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Abstract— Electromechanical systems as the prime power 

source are widely employed in industry. To ensure the high 

productivity and safety of the motor-gear system, motor current 

signature analysis (MCSA) becomes a cost-effective and effective 

approach to health condition monitoring of motors and gears 

simultaneously. Generally, working conditions of the motor-gear 

system can be separated into stationary and nonstationary 

working conditions. The nonstationary working conditions usually 

refer to varying speeds, which have been broadly investigated in 

the angular domain analysis and time-frequency analysis. The 

stationary working conditions are assumed to have a constant 

rotating speed which is an ideal scenario but practically the 

rotating speed varies slightly with randomness. The random speed 

variation seems neglectable but it actually spreads the energy into 

adjacent frequency bins, which thus attenuates the amplitude of 

fault signatures and leads to inaccurate fault diagnosis. To address 

this issue, a Squeezed Modulation Signal Bispectrum (MSB) 

approach is developed to concentrate the leaked energy for 

accurately diagnosing gear faults with motor current signals. The 

Squeezed MSB concentrates the energy in the frequency domain 

along the time axis to overcome the random speed oscillation 

induced energy leakage and then, demodulates and aligns the 

modulation fault signatures from the squeezed spectra for 

ensemble averaging to further enhance fault signatures. The 

simulation study shows the performance of the proposed method 

under different levels of random speed variation and the 

experimental studies demonstrate the effectiveness of the 

Squeezed MSB for diagnosing gear tooth breakage faults under a 

wide range of working conditions. 

 
Index Terms— Random speed variation, Squeezed MSB, fault 

diagnosis, gears, motor current signature analysis 

 

I. INTRODUCTION 

ACHINE condition monitoring (CM) can avoid potential 

failure and prevent catastrophic accidents of rotating 

machines. Effective fault detection and diagnosis techniques 

attract large quantities of research interest due to their 

significant benefits in maintenance schemes [1]. 

Electromechanical systems are widely used in industry and 
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typically contain induction motors for powering sources and 

gearboxes for speed and load regulators. However, motors and 

gears are prone to various faults, and these malfunctions can 

lead to low productivity and even catastrophic accidents. Motor 

current signature analysis (MCSA) has been investigated for 

over 20 years to achieve effective condition monitoring of 

electromechanical systems [2]. Motor current signals can be 

obtained from a cost-effective and non-intrusive transducer that 

be easily clamped on the power cables. With the wide use of 

electromechanical systems, MCSA attracts more and more 

researchers to extensively study, improve and deploy effective 

and efficient fault detection and diagnostics of 

electromechanical systems [3]. 

Motor current signals contain valuable information on the 

health conditions of electromechanical systems. Although the 

motor current signal is widely explored for the diagnosis of 

various motor faults, a few studies have been carried out on 

MCSA based gear fault detection and diagnosis. Kar and 

Mohanty [4] firstly employed MSCA to monitor gear defects 

and they indicated that MCSA is an alternative to the 

conventional vibration based condition monitoring. The 

application of MCSA in fault diagnosis of the planetary gearbox 

is adopted more and more owing to that the motor current is free 

of transmission paths and sensitive to torque oscillation. Zhang 

et al. [5] investigated the residual signals around the resonance 

frequency after removing the multiple harmonics in the angular 

domain and the higher amplitude shows the proposed method is 

sensitive to planetary gearbox faults. Gao et al. [6] explained 

the generated amplitude modulation and frequency modulation 

in motor current signals when the fault occurs on the planet and 

sun gears. These studies show promising diagnostic results even 

through simple FFT-based spectrum analysis. 

To extract more accurate monitoring information from the 

noisy motor current signal, Gu et al. [7] developed the 

Modulation Signal Bispectrum (MSB) approach using the 

phase alignment characteristic to suppress strong background 

noise in motor current signals for fault diagnosis of 

reciprocating compressors. With more investigation, Gu et al. 
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[8] applied the MSB analysis to induction motor stator currents 

for diagnosing broken rotor bar faults. The MSB approach is 

also employed to monitor gear wear by Zhang et al. [9] using 

motor current signals. However, as the MSB method is 

developed based on the conventional Fourier transform, its 

performance can be degraded by the problem of spectral 

leakage and limited capabilities when applying Fourier 

transform to nonstationary motor current signals. In particular, 

when a localized fault occurs on meshing gears such as a broken 

tooth, sudden changes in mesh stiffness results in additional 

torque oscillation relating to rotating frequency. The speed 

variation results in amplitude and frequency modulation at the 

same time [10]. Both amplitude modulation and frequency 

modulation are based on the hypothesis of constant working 

conditions which assumes the periodic variation is identical in 

each revolution and the average rotating speeds of every 

revolution are exactly the same. However, stationary signals are 

always ideal, and nonstationary signals are by nature. It is 

observed that the random speed variation exists in the so-called 

constant working conditions during the experiments. Fig. 1 

gives an example of the speed oscillation at stable working 

conditions from a motor-gear rig shown in Fig. 7, and an engine 

test rig, respectively. The probability density functions (PDFs) 

are calculated by the normalized rotating speeds of each 

revolution at stable working conditions. Although the test rigs 

were well controlled by the advanced control system in the 

laboratory, the speed variation between each revolution is still 

obvious. The PDFs of rotating speeds from both test rigs obey 

the Gaussian distribution. 

