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Abstract 

Regression problems arise in a variety of contexts including the development of Gaus- 

sian process models for computer simulators. Many approaches already exist. for 

Gaussian process regression with continuous valued inputs, however many simulators 

(and observational data sets) contain both continuous and discrete valued inputs. 
There are relatively few approaches for addressing Gaussian process regression with 
mixed continuous and categorical inputs. These include treed Gaussian processes, 

Dirichlet processes with Generalized Linear Models, and Gaussian processes which 

use a Hypersphere parameterization. 

The aim of this work is to extend Gaussian process models such that they can use 
categorical inputs e.g. someone’s occupation, {Student, Lecturer...}, alongside the 

usual continuous inputs. A naive approach would be to fit independent Gaussian 
processes for each category, but this quickly gets inefficient as the number of cate- 

gories, and in particular the number of categorical inputs, increases. In this work we 

propose to model the categorical inputs by including a mapping from each categorical 

element to a continuous real value. We propose to learn the categorical mapping us- 

ing likelihood based methods. The posterior distribution of the categorical mappings 
and their relation are expected to reflect their relative influence on the output. Using 

examples we illustrate the learning dynamics of our method. We explore the strongly 

multi-modal nature of the posterior distributions for the mappings of the categorical 

data into real values. We contrast the plug-in estimators which are obtained using 

likelihood methods with a Bayesian approach using MCMC. Comparisons between 

our approach and other existing methods for categorical inputs are made on simple 

data sets. 
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Notation And Acronyms 

Notation 

e N(z\a,b) - is the Normal distribution over the random variable « with mean a 
and variance b 

N(x\a, B) - is the multivariate Normal distribution over the random variable x 
which has mean a, and co-variance matrix B. 

e x; - is the +th data point in the set S with dimensionality 1. 

O Xp = (27, / 09. ,tp)*- i-th data point in the set S$ with the dimensionality D. 

Me - is a D-dimensional test set point. ox? =(@1, 22, 2D 

¢ yj - is the corresponding scalar function output for the test point x?. 

© y; - is the corresponding scalar function output for the point x;. 

¢ GP(m(.),k(. , .)) - Gaussian process with a mean function, m(.), and kernel 
function, k(x;, x;), V pairs of inputs x; and x;. 

¢ x ~ p(.) - is the random variable x drawn from probability distribution, p(.). 

e X - aset containing the points (x1, ....,.xn) (used for a set of training points). 

e X* - is a set containing d test points. 

e K(X, X) - is the kernel between all n training points in the set X, where Ky = 

K (3, x;) 

e f(x;) is the noise-free output, and y(x;) is the noisy-output for the correspond- 

ing point x;. For linear regression models, f(x) = w!4(x). 

 tr(A) is the trace of matrix A 

|A| is the determinant of matrix A 

eig( K(X, X)) is the matrix of eigenvalues for the co-variance matrix evaluated 
at the training inputs, X. 

Acronyms 

¢ GP - Gaussian Process 

° GPs - Gaussian Processes 

e MVN - Multivariate Normal distribution 

e LML - Log Marginal Likelihood
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Chapter 1 

Introduction 

In this thesis we will discuss our approach to building a Gaussian Process (GP) 

model which is able to handle inputs, x;, which contain a mixture of continuous and 

categorical elements. These elements are referred to as quantitative and qualitative 

factors respectively. Two types of qualitative factors, nominal and ordinal have been 

considered in defining our GP. This GP model is referred to as the Embedded GP. 

We focus primarily on the regression task, however Section 6.1 explores using our GP 

for the classification task. 

Consider existing models such as linear regression and GPs, which are used in 

cases where data inputs x; only contains continuous elements. 

e Simple linear (in parameters) regression is where the output is expressed as 
a linear combination of fixed basis functions (which depend on inputs), hence 

f(x) = w7¢(x). It has advantages such as its easy implementation and in- 

terpretability. The big drawback with this methodology is that, if we have a 
complex data set, where the relationship between the variables cannot be ap- 

proximated by a linear function, we can obtain poor predictions at test points 

as the model lacks expressive power (Rasmussen 2006, p.8). 

e Gaussian Processes (GP) open the possibility of flexible non-parametric models 

(Rasmussen 2006, p.8). Gaussian processes are often used as a flexible Bayesian 

prior, where they express beliefs about the underlying function we are modeling 

(Rasmussen 2006, p.13). 

In practice, these models are built using the training set, where the relationship 
between input and target variables can be learned. Training sets are used to learn 

the best parameters for the model. Once this is achieved, the model can be used to 
make predictions on a test point, x}. Test data points are used to assess the fitness 

of the model and report on measures such as the expected generalization error (Feng 

2006). 

goals of this 
thesis 

various existing 
models for 
continuous valued 
inputs only 

Now, suppose that not all elements of a particular input x; (which is D-dimensional) inclusion of 

are continuous, but rather there are A quantitative factors, and D — A qualitative 

factors. Two approaches have been identified in the existing literature to enable GPs 

to handle inputs such as these. 

The first approach, described by Broderick & Gramacy (2010) uses the combi- 
nation of GPs and treed partitioning. Treed GPs take a local-and-divide conquer 

categorical 
elements 

Existing 
Approaches



  

approach to non-stationary modeling (Broderick & Gramacy 2010). These models 
partition the input space using binary splits on a single variable (eg. testScore > 0.9). 
The second approach, described in Zhou et al. (2010), models the correlation between 

qualitative factors using Hyper-sphere parameterization. Note that is an extension 

of the work done by Qian et al. (2008). 

The two methods discussed above are not the only ways of building models which 

handle data inputs, x; with qualitative elements. Qian et al. (2008) consider using re- 

stricted correlation functions to model positive correlations between categories whilst 

the parameterization offered by Zhou et al. (2010) handles both negative and positive 

correlation between categories. 

The thesis is structured in the following way. We shall begin by reviewing the 

existing literature on Gaussian processes (for regression) and related topics, such as 
sampling, in Chapter 2. Chapter 3 reviews existing models that use data inputs which 

are a mixture of qualitative and quantitative factors. Then in Chapter 4, we will de- 

fine the Embedded GP which can handle both quantitative and qualitative inputs. 

We will map each categorical input to a continuous value (hence real numbers) using 
embedded mappings. This chapter also compares existing GPs explored in Chapter 3 

with the Embedded GP, in terms of analyzing the benefits and disadvantages of using 

each GP model. This chapter then concludes with providing some useful suggestions 

on how to use the Embedded GP in practice, along with the most general implemen- 

tation of this GP. Chapter 5, considers how multi-modality could occur in likelihood 

and posterior surfaces. This chapter also considers integrating out the uncertainty 

over hyper-parameters using sampling techniques and crude Monte Carlo on example 

data sets. 

Data sets are derived from a range of sources, which are used for GP modeling. 

The Embedded GP model is compared against the brute force approach of training 

independent GPs for each category. These GPs are also compared against other ex- 
isting methodologies discussed in Chapter 2.6. Validation measures, such as Dawid 

score are used to evaluate the performance of each of the models. Chapter 5 also 
reports on the best GP model for each data set based on validation metrics which 

are calculated using the mean and variance of predictive distributions. These scores 

consider both resolution and reliability. 

Chapter 6 considers extending the Embedded GP model to other tasks such as 
classification and model selection. 
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Chapter 2 

Review of Gaussian Processes 

for Continuous Inputs 

This section reviews Gaussian processes (GPs) for regression. The marginal like- 
lihood (which marginalizes over the latent functions) and posterior distribution on 
functions will be discussed. Various sampling routines, such as Simulated Tempering 

(ST) will be reviewed, along with some useful convergence diagnostics. Validation 

metrics used to assess probabilistic models shall also be discussed. 

2.1 Introduction to Gaussian Processes 

Gaussian processes are collections of random variables, which are used to describe 

a distribution over functions. They are formally defined as (Rasmussen 2006, p.13): 

f(x) ~ GP(m(,), K(.,.)), 
where, 

m(x) = E[f(x)], (2.1) 

k(x,x’) = El( f(x) — m(x))" (Ff) — m(x’))]- (2.2) 

The prior mean and co-variance over the random function f(x) is given by Equa- 
tions (2.1) and (2.2) (Rasmussen 2006, p.13). Often in the literature, Equation (2.1) 
taken to be the zero vector (Rasmussen 2006, p.13). Gaussian processes also have 

the consistency condition (also known as the marginalization property) which implies 

that if we have the distribution, 

[p] ~ oPH.®) 

where a = (fi,.-., fc) and b = (fo41,-.-; fw), then a ~ GP(y, U1). Hence the exam- 

ination of a larger set does not change the distribution of the smaller set (Rasmussen 

2006, p.13). 

It is important to say, that everything that applies for Multivariate Normal 

(MVN)-distributions, still applies to GPs. However a GP, is not a MVN distribution 

because MVNs are defined for a finite set of input points, however GPs take an in- 

finite amount of input points, and are referred to as infinite-dimensional Gaussians 

(Lawrence 2005). 

10 

Goals of this 

chapter 

Gaussian process 
co-variance and 
mean functions 

marginalization 
property 

relation to MVN



2.2, APPLICATION TO BAYESIAN LINEAR MODELS 

2.2 Application to Bayesian Linear Models 

Suppose that functions are drawn from the distribution f(«) = wiz + w22? 

(which is linear in the parameters), where the prior knowledge on w; is w; ~ N(0, a?) 

and for each pair.of w; and w;, E(w;w;) = 0. Then f(x) has mean, E[f(x)] = 0, and 
co-variance E[f(x)f(2’))] = o?ax + o3?x'?. We can apply this to other Bayesian 

linear (in parameter) models. 

The function f(x) and prior p(w) induce a Gaussian distribution with mean 0 and 
co-variance given by o?xx' + (3)2?(a')?. The function values f(2x1), f(#2),--.» f (an) 
correspond to function values at inputs 21, ..., Zp, where the f’s together make up 

a joint Gaussian distribution, given the stated prior(s). Hence, n samples can be 

obtained from the joint distribution, 

(f(@1);--- f(@n))” ~ N(0, K(X, X)), 

where K denotes all the element-wise co-variance functions between all pairs of in- 

puts placed together in one matrix and X denotes the set of n training points used 

to build the GP. 

2.3 Making predictions: Noise-free Observations 

The interest is not generating random functions from the prior, but rather making 

predictions about the values f(X*)|f(X), X, X* which relate to the test inputs X*. 

Assuming there are n training points,{(x;, fj), i = 1,...,n}, the joint distribution 
over £(X) and f(X*) is given by, 

7 K(X,X) K(X,X*) (80), A(X")? ~ (0 ee eat ; 

which assumes a zero-mean prior over f. Note that the matrix K(X,X) would 

be an n x n matrix (which contains co-variances between the n training points), 

K(X, X*) is an n x d matrix, K(X*, X) is ad x n matrix equal to K(X*, X)", and 
K(X*, X*) is a dx d matrix (which contains co-variances between the d test points). 
The dimensionality of the joint distribution in this case would be n +d. To derive 

the predictive distribution over X*, requires conditioning on f(X), that is finding, 
£(X*)|£(X), X, X*. For brevity, f = f(X) and f = £(X*). 

After some derivations (using arguments from (Rasmussen 2006, p.201), (Bishop 
2006, p.93)), the predictive distribution for the noise-free outputs (given noise-free 

outputs for the training points) is given by: 

£(X*)|f(X), X, X* ~ N(,5), (2.3) 

where, 

f= K(X*,X)K(X,X)4f, 
3 = K(X*, X*) — K(X*,X)K(X,X)' K(X, X*)). 

The predictive mean at each of the test points, X* is a linear combination of 

all the training point outputs, which is sometimes referred to as a linear predictor 

11 Sean Michael Tulloch 
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2.4, BAYES’ FORMULA AND MARGINAL LIKELIHOOD 

(Rasmussen 2006, p.17). The mean prediction at a single test point could be re- 

written as: : 

ft) => Af, 
i=l 

where A = K(x}, X)K(X,X)7}. 

The predictive distribution using GP priors which a have a non-zero mean function 
is given by 

£(X*)|f(X), X,X* ~ N(p, + K(X", X) K(X, X)1(EF— p), ... (2.4) 

Re 2) (HK (XR XA), 

where /, is the mean function evaluated at test point x}, and yz is the mean function 

evaluated at each of the training inputs, x;. In this case, the mean function is assumed 
to be fixed. 

2.4 Bayes’ Formula and Marginal Likelihood 

Bayes’ theorem states that, 

P(BIA)P(A) P(AlB) =e 

where P(A|B) is the posterior over the event A, P(A) represents the informative/ un- 

informative prior over event A, and P(B|A) is the likelihood (Rasmussen 2006, p.200). 

Priors can either come from scientific knowledge of the physical process or from 
previous empirical evidence, however these priors need to be chosen carefully because 

if inappropriate priors are chosen then we can get wrong judgments. 

The difference between uninformative and informative priors is that uninformative 

priors tend to provide very little information relative to the experiment and have very 

little influence on’ the posterior distribution (Bishop 2006), whereas informative pri- 

ors tend to summarize the evidence from many sources and may have a huge impact 

on the results. Priors are used incorporate our beliefs about the hyper-parameters 

in question. P(B) is the marginal likelihood; or alternatively called the normaliza- 
tion constant (Rasmussen 2006, p.18-19) that can alternatively can be expressed as 

{ P(B\A)P(A) dA, where this is marginalization over event A (Lauwerrs et al. 2009). 

In GP regression, assuming f(X) ~ GP(0, Ks), noisy outputs, y;, Vi can be gen- 
erated using yj = f(x;) + N(0,07). The normalization term is, 

wylx) = f Peyit,x)PX) at 

which is alternatively expressed as, 

yix) = f Niyit.o2NGP(RO, K,) dt. 

However by applying properties of MVN-distributions (Bishop 2006) the normal- 
ization term becomes, 

p(y|X) ~ N(y|0,071+ K,) = N(y|0, K). (2.5) 

12 Sean Michael Tulloch 
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2.5. CHOOSING SUITABLE VALUES FOR HYPER-PARAMETERS 

The kernel matrix K will contain hyper-parameters, such as the length-scale, signal 

and noise variances, which are contained in vector, @ (Bishop 2006, p.20). The noise 

variance is a term which often taken as input-independent (Snelson et al. 2004). Each 

hyper-parameter stored in the vector @ is denoted by element @),p = 1,...,a, where 

a is the number of hyper-parameters in the GP model. 

2.5 Choosing Suitable Values for Hyper-parameters 

Hyper-parameters which appear in the log marginal likelihood need to determined, 

and is not immediately obvious what values these hyper-parameters should take. 

However the optimal values are found using the training data, and take the values 

which maximizes the log marginal likelihood seen below (Bishop 2006, p.112-3), 

1 a 1 n 
log [p(ylX, 8)] = sy" Ky — 5 log |K| — 5 log(2z). (2.6) 

The only term to involve the observed outputs, yj, over all training data points, 

is dy K ly, which is the data-fit. The complexity term which involves the train- 

ing inputs and co-variance function is given by 3 log |K’ |, whilst term, 3 log(2m) is 

the normalization constant for marginal likelihood, which is Gaussian (Bishop 2006, 

p-113). The optimal values chosen for each parameter, 4),p = 1,...,@, are chosen 

such that they satisfy, 

a OK 1 OK 
al Ol] tk ~str(KOL) = ; 30, 8 POX, )] = sy K 28, y—gir 00, 0, (2.7) 

where a, represents the number of hyper-parameters which appear in the co-variance 

kernel; K. Finding solutions which satisfy Equation 2.7 will lead to a point- 

estimation of the parameters 9. Instead of maximizing the log marginal likelihood, 

the log posterior distribution could be maximized over 8, 

log [p(|X, y)] = 5y"K Tae 5 log |K| — $ log(2n) + log [p(9)] — log [p(y|X)]. (2.8) 

The difference between the two approaches is that Equation 2.8 has an additional 

term which incorporates prior knowledge about @ into the estimation procedure. The 

log prior, log {p(8)], is the prior over the hyper-parameters in the GP prior. Once the 

optimal solutions 6 have been found either by performing MAP or ML, they can be 

substituted into p(yj |x}, X,y, 6). Performing MAP or ML could lead to finding mul- 

tiple local maxima that exist in the log marginal/posterior distribution, where each 

mode refers to a particular interpretation of the data (Bishop 2006, p.115). This 

occurs because the model cannot confidently reject the possible multiple possibilities. 

So far the presentation assumes that the GP prior has a non-zero mean. MAP 

and ML estimation can also be applied to a GP prior with a non-zero mean function. 

Instead of maximizing Equation 2.8 for MAP estimation, one would maximize, 

log [2(61X,y)] = (9-H) K(y-)~5 log |K|~ log(2x) Hoe [p(8)]—Hog at y1 0), 
(2.9) 

where pt is a known n x 1 vector corresponding to the mean function m(.) being 

evaluated at each of the training points. Hyper-parameters, @ can enter into the 

mean or kernel functions. To optimize the parameters, 0),p = 1,...,@c, in the co- 

variance function and @,,$ = 1,...,@m, in the mean function one needs to use the 
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equations, 

a ec = ne 0K Alog [p(9)] 20, 5p log [P(AlX, y)] = ay yw) K 2, (y-H)-5tr | 20, +log( 0, )=0, 
(2.10) 

z See ae log [p(4))) _ 90, 08 PAIX, ¥)] = —(y — Hy Kae) + los ag )=0, (2.11) 

where 2 CM represents partially differentiating the mean function m/(.) with respect to 

hyper-parameter, @.. 

Certain types of mean function m(x;) may be written as a linear combination of Using basis 

rp basis functions, h;, functions in GP 
prior mean 

m(x;) = ha (xi) B1 + ho(x;) Bo +... + Ping (Xi) Bry = h(x) B, (ig) ection 

..;7p- This particular form for the mean function used in the GP prior 

  

where j = 1, 

leads to 

f(x) ~ GP(h(x)"B, k(x, x’)). (2.13) 
The regression parameters, (;,i = 1,...,rp, can be analytically integrated out 

using a Multivariate Normal (MVN) prior, MV N(f\|b, B), although parameters in 
the kernel, K cannot be integrated out analytically, which is why sampling routines 

are used to sample from the posterior distribution, P(@|X,y), over the remaining 
parameters, 9. Terms b and B remain fixed. Integrating 6 analytically leads to, 

| GP(h(x)"B, k(x, x)) MV N(6|b, B) dB = GP(h(x)"b, k(x, x’) + h(x) Bh(x’)) 

(2.14) 
The log of the posterior distribution, p(@|D) is given by 

R =log(p(y|X, b, B, 8) + log(p()) — log(p(y|X)) = 

<7 3 — (h(X))"b)"(K + (a(X)")B(h(X))) “My — h(X)7b) + 

~ = Flog (A + (h(X))")B(a(X))| ~ $ logl2n) + log((8)) ~ los(oty1X)), 
which also includes the prior p(@). Maximization of R instead of Equation 2.9 can 
be used to find the optimal values, 8. Predictions at test points, xj are made by 

plugging the mean and variance function from the GP prior seen in Equation 2.14, 

in the predictive distribution 

y(X*)ly(X), X,X* ~ (py + K(X*, X) K(X, X) (yb), (2.15) 

K(X", X*)— K(X*, X)K(X, XY *K(X, X*)), 

where this assumes the mean function is fixed. Note that js, represents the mean 

function evaluated at each of the test point in the set X*. However, there is a third 

option, which is to integrate out the uncertainty over the remaining hyper-parameters, 

a. 

2.6 Sampling Techniques and Convergence Diagnostics 

Optimal values for @ may be found by maximizing the posterior distribution, 

p(0|X,y), where these entered into the predictive distribution, p(yj |x}, X, y, 6) as 
plug-in values (Walsh 2004). Instead of using these plug-in estimates, another option 
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would be to integrate out the uncertainty over these parameters (Taddy et al. 2010), 

where the predictive distribution would be, 

vlutlxt,X,y) = f wlutbei,)p(@1xX,y) 40. (2.16) 

Calculating this integral analytically is not possible in most circumstances, for 

example hyper-parameters, such as the length scales which appear in the kernel, 
of the GP prior could not be integrated out. To approximate this integral, sampling 

routines such as Metropolis Hastings (MH) can be applied where these attempt to 
simulate samples the posterior distribution, p(@|X,y). Once samples are obtained 

from posterior distribution, p(@|X,y), these samples are used to approximate the 

integral as shown in Equation 2.16, which can be expressed as an expectation over 

the sampled distribution, p(@|X,y) such that, 

F 
‘ 1 * pluilxt, X,y) ~ > plu lx}, 0) ~ Eyoix.yy(ut Xt 9), 

t 

where this is referred to as Monte Carlo integration (Titsias et al. 2009). 

Some well-known sampling routines such as MH and Simulated Tempering (ST) 

which can be used to sample p(6|X,y) are reviewed next. 

