the

channel gain, and 𝜎2 is the white Gaussian noise power

inside the channel.

In order to make full use of edge node resources and

reduce data discard, this paper processes the task through

Multiple Instruction stream Single Data stream (MISD)

pipeline structure.

Fig. 5 MISD pipeline structure

As shown in Fig. 5, the nodes execute in parallel, and

the server executes serially by non-preemptive CPU

allocation. Every timeslice τ elapses, the system outputs

a set of processing results,τ = max⁡{𝑡𝑛𝑜𝑑𝑒 , 𝑡𝑡𝑟𝑎𝑛, 𝑡𝑠𝑒𝑟𝑣𝑒𝑟}.

When the pipeline is stable and fully loaded, the highest

speed of data processing results can be guaranteed within

each timeslice [46]. At this point, the system throughput

rate 𝜃 = 1 τ⁄ , and a higher throughput rate means fewer

data is discarded.

4.2 Offloading strategy

The offloading segment point of a DNN model

depends on its topology, which is reflected in the variation

in computation and data size at each layer. In addition,

dynamic factors such as network state and device load can

also affect the choice of offloading segment points. We

propose an approach that intelligently slices tasks and

formulates offloading strategies. It includes two phases,

static configuration, and service execution. In the static

configuration phase, the edge nodes and servers are

configured to obtain the delay prediction model of the

DNN layer spectrum from the cloud database and store it

on the corresponding nodes and servers. In the service

execution phase, the system analyzes the DNN layer

types, extracts its configurations, and uses the stored

prediction models to value the delay of each layer's

execution delay on the nodes and servers. Furthermore,

an offloading strategy for specific optimization goals

(response speed/load balance) is formulated by

combining the current network conditions. Finally, the

DNN is executed by distributing tasks across nodes and

servers according to the offload policy developed.

4.2.1 Offloading strategy1: Fastest Response

Task response speed is an essential indicator of

service quality and a vital optimization goal for edge

computing task offloading, and Algorithm 1 develops an

offloading strategy to improve the response speed. Fig. 6

shows three possible scenarios when a new task arrives at

the server: a) the server is busy, and the new task needs to

wait for the previous task to complete; b) the new task

arrives without waiting for the server, but the server

incurs idle time; c) the server happens to be idle when the

task arrives. Note that the server execution delay of

previous tasks is 𝑚𝑡𝑠𝑒𝑟𝑣𝑒𝑟 , then service delay of task 𝑅,

𝑇𝑅 = max{𝑡𝑛𝑜𝑑𝑒 + 𝑡𝑡𝑟𝑎𝑛 , 𝑚𝑡𝑠𝑒𝑟𝑣𝑒𝑟} + 𝑡𝑠𝑒𝑟𝑣𝑒𝑟 .The detailed

offloading process is as follows.

Fig. 6 Three possible scenarios when a new task arrives at the

server

Algorithm 1 Offloading Strategy: Fastest Response

1: Input:

2: N：number of the subtasks

3: {𝑅𝑖|𝑖 = 1, … ,𝑁}：the i-th subtask

4: 𝐷𝑖 : output data size of 𝑅𝑖
5: 𝑓(𝑆𝑖): latency of executing 𝑅𝑖
6: 𝑙: deadline of task R

7: 𝐵: current available bandwidth

8: 𝑚: current number of nodes that connect to the server

9: Output:

10: Offloading Strategy: the offloading segment point

𝐽𝑏𝑒𝑠𝑡
11: procedure

12: for each 𝑖 in 1,…,N do

13: 𝑇𝑁𝑖 ← 𝑓𝑛𝑜𝑑𝑒(𝑅𝑖);
14: 𝑇𝑆𝑖 ← 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖);
15: end for

16: Let 𝑇𝑅 ← 𝑙, 𝐽𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙;
17: for 𝑗 = 0, 𝑗 ≤ 𝑁, 𝑗 = 𝑗 + 1 do

18: 𝑡𝑛𝑜𝑑𝑒 = ∑ 𝑇𝑁𝑖
𝑗
𝑖=0 ;

19: 𝑡𝑠𝑒𝑟𝑣𝑒𝑟 = ∑ 𝑇𝑆𝑖
𝑁
𝑖=𝑗+1 ;

20: 𝑡𝑡𝑟𝑎𝑛 = 𝐷𝑖 B log 2(1 + 𝑝𝑖|ℎ𝑖|
2 𝜎2⁄)⁄ ;

21: 𝑇𝑗 = max⁡{𝑡𝑛𝑜𝑑𝑒 + 𝑡𝑡𝑟𝑎𝑛 , 𝑚𝑡𝑠𝑒𝑟𝑣𝑒𝑟} + 𝑡𝑠𝑒𝑟𝑣𝑒𝑟 ;