 
Fig. 1. Example of speed variation: (a) motor-gear tests; (b) 

engine tests. 

Literally, spectral leakage happens in the discrete Fourier 

transform due to the non-integer number of periods of a 

periodic signal [11]. The leakage concept is extended to this 

specific phenomenon because of the quick random oscillation 

of the signal components. The random speed variation leads to 

the energy blurred spectrum and makes Fourier transform based 

approaches inaccurate. This problem is different from the 

frequently discussed nonstationary working conditions which 

attract large quantities of researchers to study vibroacoustic 

signals under relatively slow speed variation [12], especially 

owing to the exponentially growing number of wind turbines. 

The mentioned random speed variation is a relatively fast 

oscillation which has not been addressed in the literature. It is 

worth addressing again that the random speed variation 

between revolutions around the average speed here is not the 

well-known modulation phenomenon in the instantaneous 

angular speed (IAS) or vibrations. The main difference between 

random speed variation and IAS modulation is that the random 

speed variation does not show any deterministic characteristics. 

The random speed variation in this paper mainly comes from 

the uncertainty of power sources and external loads under the 

nominal constant working conditions. The random speed 

variation seems to be within another popular topic of 

cyclostationary analysis. The definition of a cyclostationary 

signal is that it exhibits some hidden periodicity of its energy 

flow [13]. The random speed variation alters the instantaneous 

frequency of a periodic signal, leading to the random variation 

of the signal energy. Therefore, cyclostationary analysis cannot 

accurately describe the random speed variation, which is 

demonstrated in this simulation study. To the best of the 

authors’ knowledge, random speed variation has not been 

thoroughly discussed for fault detection and diagnosis of 

rotating machines. There is no doubt that the famous time 

synchronous averaging (TSA) method [14] can suppress the 

random speed variation but it requires accurate tacho signals 

which are not always available and accessible for rotating 

machines in harsh working environments. 

One contribution of this study is to spotlight the random 

speed variation of rotating machines under constant working 

conditions. This nonstationarity aggravates the spectral leakage 

in the frequency domain and weakens the gear fault signatures 

in motor current signals. In this paper, the gear fault induced 

sidebands around the supply frequency with random speed 

variation is analytically characterized to show the modulation 

with nonstationary sidebands. Another main contribution is to 

develop a Squeezed MSB approach to concentrate the leaked 

energy to demodulate the reliable gear signatures from motor 

current signals. The proposed method extends the capability of 

the conventional MSB method and significantly improves the 

diagnostic accuracy under random speed variations. The 

remaining contents of this paper are organized as follows. The 

theoretical characteristics of motor current signals under tooth 

breakage faults and the algorithm of the Squeezed MSB method 

are given in Section II. The simulation and experimental studies 

are introduced and discussed in Section III and Section IV, 

respectively. Finally, conclusions are drawn in Section V. 

II. THEORETICAL BACKGROUND 

A. Theoretical Characteristics of Motor Current Signals 

under Tooth Breakage Faults 

The ideal electromagnetic relationship of induction motors 

can be represented by one of the three phases. In this paper, 

phase A current is used to discuss the effect of random speed 

oscillation. For a healthy induction motor, its current signal of 

phase A can be expressed as 

𝑖𝐴 = √2𝐼 𝑐𝑜𝑠(2𝜋𝑓𝑠𝑡 − 𝛼𝐼) (1) 

where, 𝐼 is the root mean square (RMS) of the supply current; 
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𝑓𝑠 is the fundamental frequency of electrical supply; 𝛼𝐼 is the 

phase of the current referring to supply voltage. 

Correspondingly, the magnetic flux in the motor stator is 

𝜙𝐴 = √2𝜙 𝑐𝑜𝑠(2𝜋𝑓𝑠𝑡 − 𝛼𝜙) (2) 

where, 𝜙 is the RMS of the flux linkage and 𝛼𝜙 is the phase of 

flux. The electrical torque produced by the interaction of 

current and flux can be expressed as 

𝑇 = 3𝑃𝜙𝐼 𝑠𝑖𝑛(𝛼𝐼 − 𝛼𝜙) (3) 

in which, 𝑃 is the number of pole pairs.  