2.6.1 Metropolis-Hasting Sampling 

Suppose that the (arbitrary) distribution, p(@), can expressed as 10), where 
Z = Jf f() d@, is the normalization constant for this distribution. A benefit of 

using MH, is that the normalization constant, Z is not required. Proposal distribu- 

tions, which are also referred to as candidate-generating or proposal distributions, 

q(0|@%) are used in MH to generate the sequence of values 9, at each iter- 
ation 7. If p(@) is a multi-dimensional distribution, there are two forms of the MH 
algorithm in the literature, the component-wise and block-wise updating (Johnson 

et al. 2011). Block-wise MH requires that the proposal distribution, g(a) 

has the same dimensionality has the distribution, p(@). If p(@) involves N variables, 

so will ¢(6|0¢-). The notation, 0 = (00°, ..., 0%) represents the i-th state of 
block-wise MH sampler. Below are the steps to sample from distribution, p(@), using block-wise 

block-wise MH, et ragl 
lastings 

1. Start at iteration, i=1. algorithm 

2. Use an initial starting position for each a Vj, in the vector, a), 

3. Generate a sample using the proposal density, attest) g(a), je). 

4, Draw a uniform random number, U € (0, 1]. 

(4) (test) g(t 
5. Evaluate the acceptance probability, a for which a = min (1, ee eaten) 

6. If U <a, then accept the new state, setting a) — attest) or otherwise 

a) — 9 (rejecting the proposed sample). 

7. Continue steps 3-6 for each time step i, until i = ic, where i, is the length of 

the sequence of draws. 
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When calculating @, the distribution, p(@) does not need to used, but rather, (0), 

because the normalization constant which appears in p(@) cancels out, hence, 

(ast) = fates) K fates) 

(0) K .f(0) (0) 
The problem with block-wise MH is that it may be hard to find suitable proposal 
distributions, and this algorithm is associated with high rejection rates (Johnson et al. 

2011). Another option would be to update each component one at a time, where this 

is called component-wise MH, which involves proposal distributions involving just 
one variable. The component, 6; in @ which would be updated whilst the other 

components are fixed. It may be computationally simpler to make proposals such 

as this. Steps in the component-wise MH algorithm are conditional on each other, 

hence the updated variables must be used, when fixing each component apart from 

the one which is to be updated. Note, that the components are updated in order, 

updating the first component of @ before moving onto the second component. To 
generate samples from p(@) using the component-wise MH algorithm, the following component-wise 

steps must be taken, ferool 
astings 

1. Start at iteration, i=1. 

) 2. Use an initial starting position for each ott in the vector, @), 

3. Start at o =1. 

4. Pick the o-th component of 0. 

5. Generate a sample using the proposal density, 9s) ~ q(ait) 10). 

6. Draw a uniform random number, U € (0, 1]. 

(i) 9) rest) g(t) 
7. Evaluate the acceptance probability, a for which a = min (1 pay ec ae) i 

PIE") OX) a(80 cs 

8. If U < a, then accept the new state, setting | — g(test) or otherwise 
git) — 9), 

9. Continue steps 4-8 if there is still another component to update at the current 

time step i. If not, move on to the next time step. 

10. Continue steps 3-8 for each iteration 7, until i = i,, where i, is the total number 

of iterations. 

In the above algorithm, 0), represents all components of 6 apart from the o-th com- 

ponent. 

The choice of which two variants of MH to use is commonly unclear (Johnson et al. 

2011). 

However, MH-methods are very sensitive to the step size of the transition steps, 

where if these are too small, the sampling routine will become easily trapped in a 

deep local minimum where it will not be able to escape in practical simulation time. 

This is a serious issue of slow mixing and if too large, the acceptance rate tends to 
be very low, where it will tend to ignore some ‘local details’ about the distribution 

we are trying to sample from. There are no general guidelines on how to select the 

appropriate step size of the transition steps (Li & Protopopescu 2004). 

16 Sean Michael Tulloch



2.6. SAMPLING TECHNIQUES AND CONVERGENCE DIAGNOSTICS 

2.6.2 Burn-In Period and Mixing 

These sampling routines require that a subset of the generated sequence, 00) is 

disposed of because these particular samples are not samples from the required dis- 

tribution, p(@) (Gelman & Shirley 2010). These particular samples are removed as 
burn-in, during a sufficient burn-in period (which is say of ig iterations). Typical 

burn-in periods involve rejecting the first 1000 to 5000 samples in a chain, although 

it could be longer. Poor choices of starting values for 6 and proposal distribu- 

tion(s), can also significantly increase the burn-in period (Walsh 2004). Retained 

samples, Oe ae a) should be samples from p(@). 

Generated chains are either said to be poorly or well mixed. A poorly mixed chain 

means that the chain will stay in small regions of the parameter space (Gelman & 

Shirley 2010). This happens because either the hyper-parameters are highly corre- 

lated with each other and additionally with multi-modal distributions, the choice of 

starting values can trap the chain near one of these modes. By checking the accep- 

tance rate of a new sample, 0, this can be a useful diagnostic to observe whether 

there is poor mixing in the model (Walsh 2004). Two possible approaches have been 

suggested for sampling multi-modal target: distributions, p(@), where either differ- 

ent chains can be started using different highly dispersed initial values for hyper- 

parameters or using sampling routines such as Simulated Tempering (ST) (Walsh 

2004). 

2.6.3. Simulated Schemes: Simulated Annealing and Simulated Tem- 

pering 

A problem with using a MH algorithm is that it depends on the sensitivity to the 

step size of the transition steps. It is much easier for a system to escape from a local 

minimum, by using optimization routines such as Simulated Annealing (SA), which 

was built for the task of handling non-linear optimization problems. Annealing is the 

process of heating a solid that permits many atomic arrangements, and then cooling 

it down in a very slow manner until the material freezes into good crystal, where 

this analogy is to used to find the global minimum of a (multivariate) function, f 

(Bertsimas & Tsitsiklis 1993). SA involves setting the initial temperature to a very 

high value, and then cooling the temperature down very slowly. There are different 

ways of cooling down the temperature in SA algorithms (Perrin et al. 2005), which 

include geometric, 

T=TA', 

and logarithmic schemes, 
eee! 

~ log(1 +t)’ 

where 7} and 7; are initial and current temperatures at times 1 and t respectively, 

and variables, A and C are tuning constants. Here, are the steps for the SA algorithm 

where the goal is to minimize function, f(@), 

t 

1. Select the starting temperature, T,, and the initial parameters @), where i=1 

and the system has energy value, EF. 

2. Randomly select a new candidate, 9), by perturbing the previous position, 

0), The energy at the candidate state, will be Ep. 

3. Accept the candidate position 9°), based on MH-criterion, hence, 

e if the energy differences, AE = Ej41 — E; < 0, accept the new candidate 

position, hence 9+!) = a) 
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or otherwise draw a uniform random number, U € [0,1] and accept candi- 
—AE 

date with probability, p = exp™+ . 

4. Decrease the temperature, with chosen cooling scheme, and repeat steps 2-3, 

until T close to freezing (~ 0) 

5. Obtain at T ~ 0, the optimal solution @ which minimizes the function f. 

The system evolves according to a MH-criterion (Bertsimas & Tsitsiklis 1993); 

the temperature is reduced very slowly, using the chosen cooling scheme (Li & Pro- 
topopescu 2004). The problem with SA is that the temperature needs to be cooled 

very slowly or as a result the algorithm will get trapped in another local minimum (Li 

& Protopopescu 2004). This is likely to happen for multi-dimensional functions (Li & 

Protopopescu 2004), however it depends on the structure of the function in question. 

SA is sensitive to the choice of the initial temperature, along with how slowly the 

temperature is cooled down. A solution to the drawbacks offered by both SA and 
MH, is to use the sampling routine, Simulated Tempering (ST), which is described 

by Li & Protopopescu (2004). 

The idea behind ST is to introduce an additional dynamical variable, T, which 
is used in the process of sampling, along with the original variables, 0;, 7 = 1,...,a. 

This allows the dynamical variable, T, to vary on a discrete set of m temperature 

states, T;,i = 1,...,m where T; = 1. The set of temperatures, T; vary on a temper- 

ature ladder. At each temperature level, T;, a stationary distribution 7;(@ ,T;) is 

constructed, where 7(0,7;) is the distribution where samples are required. These 

distributions are also called progressive flat distributions (Behrens et al. 2010). Sta- 

tionary distributions used in ST are of the form, 

log p(9) 

n(0,T:) = exp * 
Because ST is able to move up and down the temperature ladder, this allows the algo- 
rithm to escape local minima, and increases its chances of locating multiple minima. 

in the surface, according to the MH-algorithm rule(s). This is advantage of using ST 

over SA. However the trade-off here is that the ST algorithm needs to spend more 
time at higher temperature levels, and therefore will generate samples from 7 (0,7) 

much more slowly, than using the MH sampling routines (Li & Protopopescu 2004). 

ST requires normalization constants, Z; for each stationary distribution on the 

temperature ladder. Li & Protopopescu (2004) suggests using importance sampling, 
which will obtain fast, but yet good approximations to these constants. The normal- 

ization constant, Z;, at temperature 7; is, 

Zi = [ =(0,7) dO. 

However drawing samples from these unnormalized distributions, 7;(0,7;), is not 

an easy task. To deal with this, we introduce another distribution G(@,T7;), which is 

called the sampling distribution. This distribution is similar to 7;(@,7;). Normaliza- 

tion constants can be then calculated as, 

_ (0, T)G(@,T) 
am [omy 
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where c samples, a), a), ..., al) (discarding burn-in) are obtained from sampling 

the distribution, G(@,7;). These samples are used to approximate the normalization 

constants, Z;, such that, 

Sine a ae 

Li & Protopopescu (2004) a using a Gaussian distribution for G. The ST 

algorithm is outlined below, 

1. Choose the temperatures T; on the temperature ladder of size m, and obtain 

the normalization constants, Z; for i = 1,...,m. The m temperature levels are 

indicated by i = 1,...,m. 

2. Begin the ST algorithm at the highest temperature in the temperature ladder. 

Initialize values for 0. 

3. At the current temperature, update @ by using a MH-update which requires 

distribution, 7;(0,7;). 

4, Propose increasing or decreasing the temperature, T; by one temperature level, 

hence i + 1 = j, according to temperature transition probabilities, pi,2 = 1.0 if 

4=1, Pmm-1 if i =m and piss = pii-1 = 0.5 if 1<i<m. 

5. A MH-step is used to decide whether to accept or reject the proposed temper- 

ature, T;, based on, 

_ Z5n3(9, Ts) pis 
Zini(O, Ti) pig’ 

where the temperature change from i-th to j-th positions in the temperature 

ladder is given with probability min(1, @). 

6. Repeat steps 3-5 for M number of temperature transitions. 

7. Keep the samples which correspond to the lowest temperature T, = 1. 

2.6.4 Convergence Diagnostics 

Convergence diagnostics are used to inspect whether the chain from a MCMC 
algorithm, has converged to the stationary distribution (Gelman & Shirley 2010). 
Generating samples using sampling routines such as MH, could result in producing 

poorly mixed chains, where this slows down the convergence of the sampling routine 

used (Christen & Fox 2005). 

Adjacent samples from sampling routines such as MH could have positive cor- 
relation, where this arises because each sample 6 depends on the previous state, 

9-1), This nature of this correlation can be quantified by using the autocorrelation 

function (Gelman & Shirley 2010). Suppose the chosen sampling routine, gener- 
ates a sequence of length ic, correlation can occur between two adjacent members or 

more generally between more distinct members in the sequence. The autocorrelation 

function between members, 4“) and 9(+*), which have a time lag k, is given by, 

360 — my(o ~ m) 
(80 —m)? 

where the mean of the samples is given by, 

     

ee 
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An important result from time series analysis is that if samples 0“ are gener- 

ated from a stationary yet correlated process, correlated samples may still provide 

unbiasedness of the target distribution (Gelman & Shirley 2010). One possible way 
to reduce the autocorrelation between samples is to use thinning, where this stores 

every m-th point after burn-in of the sequence generated by the sampling routine. 

The other samples, along with the burn-in samples are discarded (Christen & Fox 
2005), therefore reducing the number of samples used for inference. Plotting the 

autocorrelation against the time lag k should show a geometric decay. Slow decaying 
correlations in this plot, indicate poor mixing of the chain. 

One way of demonstrating convergence of sequences from sampling routines is 

to look at the time series trace, where this plots the random variable, g) , against 

the number of iterations, i, These plots indicate whether a bigger burn-in period 
should be taken because of the lack of convergence of the sampler. They also indicate 

whether the chain has been poorly mixed (Gelman & Shirley 2010). 

The batch-means approach can also be used to check the convergence of Markov 

chains. Batches are subsequences of consecutive iteratives, o(k+t) (+2). alk), of 
a Markov chain, where } is the batch length. Assuming the Markov chain is stationary, 
all batches will have the same joint distribution where the Central Limit Theorem 
(CLT) is applied to each batch. Given a function, g, batch means are calculated as, 

b 

im(d) = +3 9(6*9), (2.17) 
= 

  

for batch m, where Equation 2.17 is an Monte-Carlo approximation to the integral, 

J 9(0)p(@) d0, where samples are drawn from distribution, 0+), 9+), 9+) ~ 
p(9). To access convergence, let the batch length be of a fixed size, b, and divide 

the chain into m separate batches (after discarding samples from burn-in). For each 
batch, calculate the batch means estimate, given in Equation 2.17. Each batch, gives 

batch mean estimates of, j11( Bb), ssf (4). The differences between two consecutive 

batch mean estimates, 4;(4) and j4;41(4) should satisfy, 

n(a)-m (8) 
where the tolerance € > 0 and fixed. Satisfying this condition indicates convergence 

(Cowles et al. 1999). 

<6, (2.18) 
  

Another way to check for convergence is to use the criteria imposed by Brooks 
& Gelman (1998). This criteria requires multiple chains to be run, where each chain 

starts at different initial values for 8. Brooks & Gelman (1998) generated a single- 
mode algorithm, to locate the high-density regions, and then sampling from a mixture 

of t-distributions located at these modes to generate suitable starting values. Other 

ways to locate high-density regions in the distribution surface is to use a non-linear 
optimization routine such as the scaled conjugate routine algorithm. Having obtained 
suitable starting conditions, each chain is run for a length of 2k where the first k 

samples are discarded due to burn-in. The retained samples are now said to have 
reached the stationary distribution. For each chain (after burn-in), the sample mean 

and variances of 0 can be calculated, however with m parallel chains, inferences 

such as these should be close enough for each parallel chain. Brooks & Gelman 
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(1998) suggested comparing these to the inference made by mixing the mk samples 

from all chains. To do this, the within- and between-chain variances need to be 

worked out. The within-chain variance, W, is given by, 

a0 7% 

? is the variance for the p-th chain and rp = ; ODay ) and 

  

a represents a Be, ik the j-th co-variate in chain p at time state i. The aie 

chain variance, W is the mean of the variances across all chains. The between-chain 

variance B is, 

z- — - j= Ytrm 

where r = Z eS, rp represents the mean over the means of samples from each indi- 

vidual chain. The between-chain and within-chain variances are used to approximate 

the variance of stationary distribution as, 

Var) tw + matte. (2.19) 
If the initial values were over-dispersed, then this measure will overestimate the 

variance of the true stationary distribution, however this measure would be unbiased. 
if the initial values of all chains were drawn from the target distribution. When 

all chains have reached the target distribution, the variance approximation seen in 

Equation 2.19 should be very close to the within-chain variance, W. Hence, the ratio 

of these two measures, Var(@;) and W should be close to one, where the square 
root of this measure is called the potential scale reduction factor (PSRF) (Brooks 

& Gelman 1998), which is given by Vert If this occurs then the conclusion to be 

made is that each of the chains have stabilized, and they are likely to have converged 

to the stationary distribution. This is known as the univariate PSRF. A weakness for 

this measure is that it is only applicable to one co-variate (of @) at a time (Venna. 
' 2007). The Multivariate Potential Scale Reduction Factor (MPSRF) considers all 
components of 8, whilst the univariate PSRFs considers one component of @ at one 

time. Univariate PSRFs (calculated for each component of @) are bounded by the 

MPSRF. MPSRF uses the within-chain and between-chain variances, B and W, 

given by, 

Seay =1) - Dos STO tye, 
p=l i=l 

fomtyee? \(rm—r)", 

to calculate the posterior variance-covariance matrix, 

k=1 m+11 
V=-——wW +-———-B 

k cs mik 

where rp = ; ih! ) and a represents the i-th sample from chain p, and r = 

LD rp (Venna. oA 

Both measures, PSRF and MPSRF should be as close to 1 as possible, but indi- 

cation of convergence when both diagnostics are less than 1.2 (Venna. 2007). The 
maximum univariate PSRF is bounded by the MPSRF (Brooks & Gelman 1998). 
Both diagnostics will be considered when sampling from the posterior distribution, 

p(@|X,y), where the results will be shown in Chapter 5. 
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2.6.5 Calculating the Predictive Distribution Using Samples 

Different types of sampling routine and convergence diagnostics have been re- 

viewed in this chapter and will be used in Chapter 5. Sampling is used to evaluate 

expressions such as 

vla"|X*,D) = [ nly" IX*,D,0)e(01%,¥) 49, (2.20) 

by generating i, samples from, p(@|X,y), using a sampling routine discussed above. 

These samples are used to approximate the integral in Equation 2.20 by, 

oie pals se on py |X*,D) =~) plu" |X*, D, 6), 
i=1 

where, r ; 

ply'|X*, D,0) = N(E(ys|x5,D, 0), Var(yp|x5, 0, D)) 
predictive 

To calculate the mean, variance and co-variance of the distribution, p(y*|x*,D), moments 

at test points x; and xj, . 

mi Ie Sete te E(ys|x},D) ~ =) BGlx, D, 0), (2.21) 
f=1 

tes, 

te 

Var(uibei, D) = = (> Vor, @®,D)) +Var(E(ujlx$,0,D)), (2.22) 
Neat 

A He, 1< : Cov ((yglx$, D), (yelxt,D)) ~ (23 Conv, 2). axis 0, D)) eS 
i=l 

+ Cov(E( yj |x}, 0, D), B(yelxi,0, D)), (2.23) 
where Equation 2.22 uses the law of total variance, and a generalization is seen in 

Equation 2.23 which is the law of the total co-variance. These formulas are used to 

calculate validation metrics such as the NLPD and Dawid score. 

2.7 Validation 

Given training inputs, X and outputs y, GP models learn suitable values for hyper- 

parameters, 0, by maximizing the posterior distribution (or likelihood) which is based 
on the evidence (and prior). Another option is to integrate the hyper-parameters, 

9, as shown in Equation 2.20 to obtain the predictive distribution, p(y*|x*,D). The 

mean of distributions, p(y*|x*, D, 6) or p(y*|x*, D) are compared to the true obser- 

vations at test points, x*. It is of interest to evaluate and vaildate the quality of 

the predictions made by GP models. Different validation measures for probabilistic 

models shall be reviewed. 

The Squared Error (SE) is the simplest way of evaluating the quality of a GP Squared Error 

model by comparing the model’s mean response, E(y;|x}, D), and true response, yj, 

using the squared distance loss, (yf — E(y} |x?,.D))? for test data input, x}. This 

measure is taken at every test data input, and the average of all SE’s form the mean 

squared error (MSE) Mean Squared 
Error 
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MSE=-— aot E(yi}},D))?, 

where this assesses the predictive accuracy of the GP based on the mean alone. The 

measure however is sensitive to the overall scale of the target values, hence this term 

can be normalized by the variance of the targets over the test data points, to obtain 

the Standardized Mean Squared Error (SMSE) (Bishop 2006). However, the SMSE 

or MSE does not take into consideration the predictive variance, Var(yj|x},D), and 

therefore is not taking into account the uncertainty associated with the model. When 

comparing two models, M; and Mj, the model with the lowest MSE/SMSE would 

be the better model when taking into consideration just the predictive mean of the 

model. 

The Negative Log Predictive Density (NLPD) takes into consideration both the 

predictive mean and variance, oR. = = Var(y3|x},D). This measure assumes that 

predictive density p(y|x?,D) is a univariate Gaussian distribution. Calculating this 

measure across all test points, and averaging leads to the NLPD which is of the form, 

aly (y? = Ej}, D))? 
NLPD= z Dee log(2ro}, at 202, 

where this measure ‘penalizes incorrect variance estimates (Bishop 2006). However 

this validation measure ignores predictive correlation between test points, only us- 

ing the diagonals of the ae co-variance matrix, C, which contains elements, 

Cig = Cov((yf lx}, D), (yj lz}, (Boukouvalas 2010). Comparing two models, Mj 

and M;, the better model cat : the one with the lowest NLPD score, based on 

NLPD measure. The Dawid score is an extension of the validation score, NLPD, 

where it takes into consideration the predictive co-variance between all test points 

(Boukouvalas 2010). By introducing notation, .,, 

Elyj|xi, D) 
E(yg}x2, D) 

Eunlxn,P) 

Dawid score is written as, 

Dawid Score = —log(|C|) — (y* — Mx)" CO *(y* — He) 

where y* represents the true responses corresponding to the test points, x}. The 

difference between Dawid score for two different models can be seen as a numerical 

approximation to Bayes’ factor (Bastos 2010). Comparing two models, M; and Mj, 

the best model would be one with larger Dawid score. 