22: if 𝑇𝑗 ≤ 𝑇𝑅 then

23: 𝑇𝑅 ← 𝑇𝑗;

24: 𝐽𝑏𝑒𝑠𝑡 ← 𝑗;
25: end if

26: end for

27: if 𝐽𝑏𝑒𝑠𝑡 = 𝑛𝑢𝑙𝑙 then

28: Send task R to the Cloud for processing;

29: end if;

30: return 𝐽𝑏𝑒𝑠𝑡

When a new task R arrives, we slice it into N

subtasks at the beginning and initialize the execution

delay of each subtask at the node and server, denoted

𝑇𝑁𝑖and 𝑇𝑆𝑖 , respectively (Line 12-15 in Alg. 1). Next, we

try to slice the tasks at each candidate segment point and

calculate the corresponding service delay 𝑇𝑗 according to

the model in Section 4.1 (lines 17-21 of Alg. 1). Finally,

we compare the service delay corresponding to each

candidate segment point and select the one with the

shortest service delay as the output of the discharged

segment point (Line 22-25 in Alg.1). Note that if the

service delay corresponding to all candidate segment

points exceeds the task delay, the edge cannot process the

task R and send it to the cloud (Line 27-29 in Alg.1).

4.2.2 Offloading strategy2: Load Balance

As we know, the computational power of edge

servers is much better than that of edge nodes, and in

order to ensure the response speed of node tasks,

Algorithm 1 tends to migrate most of the tasks to the

server. However, the number of edge nodes on the shop

floor is often more significant than the number of edge

servers. This offloading method may cause the servers to

be overloaded, and there may be no server resources

available when new tasks are accessed, which is not

conducive to system scalability and will result in the

waste of a large amount of node computing resources. In

order to avoid the above puzzles, we propose a new task

offloading algorithm to maximize the number of server

access nodes based on the real-time performance and

throughput rate guarantee of tasks. The specific algorithm

is as follows.

Algorithm 2 Offloading Strategy: Load Balance

1: Input:

2: N: number of the subtasks

3: {𝑅𝑖|𝑖 = 1, … ,𝑁}：the 𝑖 -th subtask

4: 𝐷𝑖 : output data size of 𝑅𝑖
5: 𝑓(𝑅𝑖): delay of executing 𝑅𝑖
6: 𝑙: deadline of task R

7: 𝐵: current available bandwidth

8: 𝜃: the threshold of throughput rate

9: Output:

10: Offloading Strategy: the offloading segment point

𝐽𝑏𝑒𝑠𝑡
11: 𝑀: the number of nodes that can connect to the server

12: procedure

13: for each 𝑖 in 1,…,N do

14: 𝑇𝑁𝑖 ← 𝑓𝑛𝑜𝑑𝑒(𝑅𝑖);
15: 𝑇𝑆𝑖 ← 𝑓𝑠𝑒𝑟𝑣𝑒𝑟(𝑅𝑖);
16: end for

17: Let 𝐽𝑏𝑒𝑠𝑡 ← 𝑛𝑢𝑙𝑙, Ρ ← ∅

18: for 𝑗 = 0, 𝑗 ≤ 𝑁, 𝑗 = 𝑗 + 1⁡do

19: 𝑡𝑛𝑜𝑑𝑒 = ∑ 𝑇𝑁𝑖
𝑗
𝑖=0 ;

20: 𝑡𝑠𝑒𝑟𝑣𝑒𝑟 = ∑ 𝑇𝑆𝑖
𝑁
𝑖=𝑗+1 ;

21: for 𝑀𝑗=0 do

22: 𝜏𝑗 = max{𝑡𝑛𝑜𝑑𝑒 , 𝑡𝑡𝑟𝑎𝑛 , 𝑡𝑠𝑒𝑟𝑣𝑒𝑟}, 𝜃𝑗 = 1 𝜏𝑗⁄ ;

23: 𝑇𝑅 = 𝑡𝑛𝑜𝑑𝑒 + 𝑡𝑡𝑟𝑎𝑛 +𝑀𝑗𝑡𝑠𝑒𝑟𝑣𝑒𝑟 ;

24: if 𝑇𝑅 ≤ 𝑙⁡then

25: 𝑀𝑗 = 𝑀𝑗 + 1;

26: end if

27: end for

28: if 𝜃𝑗 ≥ 𝜃 then

29: Ρ ← Ρ ∪ {𝑝𝑗}, 𝑝𝑗 = (𝑗, 𝑀𝑗 , 𝜃𝑗);

30: end if

31: end for

32: Select the 𝑝𝑗 with maximum 𝑀𝑗 in Ρ

33: 𝐽𝑏𝑒𝑠𝑡 ← 𝑗
34: return 𝐽𝑏𝑒𝑠𝑡;

Similar to Algorithm 1, Algorithm 2 first initializes

the execution delay of each subtask on the node and

server (Line 13-16 in Alg.2) and calculates the execution

delay of the node 𝑡𝑛𝑜𝑑𝑒 and server 𝑡𝑠𝑒𝑟𝑣𝑒𝑟 corresponding

to each candidate segment point (Line 18-20 in Alg.2).