The localized fault on gears leads to abnormal torque 

fluctuation and the electric torque interaction with the 

fundamental flux can be calculated by 

𝑇𝑒 = ℑ(𝑃𝜙⃗  𝐼𝐹⃗⃗  ⃗
∗
) (4) 

where, ℑ( )  is the imaginary part of a complex number. 

Considering Δ𝑓𝐹(𝑡)  is the random time-varying frequency 

around the average rotating frequency 𝑓𝐹̅ of the faulty gear, the 

torque oscillation yields 

Δ𝑇(𝑡) = 3𝑃𝜙𝐼𝐹 sin (∫2𝜋 (𝑓𝐹̅ + Δ𝑓𝐹(𝑡)) 𝑑𝑡 − 𝛼𝜙 + 𝛼𝐹) (5) 

which causes the oscillation of angular displacement. 

Δ𝜃(𝑡) = ∬
𝑃

𝐽
Δ𝑇(𝑡)𝑑𝑡

=
3𝑃2𝜙𝐼𝐹

𝐽
∬sin (∫2𝜋 (𝑓𝐹̅ + Δ𝑓𝐹(𝑡))𝑑𝑡 − 𝛼𝜙 + 𝛼𝐹)𝑑𝑡

 (6) 

where, 𝐽  is the inertia of the rotor system of the motor. In 

general, the random speed oscillation Δ𝑓𝐹(𝑡) is much smaller 

than the average speed 𝑓𝐹̅ . The Δ𝑓𝐹(𝑡)  induced amplitude 

variation is omitted in the integral process and the angular 

displacement can be expressed as 

Δ𝜃(𝑡) = −
3𝑃2𝜙𝐼𝐹

4𝜋2𝑓𝐹̅
2
𝐽
sin (∫2𝜋 (𝑓𝐹̅ + Δ𝑓𝐹(𝑡))𝑑𝑡 − 𝛼𝜙 + 𝛼𝐹) (7) 

Due to the oscillation of the angular displacement, the flux 

linkage phase in (2) becomes  

𝜙𝐴
𝐹 = √2𝜙 cos (2𝜋𝑓𝑠𝑡 − 𝛼𝜙 + Δ𝜃(𝑡))

≈ √2𝜙[cos(2𝜋𝑓𝑠𝑡 − 𝛼𝜙) − sin(2𝜋𝑓𝑠𝑡 − 𝛼𝜙)Δ𝜃(𝑡)]

= √2𝜙 cos(2𝜋𝑓𝑠𝑡 − 𝛼𝜙)

+∆𝜙𝐹 cos (∫2𝜋 (𝑓𝑠 + 𝑓𝐹̅ + Δ𝑓𝐹(𝑡))𝑑𝑡 − 2𝛼𝜙 + 𝛼𝐹)

−∆𝜙𝐹 cos (∫2𝜋 (𝑓𝑠 − 𝑓𝐹̅ − Δ𝑓𝐹(𝑡))𝑑𝑡 − 𝛼𝐹)

 (8) 

where, ∆𝜙𝐹 = 3√2𝑃2𝜙2𝐼𝐹 (8𝜋2𝑓𝐹̅
2
𝐽)⁄ . The derivative of the 

flux linkage is the electromotive force (EMF), yielding 

𝐸𝐴
𝐹 = −2√2𝜋𝜙𝑓𝑠 sin(2𝜋𝑓𝑠𝑡 − 𝛼𝜙)

−2𝜋∆𝜙𝐹 (𝑓𝑠 + 𝑓𝐹̅ + Δ𝑓𝐹(𝑡))

    sin (∫2𝜋 (𝑓𝑠 + 𝑓𝐹̅ + Δ𝑓𝐹(𝑡))𝑑𝑡 − 2𝛼𝜙 + 𝛼𝐹)

+2𝜋∆𝜙𝐹 (𝑓𝑠 − 𝑓𝐹̅ − Δ𝑓𝐹(𝑡))

    sin (∫2𝜋 (𝑓𝑠 − 𝑓𝐹̅ − Δ𝑓𝐹(𝑡))𝑑𝑡 − 𝛼𝐹)

 (9) 

The derivative of the flux linkage is the EMFs. The first term 

in (9) generates the fundamental EMF and the other two terms 

lead to lower and upper sidebands around the fundamental 

EMF. The amplitude of the impedance increases with frequency 

and the phase of the impedance decreases with frequency. The 

equivalent winding impedance at the supply frequency is 𝑍𝑒𝛼𝜙 

and the impedances of two sideband components are (𝑍 −

∆𝑍𝑙)𝑒
𝜑𝑍+𝜑∆𝑍𝑙  and (𝑍 + ∆𝑍𝑢)𝑒

𝜑𝑍−𝜑∆𝑍𝑢 . Consequently, the 

motor current signal can be expressed as 

𝑖𝐴
𝐹 = −

2√2𝜋𝜙𝑓𝑠
𝑍

sin(2𝜋𝑓𝑠𝑡 − 𝛼𝜙 − 𝛼𝑍)