2.7.1 Summary 

In this chapter, the use of GPs for regression tasks has been reviewed for inputs 

which are only continuous, where key aspects have included looking at the form of 

various distributions such as the predictive density, and optimization over the hyper- 

parameters which can be performed using MAP or ML. This chapter, also reviewed 

various sampling techniques, which could be used to sample from the posterior distri- 

bution, p(@|X, y), along with some useful diagnostics, such as batch-means and trace 

plots. The final part of this chapter, looked at various validation metrics, which are 

used to access the quality of GP models. 
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2.7, VALIDATION 

The next chapter will involve reviewing the different types of categorical inputs, 

along with some already established methodologies that can handle a mixture of 

continuous and categorical inputs. 
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Chapter 3 

Existing Methods Involving 

Categorical Inputs 

This chapter firstly looks at the different types of categorical variables, followed 

by descriptions of the current GP models which can handle categorical inputs along 

with the usual continuous ones. 

3.1 Different Types of Categorical Inputs 

The use of categorical variables causes a discontinuous relationship between the 

input variable and the output (Brouwer 2002). Examples of data sets which involve a 

mixture of both categorical and continuous data include ‘Boston housing data’ , and 

Abalone Data sets. The Abalone data sets contain a categorical input which deter- 

mines the sex of an abalone which can take one of three categorical values, male (M), 
female (F), or infant (I). The inputs in the Abalone data set are used to determine 
the age of an abalone (Frank & Asuncion 2010). Boston housing data, contains a 
categorical input, the Charles River dummy variable, which takes values 0 or 1 de- 

pending if the tract bounds the river. The inputs in this data set are used to predict: 

the housing values in Boston suburbs (Frank & Asuncion 2010). 

There are different types of categorical variables, such as: ordinal and nominal 
which we shall look at in closer detail. 

Ordinal variables imply there is a natural ordering between the categories. For 

example, ratings for a movie, have categories, 

{Very Bad, Bad, Reasonable, Good, Very Good}. Other types of ordinal cate- 
gorical variables include credit classification. Ordinal variables can be encoded into 

a numeric variable, which then can be used as a continuous input attribute. 

For some categorical variables such as color which has three categories, 

{red, blue, green}, it would be unacceptable to use this type of encoding, because 

there would be no meaningful correspondence between the original categorical values 

and their associated encoding, and it would impose an natural ordering between the 

categorical attributes which do not exist (Brouwer 2002). These types of categorical 

variables are nominal. Gender is another type of nominal categorical variable. An 

example of a real-life data set with no natural ordering between categories is the 

abalone data set, which has categories, {M, F, I}, for categorical input, sex. 
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3.2. TREED PARTITIONING 

Nominal categorical variables can be broken up into two further types, binary and 

multi-class nominal variables. A binary nominal variable, is a variable which could 

take one of two states, whereas multi-class nominal variables take more than two 

states. Binary nominal variables can:be coded either taking states 0 or 1 (Brouwer 
2002). For instance, lie detectors, detect whether someone can either told the truth 

or told lies. In this case, the truth would be mapped to 0 and a lie would be mapped 

to 1. However, for multi-class nominal variables, the 1-out-of-C encoding is used 

to represent nominal categorical variables. Using 1-out-of-C encoding maps a single 

nominal categorical variable, into C input attributes. Each of the C categories are 
represented by their own unique row of zeros and ones, where one component takes 

a value of one, whilst the rest remain at zero. For instance, the roles of people in a 

university, may be nominal. Suppose there are three states for this categorical vari- 

able, 
{ Student, Lecturer, Researcher}, then the 1-out-of-3 encoding can be used to repre- 

sent each of these states such that, 

Student — (0,0,1) , Lecturer + (1,0,0) , Researcher — (0,1,0) 

The columns of zeros and ones become input attributes, where they replace the 

original column which contained the original nominal categorical variables. As the 

number of nominal input attributes used for the model grows, so does the number of 

input attributes. 

There could be cases where data sets have more than one qualitative factor, 

where each factor has n; possible categories. There are two possible ways to encode 

the qualitative factors. The first way involves finding all possible combinations of the 

qualitative factors, and then mapping each of these combinations to a real number 
(for ordinal case), or using the 1-out-of-C encoding (for multi-class nominal vari- 
ables). The second approach involves either mapping each category from the j-th 

qualitative factor to a real number (for the ordinal case), or using a separate 1-out- 

of-n; encodings for each separate qualitative factor (in the nominal setting), where 
n, is the number of categories for the j-th qualitative factor. 

Nominal and ordinal qualitative factors are not the only two types of categorical 

data. For example, the days of the week would be example of periodic data, where 

using the encoding that is meant for ordinal categories is not practical. Instead cat- 

egories would be encoded using angles (Brouwer 2002). 

Next, some of the existing methods which consider continuous and categorical 

inputs will be reviewed. These include Treed GPs with Limiting Linear Models 
(Broderick & Gramacy 2010) and the Hypersphere GP model (Zhou et al. 2010). 

3.2. Treed Partitioning 

Partition trees are used to represent input-output relationships, where they have 

efficient divide-and-conquer approach to non stationary regression (Chipman et al. 

2002). This technique relies on a binary partitioning of input variables, where this 

forces axis-aligned partitions, and non-stationary modeling. Partitioning is recursive, 

so each new partition is a sub-partition of the last one. For example, suppose there 

26 Sean Michael Tulloch 

multiple 
qualitative 

factors for both 
ordinal and 
nominal 
categorical inputs 

periodic 
categorical inputs



3.2. TREED PARTITIONING 

is a two-dimensional input space. In this case, a possible partition rule would be to 
split the region in half by whether the first variable is above or below its midpoint. 
The second partition however, could only partition in one of the regions previously 

partitioned on, dividing the space above (or below), meaning in total there are three 

partitions (not four). 

Partition trees are made up of a hierarchy of nodes, where data points are allo- 

cated to a node based on a series of splitting rules. Nodes are classified by three 
names, root, internal and leaf. Root nodes contain all the data points used in the 

tree, and each node is a root for the preceding sub-tree. If a node has children (i.e. 

further splits) then the node is considered as internal or otherwise is known as a leaf 
node. At these leaf nodes, different models can be fitted accordingly, such as constant, 

linear or GP models (Chipman et al. 2002). Partition trees offer this complexity of 

fitting a different curve in each region. An illustration of treed partitioning is shown 

in figure 3.1. 
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Figure 3.1: An example of a tree T with two splits s; and sg resulting in 3 partitions 
as shown in the diagram. Dj; represents the data used to build/train models under 

each leaf. 

Tree priors are generative, and specify the tree probability by placing a prior 

on each individual partition rule. Leaf nodes 7 may be split with depth-dependent 

probability of pspue(T, 7) = (1 +D,)?, where $ and a > 0, are parameters chosen to 

give an appropriate size and spread to the distribution of trees (Chipman et al. 2002). 

The co-ordinate «;,; in data point x; and location of the split, have an independent 

prior, which is a uniform distribution over all potential split points. This prior also 

implicitly, does not allow partitions in the tree space to be created if the resulting 

region spaces would have very few data points. The posterior distribution over the 

tree space (Chipman et al. 2002), 7, is given by, 

P(T|X,y) « P(y|X,T)P(1|X). (3.1) 
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3.2, TREED PARTITIONING 

In order to sample the posterior distribution (Equation 3.1) of partition trees, and 

hence explore the posterior space, stochastic changes need to be proposed to the tree 

structure, T’, where these incremental modifications include grow, prune, change and 

swap (Chipman et al. 2002). These tree evolution moves are accepted based on the 
Metropolis-Hastings ratio, and have a prior that they are all equally likely moves. 

Grow and prune moves can add or remove partitions, effectively changing the size of 

the parameter space, 0, whilst moves like change or swap do not. 

Given W leaf nodes m,...,w, where leaf node, nj has parameters @y,;, the 

leaf likelihood function (after marginalizing over regression model parameters), and 

assuming the data points are independent is given by, 

Ww ny 

v(yvitt.X)=[] f TL ein sings n)"(n,) a, (32) 
= i=1 

where yi,n, represents the observed response at training point, Xi,y, which belong in 

leaf node n; under tree T;. The term nj represents the amount of training points under 

leaf node n;. Alternative notation, includes [X, y]"/ which represents the inputs, and 
responses belonging to node, n; (Gramacy & Lee 2008). The predictive distribution 

for data point, x} € nj; is given by, 

(yj be, Th [X, y]™) = | watts, OX.) Bn, 

The complexity of leaves is limited by both computational budget and data dimen- 

sions, for example, GP models at the leaves do not allow inference to be integrated out 

analytically over the model parameters, complicating the posterior inference further 

(Chipman et al. 2002). 

3.2.1 Possible models at leaves 

At the leaf nodes on a treed partitioning tree, a choice of different models can be 

fitted, such as constant or linear mean leaves (Chipman et al. 2002). 

Constant Mean Leaves 

Given a set of data, [X,y], where there are a number of M leaf nodes, 71, 72, -.-;7M- 

The leaf node, 7; contains c data points, [X, y]”*, and has model parameters, {tn,, a 

The constant mean model assumes that the outputs for data points in node n; are 

distributed as, 

Ys Y2r Ye ~ N (Unis On,)- 

Linear Mean Leaves 

Extending constant mean leaf models, another choice of model to fit at the leaves 

is the linear mean model. The leaf node, 7; contains c data points, [X, y]", and has 

model parameters, flp,,Y%n,; Where they are B x 1-dimensional. All training inputs 

x; can be collected together to form matrix, X, which is N x B-dimensional. The 

model, assumes that the responses in node 7; are distributed as, 

Yas Yas Yo ~ N (My, + Xn Fm): 
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3.3. HYPERSPHERE GP MODEL 

3.2.2 Treed Gaussian Processes 

Another type of model that can be fitted at the leaves of a partition tree is a 

Gaussian process. GPs are flexible priors over functions, whereas the trees divide the 

predictor space based on splitting rules, however when these combined together, form- 
ing treed Gaussian processes (TGP) they form a powerful approach to non-stationary 

regression problems. GPs with linear trends are fit independently to each region, in 

a hierarchical manner, where each region has its own set of hyper-parameters, which 

makes the overall process, non-stationary. This particular model is developed by 

Broderick & Gramacy (2010). Trees are averaged out by integrating over possible 

trees, using reversible-jump Markov chain Monte Carlo (RJ-MCMC) (Chipman et al. 

2002), where the tree prior is specified through a tree-generating process. 

Treed GPs have been applied in a number of applications in particular, sequen- 

tial design and analysis of computer experiments (Chipman et al. 2002), and the 

methodology has been adapted to also include categorical inputs. 

3.2.3 Categorical Inputs using TGP 

Broderick & Gramacy (2010) have recently added to the existing TGP package 

(which is available as code in R) by allowing categorical inputs to be included as part 
of the design for inference. Broderick & Gramacy (2010) tried several approaches such 

as CART, Treed GP with Limiting Linear models and Treed GPs. When categorical 

inputs are required, they encode them in a binary form. For example, if N categories, 

‘$1, ..., Sw were used in the design, they would have a boolean representation, 

5; = (0, ...,185,,--.,0) € RN“, 

where the final category, Sy = (0,...,0) € RN~1. Broderick & Gramacy (2010) 

started the investigation by using a Treed GP with a limiting linear model, ignor- 

ing the categorical inputs, however this gave rise to a high root mean squared error 

(RMSE), hence the categories needed to be included. The use of Bayesian CART 

with the inclusion of the categorical inputs, did not partition on the categorical in- 

puts correctly. The suggestion of using a Treed GP with categorical inputs would lead 
to rank-deficiency of the design input matrix, where there would a column of zeros 
or ones. Broderick & Gramacy (2010), then added the functionality of only allowing 
the continuous inputs to predict the responses under the GPs at the leaves, whilst 
both the categorical and continuous inputs are still candidates for treed partitioning. 

However, Broderick & Gramacy (2010) then argue that using only the categorical in- 

puts for partitioning, would have the benefit of improved mixing in the Markov chain. 

The model used in this case is the Treed GP with limiting linear models. However, 

if the number of categories increase, this methodology can become increasingly slow. 

Broderick & Gramacy (2010) also questions whether it is worth-while and possible 
to design a GP correlation function which can explicitly handle both a mixture of 
qualitative (categorical) and quantitative (real-valued). 

3.3 Hypersphere GP Model 

Zhou et al. (2010) proposes a flexible approach for building Gaussian process 

models where the data inputs have both quantitative and qualitative factors, using 

a Hypersphere parameterization to model the correlations of the qualitative factors, 

where the qualitative factors are assumed to be nominal. The benefit realized by 
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3.3. HYPERSPHERE GP MODEL 

Zhou et al. (2010) avoids the need to directly solve optimization problems with posi- 
tive definite constraints, and uses a unrestrictive ‘structure-free’ correlation function 

between the qualitative factors. This work builds on previous work of Qian et al. 
(2008) which considered optimization techniques in semi-definite programming for 
ensuring positive constraints on the correlation matrix, T, when maximizing the like- 

lihood with this particular constraint. It is possible to simplify the complexity of 

the work shown in the paper of Qian et al. (2008) by using restrictive correlation 
functions for the qualitative factors: however this cannot capture the various types of 

correlations between the categories. The parameterization suggested by Zhou et al. 

(2010) allows for both positive and negative correlations between qualitative factors 
to be captured in the GP model. The two different models shown in the papers 

Zhou et al. (2010) and Qian et al. (2008) are inter-connected, where they fit kriging 
type models with both qualitative and quantitative factors however having different 

degrees of flexibility. 

Suppose there is a set of training data D = {(x;,y:),i = 1,...,n}, where x; is a 

mixture of n, qualitative and ng quantitative factors as shown below, 

V1 

2 

ing 

Wil 
Wi 

y= 

Wine 

The vectors xj, and x;,q contain only the quantitative or qualitative factors for data 

input, x;. 

Tia Wit 
2 Wi,2 

Xie = . Xid = 7 

Ting Wine 
qualitative and 

The co-variates, zjj,j = 1,...,na, are the quantitative factors, and wjj,j = quantitative 

1,..., Me, are the qualitative factors for data point, x;. Qualitative factors, w;,; can pan 

take a state from one component of the set, Aj, 

Aj = {Aj Ajay Ajines hs 

where Aj, represents the k-th category for the j-th qualitative factor, and ej rep- 

resents the number of categories for the j-th qualitative factor. Test points, xj are 

assumed to have the same form as the training inputs. The response at input, x; is 

modeled as, 

y(xi) = m(xi)B + QC), 

where m(x;) is the mean function evaluated at input, x; which is multiplied by the 

vector of unknown coefficients, 8. Q(x;) is a Gaussian process with mean 0 and 

process variance o. 

  

There are many possible forms for the kernel, k, between the quantitative factors, different forms of 

that include Matern ‘and exponential kernels, and whether these kernels are isotropic kernel 
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3.3. HYPERSPHERE GP MODEL 

or separable (Rasmussen 2006, p.79). However Zhou et al. (2010), uses the (popular) 

squared exponential correlation function which is given by, 

nad 

Hoyer re) = exp (D 5-(#a5— 04)? 
j=l 

where ¢; is the length scale for the i-th continuous covariate. Suppose that x;,q is 

1-dimensional (hence there is one qualitative factor). The co-variance evaluated at 
each pair of inputs, xq, and x» will be of the form, 

cov(Xa, Xb) = O27 (Wars wp,1) K (Xa,e) Xb,c) 

where T'(wa,1, W,1) = T(w»,1,Wa,1) are the cross-correlation parameters between 

categories wa,1 and wy. The values of T(Ai,:,Ai,;), Vi,j, are stored in a positive 

definite matrix, T, with unit diagonal elements (known as PDUDE). Both, Qian et al. 
(2008) and Zhou et al. (2010) use this approach to modeling the categorical inputs, 
but differences between their methodologies, is the way correlation parameters, T(., .) 

areconstructed. Zhou et al. (2010) decompose matrix, T, using a Cholesky-type 

decomposition, where T = LL". L is a lower triangular matrix, where the diagonal 

entries are strictly positive. Each row in L, i,e. (I;,1,l;,2,-.-;/yr) is modeled as co- 

ordinates of a surface point on an r-dimensional unit hypersphere. In order to satisfy 

this constraint, the spherical co-ordinate system must be used as follows, 

a=, 

for.s = 2;....7r—1, 

1,3 = sin(9;,1)... Sin(9;,s—1) COS(9r,s), 

Lp = sin(;,1)...in(O,,,—2) cos(Oy,r—1); 

and for p = 2,...,7, 

1,1 = cos(4;,1) 

where 6;,, € (0,7), Vs <r, known as box constraints (Zhou et al. 2010). This 
parameterization ensures that T is positive-definite because restriction of each 4,5, 

ensures the l,,, (diagonal elements of matrix L) are strictly positive, and this en- 
sures that T is a positive-definite matrix. Elements of the PDUDE matrix T can be 

obtained component wise for each ¢;,; where i < j using the following equations, 

min(i,j) 

Gg— Ss es eel (3.3) 
p= 

tyi=ba, Vj >2 (3.4) 

  

(3.5) 
Because T is also symmetric, ti; = tj, Vi,j. This parameterization also ensures 

that t;,; = 1, Vi. The use of this parameterization allows the elements in T to either 

be positive or negative, and hence can capture positive and negative correlations 
between categories. The number of parameters for constructing PDUDE matrix T is 
Ne(ne~1) 

The variable, n,,j indicates the number of possible states of the j-th qualitative 

input. There are two choices here. Firstly, one could collect all data points, x; , which 

have the same qualitative factors, and place these data points in the same category. 

The number of different possible combinations here would indicate the total number 
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3.3, HYPERSPHERE GP MODEL 

of categories to be used in the algorithm (Zhou et al. 2010). 

In this case, one could use the methodology used when first discussing the Hyper- 

sphere parameterization model with one qualitative factor with B number of possible 

categories. The second choice, is to use a separate PDUDE matrix, T, for each 

qualitative factor using the following kernel between data points, xq and x;, 

Ne 

cov(Xa, x») = [| pT (was, Uo,i)R(Xajcs%b,0)- P 
el 

One of the major differences between using these two different approaches for the 

case where multiple qualitative factors are part of the input design, is the number of 

parameters required for constructing the PDUDE matrix(es), T. Suppose by combin- 

He data with the same qualitative factors, there are R possible combinations, then 

= parameters are needed to construct the single PDUDE matrix, T, whereas the 
(Re,i)(Mei=1) 

2 
  other approach, which uses n, separate PDUDE matrices, requires )>;°, 

parameters. 

ML or MAP can be performed to estimate values for the unknown parameters, 

B, Or2,7 <8, Cr and ¢;,i = 1,...,ng. This problem can be solved using a standard 

non-linear optimization algorithm. However, Zhou et al. (2010) uses various models 
and implementations offered by Qian et al. (2008), as a way of finding some good 
initial starting parameters for the inverse length scales (¢;,i = 1,...,;na), to be used 

in the Hypersphere GP model. 

These are the two main methodologies which have been reviewed, however they 

are not the only ways in the literature of using categorical inputs in a model. Han- 
nah et al. (2011) combines Dirichlet processes (DP) with generalized linear models 

(DP-GLMs), where categorical covariates are modeled by a mixture of multinomial 

distributions, and the count response by a Poisson distribution. An advantage with 
using DP-GLMs is that it is able to capture hetroscedasticity, where the noise vari- 
ance is input-dependent, whereas GPs make assumptions about the data dispersion 

and homoscedasticity (Hannah et al. 2011). Another possible way of dealing with 
categorical inputs is to build a separate independent GP for each combination of the 

qualitative factors (Zhou et al. 2010). 

In the next chapter, we will demonstrate our proposed: methodology which can 

handle data with categorical inputs. 
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Chapter 4 

Embedded Gaussian Process 

This chapter, discusses in detail our proposed GP which can handle data with 

categorical inputs. This GP will be referred to as the Embedded GP. Two types 

of categorical variables, nominal and ordinal, will be considered in this framework. 

This chapter will later compare the Embedded GP with existing methodologies in 

the literature, which include the Treed GP and Hypersphere GP models that were 
reviewed in the previous chapter. The final component of this chapter, will give the 

user some useful guidelines to follow when using the Embedded GP in practice, along 
with various implementations of the Embedded GP which were used in the next chap- 

ter. 

4.1 Different Types of Categorical Variables 

GPs are priors over the function values, f ~ GP(m(x;),k(xi,x;)), with mean 
function, m(.) and co-variance matrix, K, where data inputs, x; contain both con- 

tinuous and categorical elements (Rasmussen 2006, p.13). Data points, x; contain a 

mixture of n, qualitative and nq quantitative factors as shown below, 

Til 
Vi2 

Fina 
Wil 

Wi, 

x= 

Wine 

The vectors, x;,< and x;,g, contain only the quantitative or qualitative factors for 

data input, x;. 

Ti Wid 

Xi,2 Wi,2 
Xie = : Xid = : 

Ting Wine 

The co-variates 2;,;, 7 = 1, ..., na; are the quantitative factors, and wj,j,j = 1,...; Mes 

are the qualitative factors for data point, x;. Qualitative factors, w;,; can take a state 

from one component of the set, Aj, 

Aj = {Aja Aj.2s +) Ajine so} 

33 

Goal of this 
chapter 

two types of 
categorical 

variables



4.2, EMBEDDED GP FOR ORDINAL CATEGORICAL INPUTS 

where A; represents the k-th category for the j-th qualitative factor, and nj rep- 

resents the number of categories for the j-th qualitative factor. However categorical 

elements cannot be directly placed into the GP as they are. 

We shall proceed to explain the methodology behind the Embedded GP when 

there is one qualitative factor with C categories, for the two different scenarios. 