The transmission delay is obtained from actual

measurements, and the throughput rate and service delay

are calculated according to the system model (Line21-23

in Alg.2). The algorithm calculates the maximum number

of server accessible nodes 𝑀𝑗 corresponding to a

candidate segment point 𝑗 in meeting the real-time

requirement and stores the candidate segment points

meeting the throughput rate requirement in the set 𝑃

(Line 24-31 in Alg.2). Finally, the maximum value of 𝑀𝑗

is searched in the set⁡𝑃, and its corresponding segment

point is returned as the offloading segment point (Line

32-34 in Alg.2).

5 Case Study

The CNC machine tool is typical of complex and

sophisticated machining equipment, and its health

directly impacts product quality and production stability.

The operator's subjective experience is primarily relied

upon in the traditional CNC machining process to

determine the health of the machine tool and perform

maintenance. However, the CNC machine tools are

located in a complex environment with complex failure

information and a high probability of failure. On the one

hand, failure to troubleshoot or replace components on

time will result in machine health deterioration, shortened

life, reduced processing quality, and even significant loss

of life and property. On the other hand, frequent periodic

maintenance can result in decreased utilization, wasted

resources, and uncertainty in an otherwise stable

manufacturing system [47]. To address the above issues,

the application layer of cloud edge collaboration-based

CPMT provides users with PHM services for machine

tools that combine historical data with machine learning

algorithms to predict failures or maintenance events in

advance, thereby significantly reducing downtime and

maintenance costs. The PHM has become a major

concern for academia and industry.

PHM relies on the fault alarm information provided

by the CNC system to prompt the operator to resolve

CNC machine obstacles early and quickly to ensure

smooth production. However, in today's CNC equipment

manufacturing industry, there is a wide variety of

machine tools, and in addition to the machine faults

defined by public standards, there are numerous fault

messages customized by each machine tool manufacturer.

This heterogeneous fault information will cause each

CNC machine tool to become an information island, and

it is difficult for the workshop or factory to realize the

unified coding display, archiving, integration, and sharing

of machine tool fault information. That brings great

difficulties to the provision of PHM services and the

hidden danger of equipment reliability for the horizontal

integration of machine tools.

Fig. 7 Prototype system for cloud-edge collaboration-based CPMT

CPMT builds a DT model of machine tool fault

based on the historical information of equipment, realizes

a unified representation of CNC machine tool fault

information, and provides failure diagnosis and predictive

maintenance for machine tools by analyzing the changes

in temperature, load, and position of the environment,

machining object, and equipment of the machine tool by

sensor acquisition and computer technology. This section

takes the machine tool PHM service as an example to

further demonstrate the feasibility and benefits of the

proposed cloud edge collaboration-based CPMT,

including the introduction of the physical devices and

experimental environment, the establishment and

deployment of the machine tool fault DT model in the

cyber layer, and the cutting tool PHM service provided in

the application layer.

5.1 Physical devices and experimental environment

Fig. 7 shows the prototype system for cloud-edge

collaboration-based CPMT. An OPC UA server and a

machine tool PHM application service are developed

based on the LinuxCNC open-source platform and

integrated into the CNC controller. This paper uses

RaspberryPi 4B as the edge node (end) and SIMATIC

NANOBOX PC as the edge server to apply in the cloud,

edge, and end, respectively Kubernetes, KubeEdge, and

Edge X Foundry platforms to build a cloud-edge

collaborative environment. As shown in Fig. 7, the cloud

collects the state information as a model training set to

train the diagnostic and prediction models. The trained

models are deployed to the edge nodes and servers. Real-

time data is analyzed at the edge for machine tool fault

diagnosis and prediction, and the PLC provides fault

codes to the CNC system or master computer. The user

indexes the fault code in the fault dictionary database

through the CNC controller control panel and APIs of the

cloud services or microservices to obtain fault

information such as fault name, fault parameters, fault

rank, fault reflection, and fault handling methods to

provide decision support to the operator.

5.2 Cyber layer: MTDT modeling and deployment

5.2.1 Fault information data dictionary of CNC machine

tool

This section establishes the MTDT model based on

the standard "NC Equipment Fault Information Data

Dictionary-CNC Machine Tools" (accepted, not yet

released). First, analyze the fault components and

hierarchy of CNC machine tool fault information, and

make uniform fault classification and coding for CNC

machine tools from different manufacturers. Then, a

"CNC machine tool fault information data dictionary" is

established to facilitate users to view the relevant fault

information of CNC machine tools easily and quickly.