−
2𝜋∆𝜙𝐹 (𝑓𝑠 + 𝑓𝐹̅ + Δ𝑓𝐹(𝑡))

𝑍 + ∆𝑍𝑢

    sin (∫2𝜋 (𝑓𝑠 + 𝑓𝐹̅ + Δ𝑓𝐹(𝑡))𝑑𝑡 − 2𝛼𝜙 + 𝛼𝐹 − 𝜑𝑍 + 𝜑∆𝑍𝑢
)

+
2𝜋∆𝜙𝐹 (𝑓𝑠 − 𝑓𝐹̅ − Δ𝑓𝐹(𝑡))

𝑍 − ∆𝑍𝑙

    sin (∫2𝜋 (𝑓𝑠 − 𝑓𝐹̅ − Δ𝑓𝐹(𝑡))𝑑𝑡 − 𝛼𝐹 − 𝜑𝑍 − 𝜑∆𝑍𝑙
)

 (10) 

The localized gear fault results in additional sidebands of the 

shaft rotating frequency around the supply frequency of the 

motor current signals. The appropriate combination of phases 

between two sidebands and carrier components can eliminate 

the variation, leading to the reputational MSB approach. 

However, the MSB approach is most effective when dealing 

with stationary signals [15], [16]. The random speed variation 

Δ𝑓𝐹(𝑡)  leads to the dissipation of energy into the adjacent 

frequency bins, which aggravates the performance of the MSB 

method and makes the fault detection and diagnosis not reliable 

in various working conditions. To enhance the capability of the 

MSB approach, a Squeezed MSB method is developed to 

handle the influence of the locally varying rotating speeds. 

B. Algorithm of the Squeezed Modulation Signal Bispectrum 

For a given signal 𝑥(𝑡) ∈ 𝐿1(𝑅) , its short-time Fourier 

transform (STFT) is  

𝑆(𝜂, 𝑡) = ∫ 𝑥(𝜉)𝑔∗(𝜉 − 𝑡)𝑒−𝑖2𝜋𝜂𝑡 𝑑𝜉
+∞

−∞

= ∫ 𝑥(𝜉)𝑔(𝜉 − 𝑡)𝑒−𝑖2𝜋𝜂𝑡 𝑑𝜉
+∞

−∞

= 𝑀(𝜂, 𝑡)𝑒𝑖𝜙(𝜂,𝑡)

 (11) 

where 𝑔(𝑡)  is a shifting window function and 𝑔∗(𝑡)  is its 

complex conjugate. 𝑀(𝜂, 𝑡)  and 𝜙(𝜂, 𝑡)  are the magnitudes 

and phase of 𝑆(𝜂, 𝑡), respectively. To enhance the stationary 

modulation fault signatures, the MSB developed by Gu et al. 

[8] is defined as 

𝐵𝑀𝑆(𝑓𝑥 , 𝑓𝑐) =
1

𝑇
∫ 𝑆(𝑓𝑐 + 𝑓𝑥 , 𝑡)𝑆(𝑓𝑐 − 𝑓𝑥 , 𝑡)𝑆

∗(𝑓𝑐 , 𝑡)𝑆
∗(𝑓𝑐 , 𝑡)𝑑𝑡

𝑇

0

 (12) 

where, 𝑓𝑐  and 𝑓𝑥  denote the frequencies of the carrier and 

modulated signals, respectively. The integral represents the 

averaging procedure of MSB for noise reduction owing to the 

phase alignment of modulation signals in MSB.  

However, due to the varying speeds and spectral leakage, the 

spectrum is usually energy-blurred, even with the application of 

windows. To overcome this issue, a series of time-frequency 

analysis approaches are developed to concentrate the leaked 

energy into the main lobe. It can be seen from (11) that the local 

instantaneous frequency can be estimated as  
𝜔̂(𝜂, 𝑡) = 𝜕𝑡𝜙(𝜂, 𝑡)

= ℜ {
1

𝑖2𝜋

𝜕𝑡𝑆(𝜂, 𝑡)

𝑆(𝜂, 𝑡)
}
 (13) 

This operator estimates the instantaneous frequency of the 

signal at time 𝑡 and frequency 𝜂.  