4.2 Embedded GP for Ordinal Categorical Inputs 

Let us start off with explaining the case of one qualitative factor with C possible 

ordinal categories. Categories which are ordinal assume a natural ordering, where 
these categories are assigned to a number on a one-dimensional axis. We propose 

mapping each of the categorical variables Ai,;, Vj < ne,1, 

Ay = {A1,1,A1,25 +++) Atjnea} 7 91 = (91,1591,2) +) Pyne} 

to a number, g1,; respectively on a real number line. An example of this is shown in 

Figure 4.1. Data points, x; will be transformed accordingly, 

Li Tit 
Zia Zio 

xi = i 7X = i 

Ving Ving 
wi = Aik Gi,k 

where w;,1 is the qualitative factor which takes the k-th value from the set of nea 

possible categories. However, the Embedded GP will also have other parameters, 

which are contained in the mean and kernel functions. Such parameters include the 
individual length scales (for separable kernels) or a single length scale (for isotropic 

kernels), noise and a single signal variance. 

All parameters, including the categorical encodings, g1,,_ ,Vk < me,; are learnt by 

maximizing the log posterior distribution, log(p(@|X, y)), where now @ additionally 
contains the categorical encodings. Once optimal values for @ have been obtained, 
the optimal categorical mappings, gi,4 ,Vk < m¢,1 are used for test data points, xf, 

such that, 

Zi i,t 
2 Wi,2 

x >xf= 

Ving Ving 
wy = Aik Ik 

The rest of the hyper-parameters are used in the predictive equation, p(y; |x}, X,y). 

Some commonly used isotropic and stationary kernel functions include the Matern 

and squared exponential co-variance functions. These kernels, depend on term r 
which measures the Euclidean distance between data points, x;, x;. For ordinal 

categorical variables, r? is given by 

na 1 
7? =) (isp — B4p)" + (Gish — 914k) 

p=1 op 

for the case of per continuous input length scales, where data points, x; and x; be- 

long to categories, A;,,, and Aj,,, respectively and ¢»,p = 1,...,na, are the inverse 
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4.3, EMBEDDED GP FOR NOMINAL CATEGORICAL INPUTS 

  oS S © SO 
Categoryi 

Figure 4.1: Example of placing the categorical mappings, gi,; onto the real number 

axis (ordinal case). 

length scales for the p-th continuous covariate. Length scales can also be applied to 
the categorical co-variate, however this would introduce coupling between the length 

scales (¢) and the mapped categorical mappings. 

The advantage of having a separate length scale per continuous co-variate is that 

they determine how relevant a continuous input is, and if the length scale is very 

large, then the co-variance will become almost independent of that input (Bishop 

2006, p.106-107). 

For the case where there are multiple qualitative factors such that data inputs, x; 

have the form, 
Tia 

Tia 

Ving 
Wi = Atty 
wir = Ark 

x= 

Wine = Aneskne 

where the s-th qualitative factor, wj,s, takes a state from the set As. Suppose there 

are q combinations of qualitative factors; each combination would be assigned to a 

real number gijm, where m € [1,q] and then inference would be done, as for one 

qualitative factor. 

4.3. Embedded GP for Nominal Categorical Inputs 

For nominal categorical variables, the data inputs entered in the Embedded GP 
model would be different because these variables do not have a natural ordering. We 

shall discuss the Embedded GP model where there is one nominal qualitative variable 

before discussing inputs which contain multiple categorical nominal variables. 

In this case, one qualitative factor may have C' possible categories, but these do 
not impose a natural ordering. Instead each of the categories, Ai, Vk < ne,1 are 

encoded using the 1-out-of-C encoding where each category would be assigned its 

own unique zeros and ones. Hence for k = 1,...,c,1, 

Ay = {Aj1, A125 +++) Aiyner}s Aiye > Yr = (91,1915 +++5. 91,652 +1 G1sne,1 One) € RP 

where 6; = 1 represents the fact, that data point, x; belongs to category k, whilist 

for other terms, 6; = 0 ,j =1,...,ne1, j 4. The role of the Embedded GP is to 

determine the distance of each category, Ai,; ,i = 1,...,Mc,1 from the origin, where an 

example is shown in Figure 4.2. Data points, x;, 

35 Sean Michael Tulloch 

relevance of 
inputs 

multiple 
qualitative 
factors 

1-out-of C 
encoding 

binary 
representations 
multiplied



4.3. EMBEDDED GP FOR NOMINAL CATEGORICAL INPUTS 
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Figure 4.2: Demonstration of the case where one qualitative factor with 3 categorical 

values are used. Each categorical value is mapped into a R° space, where each 

category is assigned an axis. The distances between the category mappings and the 

origin in this example is one. 

Til 

U2 

x= : 

Tijng 

wi = Aik 

are converted to the form, 

Tid 

Tia 

Ving 

1191 

91,252 

91k 

Dinca rer 

which are used in the Embedded GP algorithm (for nominal categorical variables). optimizing the 
However, just like the ordinal case, the optimum values for each of the distances, hyper-parameters 

91,3 »J =1,...,Ne,1, is not clear, and is determined along with the length scales, noise cee Ee 

and signal variances to maximize the log posterior distribution. After obtaining these 
optimal values for the hyper-parameters, these are placed in the predictive distribu- 

tion. For (some) isotropic stationary kernels, as mentioned above, the Euclidean 

distance between two arbitrary data points, x; and x; are needed. The squared dis- 

tance, r?, between these points have two scenarios, whether both data points belong 

to the same category or whether they belong to the different categories. For data distances between 
points belonging to the same category, A;,;, the squared distance, r?, between these data points 
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4.4. HYPER-PARAMETERS USED IN THE EMBEDDED GP 

points is, 
na 4 

P= S15 (tip — tin)” (4.1) 
p=l ? 

and the squared distance, r?, between two data points, belonging to different cate- 

gories A;,,, and Aj,,., where 1 < ky,k2 < no,1 is, 

  

Yo 5 (in ~ 2h)? + (hey) + Cn) (42) 
pai *P 

where both Equations 4.1 and 4.2 assume a separate length scale for each continuous 

input. Data points may have many nominal qualitative factors in more complex data 

sets. One approach of handling data points in this manner for the Embedded GP 

in the nominal setting, is to assign each combination of qualitative factors to their 

own unique row of zeros and ones, and proceed similarly to the case of having one 

nominal qualitative factor. 

4.4 Hyper-parameters used in the Embedded GP 

The Embedded GP for either types of categorical variables, nominal or ordinal, 

uses hyper-parameters, 8, which contain, 02 (noise variance), o2 (process variance), 

¢i,1 = 1,...,nq (separable kernel) or ¢ (isotropic kernel) and the categorical one-to- 
one mappings, g1,j,j =1,...,Mc, where ng and n, represent the number of continuous 

and categorical inputs respectively (for one qualitative factor). The Embedded GP 

model assumes that the same levels of qualitative factors (where there are n, levels) 

are treated as categories in a one qualitative factor setting discussed above. Other 
additional hyper-parameters which appear in the GP prior will be explicitly stated 
in later chapters. 

multiple 
qualitative 
factors in data 
points 

hyper-parameters 
which the 
Embedded GP 
uses 

4.5 Relationship between Embedded GP and Hypersphere 

GP Models 

We have seen several ways of handling categorical inputs using GP models, such 
as the Embedded GP and Hypersphere GP models. These models seem similar. The 
difference between the two models, is that our embedded GP approach considers 

placing the categorical one-to-one mapping values, gi,;,j = 1,...,%¢ as part of the 

data input, which is used in the distance function r in the co-variance between the 

two data points. The Hypersphere GP model multiplies the kernel, & by a correlation 

term that depends on the categories of the two inputs, x,x’. It is possible that these 

two models could be equivalent. Consider, the Embedded GP for the nominal case, 

where this GP and the Hypersphere GP models have one qualitative factor, with 
Ne possible categories. We shall use the Gaussian correlation kernel which is of the 

following form, 
bsg) —< ee Hens 

for continuous inputs, to investigate the possible equivalence between the two models. 

Suppose that x; and x2 belong to categories Aj,,, and Aj,, respectively. All ne 

categories Aj,j;,j = 1,...,m¢, are mapped onto an n-dimensional space, with co- 

ordinate, (0, ..., 6;,...,0) which is then multiplied by term, gi,;, which scales the j-th 

dimension whilst the other dimensions remain zero. The Embedded GP (for the 
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4.5. RELATIONSHIP BETWEEN EMBEDDED GP AND HYPERSPHERE GP MODELS 

nominal case) uses the following kernel, k, if x; and x2 do not belong to the same 

categories, 
— (Sak J (1,4 02,4)? +97 ey $97 eg) k(x1, x2) = ope +o2 

and if the data points belong to the same category then, 

— Dis: gases)? 4 02 k(x1,x2) = ope ess tI)” 4g? 

where aay and 2 represent the signal and noise variances respectively, and ng rep- 

resents the amount of continuous factors. The Hypersphere GP model, will instead 

use the following kernel, 

Ets baie)? 
R(x1,262) = 02 T(Ai ey, Atyn) & UY + 02, 

where T'(Aj,4,,-A1,k2) is a term which depends on categories A1,,, and Aj,4,- Before 

proceeding, consider the term 9. at. G7 ky equating to a single-term pA) ,,,Ai,4. which 

depends on categories Aj,,, and Aj,4,- 

One possible way the models would be equivalent, would be to force the hyper- 

parameters, 02, Oe) ¢i,1 = 1,...,na which appear in the kernels of both models to be 

the same. Consider the case where two data points x; and x2 belong to the same 

category, A1,4,. Hence we assert, 

=DM Bh era-aa,0? 384, J (axs—zn,)? 
ope BE ET a op T(Ai,kr Arte) € Beets ee ot, 

The Hypersphere GP model requires that the correlation term T(.,.) between the 

same categories is one. Therefore, 

297 Deh J (eumeai)? ee = EE Flee)? o. op = me 

Trivially, for this case the two approaches are equivalent. Now let us investigate 

the case where data points x; and x2 belong to two distinct categories. Hence, 

possible 
equivalence 

DS id Bites ee 2 bee 2 St eet ore (Diss 3; 14 22,4) +i ey +94) 4 G2 P= 02 T(Aiy» Ain) Dik 3 (e14-22,4) +02, 

Through cancellation, 

eo Et Firs t20 4a, Hike) 2 TA Ain) Dis J ae ta4)? 

Then using the rule of exponentials, e~*~-Y = e~*e~¥, hence 

en ih lets 04)? Bay Hing) 2 = T( Ary Aig) Oe, 

And therefore, 

e Wins tite) 2= T(Ar py, Aie)- 
By taking logs of both sides, yields 

=(G2 4, + Gig) ? = log(T (At, 5 At,ea))- 

Because, Tie, and 9, j, ate both positive functions, therefore T(Atjky,A1,k2) needs 
to be less than or equal to 1. The Hypersphere GP model requires that T(.,.) is in 

the interval (—1,1), whereas the Embedded GP accepts, itr +942) to be in the 
range (0,1). Therefore, it is possible for the two approaches to be equivalent if there 
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4.6, DIFFERENCES BETWEEN THE EMBEDDED GP AND OTHER EXISTING METHODOLOGIES FOR 
CATEGORICAL INPUTS 

is a solvable linear system of equations, with the limitation that positive coclaviens 

are permitted between all categories. 

It may be possible to prove that the two approaches, Hypersphere GP model 

and the Embedded GP model are equivalent with other kernels, but we leave this to 

further work. 

4.6 Differences Between the Embedded GP and Other 

Existing Methodologies For Categorical Inputs 

We have reviewed two methodologies which can handle GPs with both categorical 
and continuous inputs: Treed GPs with the Linear Limiting Model; and the Hyper- 
sphere GP model. In addition, we have added to these methodologies, by designing 

a GP which can also handle data points with continuous and categorical elements, 

by either mapping each category to a real number (for the ordinal case), or using the 

1-out-of-C encoding (for the nominal case). 

Treed GPs with linear limiting models, do not explicitly place the categorical vari- 

ables into the covariance function, k(x;,x;), for the GPs at the leaves of the tree, but 

rather the binary representation of these categories are used for treed partitioning, 
and the continuous inputs are used at the leaves. This method has the disadvantage 
of not being able to fit GPs containing categorical inputs, and does not consider the 

correlation between these type of inputs. This method also relies on sampling the 

posterior distribution, P(T|X,y) using RJ-MCMC, where this will not be able to 
search through all possible optimal trees. Broderick & Gramacy (2010) questions 

whether it possible to design a kernel which contains both these categorical and con- 
tinuous inputs. The Hypersphere GP model is able to perform this task. 

The Hypersphere GP model has the advantage of being to model negative and 

positive correlations between categories using an unrestrictive correlation between 

them, thus avoiding the need of directly solving optimization problems with positive 

definite constraints. 

The proposed GP model, Embedded GP however is able to handle cases of nom- 
inal or ordinal categorical variables for each qualitative factor. However, when both 
of these models, use the squared exponential kernel, the Embedded GP is more re- 

stricted than the Hypersphere GP model since the Embedded GP is not able to 

handle negative correlations. 

The number of parameters required for these two GP models differ; the Embed- 
ded GP model requires d parameters for each of the corresponding Tea a) from 

categories to reals, whereas the Hypersphere GP model requires at least {2} for 

the correlation parameters between each pair of categories. As the number of cate- 

gories grow, the more parameters the Hypersphere GP model will need to estimate 

compared to the Embedded GP. 

The number of independent GPs fitted through data for each combination of qual- 

39 Sean Michael Tulloch 

possible kernels 
could be 
equivalent 

current existing 
GP models 
handling 
categorical inputs 

‘Treed GP 
comparisons 

Hypersphere GP 
comparisons 

Embedded GP 
comparisons 

parameter 
difference 
between 
Hypersphere GP 
and Embedded 
GP models 

independent GP 
model 
comparisons



4.7. IMPLEMENTATION AND EFFICIENCY 

itative factors (or category), will also grow as the number of categories increase. 

Building independent GPs per category, ignores the correlations between the re- 

sponses from each category. These correlations can vary between values of -1 and 
1. Negative correlation indicates that a given response of one category is increasing 

whilist the response from a different category is decreasing. Positive correlation oc- 

curs when either the responses from both categories are increasing, or both of them 

have responses which are decreasing. In some situations, considering these correla- 

tions. could be important. 

The Hypersphere GP model and Embedded GP will use a single GP whereas using 

the Treed GPs or Independent GPs per category, will require multiple GPs. 

4.7 Implementation and Efficiency 

This section outlines a general implementation of the Embedded GP model and 

contains suggestions on how to improve the computing performance of this GP. 

4.7.1 Efficiency 

Below are some suggestions in order to improve the efficiency of the Embedded 

GP model (in both the nominal and ordinal setting), 

1. Rescale the data inputs to lie in the interval, {0, 1], where this will ensure better 

conditioning. This is global, so do not rescale inputs per category. 

2. Make sure the continuous data inputs, x; (preferably for both training and 

testing) are different for each category (or combinations of qualitative factors), 

otherwise, this can lead to principle minors in the matrix, K having a determi- 
nant of 0. An example is shown in Appendix A. 

3. Use Cholesky decomposition whenever the inverse of matrices are required, for 

example, GP-models require the inversion of the co-variance matrix, K. 

4. Some hyper-parameters, such as the length scales, signal and noise variances are 

required to be positive (hence > 0). The posterior or likelihood distributions 
need to be constrained taking this into consideration, where the parameters are 

constrained to take the form, exp~”. 

4.7.2 General Implementation of the Embedded GP Model 

In this section, we outline the general steps to be performed when using the 
Embedded-GP model in practice. For more detailed implementations for specific 

cases, please read Appendix B. The implementations discussed in Appendix B have 

been used for experimentation in Chapter 5. 

We consider training and test data, (X,y) and (X*,y*) which has ng continuous 

co-variates and n, categories (or n¢ different levels of qualitative factors). Also assum- 

ing a GP prior of GP(m, k), following steps are performed when using the Embedded 

GP for data inputs, x; which contain jp nominal qualitative factors, 

1. Given n, different combinations of qualitative factors, assign each combination 

to a hyper-parameter 9i,;- 
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4.7, IMPLEMENTATION AND EFFICIENCY 

; z , 
This transforms data input, x; = (2i,1, %i,2, --) Cings Wij) Wiggs) Wigp) > 

’ 
Xi = (i, Vi,2, +++) Ving V1 V2y «0-5 Une) + 
Vector v= (U1, V2.0 ne) = (91,151, 91,2525 +) 91,79) +1 F1ncIne)» 

The transformed input will be used in the Embedded GP. The notation, 6; = 1 

if the data point belongs to category j whilst the other variables, 4, = 0,k = 

Dy aokttes Weds 

Example. Suppose there are two qualitative factors, Ay and Ay. Each quali- 

tative factor has n¢,1 = 2 and ne,z = 2 categories respectively. Hence, 

Ay = {Ai1, 41,2) +) Atjnea}s 

Ag = {A2,1;2,2, ++) Aanea}- 

The possible combinations with these categories are, 

C1 = {Ai 1,412}, C2 = {Ai1, 421} 

C3 = {A1,2, Ava}, Ca = {A1,2, A2,2} 

Each combination of qualitative factors, Cy, k = 1,...,4, are mapped to, 

v= (91,191, 91,262, 91,353, 91,454) € R4, 

respectively for each k. The term 4, = 1 if data point, x; belongs to category 

k, whilst other terms; 6, = 0,7 =1,...,4,7 #k- 

. Hyper-parameters, 02 (noise variance), o (process variance), #;,7 = 1,...,na 
(length scales for separable kernels), ¢ (length scale for isotropic kernels) and 

91,j.3 =1,..., Me all re-parameterized to a form such as, e~™(), to ensure the pa- 

rameters are constrained to be positive. These hyper-parameters are contained 

in 0. 

. Assign an initial value to each hyper-parameter in 8 using samples from Gaus- 

sian distributions. 

. Use the mean function, m(x;) = h(x;)78. One way of having a mean function 

by category is to use An, basis functions, where A is the number of basis func- 

tions used in the algorithm (per category) and n- is the number of categories. 

Basis functions take the form for data point x;, 

Iypag—y = ¥ym(1), hoya = vjm(2)....haj = vym(A), 

Vj, 1 <j < ne. Here, it is assumed that each category has the same basis 

functions, where m;,i = 1,..., A represents the basis functions to use for each 
category. The terms v; could either 0 or 1 (referring back to Step 1.). Prior dis- 
tribution used for # is a Gaussian distribution, N(@|b, B). Hyper-parameters, 

# are analytically integrated out such that, 

/ GP(h(x)" B, k(x, x)) MV N (|b, B) dB = GP(h(x)7b, k(x,x’)-+h(x)? Bh(x )). 

(4.3) 

Variables, @ are not included in hyper-parameter vector, 8. Hyper-parameters, 

such as the length-scales, signal and process variances, and the categorical map- 
pings (which are contained in vector @), are estimated through MAP (or ML). 
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4.8. OTHER ALGORITHMS 

5. Use an optimization routine such as, scaled conjugate gradient. (SCG) to mini- 
mize the negative log posterior distribution. The log of the posterior distribu- 

tion, log p(@|X, y), is given by, 

log p(8|X, y) = log(p(y|X, b, B, 8) + log(p(4)) — log(p(y|X)) = ... 

= Ey = (h(X))"b)P(K + (XY) B(H(X)))“H(y — (XY)... 
2 

a Plog ik + (a)? )BeALA)| ~ SE log(2m) + log(p(9)) — log(p(y|X)). 

This in maximized in respect to 0, where p(@) is the prior distribution over the 
hyper-parameters, 0. h(X)* is an Q4, x (Anc) matrix where each row represents 
the evaluation of each basis function for a given data point, x;. 

6. Once having obtained @ which is the (global) maximum of p(6|X,y), use 6 to 

transform the test points such that, 

Soe, * * od * * * ae! * * * i? 

AF (thy, Bay ey Things Wh jy Whigs oy Wig) PF = (WE ry Vian ones Wings Vly V2 oy Une) » 
where vector Vv = (v1, 02, +; Ung) = (98,191) 91,2525 +++ 955953 ++) FloncOne) 

7. Use remaining hyper-parameters, 02, aa, ¢i,7 = 1, ..., ng (for separable kernels), 

¢ (for isotropic kernels) to evaluate the moments of the predictive distribution, 

p(y; ly, X,x}, 0). Hence, 

¥(X")ly(X), X,X* ~ N(w, + K(X*,X)K(X,X)"(y— pH), (4.4) 

K(X*,X*) — K(X", X) K(X, X) RU, X*)) 

; where the mean and kernel shown in Equation 4.3 would be plugged into 

Equation 4.4. Note that ys represents the mean function evaluated at each of 

the training point in the set X, and jz, represents the mean function evaluated 

at each of the test points, x*. 

For various other implementations of the Embedded GP model, please turn to Ap- 

pendix B. 