The CNC machine tool fault information data dictionary

contains two parts: machine tool fault code and fault

information card. The fault code is the unique index of the

machine’s fault information, and the fault information

card contains the fault code, fault name, fault rank, fault

parameters, fault reflection, fault content, suggested

treatment, and system continuation method.

Fig. 8 The information model of the CNC machine tool fault

The information model of the CNC machine tool

fault is shown in Fig. 8. Orange shows the fault

classification of the CNC machine tool. CNC machine

tool faults can be grouped into four categories: numerical

controller fault, servo drive and motor fault, functional

component fault, and machine tool accessories fault. The

blue indicates the primary catalog of faults, and the purple

marks the secondary catalog of faults. Coding the CNC

machine tool fault depending on the information model,

fault code a total of 9 bits, the first bit shows the

classification of the fault, the 2-3 bits and 4-5 bits indicate

the fault of the primary and the secondary catalog,

respectively, which are coded from 01. The fault that

cannot be categorized will be the shelter category "Other".

Bits 6-9 indicate the specific fault information and are

coded from 0001 onward. If there is no corresponding

primary or secondary fault directory under the fault

category, the corresponding position is coded with 00. To

facilitate understanding, Fig. 9 gives an example of the

code for "Excessive CNC Temperature".

Fig. 9 Example of fault coding

5.2.2 Cyber layer: modeling and deployment of PHM

The CNC machine tool is a combination of different

subsystems and components, and each subsystem and

subcomponent has its own mechanism model for fault

diagnosis and prediction. As an essential component of

CNC machine tools, the health status of tools directly

affects the quality and accuracy of machining, and the

usage of the cutting tools is one of the most critical

concerns of PHM service users. Here we take cutting tool

wear diagnosis and prediction as an example and

introduce the method of establishing and deploying the

DT model of machine tool fault.

There are many possible disturbing factors for

cutting tool wear, and each tool has a specific wear curve.

Direct measurement of tool wear during machining is not

feasible due to tool occlusion and cutting fluid. In

addition, there is no accurate physically-based model for

cutting tool wear assessment. Traditional tool wear

diagnosis is usually based on workers' experience, and

this manner may result untimely or excessive

maintenance. To address the above problems, Sun et al.

[48] proposed using a residual network (ResNet) to

monitor tool wear in real-time. The unique shortcut

structure of the ResNet effectively solves the degradation

problem that occurs when the neural network model is too

deep. On top of this, this paper introduces a temporal

convolutional network (TCN) to predict tool wear,

considering the importance of predicting tool conditions

for data-driven smart manufacturing. As shown in Fig. 10,

the tool's PHM service is supported by the combination

of ResNet-TCN. The model is trained in the cloud using

the offline dataset, and the subtasks are divided. Subtask

1 is the data preprocessing module consisting of Down

Sample and Wavelet Transform. Subtasks 2-21 are the

wear monitoring stage, containing one Post-activation

residual block, eighteen identical Pre-activation residual

blocks, and one Dense block. Similarly, subtasks 22-25

are the wear prediction stage, containing three identical

TCN blocks and one Dense layer. Compared with a fully

neural network layered task segmentation, this method

segments subtasks according to the data processing stages

and residual blocks. It avoids the situation where

shortcuts cannot be split, and it can effectively simplify

the segmentation process and provide the algorithm with

fewer candidate segment points, thereby accelerating the

offloading speed.

Fig. 10 The PHM model of cutting tool and subtask division

In this paper, [dataset] the IEEE PHM 2010

challenge dataset [49] was used to train the model of

cutting tool wear. The dataset records real-time data from

a Röders Tech RFM760 high-speed CNC milling

machine machining a stainless-steel workpiece (HRC-52)

under the same machining conditions, using

approximately 315 cutting cycles for the six three-spline

tungsten carbide ball-tip milling tools, and collecting X-,

Y-, and Z-axis forces, three-axis accelerations, and

acoustic emission sensor signals during machining, all

with a data sampling rate of 50 kHz.

The trained model of the cutting tool's PHM is

deployed according to the offloading strategy proposed in

Section 4. First, the execution delay of each subtask on

the nodes and servers is initialized. The execution delay

of subtasks needs to be initialized only once for the same

hardware because it is determined solely by the

computational power of the hardware devices, and the

delay of each subtask can be obtained from actual

measurements. Fig. 11 shows each subtask's execution

delay, data transmission delay, and output data dimension.