With this estimator, the coefficients 𝑆(𝜂, 𝑡) can be moved 
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from (𝜂, 𝑡)  to (𝜔̂(𝜂, 𝑡), 𝑡)  which forms a more concentrated 

time-frequency representation. This approach is named the 

synchrosqueezing transform (SST) [17], which yields  

𝑆𝑆(𝑓, 𝑡) =
1

𝑔∗(0)
∫𝑆(𝜂, 𝑡)𝛿(𝑓 − 𝜔̂(𝜂, 𝑡))𝑑𝜂 (14) 

The synchrosqueezing transform is an effective method in 

time-frequency analysis [18], [19]. Owing to the property of 

energy concentration, the synchrosqueezing transform can 

improve the random speed variation induced energy-blurred 

spectrum. Therefore, the frequency assignment operator in the 

synchrosqueezing transform can be embedded into the 

conventional MSB method to tackle the random speed variation 

induced nonstationary signals. The Squeezed MSB firstly 

concentrates the energy in the frequency domain along the time 

axis to improve the random speed oscillation induced energy 

blur and then the three-dimensional MSB matrix is calculated 

in respect of each frequency slice in the time-frequency 

representation, yielding 

𝐵𝑇𝑀𝑆(𝑓𝑥 , 𝑓𝑐 , 𝑡) = 𝑆𝑆(𝑓𝑐 + 𝑓𝑥 , 𝑡)𝑆𝑆(𝑓𝑐 − 𝑓𝑥 , 𝑡)𝑆𝑆
∗(𝑓𝑐 , 𝑡)𝑆𝑆

∗(𝑓𝑐 , 𝑡) (15) 

Due to the random speed oscillation, the instantaneous 

modulation frequency 𝑓𝑥 is not constant in the MSB matrix. The 

direct averaging along the time axis spreads the energy again 

into the adjacent frequency bins, which reduces the sparsity of 

the bispectrum and underestimates the strength of the 

modulation component. Therefore, the reassignment of the 

modulation frequency 𝑓𝑥 is necessary to increase the accuracy 

of the demodulation analysis. To extract the ridge of the 

modulation frequency in the MSB matrix 𝐵𝑇𝑀𝑆(𝑓𝑥, 𝑓𝑐 , 𝑡), the 

classic forward/backward approach for different initializations 

in [20] is used in this paper. As the modulation frequency of the 

gear fault is the shaft rotating frequency, the frequency band of 

the ridge extraction can be limited to several hertz because only 

one ridge is required to be extracted as the modulation 

frequency. Based on the extracted ridge of the modulation 

frequency, the reassignment process of the MSB matrix can be 

expressed as 

𝐵̂𝑇𝑀𝑆(𝑓𝑥, 𝑓𝑐 , 𝑡) = 𝐵𝑇𝑀𝑆(𝑓𝑥 , 𝑓𝑐 , 𝑡) ∗ 𝛿 (𝜔𝑓𝑥̅̅ ̅̅ (𝑓𝑥 , 𝑓𝑐 , 𝑡)),  

∀{𝑓𝑥 ∈ ℝ, | Δ𝑓𝑥| ≤ ∆𝑓} 
(16) 

with 
Δ𝑓𝑥 = 𝜔(𝑓𝑥 , 𝑓𝑐 , 𝑡) − 𝜔𝑓𝑥̅̅ ̅̅ (𝑓𝑥 , 𝑓𝑐 , 𝑡) (17) 

where, 𝜔(𝑓𝑥, 𝑓𝑐, 𝑡) is the instantaneous bifrequency of the MSB 

matrix. 𝜔𝑓𝑥̅̅ ̅̅ (𝑓𝑥 , 𝑓𝑐, 𝑡) is the average of the modulation frequency 

𝑓𝑥 in the bifrequency planes for the carrier frequency 𝑓𝑐. 𝛿( ) 

is the Dirac delta function. ∆𝑓 is the threshold that selects the 

limited variation of the estimated instantaneous frequency. The 

ensemble averaging operation is then conducted to enhance the 

modulation signatures, which can be expressed as 

𝐵𝑆𝑀𝑆(𝑓𝑥 , 𝑓𝑐) =
1

𝑇
∫ 𝐵̂𝑇𝑀𝑆(𝑓𝑥 , 𝑓𝑐 , 𝑡)𝑑𝑡

𝑇

0

 (18) 

Coherence is a measure of the identity of the 𝐵̂𝑇𝑀𝑆(𝑓𝑥
, 𝑓

𝑐
, 𝑡) 

magnitudes along the time axis 𝑡, yielding 

𝐶𝐵𝑆𝑀𝑆(𝑓𝑥 , 𝑓𝑐) =
∫ 𝐵̂𝑇𝑀𝑆(𝑓𝑥 , 𝑓𝑐 , 𝑡)𝑑𝑡

𝑇

0

∫ |𝐵̂𝑇𝑀𝑆(𝑓𝑥 , 𝑓𝑐 , 𝑡)|𝑑𝑡
𝑇

0

 (19) 

The developed Squeezed MSB method can suppress the 

random speed oscillation induced energy blur phenomenon and 

concentrate the leaked energy back to the main frequency 

component. With concentrated energy to the main lobe, the 

extracted fault signatures can reflect the fault severity more 

accurately. 