4.8 Other Algorithms 

Various other algorithms have been used for experimentation which include block- other packages 

wise Metropolis Hastings (MH), scaled conjugate gradients (SCG) and gradient check- used 

ing (grad.m), using the NETLAB package (Nabney 2002). NETLAB’s implementa- 
tion of block-wise MH was slightly modified to include an option of choosing a pro- 
posal distribution g(@) based on a drawn uniform random number, a. Gaussian Pro- 
cess Modeling Toolkit (GPML) (Snelson et al. 2011) was used to fit independent GPs 
for each category where hyper-parameters, @ are chosen to ML. The GPML code is 

publicly available at http: //www.gaussianprocess.org/gpml/code/matlab/doc/index.html. 
Other algorithms used for experimentation purposes such as the Embedded GP model _ our code in 

were coded by Sean Tulloch using MATLAB. This includes our implementation of MATLAB 
Independent GPs (with a mean function) when optimizing 8 using MAP. 

All algorithms use MATLAB (our implementations of various algorithms, NET- 

LAB and GPML), apart from the Treed GP package (Broderick & Gramacy 2010), 

which uses the R package. 
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4.9, MAKING COMPARISONS BETWEEN INDEPENDENT GPS AND OTHER GPS HANDLING 
CATEGORICAL INPUTS 

4.9 Making comparisons between Independent GPs and 

other GPs handling categorical inputs 

Comparisons between the Embedded GP and Independent GPs per category 

will be needed in the next chapter. However when training ne GP models sepa- 

rately, this will generate n¢ sets of predictive measures such as Var(y}|x},X,y) and 

E(yS|x?,X,y), and therefore generate n- sets of validation scores for each model. 

To make the Independent GP comparable with other models such as the Embedded 

GP or Hypersphere GP model, we use the separate independent-GPs predictive co- 

variance matrix structures, Kg,, for each category and use them to build another 

predictive co-variance matrix of the form, 

Ko, 0 == 0 
0 Ka: O 

RC | nee wee (4.5) 

0 0 - Ke, 

where Kc, is an n; x nj; predictive co-variance matrix, between all the points which 

belong to category i. The joint. predictive mean vector would have the form, 

Mo, 
M 

mc=| °° (4.6) 

Me, 

where Mc, would be a n; x 1 vector containing mean predictions for all data points 

which belong to category i. Using data structures from Equations 4.5 and 4.6 in val- 

idation scores, such as MSE, will generate a single set of validation measures which 

then can used to compare against the validation measures of other models such as 

the Embedded GP or Hypersphere GP. 

However, the Embedded GP, Hypersphere GP and Treed GP-LLM models will have 

predictive mean vector, M, and co-variance matrix, K, which will be of sizes, Qte x 1 

and Qte X Qte respectively where Qie = )272, mj and nj is the number of test data 

points for category i. In this case the predictive mean and co-variance matrix will be 

of the following forms, 

Mc, Ka Kaa - Kec, 
ie Mo, ae Koac, Ke, ieee Kone, 

Mc,, Kec, Kec Ke, 

where Kc, is a nj Xn; matrix containing the co-variances between all test data points 

in category i, whereas K¢,,c, matrix is n; nj which contains the covariances between 

data points from two different categories i and j. Meanwhile the n; x 1 vector, Mc,, 

is the mean function for all test data points in category i. Using the individual kernel 

(sub)-matrix, K;, and (sub)-mean vector, M;, for category i in validation measures, 

allows for comparison of GP models such as Embedded GP (Hypersphere GP/Treed 

GP-LLMs) for category i against building an independent GP-model for the same 

category. 
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4.10. SUMMARY AND NEXT CHAPTER 

4.10 Summary and Next Chapter 

In this chapter, we discussed our approach of constructing a GP model which can 

handle a mixture of continuous and categorical inputs. Two types of categorical vari- 

ables, ordinal and nominal, have been considered whilst constructing this GP. Other 

existing GP emulators, such as the Hypersphere GP model were also reviewed, and 

compared against our GP model. Various suggestions were made on using the Em- 

bedded GP in practice. A general implementation of the Embedded GP is presented 

after, whilst more specific implementations of the various GP models presented in 

Appendix B and C. These implementations are used in the next chapter. This chap- 

ter concluded with discussing how Independent GPs (per category) can be compared 

against other GP models, such as the Embedded GP. 

In the next chapter, various GP models (including the Embedded GP) will be 

used on a number of data sets and compared against using validation scores. 
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Chapter 5 

Experiments and Results 

This chapter discusses results obtained using the different GP models (including goals of this 

the Embedded GP) reviewed in Chapters 3 and 4 on various data sets. The data chapter 
sets explored have been derived from a range of sources. Many have been artificially 

generated to demonstrate properties of the models, but real data and real simulators 

have also been considered. 
Experimentation considers one qualitative factor with mn, number of categories. 

Data sets have been created using the various data simulators shown below, 

1. Tree Simulator - this simulator has data inputs, x; which are 3-dimensional, 

where x; and 22, are continuous and <3 is categorical. These data inputs 

represent fertility, diameter and the species respectively for trees. Types of 
species for this simulator are Douglas Fir, Big Leaf Maple, Willow and Bitter 

Cherry which are expressed as species 1, 2, 3, and 4 respectively (Wang 1988). 

‘Tree height, fj, is obtained using, 

454 exp(6:2-5.3(200023°")+0.2 log(1)) ifa3=1 

4.5 + expl(60-2-7(200023 °*)+0.002(21)) if x3 =2 
i nee exp(2:8-1.9(200023°)+0.01(21)) fae 3 

Ag+ exp(®5-4-2(200023 94) +0.01(1)) if z3 = 4, 

where the diameter, 2 is fixed to 50, whilst the fertility, x2 lies in the interval, 

(0, 1]. 

2. Friedmann simulator - this simulator originally had a 11-dimensional data in- 

put, x; where 2j,...,219 are continuous co-variates and 21 is the categorical 

co-variate (Broderick & Gramacy 2010). The response, f; was based on this 
categorical co-variate has follows, 

10sin(72122) ify, =1 

fad 2(0- 0.5)? ifen =2 
*) 1024 + 425 if 2, =3 

521 + 10r2 + 20(a3 — 0.5)? + 10sin(rx4z5) if 2, = 4, 

However, we have modified this such that the original continuous co-variates are 

linearly dependent, hence, xj = «1 + ih vi € [1,10], effectively transforming 

the original inputs for required for the Friedmann model into two, one being 
categorical and the other continuous. This version of the Friedmann model has 
been used for experimentation. The response f; is based on the categorical 

co-variate, x2 where, 

10sin(mai(x1 + 4)) if zg =1 
fee 20(a1 + 4, — 0.5) if 2 =2 
O°) 10(a1 +) + 4(a + ¥) ifz2=3 

5a, + 10(21 + 5) + 20(a1 + 3, — 0.5)? + 10sin(r(a1 + Ba +4) ifm=4 
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3. Flute simulator - this is a stochastic, individual-based simulator which runs 

in discrete time, where two time steps per simulation day represent day and 
night (Chao et al. 2010) . The code is publicly available using the URL, 
www.cs.unm.edu/ ~ /dlchao/flute/. We have used sample populations us- 
ing one— files provided with this code. These files consider a single community 

of 2000 people. Multiple re-runs of this simulator were computed; where each 
run uses a different value for Ro. This term in the simulator is transmissibility 

of the disease, where it is allowed to vary between 1.5 and 2.04 (in step size 

0.01). Other parameters in the simulator remain fixed. Running the Flute sim- 
ulator, gives output information such as the number of susceptible individuals, 

for particular age groups such as 0-4, 5-18, 19-29, 30-64, 65+. 

We used the flute simulator to generate input and output data. GP models 

are then used to emulate the cumulative number of susceptible individuals (as 
a percentage of total individuals) at the end of the simulation (hence the final 
day), for each particular age group. Inputs used in the GP models are, 21, 

which is the transmissibility parameter, and x2 which is an ordinal categorical 

variable, age and the output, f; which represents the cumulative number of 

individuals which have been infected (in total on the final day). 

The following models will be used for experimentation, 

e Embedded GP (ordinal and nominal cases), 

e Hypersphere GP, 

e Independent GP (which will be built for each category), 

e Treed GP-LLMs. 

Responses generated using the Tree and Friedmann simulators have been scaled 

down (per category) accordingly as, 

Fi = far ymin = + N(0,0°). 
FaArymaz — fAr,y;min (Qa) 

vi 

Responses generated using the Flute simulator have been scaled (per category) 

such that all rescaled responses satisfy, 

Si = Fasy,min a 

f FAi,,max = Fasumin 

where f'4,,,,min and f'4,,,,maz the lowest and highest responses across all data points’ 

responses, f and f* for category A;,,. Independent Gaussian noise, of variance o” has 

been added to the rescaled responses (where responses, f; are generated using the 

Tree and Friedmann simulators). Noise, ¢? was applied to reduce numerical prob- 

lems. 

A non-linear optimization routine, SCG, was used for the purpose of minimizing 

functions in respect to hyper-parameters, 9. Optimization of the parameters, 0, was 

stopped based on having an accuracy of 10~° in the parameter values, @ and the 

function we are trying to minimize, over two consecutive runs of this optimization 

routine. 
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5.1. EXPERIMENT 1: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS FOR TREE SIMULATOR 

5.1 Experiment 1: Comparisons between the Embedded 

GP (ordinal) and Independent GP models for Tree 

Simulator 

This experiment involves comparing. the Embedded GP model (for the ordinal 

case) against building independent GPs for each category, using one data set. The 

number of training and test data points used per category was 20 and 25 respectively. 
Data inputs were generated using Latin Hypercube designs independently for each 

category. The tree simulator (along with scaling the responses per category and ap- 

plying additional Gaussian noise with variance, a? of 0.001) was used to generate the 

outputs. 

The Matern covariance kernel (with order v = 8) was used, where the covariance 

between two points x; and x; is given in Table 5.1. 

Table 5.1: Co-variance between two points x; and x; used in each algorithm (for 
Experiment 1). This table, includes notation, I(x;,x;) which is an indicator function, 

where I(.,.) = 1 if x; = x; or zero otherwise. 
  

  

  

Thdependent GPs (per category) Embedded GP 

cov(xs, xj) 03 (14 946 + 88) oF to2T(xi.xj) 92 (1+ G24 9) aoe $02 1(e4, 3) 
me (wea — 23,1)? (a1 — 24,1)? + (91,4) = 91,9)? 
  

The fourth category, Ai which has a one-to-one mapping value of gi,4 (to be 

used in the Embedded GP emulation) is fixed to the value of 0. Hence, the hyper- 

parameters @ used in the Embedded GP algorithm are the length scale (4), signal vari- 
ance (02), noise variance (0?) and each of the categorical mappings, gi,x,k = 1,2,3 

(from categories 1 to 3). Each parameter in @ was parameterized in the form 

6, =m3,b=1,...,6. Independent GP models (per category) do not use the categori- 
cal mappings, and @ only contained the length scale, (¢), noise and signal variances, 

(02, o2 respectively) for this model. 

The SCG optimization routine was used first to minimize — log p(0|X,y), where 

p(8|X, y) is given by, 

p(61X,y) = GP(y|0, K)Ga(¢|1.1, ee 1) (Ter N(g1,210, 10)) 

Weak informative proper priors were used on the parameters 8. SCG was used 100 

times, where each time, different initial values for 9 (where m; ~ N(0,1), i=1,...,6), 

to find out whether the negative log posterior surface was multi-modal. If multi- 

modality was found then the lowest minimum was determined. 

The log posterior distribution was found to be multi-modal. Calculating the 
predictive distribution under each mode and validating each of these models, gave 

different levels of accuracy in terms of SMSE and NLPD validation measures, as 

shown in Tables 5.2 and 5.3. 
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5.1, EXPERIMENT 1: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS FOR TREE SIMULATOR 

Category Input 1 Category Input 2 Category Input 3 Category Input 4 
14 1a 14)   

4        

    

  

  Predictive Mean 
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Figure 5.1: Predictive distribution plot for local minimum: -83.3141; where the 

crosses represent the 20 training points, blue curve is the mean prediction, E(y7|x;, D) 

and red curves are the mean predictions minus and plus 2 standard deviations. 
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Figure 5.2: Predictive distribution plot for local minimum: -92.9844; where the 

crosses represent the 20 training points, blue curve is the mean prediction, E(yj |x}, D) 

and red curves are the mean predictions minus and plus 2 standard deviations. 
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5.1, EXPERIMENT 1: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS FOR TREE SIMULATOR 
  

Table 5.2: Validation measure NLPD using multiple minimums to evaluate the pre- 

dictive equations for the Embedded GP model. 
  

  

  

  

= log [p(91X,y)] | Aisa Ai2 Ai3 Ai 
-77.3730 -1.7921 -1.9557 -1.8838 -1.6105 

-81.3614 -1.7427  -1.8218 -1.8568 -1.6742 

-82.8527 -1.7622 -1.7594 -1.6960 -1.4913 

-83.3141 -1.8194 -1.9268 -1.8422 -1.6533 

-85.1811 -1.7377  -1.8731 -1.7536 -1.6290 

-87.8311 -1.8378 -1.9406 -1.9128 -1.7426 

-88.0612 -1.1818 -1.7886 -1.8945 -1.7192 

-88.4568 -1.7514 -1.9128 -1.8838 -1.7250 

-92.9844 -1.8224 -1.8440 -1.6496 -1.6445 
  

Table 5.3: Validation measure SMSE using multiple minimums to evaluate the pre- 

dictive equations for the Embedded GP model.       
        

  

a 3 
-77.3730 0.0243 0.0213 0. 
-81.3614 0.0271 0. 0.0233 0.0472 
-82.8527 0.0248 0.0432 0.0355 0.0607 

-83.3141 0.0225 0.0261 0.0252 0.0483 
-85.1811 0.0272 0.0268 0.0314 0.0480 
-87.8311 0.0220 0.0233 0.0198 0.0385 
-88.0612 0.0231 0.0383 0.0210 0.0420 
-88.4568 0.0265 0.0243 0.0244 0.0426 
-92.9844 0.0216 0.0301 0.0387 0.0467 

Figures 5.1 and 5.2 indicate that this particular data set can be explained by mul- 

tiple models using the Embedded GP framework. Table 5.4 shows quantile statistics 

for Dawid score, where each Dawid score was calculated using the predictive equa- 

tions at each particular minimum. 

Table 5.4: Quantile statistics for Dawid score where each Dawid score is calculated 

using predictive distributions at each particular minimum of — log(p(@|X,y)) using 

Embedded GP (ordinal) framework. 

0.25Q _0.5Q Q 
538.7 540.8 553.3 

  

ML requires the likelihood (p(y|X,@) = GP(y|0, K)), to be maximized. Hence 
by ML to find the optimal values for @ using the Embedded GP (ordinal case) frame- 

work and each Independent GP (per category) gave the following validation scores 
shown in Table 5.5 for test points. 100 different initialization for @ were used to en- 

sure that the (absolute) minimum of p(y|X, @) was found, using each GP framework. 

Predictive plots obtained by using these GP models are shown in Figure 5.3. 

The Embedded GP is doing better in terms of all three validation scores, MSE, 
NLPD, and Dawid score than using separate independent GPs (per category), when 

parameters, @, are optimized through ML. This suggests that for this particular 

data set is benefiting using the categorical mappings. Using independent GPs (per 

category) gave a single mode for p(y|X,@) across all categories whereas, p(y|X, 4) 

was multi-modal using the Embedded GP framework. Table 5.5 also indicates that 
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5.1. EXPERIMENT 1: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS FOR TREE SIMULATOR 
  

Table 5.5: Contrasts between Embedded GP (ordinal) where hyper-parameters op- 
timized through MAP/ML and Independent GP where hyper-parameters optimized 

through ML using Tree simulator. 
  

  

  

  

Model-Validation MSE NLPD _ Dawid score 
ML (Embedded GP Ordinal) 0.002 -1.74 538.6 

ML (Independent GP per category) | 0.003 -1.64 513.4 

MAP (Embedded GP Ordinal) 0.002 -1.74 538.7 
  

the prior over @ has little influence over the predictive quality of the Embedded GP 

model, and this is because weak informative proper priors were chosen. 
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5.1, EXPERIMENT 1: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS FOR TREE SIMULATOR 
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(a) Predictive Plot using (lowest) minimum of — log(p(y|X, 8) (independent Gaussian processes 
(GP) category). 
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(b) Predictive Plot using (lowest) minimum of —log(p(y|X,)) (Embedded GP for ordinal cate- 
gorical variables). 

Figure 5.3: Predictive distributions using Embedded GP (ordinal case) and indepen- 

dent Gaussian processes (GP) (per category) frameworks. 
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5.2, EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR, 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 

5.2 Experiment 2: Comparisons between using MAP 

and Bayesian Inference for Embedded GP (ordinal) 

model on Tree Simulator 

Experiment 1 used ML and MAP to find plug-in estimates for the hyper-parameters, 

which were later used in the predictive distribution, p(y*|x*, D, 0). However, predic- 
tions were made on one single plug-in multi-variate vector, @, which is not very 
Bayesian. This experiment, uses the Embedded GP (for the ordinal case) model 
with the same data set generated in Experiment 1. The same Matern co-variance 
kernel used in the Embedded GP (ordinal) framework from Experiment 1 is used. 

The posterior distribution, p(@|X, y) is given by, 

  

GP(y|0, K)Ga(i|1.1, 1)Ga(o2|1.1, 1)Ga(o?2)1.1, 1) (TI_, N(g1,i10, 10)) 
p(6|X,y) = myx) 

Each parameter in @ was parameterized in the form 0), = m?,b = 1,...,6, where 

0; = @(length scale), 62 = 02 (noise variance), 0; = 0} (signal variance), and the 

categorical mappings, gi; = 9:43 ,i = 4,5,6. Category 4 was fixed to a mapping 

value of 0. 

  

The purpose of this experiment is to compare the predictions obtained using MAP 

and Bayesian inference with the Embedded GP framework on the data set generated 
in Experiment 1. The ‘highest’ maximum of p(6|X,y) with this data set was given 

by 92.9844 (as found in Experiment 1). Bayesian inference shall now be considered. 

Firstly, block-wise Metropolis Hastings (MH) is used to sample from the posterior 
distribution, —log p(@|X,y), over @. Because multiple modes exist in the posterior 

surface (as indicated by Experiment 1), the proposal density, q(@), used for MH is 
chosen, based on whether a generated uniform random number, U, is less than or 

equal to some value, a, which was chosen to be 0.2, where, 

(0) = { Mls N(o1410,0.2)).N(o5|0,02)N(oR0,0.2) FU <a 
4 TE N(g1,i10, 0.02))N’(o2(0, 0.02)N'(o2|0,0.02) if U > 

The motivation for this proposal density is to allow the algorithm to jump at dif- 

ferent rates in the posterior space allowing possibly for it to jump out of local minima. 

The burn-in period was 10000 samples, and MH algorithm ran for a further 50000 

MH-steps (where these samples were retained). Six parallel chains were run. Trace 

plots of — log p(@|X, y) are shown below in Figure 5.4. Existing code from the Netlab 

toolbox (metrop.m) was used for this (Nabney 2002). 

Figure 5.4 demonstrates that each of the chains at some point get stuck in local 

minima. The parameter space is not being fully explored. Simulated Tempering 

(ST), with our suggestion (refer to Appendix C), was used as it is able to escape 
local minima by flattening the target distribution using a series of temperatures on 

a temperature ladder. 

ST, requires calculation of the normalization constants, Z; for each temperature, 

T; on the temperature ladder. A temperature ladder of size 3 was used, with the 
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5.2, EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 

different temperatures being 1,1.1,1.2. The normalization constants, Z;, are given 

by, 

Teepe) entolel a) ete) 
eas ox(p(Bo 7 

a= few" 7 eo - (2 

which were calculated using an importance sampler, where log p(Gg) = 92.9844. 4000 

samples were collected using the existing randn function in MATLAB from distribu- 

tion G(@), which is a product of Gaussian distributions, 

3 

G(O) = N(62)0, 0.7). (6310, 0.01).N(9|0, 0.7) T ](N(g1,410, 0.1) (5.1) 
i=1 

Table 5.6 shows the normalization constants obtained for each of the stationary 

distributions at these temperatures. 

Once normalization constants, Z; were calculated, four separate parallel runs of ST 

Table 5.6: Normalization Constants, Z; for Temperatures T; = 1,1.1,1.2 where i = 

1, 2,3 respectively. 