Fig. 11 Execution delay, transmission delay, and output data

dimension of subtasks

Fig. 12 The offloading segment points

The task as of the deadline is set to 500ms, and the

throughput rate threshold⁡ 𝜃 = 30% . The output

offloading segment points are shown in Fig. 12 according

to the two offloading strategies, respectively. Blue

indicates the node execution delay, orange indicates the

task transmission delay, and green indicates the server

execution delay. Algorithm 1 uses a single server

connected to a single node and aims at the fastest response

for task offloading, so the shortest service delay is

selected as the offloading segment point. In Fig. 12, the

pink line points indicate the service delay, and red

diamonds mark the offloading segment point output by

Algorithm 1. In other words, when the relationship of

server-to-node is 1-to-1, the fastest response can be

obtained by offloading the whole task to the server for

execution.

Algorithm 2 aims to balance the load. The candidate

segment point with the maximum number of nodes

accessible to the server is selected as the offloading

segment point while satisfying the real-time demands of

the task and throughput. The timeslice describes the

throughput and is indicated by a dashed black dot with a

throughput threshold corresponding to a 340ms time slice.

The number above the bar indicates the maximum

number of accessible nodes of the server corresponding

to this candidate slice point. The yellow star symbol

marks the offload segment point produced by Algorithm

2, i.e., after the first 20 subtasks are left to be processed

by the node, the remaining subtasks are offloaded to the

server for processing. At this point, the server can access

9 nodes, and the throughput rate is 30.58%.

Fig. 13 UI of the application

5.3 Application layer: PHM of cutting tool

This section shows the web-based application where

the client includes a web browser through which the user

accesses the PHM application services for the cutting

tools provided. Fig. 13 shows the user interface (UI) of

the application we developed, with service modules such

as workshop management, equipment management,

statistical analysis, and staff management on the left.

Furthermore, the PHM module for cutting tools is shown

here as an example. The main screen (Fig.13 (a)) displays

tool information, including the ID and name of the

equipment it belongs to, the ID, name, rated lifespan, and

served lifespan of the cutting tool. Meanwhile, the

remaining lifespan of the cutting tool through a

percentage stacked bar chart, which can help the user

understand the status of the tool more intuitively. The

users can search by ID or cutting tool name to display

information about the specified cutting tool and use the

corresponding "Manipulate" button to monitor, maintain,

or view the cutting tool's history faults.

As shown in Fig. 13, the PHM of a tool provides

three main functional modules, and Fig.13(b) shows the

monitoring service. By searching for the tool ID or name

in the search field, the user can view the graph of the

cutting tool wear at the bottom of the page. The blue line

in the graph shows the actual wear value, while the orange

line shows the prediction wear value. Fig.13 (c) shows the

user a list of historical faults of the specified cutting tool,

including the fault timestamp, fault code, and fault name.

By tapping the "View" button, the user can see the related

fault information card. The fault information card is

shown in Fig.13 (d) with "Drastic tool wear" as an

example. The cutting tool wear threshold has been

established as the event's trigger condition. When the

wear value reaches the threshold, the CNC system

provides the fault code "305000005" through the PLC,

the screen alarm, and the client prompts the operator

"Cutting tool reached the end of life, which may affect the

quality of machining.", and gives suggested treatment to

help the operator deal with the fault quickly to prevent

further damage.

6 Conclusion and future work

The era of big data-driven manufacturing has urgently

demanded intelligence, interconnectivity, adaptability, and

autonomy of machine tools. As a typical representative of

Machine Tool 4.0, CPMT realizes the feedback control of

CNC machine tools by building MTDT, helps humans

understand the state of machine tools, improves product

quality, and to some extent, completes the transformation of

machine tool digitization and service. Based on the existing

CPMT conceptual model and the existing resources of

industrial field devices, this paper proposes a CPMT

architecture based on cloud-edge collaboration. It transfers

the establishment of the DT model and data processing from

the cloud to the edge and provides microservice interfaces

to the edge, thus bringing better service quality to users in

terms of low power consumption, privacy protection, and

fast response. Then, task offloading methods for speed of

response and task offloading methods for load balancing are

proposed considering the limitations of on-premises

computing resources and the needs of latency-sensitive

applications. Finally, this paper presents an application case

of cloud-edge collaboration-based CPMT to provide PHM

services for machine tools. The work deploys hardware

devices according to the service requirements, builds the

corresponding MTDT model, verifies the feasibility of the

proposed cloud-edge collaboration-based CMPT, and

demonstrates its benefits and potential through the PHM

service for cutting tools.

The objective of this work is to build CPMT

collaboratively on the cloud side. The current research work

has made a preliminary discussion on the construction and

deployment of the CPMT model, and the proposed task

offloading method needs further enrichment and

improvement. The directions for future work are

summarized as follows.