III. SIMULATION STUDY 

To demonstrate the performance of the developed Squeezed 

MSB approach, a simulated current signal according to (10) is 

created to represent the modulation phenomenon and the 

random variation of rotating speeds, which can be expressed as 

follows 

𝑥(𝑡) = (𝐴𝑠 + 𝐴𝑟 cos(∫ 2𝜋 (𝑓𝑟̅ + Δ𝑓𝑟(𝑡)) 𝑑𝑡
𝑇

0

+ 𝜙𝑟)) cos(2𝜋𝑓𝑠𝑡 + 𝜙𝑠) (20) 

where, 𝐴𝑠 = 2 , 𝑓𝑠 = 50  and 𝜙𝑠 = 𝜋 6⁄  are the amplitude, 

frequency and phase of the supply current signal. 𝐴𝑟 = 0.4 and 

𝜙𝑟 = 0 are the amplitude and phase of the rotating frequency 

signal. 𝑓𝑟̅ = 24  is the average of the rotating frequency and 

Δ𝑓𝑟(𝑡) represents the random speed oscillation. Usually, the 

motor and gear rotor has a relatively large moment of inertia, 

and the random torque oscillation induced angular speed 

oscillation is smooth and small. The smooth function was 

applied after the normally distributed random function to create 

a smoothly nonstationary variation. The sampling frequency in 

the simulation study is 5000Hz and the length of the simulated 

signal is 5 seconds. 

Fig. 2 (a) shows the simulated random speed variation in the 

time domain. Four cases (S1, S2, S3 and S4) are simulated to 

show the energy leak phenomenon induced by the random 

speed variation. Among these signals, S1 is the stationary signal 

without any random speed variation. The other three signals 

were simulated with increasing speed variation. These four 

temporal signals displayed in Fig. 2 (b) have obvious 

modulation characteristics, making it difficult to trace the 

frequency variation in the time domain. 

 
Fig. 2. Simulated signals: (a) random speed oscillation; (b) four 

temporal signals. 

Fig. 3 (a) depicts the time-frequency representation of the lower 

sideband of the simulated modulation signal S4 by STFT, 

showing its frequency variation. As shown in Fig. 3 (b), energy 

leaks into the around bins in the spectrum due to the random 

speed variation. The theoretical peak value is 0.2, which is 

shown in the spectrum of signal S1 in Fig. 3 (b). With the 

increase of the random speed variation, the peak value of the 

lower sideband decreases gradually from S2 to S4. Therefore, 

random speed variations significantly influence the accuracy of 

fault signatures in the dynamic signals of rotating machines. 
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Fig. 3. Spectrum analysis: (a) STFT; (b) spectra. 

The simulated signals with different random speed variations 

were used to compare the performance of the conventional 

MSB and the proposed Squeezed MSB approaches. White noise 

was added to the simulated signals to make the Signal to Noise 

Ratio (SNR) of the noisy signals to be 3dB. Using the simulated 

signal S4 as an example, Fig. 4 (a) and (c) display the 

magnitudes of the Squeezed MSB and the conventional MSB, 

respectively. It is obvious that the modulation component at 

(24Hz, 50Hz) is very pronounced in the Squeezed MSB result. 

The surrounding elements are approximately zero, showing 

effective energy squeezing by the proposed method. In contrast, 

the conventional MSB has several elements with high 

magnitudes around the main peak, which denotes the energy 

leaks in the demodulation process of the nonstationary signals. 

 
Fig. 4. MSB results of S4: (a) Squeezed MSB magnitude; (b) 

Squeezed MSB coherence; (c) conventional MSB magnitude; 

(d) conventional MSB coherence. 

The coherence of the Squeezed MSB and the conventional 

MSB methods of the simulated signal S4 is displayed in Fig. 4 

(b) and (d), respectively. As shown in Fig. 4 (b), the sparse 

coherence of the Squeezed MSB demonstrates the squeezed 

energy of the coupled components at the bifrequency (24Hz, 

50Hz) has high consistency between the bispectrum matrixes. 

The MSB coherence in Fig. 4 (d) has high values at both the 

coupled bifrequency and the around bifrequencies. The 

coherence of the conventional MSB is not sparse because the 

low magnitude of the main bifrequency cannot highlight the 

coupled effect of the modulation signal. 

Fast-Spectral Correlation (Fast-SC) is a milestone approach 

for cyclostationary analysis in machine condition monitoring 

[21]. As explained in the introduction section, the random speed 

variation cannot be considered as a cyclostationary signal, the 

Fast-SC of the simulated signal S4 is shown in Fig. 5. Two 

additional peaks near the rotating frequency are shown in the 

spectral correlation, which come from the random speed 

variation in the simulated signals. These additional peaks show 

that the spectral correlation cannot effectively characterize 

weak nonstationary signals. 

 
Fig. 5. Fast Spectral Correlation of S4. 