  

0.245 
0.469 
0.797   

  

were run, which took just over two weeks. At a given temperature, the component- 

wise MH algorithm was used to generate samples, where the proposal density q(@;) 

was chosen based on a generated uniform random number, U, for each component of 

0. The choice of proposal density, g(0;) is chosen has follows, 

N(mi0,0.3) if U < 0.01 

q(8;) = § N(m{0,0.2) if 0.01 <U < 0.5 
N(m,|0,0.002) if U > 0.5 

where 0; = m; j = 1.,...,6. Eleven samples of @ were generated, where each 

sample was formed using the component-wise MH algorithm, before applying a MH- 

step to change the temperature. eal samples at the lowest temperature T; = 1, 
which sample from the distribution, a Bey were kept. The burn-in period was 100 

temperature MH-iteration steps (which is 6600 component-wise MH steps and 100 

MH-steps to the temperature). The first 1924 samples were retrieved from each chain, 

after the burn-in period. Trace plots for — log p(@|X, y) (over 1924 samples) and each 
parameter, m; (for the last 962 samples), are shown in Figures 5.5 and 5.6 respectively. 
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5.2. EXPERIMENT 2; COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 
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Figure 5.4: Iteration in the MH algorithm vs. -log p(@|X,y). 
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Figure 5.5: —log p(@|X,y) vs. Iteration using Simulated Tempering. 
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5.2, EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 
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Figure 5.6: Trace Plots for parameters mj, ...,m¢ using Simulated Tempering. Vari- 

able m; = +V0;, where 6; are the hyper-parameters used in Embedded GP (ordinal) 
Model. 6; = G(length scale), 62 = 02 (noise variance), 63 = op (signal variance), and 
the categorical mappings, 9i,; = 4:43 ,7 = 4,5, 6. 
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5.2. EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 
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Figure 5.7: -logp(@|X,y) vs. Iteration using Simulated Tempering. 
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5.2, EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 

Figure 5.9 shows histograms of the posterior distributions, p(m;|X,y) for each m; 

using the final 962 samples from each chain. There appear to be spikes in the trace 

plots for the parameters, m4,m5,7™g. Unlike using MH, ST is able to explore the 

entire parameter space moving between the different local minima in the surface. All 
four chains (simulated) have been mixed well, exploring and moving around the var- 
ious different minima. The trace plot of —log p(@|X,y), after combining the chains 
together, is shown in Figure 5.7. The samples are combined, by collecting the second 

half of all samples from the first chain and then second half of all samples from the 

second chain, and so on. The batch-means approach is used on this combined chain, 

where averaging the quantity, — log p(@|X,y) over the number of iterations, is shown 

in Figure 5.8. 

The batch-means approach was used on the second half of all chains, where the 

average of —log(p(@|X,y) was calculated iteratively, as shown in Figure 5.10 where 

all chains seem to be converging to the same average of —87.5. 

Figure 5.11 shows the autocorrelation of — log p(@|X,y), for each of the four chains, 

using all 1924 samples from each chain. 

To reduce the correlation between the samples, every 8“" sample was taken from 

each chain, such that the autocorrelation from each chain was 0.27. The reason for 

picking samples (from each chain) at the autocorrelation level of 0.27 was because 
of time restrictions. Selecting every 8" sample from each chain (which had original 
size of 1924 per chain) and combining the chains together lead to 964 samples (where 
each chain had retained 241 samples). Because the potential scale reduction factor 

(PSRF) requires an even amount of samples, the decision was taken to remove the 
final sample from each reduced chain, therefore leaving 960 samples in total. For 

more information regarding the PSRF (Brooks & Gelman 1998), please refer back to 

Section 2.6.4. 

Table 5.7 shows the PSRF obtained for each parameter, 0; i = 1,...,6 and MPSRF 

using the 960 samples (240 samples remaining in each chain). Note that these mea- 
sures were calculated by discarding the first half of samples from each chain, leaving 

just 120 samples left in each of those chains. The results obtained by using these 

convergence diagnostics strengthen the interpretation that the four parallel chains 

have converged, because each of the individual univariate PSRF for each parameter 

and MPSRF are less than 1.1. Also, Figure 5.12 shows the PSRF for each parameter, 

6; and MPSRF as the number of samples increase starting from 100 samples in each 

chain (before discarding the first half). Notice how the MPSRF is an upper bound 

for the PSRF measures. 

Each of the diagnostics, trace plots, inspection of parameters, ™m1,...,™m6, cal- 

culations of the PSRF for each hyper-parameter, 6;, and MPSRF, and averaging 

the quantity, —log p(@|X, y), all indicate convergence. Hence, the last 480 samples 

(from the remaining 960 samples) were used to calculate the mean and variance of 

the predictive distribution p(y7|x?, X,y). The predictive plot is shown in Figure 5.13. 

Validation measures such as MSE, NLPD, and Dawid score were used to calculate 

the performance of the Embedded GP model (for the ordinal case) under MAP and 
Bayesian integration are shown in Table 5.8. All validation measures in Table 5.8 

indicate that by performing Bayesian integration and MAP using the chosen data set 
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5a) EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 
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Figure 5.8: Bites Oe MOIS) vs. Iteration(j). 

Table 5.7: Univariate PSRF per parameter, #; and MPSRF. 
  

  

— || PSRF | MPSRF 
4, |] 1.0183 = 
42 |} 1.0071 = 
43 |] 1.0129 - 
64 || 1.0086 = 
45 |] 1.0006 = 
4 |] 1.0001 - 
6 - 1.0386         
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5.2. EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR, 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 
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Figure 5.9: Histograms for all m; i = 1,...,6 used in Embedded GP model (using 

ST). Variable m; = +V0;, where 6; are the hyper-parameters used in Embedded GP 

(ordinal) Model. 6; = (length scale), 02 = 2 (noise variance), 03 = oR (signal 

variance), and the categorical mappings, 91,i = 9:+3 ,7 = 4,5, 6. 
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5.2. EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 
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‘Average "Negative Log Posterior Evaluation’ using Batch Means Approach 
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Figure 5.10: Biers ben Oks) vs. Iteration(j). 

  

(a) Autocorrelation for Chain 1. 

  

(b) Autocorrelation for Chain 2. 
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(c) Autocorrelation for Chain 3. 

Figure 5.11: Autocorrelations for Chains 1-4. 

implies the samples are uncorrelated. 
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5.2. EXPERIMENT 2: COMPARISONS BETWEEN USING MAP AND BAYESIAN INFERENCE FOR 
EMBEDDED GP (ORDINAL) MODEL ON TREE SIMULATOR 

    

    

  

    

  

Figure 5.12: MPSRF/ PSRF for each parameter, 0; i = 1,...,6 vs. number of samples 

used in each chain. 
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Figure 5.13: Predictive Plot, Using Bayesian integration to integrate out hyper- 

parameters, @ in the Embedded GP (ordinal) framework. 
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5.3. EXPERIMENT 3: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS USING FRIEDMANN SIMULATOR. 

Table 5.8: Validation Measures Against Different Models. 

Method-Validation RSE  NLPD Dawid score 

MAP 0.0018 — -1.74 538.8 

Bayesian Integration (BI) | 0.0019 -1.75 545.9 

  

  

  

  
  

D, there is not a significant improvement offered by integrating out the uncertainty 

over all hyper-parameters, 0. 

5.3 Experiment 3: Comparisons between the Embed- 

ded GP (ordinal) and Independent GP models using 

Friedmann Simulator 

This involves comparing the performance of the Embedded GP (for the ordinal 

case) against building separate GPs for each category using one data set, where the 

responses are generated using Friedmann simulator. The number of training and test 

data points used per category were 20 and 25 respectively. Data inputs were generated 

using a separate Latin hypercube design per category. The responses were rescaled 

accordingly, and additional Gaussian noise of variance, ? = 0.001, was added on to 

these rescaled responses. 

The fourth category, A1,4 which has a one-to-one mapping value of gi,4 is fixed 

to the value of 0. The hyper-parameters, @, used in the Embedded GP framework 

are the length scale (@), signal variance (03), noise variance (7?) and each of the 

categorical mappings, gi,k,k = 1,2,3 (from categories 1 to 3). Each parameter in 0 

was parameterized as the form 4, = mp, b =1,...,6. Independent GP models however 

do not use the categorical mappings, and @ only contained the length scale (¢), noise 

and signal variances, (02, a respectively) for this model. 

The Matern kernel (with order v = 3) was used for the GP prior, where the 
co-variance between two points x; and x; used for each GP model is shown in Tables 

5.9 

Table 5.9: Co-variance between two points x; and x; used in each model (for Exper- 

iment 3). 
  

  Tadependent GPs (per category) Embedded GP (nominal) 

fe 4 as) erie 
2 

  

  

Cov(xi, x3) 22 (: +4 255) ex a Aiea 2 (+ 
2 r (wi,1 — 25,1)? (#e,1 — 25,1)? + (aa,ky — 91,k9 
  

The Embedded GP framework was used first, where the optimal values for the 

hyper-parameters, @, were chosen such that the negative log posterior distribution, 

—log p(@|X,y), was minimized. The log posterior distribution is given by, 

2 2 3 
p(61X.y) = GP(y|0, K)Ga(¢|11, ene oes 1)(TTj=1 N(gii10, 10) ; 

where weakly informative priors on the hyper-parameters, 8, were chosen. However, 

because of the multi-modality of the posterior density, p(@|X,y), which occurred 

whilst using the Embedded GP framework in Experiment 1, a different optimization 
routine, Simulated Annealing (SA), was used to find the optimal 6. This algorithm 
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5.3. EXPERIMENT 3: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS USING FRIEDMANN SIMULATOR 

was used because it is able to jump out of local modes. The cooling scheme used in 
the SA algorithm is given by formula, 

The—1 aoe PS renee 

where § = 0.2, k represents the time step in SA, and initial temperature, 7), of 10000 

was used. SA was terminated when the system was close to cooling (T’=0.01). Initial 
parameter values for @ were chosen randomly, such that each m; was sampled using a 

univariate normal distribution with mean 0 and variance 1. SA was run once, where 

Table 5.10 shows the lowest minimum (of -log p(@|X, y)), along with its configuration 

obtained by this routine. Using the SCG optimization algorithm (after using SA) 

Table 5.10: Simulated Annealing Results: Embedded GP Framework. 

-log(p(OIX,y) | on op, 41 2 
=1.1730 _-0.4067 -74.1642 0.5277 0.0011 0.5737 

  

  

91,3 
-0.5326 

  

    

with the initial values for the parameters given in Table 5.10 meant SCG converged 

to a minimum of —74.2105. Minimizing — log p(@|X,y) using (solely just) the op- 
timization routine, SCG, for a 100 different initializations lead to again to finding 

multiple minima in —log p(@|X,y), where the lowest minimum found had negative 

log posterior evaluation, —log p(@|X,y) of —74.2105. The parameter values at this 
minimum are shown in Table 5.11. The differences between using SA and SCG are 

Table 5.11: Running Embedded GP: Final hyper-parameter positions. 

= log p(|X,y) $ or o Nav G2 913 n Pp 
74.2105 0.5525 0.0011 0.6284 -1.2358 -0.4477 —_-0.5703 

  

  

    

very close in terms of —log p(@|X,y) and the parameter estimates. By using SA has 
meant getting an approximation to the (lowest) minimum in — log p(@|X,y). The 
optimization routine, SA took approximately 12 hours to run, compared to 2 hours 

using SCG with a hundred different initializations for @. Because of the possibility 
of SA being stuck in a local minima during its routine, due to the sensitivity the 

cooling scheme and also the running time of this optimization routine, SA will no 

longer be considered in this thesis. 

Table 5.12 shows quantile statistics for the Dawid score, where each Dawid score 

was calculated using the predictive equations at each particular minimum, using the 

Embedded GP (ordinal) framework. This table shows even though the posterior 

Table 5.12: Quantile statistics for Dawid score; where each Dawid score is calculated 
using predictive distributions at each particular minimum of —log p(@|X,y) using 

Embedded GP (ordinal) framework. 

0.25Q _0.5Q _0.75Q 

586.16 586.72 586.78 

distribution, p(@|X,y) is multi-modal using the Embedded GP (for ordinal case) 
framework on this data set, the model generated by each mode are very similar to 

each other, according to Dawid score quantile statistics. 

ML requires the likelihood, p(y|X,@) = GP(y|0,K) is maximized. Using ML 
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5.3. EXPERIMENT 3; COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND 
INDEPENDENT GP MODELS USING FRIEDMANN SIMULATOR 
  

to find the optimal values for hyper-parameters, 8, for both the Embedded GP (or- 

dinal case) and each Independent GP (per category) frameworks gave the following 
validation scores shown in Table 5.13 on test data points. A hundred different ini- 

tializations for @ were used to ensure that the minimum of — log p(y|X,@) was found 

in both GP models. Predictive plots obtained by using these GP models are shown 
in Figure 5.14. The Embedded GP (for ordinal case) which used MAP to find the 

optimal values for @ also has its validation scores presented in Table 5.13. |The Em- 

Table 5.13: Contrasts between Embedded GP (ordinal) where hyper-parameters op- 

timized through MAP/ML and Independent GP where hyper-parameters optimized 

through ML using data where the responses were generated using Friedmann simu- 

lator 
  

  

Model- Validation MSE NLPD _ Dawid score 
ML (Embedded GP Ordinal) 0.001 — -2.00 586.5 

ML (Independent GP per category) | 0.001  -1.99 585.6 
MAP (Embedded GP Ordinal) 0.001 __-1.99 586.1 

  

    
bedded GP does slightly better in terms of all three validation scores, MSE, NLPD, 

and Dawid score than using independent GPs (per category). This suggests that for 
this particular data set (which was generated using the Friedmann simulator), the 
Embedded GP is not benefiting much from learning the categorical mappings. Using 

independent GPs (per category) gave a single mode for each individual p(y|X, @) 

across all categories whereas, p(y|X,@) was still multi-modal using the Embedded 
GP (ordinal) framework. Also, Table 5.13 shows that the prior, @ has little influence 
over the predictive quality of the Embedded GP model, because weakly informative 

priors were chosen. 
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5.3. EXPERIMENT 3: COMPARISONS BETWEEN THE EMBEDDED GP (ORDINAL) AND. 
INDEPENDENT GP MODELS USING FRIEDMANN SIMULATOR 
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(a) Predictive Plot using (lowest) minimum of — log p(y|X,@) (Independent Gaussian Processes 
per category). 
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(b) Predictive Plot using (lowest) minimum of — log p(y|X,@) (Embedded GP (ordinal) model). 

Figure 5.14: Predictive distributions using the Embedded GP (ordinal case) and 
Independent Gaussian Processes per category. 
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5.4. EXPERIMENT 4: COMPARISONS BETWEEN EMBEDDED GP NOMINAL AND ORDINAL MODELS 
FOR TREE SIMULATOR 

5.4 Experiment 4: Comparisons between Embedded GP 

Nominal and Ordinal models for Tree Simulator 

Using the same data set generated in Experiment 1, comparisons were made 

between using the Embedded GP model for the cases of ordinal and nominal cate- 
gorical variables using validation scores, MSE, NLPD and Dawid score. Category 4 
was fixed to a value of 0.004 (having mapping value of, gi,4 = 0.004). The Embedded 

GP model for ordinal categorical variables were re-parameterized hyper-parameters 

contained in @ as 6; = m?,i = 1,...,6 and for the nominal case, 0; =e", eG: 

The posterior distribution 

  

GP(y|0, K)Ga(¢|1.1, 1)Ga(o2|1.1, 1)Ga(o?l1.1, 1)(TT1 N(o1,10, 10)) 

p(y|X) i 

was maximized in order to find the optimal values for the hyper-parameters, 8. The 

SCG optimization algorithm, was used to compute this task, using 100 different 

initializations for @, where each m; was initialized using a univariate Gaussian dis- 

tribution, N(0,1). The Matern kernel (with order v = 3) was used in the GP prior 
for the Embedded GP, where the particular forms of the kernel are shown in Table 

5.14. Results obtained from calculating MSE, NLPD and Dawid Score are shown 

  p(O|X,y) = 

Table 5.14: Form of Kernels Used. 
  

  

= Embedded GP (Ordinal) Embedded GP (Nominal) 

ga vee ae ; 
Covininxy) of (14 E+ Bh )oxp “F todso.n)) of (1+ Ge + Bes) mw FP eg) 

a (ia 242)? +08 ay + oPiay (ea — 5,1)? + (91,81 — 91,49)? 
  

in Table 5.15. This shows there is a further improvement, when using the Embedded 
GP assuming the qualitative categorical variable, species is nominal, for this partic- 

ular data set. Unlike using the Embedded GP (ordinal) framework, maximizing the 

posterior distribution p(@|X,y) in the Embedded GP (nominal) framework, using 
optimization routine, SCG, only gave one unique single mode. 

Table 5.15: Comparisons between the Embedded GP model for ordinal and nominal 

categorical variables. 
  

  

- MSE NLPD Dawid score 
Embedded GP (Nominal categorical variables)) | 0.002 -1.84 559.4 

Joint-GP (Ordinal categorical variables) 0.002 -1.74 538.7, 

  

  
  

5.5 Experiment 5: Comparisons between various GP 

models using Multiple Data Sets 

This experiment involves using the Embedded GP (nominal) framework on a 

number of different training and test data sets. The Embedded GP (ordinal) model 
used in Experiment 1 performs significantly better (in terms of RSE, NLPD, and 

Dawid score) on the generated data set than using Independent GPs (per category). 

Results obtained in Experiment 3 indicate there is very little benefit of learning the 

categorical mappings. The purpose of this experiment, is to ensure that these find- 
ings are consistent with other generated data sets. Other GP models, such as the 

Hypersphere GP and Treed GP (with Limiting linear models (LLM)) were also used 

in this experiment. Treed GP-LLMs were used with the default settings, with options 

basemax= 1 and splitmin= 2 being used. 
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5.5. EXPERIMENT 5: COMPARISONS BETWEEN VARIOUS GP MODELS USING MULTIPLE DATA 
SETS 

  

! ASTON UNIVERS!<Y 
| LIBRARY & INFORMATION SERVICES 

The Matern covariance kernel (with order v = 3) is used by each of the GP form of kernel 
models. The covariance between two data points x; and xj, used by each of the GP used 

models, is given in Tables 5.16 and 5.17. This excludes the Treed GP-LLM model. 

Table 5.16: Kernel function used in Experiment 5 for Embedded GP and Hypersphere 

GP Models 
  Embedded GP a Tiypersphere GP model 
  

rt Fy ria — 24)? + aha + oh ke (4a = 249") 

Cov(xi, xj) 02 (: + VEr+ 2) exp~ V5" 4U oBT(At ay Ait) (1 +44 5) ow © 4U 
( 

Table 5.17: Kernel function used in Experiment 5 for Independent GP Model 
== ndepandest GP 
Serre ne as ge 
Covey xy) 93 (14 GE + Bey exp HU 

oe (eia = 25,1)") 

Variable U which appears in Table 5.16 equates to o2I(x;,x;). Separate mean separate mean 

functions per category were used in the GP prior, p(y|X,@) = GP(m(.),k(.,.)) under functions per 

each of the GP frameworks, Hypersphere GP, Embedded GP (nominal) and Indepen- CALeBONY, 
dent GPs (per category). Data points belonging to category i use the mean function 

of the following form, 89; + 82:-12;,1, where for j = 1,...,2i—2 and j = 2i+1,...,2ne, 
ther terms 3; are multiplied by basis functions of 0. This is for the Embedded GP and 

Hypersphere GP frameworks. Independent GPs (per category) use the mean function 
of 8; + B2a;,. The parameters, is 2n- x 1-dimensional for the Embedded GP and 

Hypersphere GP models, and 2 x 1-dimensional for independent GPs (per category), 
have been analytically integrated out, where each f; has a normal prior of N(0,100). 

Please refer to Appendix B and Section 2.5 for more details. Hyper-parameters, @ is 

chosen such that it MAP, where p(@|X,y), 

_ (f GP(ylm, 1) TT; p(Gi10, 100) di) | 

  

— ro) 
'a(@|1.1, 1)Ga(o?|1.1, 1)Ga(o3|1.1, 1) (TTj—1 Ga(gil1-1, 1)) 

p(y|X) 
forms for the 

Treed GP (with the Limiting Linear Models (LLM)) is re-run 100 times, and the hyper-parameters 
tree which maximizes the posterior distribution is chosen. The hyper-parameters, 0 nee ‘i ee 
used in the Embedded GP (nominal) model are the length scale (¢), signal variance ene 
(02), noise variance (02) and each of the categorical mappings, gix,k = 1,2,3,4 

(from categories 1 to 4). Each parameter in @ was parameterized as the form 
0 = e~™) b = 1,...,7. The Hypersphere GP model, however contains the cross- 

pair parameters, 6;,; ,Vi < j which are used to construct the correlation matrix, Ls 

This GP model also uses the length scale (#), signal and noise variances, o and 

o? respectively, which are contained in @, which use same re-parameterization for 

its parameters as the Embedded GP model. Independent GP models however do 

not use the categorical mappings, and therefore @ only contains the length scale (¢), 

noise and signal variances, (02, a respectively) for this model, where parameters are 

re-parameterized in the same manner as the other GP models. 

The change of Gaussian to Gamma priors, p(@), on the categorical mappings changing the 
prior 
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5.5. EXPERIMENT 5: COMPARISONS BETWEEN VARIOUS GP MODELS USING MULTIPLE DATA 
SETS 

ii: = 1,...,4 was because these parameters are already constrained to be greater 

than 0 (through their re-parameterizations). Gamma distributions are distributions 

over variables, 7, where x > 0, so it made more sense to use type of prior than using 

normal distributions. 

SCG was run with 100 different initial values for @ where each m; was generated 

using univariate normal distributions, N(0,1) in order to find optimal values for 6, 
which maximize p(6|X,y). This was done using each GP framework. 

Six independent data sets were generated (labeled as data sets 1-6) using Latin 
Hypersphere designs (per category) to create the inputs, and the responses, fj,? = 

1,...,n, were generated using the Friedmann simulator. Various noise levels were ap- 

plied onto the scaled output. Table 5.18 shows the amount of training and test points 

used for each data set, along with the amount of noise applied 0? on to the scaled 

responses, f;. Validation scores, such as MSE, Dawid score, NLPD obtained from 

Table 5.18: Amount of training and test data points used per category along with 

the noise variance, ¢? (Using Tree simulator). 