1) Consider distributed task offloading strategies for

large-scale edge networks to ensure algorithm scalability

and prevent single-point failures from affecting the entire

system.

2) Accommodate the variability in resource allocation of

edge servers, i.e., nodes can only offload tasks to the edge

server containing the required computing resources.

3) Provide richer application services, integrate more

artificial intelligence algorithms into the MTDT, and

develop mobile applications to accommodate different types

of HMIs.

4) Explore the operating mechanism of CPMT in physical

information production systems (CPPS) and consider

horizontal integration for autonomous cooperation between

devices.

Acknowledgments

This work was supported by the High-level Innovation

and Entrepreneurship Team in Liaoning Province under

Grant XLYC1902091.

References

[1] T. Kjellberg, A. von Euler-Chelpin, M. Hedlind, M.

Lundgren, G. Sivard, D. Chen, The machine tool

model-A core part of the digital factory, CIRP Ann.

- Manuf. Technol. 58 (2009) 425–428.

https://doi.org/10.1016/j.cirp.2009.03.035.

[2] C. Liu, H. Vengayil, R.Y. Zhong, X. Xu, A systematic

development method for cyber-physical machine

tools, J. Manuf. Syst. 48 (2018) 13–24.

https://doi.org/10.1016/j.jmsy.2018.02.001.

[3] X. Xu, Machine Tool 4.0 for the new era of

manufacturing, Int. J. Adv. Manuf. Technol. 92

(2017) 1893–1900.

https://doi.org/10.1007/s00170-017-0300-7.

[4] C. Liu, X. Xu, Cyber-physical Machine Tool - The

Era of Machine Tool 4.0, Procedia CIRP. 63 (2017)

70–75.

https://doi.org/10.1016/j.procir.2017.03.078.

[5] C.K.M. Lee, B. Lin, K.K.H. Ng, Y. Lv, W.C. Tai, Smart

robotic mobile fulfillment system with dynamic

conflict-free strategies considering cyber-physical

integration, Adv. Eng. Informatics. 42 (2019).

https://doi.org/10.1016/j.aei.2019.100998.

[6] F. Tao, J. Cheng, Q. Qi, IIHub: An industrial

internet-of-things hub toward smart

manufacturing based on cyber-physical system,

IEEE Trans. Ind. Informatics. 14 (2018) 2271–2280.

https://doi.org/10.1109/TII.2017.2759178.

[7] B. Liu, Y. Zhang, G. Zhang, P. Zheng, Edge-cloud

orchestration driven industrial smart product-

service systems solution design based on CPS and

IIoT, Adv. Eng. Informatics. 42 (2019) 100984.

https://doi.org/10.1016/j.aei.2019.100984.

[8] M. Zolanvari, M.A. Teixeira, L. Gupta, K.M. Khan, R.

Jain, Machine Learning-Based Network

Vulnerability Analysis of Industrial Internet of

Things, IEEE Internet Things J. 6 (2019) 6822–6834.

https://doi.org/10.1109/JIOT.2019.2912022.

[9] M. Zhang, F. Tao, B. Huang, A. Liu, N. Anwer, A.Y.C.

Nee, Digital twin data : methods and key

technologies [version 1 ; peer review : awaiting

peer review], (2021).

[10] I.E. Computing, Industrial Edge Computing : Vision

and Challenges, Inf. Control. 50 (2021) 257–274.

[11] C. Ding, A. Zhou, Y. Liu, R. Chang, C.H. Hsu, S.

Wang, A Cloud-Edge Collaboration Framework for

Cognitive Service, IEEE Trans. Cloud Comput. 7161

(2020). https://doi.org/10.1109/TCC.2020.2997008.

[12] Edge computing Consortium and Alliance of

Industrial Internet: White Paper on Edge

Computing and Cloud Computing

Collaboration[EB/OL],

Http://Www.Ecconsortium.Org/Uploads/File/20190

221/1550718911180625. (n.d.).

[13] M. Huang, W. Liu, T. Wang, A. Liu, S. Zhang, A

Cloud-MEC Collaborative Task Offloading Scheme

with Service Orchestration, IEEE Internet Things J. 7

(2020) 5792–5805.

https://doi.org/10.1109/JIOT.2019.2952767.

[14] C. Liu, P. Zheng, X. Xu, Digitalisation and

servitisation of machine tools in the era of Industry

4.0: a review, Int. J. Prod. Res. (2021).

https://doi.org/10.1080/00207543.2021.1969462.

[15] C. Deng, R. Guo, P. Zheng, C. Liu, X. Xu, R.Y.

Zhong, From Open CNC Systems to Cyber-

Physical Machine Tools: A Case Study, Procedia

CIRP. 72 (2018) 1270–1276.

https://doi.org/10.1016/j.procir.2018.03.110.