The normalized MSB magnitudes and spectral correlation of 

four simulated signals are shown in Fig. 6 (a). The magnitudes 

of the conventional MSB decrease by about 20% with the 

increase of the random speed variation. The Fast-SC performs 

the worst in these three methods and the amplitude decreases 

more than 20% with the increase of the nonstationarity. The 

proposed Squeezed MSB significantly overcome the energy 

leak effects and maintains the magnitude with less than 5% 

decrease in the worst simulated scenario. As the coherence of 

the MSB is not sparse, the maximum value cannot represent the 

coherent state. Therefore, the Gini index is employed to 

compare the sparsity of the coherence [22]. The Gini indexes of 

the MSB coherence are displayed in Fig. 6 (b). The Gini indexes 

of the Squeezed MSB are more pronounced owing to the better 

coherence results. The Gini indexes clearly show the proposed 

method is more reliable when processing nonstationary signals. 

 
Fig. 6. Results of four simulated signals: (a) normalized 

magnitude; (b) Gini index of coherence. 

IV. EXPERIMENTAL VALIDATION 

A. Test Rig and Test Procedure 

To evaluate the analysis method in the previous section, an 

experimental study was conducted on a motor-gear test rig. As 

shown in Fig. 7 (a), the test rig has a back-to-back configuration 

of two industrial helical gearboxes which transmit the torque 

from the induction motor to the DC generator. The components 

of the rig are connected by flexible couplings for 

accommodating slight misalignments. The speeds and loads are 

controlled by a high-performance sensorless variable frequency 

drive (VFD). Even though, the system exhibits certain speed 

fluctuation, as shown in Fig. 1, which is mainly due to load 

fluctuations induced by residual misalignment and manufacture 

errors. The gearbox 1 (GB1) as the speed reducer has slightly 

different specifications from the gearbox 2 (GB2) as the speed 

increaser, which can minimize the influence between the two 

gearboxes. The gear with the red outline in the GB1 is the target 
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gear that simulates tooth breakage faults with different severity. 

The photograph of the test rig is displayed in Fig. 7 (b). 

 
Fig. 7. Test rig: (a) schematic diagram; (b) photography. 

The key specifications of the test facilities are listed in 

TABLE I. 

TABLE I 

SPECIFICATIONS OF THE TEST FACILITIES 

Facilities Model Key specifications 

DAQ device YE6232B 16 channels, 24 bits, 96 kHz 

Current sensor EL55P2 50 A, 150 kHz bandwidth 

Induction motor T-DA160LA 15 kW at 1460 rpm 

Encoder RI32-O/100 100ppr, 6000rpm 

DC generator CBH5025 17.5 kW at 2100 rpm 

Gearbox 1 
M07223.6BR

C-1 

1st stage teeth No.: 58/47 

2nd stage teeth No.: 13/59 

Transmission ratio: 3.678/1 

Total contact ratio: 4.559 

Fig. 8 (a) shows the healthy gear, taken as the Baseline. Fig. 

8 (b) and (c) display the seeded tooth breakage faults by 

removing 50% and 100% of a single tooth, respectively. The 

studied gear pair has a contact ratio of 1.669 and an overlap 

ratio of 2.89, leading to a total contact ratio of 4.559. The 

extremely high contact ratio of the gear pair makes the tooth 

breakage fault induced meshing stiffness vary with a small 

amplitude. The fault signatures are therefore very weak, and the 

fault diagnosis of this gear pair is very challenging. Each test 

case was operated at 100% of the full motor speed and 0%, 

30%, 70%, and 100% of the full motor load. For each test 

condition, the data acquisition device recorded the data for 5 

seconds at a sampling rate of 96 kHz. Such a high sampling rate 

is mainly to collect accurate pulse signals from the encoder at 

the motor end for speed estimation.  

 
Fig. 8. Seeded gear faults: (a) Baseline; (b) TB50%; (c) 

TB100%. 

B. Comparison of Analysis Results 

The spectra of the motor current signals are shown in Fig. 9 

(a) and it can be seen that the lower and upper sidebands around 

the supply frequency are pronounced. The amplitude of the 

sidebands increases with the loads. To show more details of the 

sideband, Fig. 9 (b) displays the upper sideband in a narrow 

frequency band. The sideband under zero load is invisible due 

to the small torque oscillation. The other three sidebands have 

high amplitudes in several frequency bins, suggesting that the 

energy leakage is caused by random speed variations. 

 
Fig. 9. Spectra of motor current signals: (a) overview; (b) upper 

sideband. 

Both the conventional MSB and the Squeezed MSB results 

are obtained to compare the accuracy of diagnostics. The 

conventional MSB magnitudes and coherence at 30% load are 

shown in Fig. 10 as an example for detailed comparison. The 

magnitudes of the conventional MSB for Baseline, TB50% and 

TB100% are depicted in Fig. 10 (a), (c) and (e), respectively. 