Data Set | No. of training points (per cat.) No. of test points (per cat.) ¢ 
1-5 30 25 0.01 

6 20 25 0.001 

  

  z 
  

    
using the various GP frameworks are shown in Tables 5.19 and 5.20, where the best 

validation scores (for a given data set) are in bold. 

Treed GP-LLMs partition on the given data set correctly on all six data sets 

Table 5.19: Validation measures obtained using the Embedded GP (nominal) and 
Independent GPs (per category) frameworks for each training and test data set (Using 

Friedmann simulator). 
  

  

  

  

Embedded GP (nominal) Tadependent GP per cat 
Data Set_[|_ MSE | NLPD [ Dawid score Data Set_|[ MSE [| NUPD | Dawid score 

T 0.0114 | -0.82 | 346.7 T O.01IT 340.8 
2 0.0102 | -0.88 | 355.4 2 0.0103 350.9 
3 0.0172 | 0.57 306.8 3 0.0165 304.9 
4 0.0157 300.5 4 0.0155 302.7 
5 0.0110 349.6 5 0.0110 350.3 
6 0.0012 581.5 6 0.0011 588.7                     
  

Table 5.20: Validation measures obtained using the Treed GP-LLM and Hypersphere 

GP models on each training and test data set (Using Friedmann simulator). 

Running SCG 
multiple times 

generating the 
data sets 

performance of 
each GP model 

  
  

  

  

“Treed GP-LLM model Hypersphere GP 
Data Set MSE | NLPD_| Dawid score | No of Partitions Data Set_[| MSE | NUPD | Dawid score 

T 0.0115 | -0-81 947.8 a T 0.0116 | -O0.81 343.2 
2 0.0105 | -0.85 352.5 4 2 0.0102 | -0.86 351.2 
3 o.o1se | -0.52 278.0 4 3 0.0172 | -0.55 304.8 
4 0.0159 | -0.59 300.1 4 4 0.0154 | -0.55 300.7 
5 0.0110 | -0.81 349.6 4 5 0.0114 | -0.82 346.1 
6 0.0012} -1.94 569.2 4 6 0.0013 | _-1.87 564.1                     

and the validation results from this model indicates this GP model is able to give 
just as good predictions as the other GP models which are already considerably 

very close (in terms of validation). Using the six generated data sets, for a hundred 
re-runs of using the Treed GP-LLM framework, there were no other forms of par- 

titioning, other than a separate partition for each category. Hypersphere GP and 

Embedded GP models both gave very close validation scores especially with data set 
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5.5. EXPERIMENT 5: COMPARISONS BETWEEN VARIOUS GP MODELS USING MULTIPLE DATA 
SETS 

  

4. According to data sets 1-6, there is little benefit from learning the categorical 

mappings in terms of using the Embedded GP (and Hypersphere GP) frameworks 
respectively, because validation scores indicate that both GP models give as good as 
predictive performance as using Independent GPs per category. For data set 6 there 

is aslight difference between the Embedded GP, Independent-GP per category, Treed 

GP-LLMs, and Hypersphere GP models across all validation scores. 

  

Seven further data sets were generated with the change of simulating the re- 
sponses using Tree simulator rather than Friedmann simulator. Apart from that, all 

conditions imposed earlier on data sets 1-6 were used. Table 5.21 shows the amount 

of training and test points used along with the amount of noise applied, a”, on to the 

scaled output used for data sets 7-13. 

Validation scores from using various GP models are shown in Tables 5.22 and 

5.23, where the best validation scores are in bold. 

Using data sets 7-13 in the Treed GP-LLM model has meant this model struggled 

to partition correctly on the given data set, often placing responses from different cat- 

egories under the same leaf node. This is because the responses generated using the 
Tree simulator for different categories (which are scaled down per category) are very 
similar. However, there are instances when the Treed GP-LLM could benefit from 

this, for example, for data set 7. Unlike Data sets 1-6, other partitions (and predictive 

distributions) were obtained on multiple re-runs of the Treed GP-LLMs using data 
sets 7-13. However these were discarded because they were not the highest posterior 

probability obtained. Both the Embedded GP (nominal) and the Hypersphere GP 

models always perform better for all validation scores than using Independent GPs 

(per category). Validation scores between the Embedded (nominal) GP and Hyper- 
sphere GP are always very close, in terms of all validation scores, for most data sets, 

apart from data set 13. 

Figures 5.15 and 5.16 shows the correlation matrix, T (obtained after selecting 

values for hyper-parameters, @ which MAP), between the categories for data sets 1, 

3, 7 and 8. These matrices confirm (very) strong correlations for data sets 7 and 8 
as all the responses from each category are similar whereas data sets 1 and 3 show 
that the Hypersphere GP model is able to capture the negative correlations between 

categories, whereas the Embedded GP (nominal) is constrained. 

Predictive distributions using data sets 1, 2, 7 and 13 are shown in Figures 5.17 

- 5.20 across all GP models, apart from the Treed GP-LLM model. Predictive plots 

obtained from using the Treed-LLM framewor for data sets 1 and 13 are shown in 

Figures 5.22 and 5.21. 
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5.5. EXPERIMENT 5: COMPARISONS BETWEEN VARIOUS GP MODELS USING MULTIPLE DATA 
SETS 

  

Table 5.21: Amount of training and test data points per category along with the 

noise variance, 7? (Using Tree simulator). 

Data set | No. of training points (per cat.) No. of test points (per cat.) 0 
7-11 30 25 0.01 

12-13 20 25 0.001 

  

  

  

    

Table 5.22: Validation measures obtained using Independent GPs per category and 

Embedded GP (nominal) model for each training and test data set (Using Tree sim- 

ulator). 
  

  

  

  

Embedded GP (nominal) Tndependent GP per cat. 
Exp MSE | NUPD | Dawid score Exp [| MSE [NOPD [ Dawid score 

7 0.0101 | -0.88 368.5 7 [0.0132 | -0.77 347.0 
8 0.0102 | -0.87 359.3 8 |] oo1s | -0.78 339.4 
9 0.0124 | -0.76 336.6 9 |] 0.0130 | -0,69 321.8 
10 || 0.0125 | -0.76 343.8 10 |] 0.0140 | -0.66 322.0 
1 0.0110 | -0.83 350.3 11 |] 0.0113 | -0.81 345.0 
12 || 0.0022 | -1.77 538.9 12 |} 0.0028 | -1.43 467.9 
13_ || 0.0029 | -1-46 490.3 13 || 0.0041 |_-1.06 379.8                 
  

Table 5.23: Validation measures obtained using the Treed GP-LLM and Hypersphere 

GP model for data sets 8-13 (Using Tree simulator). 
  

  

  

  

                    

‘Treed GP-LLM model Hypersphere GP 
Data set [|_MSE_ | NLPD_| Dawid score [ Amount of Partitions Exp_[._MSE_[ NLPD_| Dawid score 

7 0.0098 | -0.89 ‘3617 T 7 {[ 0.0103 | -0.87 ‘367.7 
8 0.0127 | -0.76 340.0 2 8 |] 0.0102 | -0.87 358.8 
9 0.0160 | -0.65 312.8 2 9 |] 0.0125 | -0.77 336.6 
10 0.118 | -0.79 339.7 2 10 |] 0.0125 | -0.77 | 345.0 
u o.o11s | -0.80 343.7 1 11 |] 0.0109 | -o.84 | 351.0 

12 0.0023 | -1.58 497.5 2 32 |] 0.0028 | -1.72 526.3 
13 0.0050 | _-1.24 416.8 3 33_|| 0.0031 | -1.45 483.5 

1.0000 —0.8192 0.3916 —0.4250 1.0000 0.9505 0.9737 0.9754 
—0.8192 1.0000 —0.8402 0.0751 0.9505 1.0000 0.9934 0.9923 
0.3916 —0.8402 1.0000 0.1504 ’ 1 0.9737 0.9934 1.0000 0.9922 
—0.4250 0.0751 0.1504 1.0000 0.9754 0.9923 0.9922 1.0000 

Figure 5.15: T matrix obtained using Data sets 1 and 7 respectively. 

1.0000 —0.5019 0.2510 —0.5352 1.0000 0.9864 0.9869 0.9847 

—0.5019 1.0000 —0.9548 0.1071 0.9864 1.0000 0.9984 0.9983 
0.2510 —0.9548 1.0000 —0.0579 |’ | 0.9869 0.9984 1.0000 0.9994 
—0.5352 0.1071 —0.0579 1.0000 0.9847 0.9983 0.9994 1.0000 

Figure 5.16: T matrix obtained using data sets 3 and 8 respectively. 
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(a) Independent GP Predictive Plot per category for Data Set 7. 
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(c) Hypersphere GP Predictive Plot for Data set 7. 

Figure 5.17: Predictive Plots for data set 7 using various GP models. 
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(b) Embedded GP Predictive Plot for data set 13. 
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(c) Hypersphere GP Predictive Plot for data set 13. 

Figure 5.18: Predictive Plots for data set 13 using various GP models. 
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Figure 5.19: Predictive Plots for data set 1 using various GP models. 

73 Sean Michael Tulloch



5.5. EXPERIMENT 5: COMPARISONS BETWEEN VARIOUS GP MODELS USING MULTIPLE DATA 
SETS 

  

Cagory 1 ‘category 2 category 3 
  

  

    

   
      

  

1 

Fos 

Ve oN i 

Pr 05 1 Pas 05 1 ae) os 1 my Os Soon Sa come ea oa 

(a) Independent GP Predictive plot per category for Data set 2. 

catagory 3 category 2 Sategery 3 Category 4 
  

  Pints aan 
Predictive Mean +250 

      

  

                a5) ae 05) ost 26 
‘Cominsoue Input 
  05 1 oe Os Continseus put CContinsous input Ceminsove input 

(b) Embedded GP Predictive plot for data set 2. 

category 1 category 2 Category 3       
  

  

      

  

            
  °. ae 5, 

Continous tut 
a5 os as Continous Inout Continous Input Continuous Input 

(c) Hypersphere GP Predictive plot for data set 2. 

Figure 5.20: Predictive Plots for data 2 using various GP models. 
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(a) Treed GP-LLM: Diagrammatic depiction of the maximum a posterior (MAP) tree using basemax= 1 and 
splitmin= 2 for data set 2;where ‘obs’is the number of training points per a particular leaf; number above ‘obs’ is 
the noise variance for the model fitted at that leaf; V3,V4,V1 show partitioning on categories 2,3 and 1 respectively. 
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(b) Treed GP-LLM Predictive Plot for data set 2. 

Figure 5.21: Treed GP-LLM Results for Data set 2. 
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(b) Treed GP-LLM Predictive Plot for Data set 13. 

Figure 5.22: Treed GP-LLM Results for Data set 13. 
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5.6 Experiment 6: Using Data Generated From The 

Flute Simulator 

This experiment, involves comparing independent GPs (per category) against us- 

ing the Embedded GP (ordinal) models, both which will use the data generated from 

the Flute simulator. Data sets were generated using multiple re-runs of the Flute 

simulator, where each run used a different value for Ro. The simulator was re-run 

55 times, where Ro could vary in the range 1.5 to 2.04 (in step sizes of 0.01). Hence 

each GP model, had access to 55 input-output pairs, ({x;, y:},7 = 1,...,55) for each 

category, hence the age group. This set is randomly split for six realizations, such 

that for each realization, twenty of those pairs were used for training whilst the other 

35 were used for testing (per category). Outputs, f; represent the cumulative amount 

of individuals infected (as a percentage of total individuals) for a particular age group 

on the final time step (day) of the simulation. Note that these responses are rescaled 

per category. Please refer to Section 5 for more details about the rescaling used. 

Figure 5.23 represents the cumulative number of infected individuals (as a per- 

centage) on the final day of the simulation for each age group. This was obtained 

using multiple re-runs of the Flute simulator, where the (rescaled) output is what we 

would like to emulate using the various GP models, such as the Embedded (ordinal) 

model. Independent GPs (per category) and the Embedded GP (ordinal) models 
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Figure 5.23: Cumulative number of infected individuals (as a percentage) for each 

age group. 

were used to emulate this output as shown in Figure 5.23. Hyper-parameters, 8 used 

in the Embedded GP (ordinal) framework were the length scale (¢), signal variance 

(03), noise variance (o2) and each of the categorical mappings, giz, k = 1,2,3,4,5 

(from categories 1 to 5) to each age group. Each parameter in @ is parameterized 
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5.6._ EXPERIMENT 6: USING DATA GENERATED FROM THE FLUTE SIMULATOR 

as the form 0 = e~),b = 1,...,8. Independent GP models however do not use 

the categorical mappings, and @ only contained the length scale (¢), noise and sig- 
nal variances (02, o respectively) for this model. Separate mean functions were 

used per category in the GP prior, p(y|@, X) = GP(m(.),k(.,.)) for each GP model. 
Data points belonging to category i use the mean function of the following form, 

By + Bx-1%i,1, where for j = 1,...,2i—2 and j = 21+ 1,...,2nc, ther terms 9; are 
multiplied by basis functions of 0. This is for the Embedded GP and Hypersphere GP 

frameworks, Independent GPs (per category) use the mean function of 8; + Boxj,1. 

The parameters, ( is 2n, x 1-dimensional for the Embedded GP and Hypersphere 

GP models, and 2 x 1-dimensional for independent GPs (per category) which have 

been analytically integrated out. Each £; has a normal prior of N(0,100). Please refer 

to Appendix B and Section 2.5 for more details. Predictive equations, use 6 which 

MAP. The Embedded GP (ordinal) model uses the following posterior distribution, 

_ (f GP( yim, K) 115 p(Gi|0, 100) da) 

  

fe ~ViX) 
4 Ca, 1)Ga(o7 1-1, 1)Ga(opl1.1, 1 )(TELy Ga(g1,i/1-1, 1)) 

P(y|X) 
Hyper-parameters, @ were found by MAP using SCG, where 100 different initial- 

izations for @ were used to ensure the highest maximum of p(@|X,y) was found. The 

initial values for @ were generated using m; ~ N(0, 1). 

Each of the GP models, de GPs (per category) and the Embedded GP 

use the Matern kernel (with order, v = 3), where the co-variance between two points 
x; and x; used for each GP model are shown in Table 5.24. Validation scores ‘ob- 

Table 5.24: Co-variance between two points x; and x; used in each model (for Ex- 

periment 7). 
  
  

  

5 ‘Embedded GP (ordinal) Independent GPs (per category) 

Covteses mj) 08 (14 Vir + 85") exp V8" a8 Toes 25) o} (1+ 4 + B55) exp” WE Aiea) 
re Hen — 24,1)? + (91,41 — 91 ky)” @e1 — 23,1)? 
  

tained from using both GP models are shown in Table 5.25, where the best scores 
are in bold. Figure 5.6 shows the predictive plots obtained when using independent 

Table 5.25: Validation measures obtained using the Embedded GP. (ordinal) and 

Independent GPs (per category) frameworks for each training and test data set (Using 
Flute Simulator). 
  
  

  

  

Embedded GP (ordinal) Ieper CELE ree 
Realization [| MSE | NLPD | Dawid score Realization [| MS) NEPD_[ Dawid score 

T 0.0178 | -0.59 542.6 iz TOs 527.8 
2 0.0137 | -0.69 567.2 2 0.0148 554.6 
3 0.0182 | -0.55 527.4 3 0.0195 513.0 
4 0.0153 | -0.67 557.3 4 0.0164 540.1, 
5 0.0151 | -0.66 562.0 5 0.0167 553.7 
6 0.0166 | -0.63 553.9 6 0.0182 545.3                 

  

  

GPs (per category) and the Embedded GP (ordinal) models for Realization 1. It is conclusions 
clear from examining the validation scores that the Embedded GP does better for all 
realizations than the independent GPs (per category). We believe this is because the 

responses from each category are similar. Multi-modality of the posterior, p(@|X,y) 
was not found on all realizations; this depends which data points are used for train- 

ing. Another observation made is that independent GPs (for all these realizations) 
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per category decide to fit a linear line through the (training) data (for most of the cat- 
egories), whilst the Embedded GP (ordinal) fits quadratic curves. This observation 

remains valid across all six realizations. 
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5.7 Summary 

Results indicate that when responses are similar in each category, the Embedded 

GP (for either ordinal and nominal categorical variables), benefits from learning the 

embedded mappings between categories and reals, and yields better validation scores 

compared to using independent GPs per category. Using the Embedded GP, where 

the responses in each category are almost functionally independent, does not gain 

any benefit but rather yields validation scores similar to that of using independent 
GPs (per category). Validation scores in this situation are similar across all GP mod- 
els. Treed GP-LLMs are not able to partition correctly, when responses are similar, 

and this could lead to other GP models, such as Embedded GP doing better. The 

Embedded and Hypersphere GP models have similar validation scores for most of the 

experiments, however this changes when the number of training data points in each 
category are reduced, (with a smaller noise variance). In this case, the Embedded 
GP model does significantly better than the Hypersphere GP. The additional benefit 

of using the Embedded GP model, is that the model uses less parameters than Hy- 

persphere GP. 

The Embedded GP model does not necessarily need to be used for the regression 

task, but it can also be applied to other applications which will be reviewed in the 

next chapter, such as classification. 
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Chapter 6 

Extensions 

This chapter discusses how GPs (with no categorical mappings) can be used for 

binary classification before applying this framework to the Embedded GP model. 

Then, model selection will be reviewed for the purpose of reducing the number of 

categorical mappings used in the Embedded GP (nominal) model in the regression 

setting. 

6.1 Binary Classification 

6.1.1 Binary Classification for Continuous Inputs 

Throughout thesis so far, we have considered using GP models in the regression 
setting, but now we shall look at using these models for the classification task. We 

shall review how binary classification is applied to GP models which contain data 

points, which are continuous. 

GPs used for binary classification involve placing a GP prior on the latent function, 

f(x;), and squashing this through a logistic function, o(f;), which is of the following 
form, 

L o)= peta 
The probability that data input x; has the output, y; = 1 being equal to o(f;), 

or probability 1-o(f;) if data input x; has output y; = 0. Equation 6.1 is a possible 

form for the likelihood, p(y|f,X). However, other likelihoods could also be used for 
classification, for example the probit function (with or without bias) and the step 
function (Rasmussen 2006, p.42). Throughout this section, the assumed likelihood is 

logistic. i 

(6.1) 

GP models (used for classification) contain hyper-parameters, such as the length 
scale (#), and signal and noise variances, (03 and o? respectively) which are contained 
in 6. The vectors y, f are both N x 1-dimensional vectors which contain the class 
labels and the latent values at each and every training data point. respectively. 

The role of f is to allow a convenient formulation of the model where the goal 
is to integrate out over the latent function, f (which is not observed), for prediction 

purposes. However, for classification it is not as straight forward as this, because the 

likelihood, p(y|f, X) is no longer Gaussian. In the regression case, where the likelihood 
was a Gaussian distribution, N(y|f,o?Z), various functions such as the posterior 

82 

Goals of this 
chapter 

different forms 
for the likelihood 

p(ylf, X) 

parameters used 
for GP models 
with continuous 
inputs 
further notation 

role of f 

comparisons 
between using 
GP models for 
regression and 
classification



6.1. BINARY CLASSIFICATION 

distribution, p(@|y, X) and predictive distributions could be calculated analytically. 
For the classification case, the likelihood is Bernoulli distributed, and has the form, 

N N 

plylt, ®) =] [ral fi) = [ota - off). 
i=1 i=1 

The responses, y; can take values either zero or one. As a result of this, the 

following integrals are used for prediction purposes, 

FIX x0) = f WFLX. xi APCX 9,0) a (62) 

WutlXsy.x5,0) = f oC OCH IX 9x18) a (6.3) 
Both these integrals require either the posterior distribution, p(f|X,y,@) to be ap- 
proximated by a distribution, q(f|X,y,@) or to obtain samples from it using MCMC. 
Two common forms for approximating p(@|X, y) are the Laplace approximation (Ras- 

mussen 2006, p.41), and the Expectation Propagation (EP) method (Rasmussen 2006, 

p.52). 

Using the EP method is more common in the literature because it gives good 

results (Rasmussen 2006, p.52), where instead of approximating the posterior proba- 

bility by a single Gaussian, the likelihood is approximated using a local approximation 

scheme, where an un-normalized Gaussian function is assumed for fj, such that, 

plyil fi) ~ ZN (filmis 02), 

where Z;, f; and ¢? all indicate the site parameters, and the interest is finding out 

how the likelihood behaves as a function of f; (Rasmussen 2006, p.53). The values 

for the site parameters can be optimized by minimizing the KL-divergence between 
the posterior and the approximate distribution (Rasmussen 2006, p.54). The Expec- 

tation Maximization-Expectation Propagation (EM-EP) is an extension of the EP- 
algorithm, where the E-step, involves finding the site parameters where the hyper- 

parameters, @ are fixed, and the M-step involves.maximizing the variational lower 

bound of p(y|@) given the approximate distribution for p(f|X, y, @). 

The EM-EP algorithm includes a way of optimizing both the hyper-parameters, 0 

and the latent function values, f. Other approaches in the literature, includes using 

a Laplace approximation to integrate out the latent function values, f and then using 

a Hybrid-Monte Carlo sampler to integrate out the hyper-parameters @. Another 

approach involves using a Hybrid-Monte Carlo sampler to integrate out both the 

hyper-parameters and the latent function values. Further approaches are discussed 

in the paper by Kim & Ghahramani (2004). (Bishop 2006, p.315-318) suggests use 

Laplace approximation to integrate out the latent function values, and then optimize 

the hyper-parameters, 0, by maximizing the evidence. 