[16] C. Liu, X. Xu, Q. Peng, Z. Zhou, MTConnect-based

Cyber-Physical Machine Tool: A case study,

Procedia CIRP. 72 (2018) 492–497.

https://doi.org/10.1016/j.procir.2018.03.059.

[17] Z. Zhu, X. Xu, User-centered information provision

of cyber-physical machine tools, Procedia CIRP. 93

(2020) 1546–1551.

https://doi.org/10.1016/j.procir.2020.04.091.

[18] Z. Cao, P. Zhou, R. Li, S. Huang, D. Wu, Multiagent

Deep Reinforcement Learning for Joint

Multichannel Access and Task Offloading of

Mobile-Edge Computing in Industry 4.0, IEEE

Internet Things J. 7 (2020) 6201–6213.

https://doi.org/10.1109/JIOT.2020.2968951.

[19] J. Liu, Y. Mao, J. Zhang, K.B. Letaief, Delay-optimal

computation task scheduling for mobile-edge

computing systems, IEEE Int. Symp. Inf. Theory -

Proc. 2016-August (2016) 1451–1455.

https://doi.org/10.1109/ISIT.2016.7541539.

[20] V.J.& K. Patil, A Survey on Energy-Efficient Task

Offloading and Virtual Machine Migration for

Mobile Edge Computation,

https://doi.org/10.1007/978-981-16-2937-2_22.

[21] H. Tang, C. Li, J. Bai, J.H. Tang, Y. Luo, Dynamic

resource allocation strategy for latency-critical and

computation-intensive applications in cloud–edge

environment, Comput. Commun. 134 (2019) 70–

82. https://doi.org/10.1016/j.comcom.2018.11.011.

[22] Q. Qi, D. Zhao, T.W. Liao, F. Tao, Modeling of

cyber-physical systems and digital twin based on

edge computing, fog computing and cloud

computing towards smart manufacturing, ASME

2018 13th Int. Manuf. Sci. Eng. Conf. MSEC 2018. 1

(2018). https://doi.org/10.1115/MSEC2018-6435.

[23] C. Yang, S. Lan, L. Wang, W. Shen, G.G.Q. Huang,

Big data driven edge-cloud collaboration

architecture for cloud manufacturing: A software

defined perspective, IEEE Access. 8 (2020) 45938–

45950.

https://doi.org/10.1109/ACCESS.2020.2977846.

[24] J. Zhang, C. Deng, P. Zheng, X. Xu, Z. Ma,

Development of an edge computing-based cyber-

physical machine tool, Robot. Comput. Integr.

Manuf. 67 (2021) 102042.

https://doi.org/10.1016/j.rcim.2020.102042.

[25] P. Lou, S. Liu, J. Hu, R. Li, Z. Xiao, J. Yan, Intelligent

Machine Tool Based on Edge-Cloud Collaboration,

IEEE Access. 8 (2020) 139953–139965.

https://doi.org/10.1109/ACCESS.2020.3012829.

[26] F.T. Chenyuan Zhang, Evaluation index system for

digital twin model, Comput. Integr. Manuf. Syst.

27(8) (2021) 2171–2186.

https://doi.org/10.13196/j.cims.2021.08.001.

[27] M. Schluse, M. Priggemeyer, L. Atorf, J. Rossmann,

Experimentable Digital Twins-Streamlining

Simulation-Based Systems Engineering for

Industry 4.0, IEEE Trans. Ind. Informatics. 14 (2018)

1722–1731.

https://doi.org/10.1109/TII.2018.2804917.

[28] D. Twin, Z. Lv, S. Xie, Artificial intelligence in the

digital twins : State of the art , challenges , and

future research topics [version 1 ; peer review :

awaiting peer review] Zhihan Lv, (2021) 1–20.

[29] C. Liu, P. Jiang, W. Jiang, Web-based digital twin

modeling and remote control of cyber-physical

production systems, Robot. Comput. Integr.

Manuf. 64 (2020) 101956.

https://doi.org/10.1016/j.rcim.2020.101956.

[30] M. Bandara, F.A. Rabhi, Semantic modeling for

engineering data analytics solutions, Semant. Web.

11 (2020) 525–547. https://doi.org/10.3233/SW-

190352.

[31] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, J. Zhang,

Edge Intelligence: Paving the Last Mile of Artificial

Intelligence With Edge Computing, Proc. IEEE.

(2019) 1–25.

https://doi.org/10.1109/JPROC.2019.2918951.

[32] M. Kumar, S.C. Sharma, A. Goel, S.P. Singh, A

comprehensive survey for scheduling techniques in

cloud computing, J. Netw. Comput. Appl. 143

(2019) 1–33.

https://doi.org/10.1016/j.jnca.2019.06.006.