The magnitudes of the modulation frequency (rotating 

frequency of the gear shaft) are obviously not sparse, especially 

for the cases of Baseline and TB50%. The coherences in Fig. 

10 (b), (d) and (f) show the consistency of the MSB magnitudes 

at the modulation frequency is very low, which tells the 

variation between each segment is high and the magnitudes at 

the modulation frequency are not reliable to diagnose the gear 

faults. In contrast, the Squeezed MSB method overcomes the 

random speed variation problem and obtains sparse results of 

both magnitudes and coherence. As shown in Fig. 11 (a), (c) 

and (e), the magnitudes at the modulation frequency are sparser 

than the conventional MSB. The leaked energy is squeezed 

back to the main lobe and the magnitudes around the 

modulation frequency are reasonably neglectable. The 

coherences in Fig. 11 (b), (d) and (f) show that the magnitudes 

at the modulation frequency are consistent during the ensemble 

averaging. The high coherence values indicate the extracted 

fault signatures are reliable for diagnosing the gear faults. 

 
Fig. 10. Convention MSB at 30% load: (a) magnitudes of 

Baseline; (b) coherence of Baseline; (c) magnitudes of TB50%; 

(d) coherence of TB50%; (e) magnitudes of TB100%; (f) 

coherence of TB100%. 
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Fig. 11. Squeezed MSB at 30% load: (a) magnitudes of 

Baseline; (b) coherence of Baseline; (c) magnitudes of TB50%; 

(d) coherence of TB50%; (e) magnitudes of TB100%; (f) 

coherence of TB100%. 

The magnitudes of the modulation frequency obtained by the 

Squeezed MSB and the conventional MSB methods are shown 

in Fig. 12 (a) and (c) respectively. Both approaches give the 

incremental trend of the magnitudes of the modulation 

frequency along with the increase of the loads, which is 

predicted theoretically by (10). However, the challenging issue 

is to distinguish the fault severity under wide working 

conditions. Fig. 12 (a) shows that the magnitudes of the 

Squeezed MSB rise with the increase of the severity of tooth 

breakage faults under light and heavy loads conditions. The 

zero load condition is difficult to quantify due to the tiny torque 

oscillation relating to the gear faults. In general, the Squeezed 

MSB method can successfully distinguish various fault severity 

under wide load conditions. In contrast, the conventional MSB 

method is unable to separate the TB50% faults from the 

Baseline condition due to the random speed variation.  

 
Fig. 12. MSB results of: (a) Squeezed MSB magnitude; (b) 

Squeezed MSB coherence; (c) conventional MSB magnitude; 

(d) conventional MSB coherence. 

The coherences of the modulation frequency by the Squeezed 

MSB and the conventional MSB methods are shown in Fig. 12 

(b) and (d) respectively. The coherence of the Squeezed MSB 

shows the consistency of the modulation component increases 

with the severity of tooth breakage faults. However, the trend 

of the coherences against the loads is not linear. The coherences 

of the modulation frequency at medium loads are high, which 

shows the motor-gear system works at a relatively stable 

working condition, has less random speed variation and hence 

generates more consistent fault signatures. The coherences at 

zero and 100% loads are low because the extreme working 

conditions make the motor-gear system operate with more 

uncertainty. The coherences of the conventional MSB method 

give an increasing trend with the loads at the first glance. 

However, the coherences are not reliable because the 

coherences of the non-modulation components are also falsely 

high. The results of Fast-SC are shown in Fig. 13 and it can be 

seen that the Fast-SC cannot distinguish the TB50% faults from 

the Baseline at 30% and 100% loads.  

 
Fig. 13. Fast-SC Results 

V. CONCLUSIONS 

The random speed variation under constant working 

conditions seems neglectable but actually, it cannot be ignored 

for accurate fault detection and diagnosis. The random speed 

variation is not the frequently mentioned phase noise, and the 

main difference is that the phase noise raises the noise floor 

other than spreads energy into the around frequency bins. The 

random speed variation alters the modulation frequency 

randomly and slowly, which cannot be described by the 

deterministic frequency modulation. This paper brings the 

random speed variation into view for the purpose of accurate 

and reliable fault diagnosis. To restore the attenuated fault 

signatures, a Squeezed Modulation Signal Bispectrum 

approach is developed to concentrate the leaked energy back to 

the main modulation frequency for reliable fault diagnosis of 

gears. The experimental studies show that the proposed 

Squeezed MSB method can successfully diagnose gear faults 

using motor current signals with random speed variations under 

so-called stationary working conditions. The frequency 

assignment operator is not robust enough to extremely strong 

background noise by nature and the proposed Squeezed MSB 

inevitably inherits the disadvantageous characteristics. Hence, 

future work should be devoted to increasing the noise 

robustness and decreasing computational costs. 
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