[33] Y. Lu, X. Xu, Cloud-based manufacturing

equipment and big data analytics to enable on-

demand manufacturing services, Robot. Comput.

Integr. Manuf. 57 (2019) 92–102.

https://doi.org/10.1016/j.rcim.2018.11.006.

[34] W.L. Weisong Shi, Hui Sun, Jie Cao, Quan Zhang,

Edge Computing--An Emerging Computing

MOdel for the Internet of Everything Era, J.

Comput. Res. Dev. 54(05) (2017) 907–924.

https://doi.org/10.7544/issn1000-

1239.2017.20160941.

[35] M. Satyanarayanan, The emergence of edge

computing, Computer (Long. Beach. Calif). 50

(2017) 30–39. https://doi.org/10.1109/MC.2017.9.

[36] X.Z. Yang Liu, Research on industrial digital twin

technology system and key technologies, Inf.

Commun. Technol. Policy. 47 (2021) 8–13.

https://doi.org/10.12267/j.issn.2096-

5931.2021.01.003.

[37] H. Yu, D. Yu, Y. Hu, C. Wang, Research on CNC

Machine Tool Monitoring System Based on OPC

UA, Proc. 31st Chinese Control Decis. Conf. CCDC

2019. (2019) 3489–3493.

https://doi.org/10.1109/CCDC.2019.8832877.

[38] A. Gaikwad, R. Yavari, M. Montazeri, K. Cole, L.

Bian, P. Rao, Toward the digital twin of additive

manufacturing: Integrating thermal simulations,

sensing, and analytics to detect process faults, IISE

Trans. 52 (2020) 1204–1217.

https://doi.org/10.1080/24725854.2019.1701753.

[39] et al. Tao Fei, Liu Weiran, Hu Tianliang, Five-

dimension digital twin model and its ten

applications, Comput. Integr. Manuf. Syst. 25

(2019) 1–18.

[40] X. Wang, Y. Wang, F. Tao, A. Liu, New Paradigm of

Data-Driven Smart Customisation through Digital

Twin, J. Manuf. Syst. 58 (2021) 270–280.

https://doi.org/10.1016/j.jmsy.2020.07.023.

[41] Y. Lu, C. Liu, K.I.K. Wang, H. Huang, X. Xu, Digital

Twin-driven smart manufacturing: Connotation,

reference model, applications and research issues,

Robot. Comput. Integr. Manuf. 61 (2020) 101837.

https://doi.org/10.1016/j.rcim.2019.101837.

[42] E. al. Fei Tao, He Zhang, Qinglin Qi, Theory of

digital twin modeling and its application, Comput.

Integr. Manuf. Syst. 27 (2021) 1–15.

https://doi.org/10.13196/j.cims.2021.01.001.

[43] GB/T 39561.4-2020, Interconnection and

interoperation of numerical control equipment—

Part 4: Object dictionary of numerical control

machine tools [S]., (n.d.)., (n.d.).

[44] L. Wang, C. Wu, W. Fan, A Survey of Edge

Computing Resource Allocation and Task

Scheduling Optimization, Xitong Fangzhen Xuebao

/ J. Syst. Simul. 33 (2021) 509–520.

https://doi.org/10.16182/j.issn1004731x.joss.20-

0584.

[45] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T.

Mudge, J. Mars, L. Tang, Neurosurgeon:

Collaborative intelligence between the cloud and

mobile edge, ACM SIGPLAN Not. 52 (2017) 615–

629. https://doi.org/10.1145/3037697.3037698.

[46] A. Halaas, B. Svingen, M. Nedland, P. Sætrom, O.

Snoøve, O.R. Birkeland, A recursive MISD

architecture for pattern matching, IEEE Trans. Very

Large Scale Integr. Syst. 12 (2004) 727–734.

https://doi.org/10.1109/TVLSI.2004.830918.

[47] C. Liu, H. Zhu, D. Tang, Q. Nie, T. Zhou, L. Wang, Y.

Song, Probing an intelligent predictive

maintenance approach with deep learning and

augmented reality for machine tools in IoT-

enabled manufacturing, Robot. Comput. Integr.

Manuf. 77 (2022) 102357.

https://doi.org/10.1016/j.rcim.2022.102357.

[48] H. Sun, J. Zhang, R. Mo, X. Zhang, In-process tool

condition forecasting based on a deep learning

method, Robot. Comput. Integr. Manuf. 64 (2020)

101924.

https://doi.org/10.1016/j.rcim.2019.101924.

[49] PHM Society, PHM Society Conference Data

Challenge, 2010 https://www.

phmsociety.org/competition/phm/10 2010

(accessed 20 December 2018)., (n.d.).