We shall review the Laplace approximation in more detail for GP models involving 

continuous inputs only, as this approximation scheme will be used in a later example 
using the Embedded GP framework in the classification setting. 
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6.1. BINARY CLASSIFICATION 

Laplace approximation is used because the likelihood, p(y|X, f), itself is non- 
Gaussian, and aids in the form of approximating the posterior, p(f|X,y,@) by 
a(f|X,y, 9), a term which can be later used in Equations 6.2 and 6.3. The posterior 

distribution is approximated by a normal density, 

P(X, y, 0) ~ a(f1X,y, 0) = N(flw, A), 

where w = argmax ¢ p(f|X,y, 8) and A = —VV logp(£|X,y, 8)|r-w. The problem is 
finding the correct values for the terms, w, A~!. Using Bayes’ formula, the posterior 

can be written as (ylX, Dp(A1X, 8)p(6) 
— PVA 2P! 19 )p| 

p(E|X, y, 8) = noone 

where p(y|X, f) is the non-Gaussian likelihood, p(f|X,@) is a GP prior over the latent 
variables f, and p(@) is the prior over the hyper-parameters, 8. Because the prior, 

p(9) and the normalization term of p(f|X,y,) do not depend on the latent variables, 
f, this term will vanish when taking the first and second derivatives of log(p(£|X, y, 8)) 

with respect to f. Hence, 

Velog(p(fX, y, 9)) = Vlog(p(ylf, X)) — Kf, (6.4) 

VVrlog(p(f.X, y,9)) = VV log(p(y|X,))-—K-'=-W-K, (6.5) 
where -VV log(p(y|X, f)) is often denoted by W. The matrix, W, is diagonal because 

of the assumption that the non-Gaussian likelihood factorizés over each data point, x;. 

The derivatives for the log likelihood, log(p(y|f, X,@)), depends on what likelihood 
function is used for classification. Before, proceeding to find the derivatives explicitly 

for V log(p(y|f, X)), the following notation shall be introduced, 

1 
Trexp-7t 

Cn Lyexp7J2 

1 

Ltexp 7 

where oy is a N x 1 vector containing all evaluations of Equation 6.1 at each and 
every training point, x;. Likelihood probabilities are given by, 

4 
p(y = UW fi) = Trexpr 

1 1 exp fi 
0) 

Pui = Of) l+exp-f 1+expf  1+exp-f 

which then can be written in short-hand notation as 

p(vi = glfi) = exp? o(—fi) , g = {0,1}. 

Using this knowledge, the first and second derivatives of the log likelihood term, 

p(y|X, f), which are given by, 

Velog(p(ylf, X)) =y — on (6.6) 

o(fi)(l— (fi) 0 bes 0 

VVelog(p(ylf, X)) = : o(fa)(1 c o(f2)) : i 

0 0 0 o(fx)(4— oly) 
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6.1. BINARY CLASSIFICATION 

The mode of the log likelihood, is required for calculating the mean of the ap- 

proximate distribution, q(f|X,y,@). To find’ the optimal solutions for f, one needs 

to combine Equations 6.4 and 6.6, and setting Velog(p(y|f, X)) = 0. This however 
would yield a non-linear equation in latent variables, f because the terms, f appears 

also in vector ay. In this case, a non-linear optimization routine such as Newton- Newton-Raphson 

Raphson (NR) should be used (Rasmussen 2006, p.43) to find the mode of the log to find optimal f 

posterior density, p(f|X,y,@). NR used for this particular case, will use the iteration 

formula 

fy = £4 — (VV log(p(f1X, y, 8)))'V log(p(f1X, y, )) 
to find the optimal, f. obtaining the 

Once, NR has found the mode, w, of the posterior distribution, p(f|X,y,0), the approximate 

covariance, A~!, of q(£|X,y, 8) can be found by evaluating the Hessian of the negative Posterior aenstey 

log posterior at the mode, w. 

Once the approximation distribution, q(f|X, y, @) has been found given the current maximizing the 

values of 0, optimization over the @ values is needed. We shall consider doing this by _vatiational lower 

maximizing the variational lower bound whilst q(f|X, y, @) is fixed, by using Jensen’s ee the log 

inequality (Nickisch & Rasmussen 2008) as follows, likelihood 

logptv1X,0) = toe [ rivintAx,e)n(@) a> [ a(NX,y,8) og PAE SOO) as 
where, ap(0) 

[o0t%,9, 0) 10g OOOO) ap — p 
or equivalently, 

logrtyix,) > f alX,y,)tog (yi) dt f a(8X,y8)loe(o($1X,0)) d+ 

J aax.y,0)t08(o(0) at f a(6X,y.0)Ioga(HX,y,0) a (6:7) 
The only terms which contributes in maximizing the variational lower bound is 

the second and third terms on the right-hand side of Equation 6.7. Calculating oe 

leads to 

Ore 0K 

00; awk 00; 

For optimizing over the hyper-parameters, @, the scaled conjugate gradient algo- 

rithm can be used. 

ae 1 Sgt ASE WER) oo ae Iw —5tr 7 (~ 26; 

This is an iterative scheme, where one needs to optimize the latent values, f Iterative scheme 

(given the current states for 9 which maximize the posterior density, p(f|X,y,@)) 

and then optimize over the hyper-parameters, @ (maximizing the variational lower 
bound whilst the approximate distribution, q(f|X,y, @) is fixed). This process is re- 

peated until convergence was reached, for example, the absolute difference between 

optimal values of f between two iterative runs, j, j +1 was less than a certain toler- 

ance level, ¢. This is similar to an idea introduced by Chu & Ghahramani (2005). 

Once the optimum solutions for f and @ have been found, the predictive mean and evaluation of 
moments of 
predictive 
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variance of the distribution given in Equation 6.2 can be evaluated as follows, 

E(EE|X,y, x}, 0) = k(x}, X)K tw, 

Var( fi |X, y, xf, 0) = k(x}, xf) — k(x}, X)(K + W-*) tex, X)™ 

Because of the Gaussian approximation to the posterior distribution, p(f|X,y, 4), 

the predictive density p(f/|X,y,x,@), will be a Gaussian in this case. To calcu- 
late the probability of the class label at the test points being either 0 or 1, where 

this probability is indicated in Equation (6.3), samples can be generated from the 

Gaussian density, N(f?|k(x?, X)K—1w, k(x}, x}) — k(x}, X)(K +W-!)-"h(xf, X)7) 
(Rasmussen 2006, p.45), and using a crude Monte Carlo average, 

ee 
P(yal X,Y, %+,9) = = D> o(s) 

41 

    

where s(), 5), ..., s('c) ~ p(f#|X,y,@). A given test point, x; is assigned to a class 
label, based on which probability of the class labels are the highest (Rasmussen 2006, 

p.45). 

6.1.2 Embedded GP (Nominal) for classification 

The Embedded GP (nominal) model also uses the categorical one-to-one mapping 

values, g1,j,j = 1,...,c, where n, is the number of categories (or n, levels of quali- 

tative factors). These parameters will be optimized along with the length scale (¢), 

and noise and signal variances, 02 and aa respectively, where all these parameters 

are contained in vector, 6. 

6.1.3 Example using the Embedded GP (nominal) model for classi- 
fication 

We shall demonstrate using the Embedded GP (Nominal) model for binary clas- 
sification, where the Matern kernel (with order, v = 3) was used, where this took 

the same form as the one used in Experiment 4 from section 5, where there is one 

qualitative factor with 3 categories. All hyper-parameters were reparameterized as 

0; = e~™, i = 1,...,6. The following posterior distribution was used 

N 

p(f|X, 8, y) o (Ile «-n9) GP(f0, K)Ga(I|1.1, 1) x ... 
i=1 

3 

ws X Ga(o9|1.1, 1)Ga(op|1.1, 1) (ILveui 10) 5 
i=1 

where y; can take values 0 or 1. Data inputs have the following form, 

T1 
=| 2 ’ 

Wir 

where the first two components, 2;,1, 7,2 are continuous whilst the other input, (w;,1) 

is qualitative. There are an equal number of training and test points in each category, 

which are 15 and 25 respectively. The response (y;) for each data point, is decided 

on the decision rule, «;; < 4, where if the data point, x; satisfies it the point 

belongs to class 0, or 1 otherwise. Variable j in this example stands for the category 

86 Sean, Michael ‘Tulloch 

Calculating the 
predictive 
probabilities for 
test points, x} 

highest, 
probability 
assigned 

parameters used 
in the Embedded 
GP (nominal) for 
the classification 
task 

conditions used



6.1. BINARY CLASSIFICATION 

which data point x; belongs to. The Laplace approximation was used to find an 

approximation to the posterior distribution, and Jensen’s inequality was used to 

maximize the variational lower bound, in order to find the optimal values for 8. The 

likelihood distribution, p(y|f, X) was assumed to be a product of logistic functions, 

such that, 
N 

pyle, X) = |] o(fi)"(1 — o( fi) ™. 
i=1 

The tolerance rate for Newton-Raphson’s procedure used to find the optimum 
latent values w, which maximizes p(f|X,y,@) was set to 0.05 between two successive 

runs of the algorithm, whilst the SCG was set to a tolerance level of 10~° for both 

the negative log posterior evaluation and the values for the hyper-parameters between 

two steps. Both these optimization routines, NR and SCG are applied iteratively, 

and the algorithm exits out of optimization if the optimum latent values, w between 

two trials of optimizing the hyper-parameters and the latent values satisfy 

[wi — wisi < 0.05. 

Figure 6.1 shows how the Embedded GP (nominal) model performed in this case. 
The misclassification rate for test points was given by 9.33% = &. The purpose 
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Figure 6.1: Graph showing the class label locations for both the training points 
(indicated by crosses), and prediction for test points (indicated by circles). Class 

labels 0 and 1 are indicated by colors green and red respectively, where the decision 

boundary is a straight line, xj, < 4 (dependent on the category; for Categories 1-3). 

of this example was to illustrate that the Embedded GP (nominal) model can be 
adapted to classification tasks as well as the more focused regression task (seen in 

Chapters 1-5). 

The Embedded GP algorithm used for regression or classification tasks will use 
ne variables, 91,;,j = 1,...,Nc- In the next section, we shall investigate, how the num- 

ber of categorical mappings used in the Embedded GP could be reduced. This could 

be achieved by choosing a many-to-one mapping relationship between categories and 

real numbers. 
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6.2. BAYESIAN MODEL SELECTION USED FOR EMBEDDED GP (NOMINAL) MODELS 

6.2 Bayesian Model Selection Used For Embedded GP 

(nominal) models 

Consider one qualitative factor, with n_ categories, where the responses for two 

categories are similar (or approximately the same). In this case, it would be sensible 
to place data from these two particular categories into the same group, because it 

would decrease the dimensionality of the parameter-space, which would will yield 

faster inference and calculations. But there are some considerations, 

e Which of the n, categories is placed in one group? 

e Can there be more than one of these groups? 

e Can the sizes of these groups be different? 

¢ How does placing categories into groups affect the validation measures? 

e How can models with different combinations (of groups and categories) be 

ranked? 

Using each possible selection of groups in the Embedded GP (ordinal) model 
yields a particular model which can be used for testing (calculating the predictive 
equations and validating the model). Hyper-parameters used in the Embedded GP 

framework include ¢ (length scale for isotropic kernels), ¢;,i = 1,..., nq (length scales 
of separable kernels), noise (2) and signal (03) respectively, along with parameters, 
G91js5 = 1, +; Cmin, where Cmin < ne. Allocating data from n, categories into Crrin 

separate groups, and then learning the one-to-one mapping between groups and reals, 

infers a many-to-one relationship between the categories and reals. 

We shall use the BIC (Bayesian Information Criterion) in order to rank model 

performance, 
BICy, = —2 log p(y|X,@) + v In(N), 

where N is the number of training points used and v is the dimensionality of hyper- 
parameter vector, 9 (Raftery 1993). There are other schemes such as the AIC (Akaike 
information criterion) in order to rank model performance. The BIC will be calculated 
for each (available) model, and judged by comparing the BIC scores between the 

different models. To compare models M;, and M;, where My, is larger than Mj consider 

the BIC measure, E = BIC\y, — BIC y,, where the following criterion is used, 

e E <0 - Model M,, is favored; Reject model Mj, 

e 0 < E<6- Both models are favored; keeping both models, Mj; and M;, 

e E > 6 - Model M; is favored; Reject model Mx. 

This criterion has been suggested by Raftery (1993), where this is anslogy to the 

popular 5 percent significance level for tests. 

In order to pick the best model (which gives the lowest BIC), the following 
algorithm (where this is an analogy to top-down algorithm) will be used, 

1. Calculate the BIC for full model (using all n_. categories; where there is single 

group per category) 
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6.2, BAYESIAN MODEL SELECTION USED FOR EMBEDDED GP (NOMINAL) MODELS 

2. Reduce the number of groups to n-—1. Consider all combinations; and evaluate 
each models BIC. 

3. Iteratively compare the BICs across all these models removing the models which 

do not satisfy the criterion, as suggested by Raftery (1993). If two models are 
kept, keep one of the models aside and continue the algorithm with the chosen 

model. 

4. Keep reducing the number of groups until one group is left. 

5. At this point, there could be r remaining models. 

6. Compare each of the remaining models; picking the models with the lowest BIC 

values (Posada & Buckley 2004). 

We shall now apply Bayesian Model Selection to the Embedded GP (nominal) 
framework (used in the regression setting) by considering data generated from the 
Tree simulator. The first two categories, Douglas Fir (1) and Big Leaf Maple (2) for 
qualitative variable, species, will be considered first for testing purposes, before using 

the full set of possible categories. 

6.2.1 Results: Applying Bayesian Model Selection 

This methodology is applied to the data set generated in Experiment 1, where 
the first two categories, Douglas Fir (1) and Big Leaf Maple (2) are considered. The 

Matern kernel (with order v = 8), where 

  K (xi, x3) 

fined as r = (aj,1 — 5,1)? + ik, ate Gi ka Note g(.) represents the groups mapping 
value into the reals. The optimal values for the hyper-parameters, are chosen such 

that they maximize the log likelihood, p(y|X, 0) = GP(y|0, K). 

7 (1 + 2S + 55) on +021(x;,x;) is used and the distance is de- 

There could be separate groups for each category, or both categories could be 
placed in the same group. The predictive plots for both options are shown below in 

Figures, 6.2 and 6.3. The modified top-down algorithm reports that having separate 
groups (for each of the categories) is better (as an indication of the BIC scores). 

Validation measures for each model is shown below in Table 6.1. 

Now, consider the same data set as before, but now with all four categories 

Table 6.1: Two Categories; Bayesian Model Selection (Validation results). 

Partition | BIC  -log(p(y|X,0) SMSE NLPD Dawid score 
12 |-99.4972  -58.9708 0.0307 -1.8013 275.1664 
12, | -60.6380___-37.6967 (0.0705 _-1.3991 224.8627 

  

  
are used. In this case, groups could be organized as, 

e 4 groups - 1 group per category 

¢ 3 groups - 2 categories in one group; 2 categories in their own separate groups 

e 2 groups - There are the following options: 

— Option 1. 2 categories in each of the groups 

— Option 2. 3 categories in one group, and a category in another 
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6.2. BAYESIAN MODEL SELECTION USED FOR EMBEDDED GP (NOMINAL) MODELS 

Category Input 1, Noise level: 0.001 Category Input 2, Noise level: 0001 
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Figure 6.2: Best Model: Predictive plots, where two groups were used in the algo- 

rithm; one group per category. 

e 1 group - All categories share the same group 

Table 6.2 shows a summary of the validation measures of the most promising 

models. Predictive plots are shown in Figures 6.4 and 6.5 for the cases where there 
is a group per category and another case, where there are three groups. These are 

reported to be the best models according to the criterion above. Figures 6.3 and 

Table 6.2: Four Categories; Bayesian Model Selection (Validation results). 

Partition BIC —logp(y|X,@) SMSE NLPD _Dawids Score 

1,2,3,4 | -193.4502 -112.0622 0.0274 -1.8463 559.5608 
1,2,34 | -196.5273 -111.4097 0.0349 -1.7345 534.7838 

  

  

  

    
6.5, show that by placing categories into the same groups, the resulting predictive 

measures will average the responses between categories. 

Model selection can be applied to the Embedded GP model, and can be seen as a 
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6.2._ BAYESIAN MODEL SELECTION USED FOR EMBEDDED GP (NOMINAL) MODELS 

Category Input 1, Noise level: 0.001 Category Input 2, Noise level: 0.001 
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Figure 6.3: Predictive Plot: where one group was used in the GP model; both cate- 

gories are placed in the same group. 

suitable approach to reducing the number of parameters inferred in the Embedded GP 
framework. However, the modified top-down algorithm presented here could cause 
problems as the number of categories used in Embedded GP (nominal) framework 

increase. It may be computionally expensive to evaluate each and every model under 

each combination of chosen groups in this case. 
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Figure 6.4: Best Model: Predictive Plot, where four groups were used in the Embed- 

ded GP model; one group per category. 
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Figure 6.5: Best Model: Predictive Plot, where three groups were used in the Em- 

bedded GP model; where data belonging to categories 3, 4 (hence Willow and Bitter 
Cherry) were placed in one group whilst category 1 and 2 (hence Douglas Fir and 
Big Leaf Maple) placed in a group of their own respectively. 
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Chapter 7 

Discussion, Key Findings and 

Future Work 

7.1 Summary and Discussion 

The aim of this project was to build a GP model (for the regression task), which 
was able to handle data inputs with continuous and categorical co-variates. 

This thesis firstly reviewed the basic theory involving GPs used for regression 

where inputs only contain continuous entries in Chapter 2. This theory includes 

reviewing the posterior distribution, where various GP priors are used. Mean func- 

tions could also be incorporated in the GP prior using linear combinations of basis 

functions, h;(x;). Likelihood methods, such as MAP and ML could be used to find 

values for the hyper-parameters, 9, or a more Bayesian approach is to integrate out 

the uncertainty over these parameters. This chapter also reviewed sampling routines, 

such as Metropolis Hastings (MH) and Simulated Tempering (ST), which are used to 
evaluate integrals that are not analytically tractable. The two forms of MH, block- 
wise and component-wise, reviewed are sensitive to the step size of the transition 

steps. This could lead to being trapped in deep local minimum if these step sizes are 

too small. This is why ST is preferred over MH, because ST is able to escape local 
minima, by flattening the distribution which we are sampling from. Additionally, 

this chapter investigates various convergence diagnostics such as Batch-means and 

Potential Scale Reduction Factors (PSRF). By checking for these, ensures that the 
sampling routine has converged to the stationary distribution. This chapter, con- 

cludes with looking various validation scores, such as the MSE, NLPD, and Dawid 

score, which can be used to examine how good a GP model is at predicting responses 

at test data points, x}. These different scores use the predictive mean and variances, 

where these scores are used for accessing different things. The MSE uses only the 

predictive mean, to access the squared error between the predictive mean and the ac- 

tual responses evaluated at each of the test points. Dawid score, however takes into 
consideration the full predictive covariance matrix, along with the predictive mean. 

Chapter 3 began with looking at the different types of categorical variables. The 

categorical variables reviewed, are ordinal and nominal. Ordinal categorical variables 
have an natural ordering between categories, whereas nominal categorical variables 

do not. This chapter then reviewed existing models in the literature, where quali- 
tative co-variates are included as part of data inputs. These methods include Treed 

GP with Limiting Linear Models, and Hypersphere GP models. Treed GPs combine 
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7.1. SUMMARY AND DISCUSSION 

trees, which divide the predictor space based on splitting rules, and GPs which are 

flexible priors over functions, to form a powerful non-stationary approach to mod- 
elling. The Hyper-sphere GP, however models the correlation between categories by 
using a clever hypersphere parameterization. The Hypersphere GP model is able to 
capture negative and positive correlations between categories; an extension of the 

work done by Qian et al. (2008). 

Our approach to building a GP, (called the Embedded GP) considers different 
types of categorical variables, such as ordinal and nominal. The Embedded GP for 
ordinal categorical variables, uses a one-to-one mapping, placing categories onto a 

one-dimensional axis, whereas for ordinal categorical variables, categories are embed- 
ded using a 1-out-of-n, encoding. This chapter, then compared the Embedded GP to 
other GP models reviewed in Chapter 3, in terms of advantages and disadvantages of 

using each GP model. Analytical comparisons between the Embedded GP and Hy- 

persphere GP models, where the squared exponential kernel was used, indicated that 

the Embedded GP is restricted to having positive correlations between the responses 

of categories. However, the Embedded GP uses fewer parameters for categories than 

the Hypersphere GP model. Using independent GPs (per category) ignores the cor- 

relation between the responses of categories. 

This chapter also gave some suggestions which should be considered when us- 
ing the Embedded GP model in practice. These suggestions include using Cholesky 

decomposition for inversion of matrices such as kernel matrix, K, and using vari- 
ous parameterizations, such as e~”, to ensure hyper-parameters remain positive. 

Specific implementations of the Embedded GP are included in Appendix B. These 

implementations were used for experimentation in Chapter 5. 

Chapter 5 compares various GP models such the Embedded GP, Hypersphere GP 

and Treed GP-LLMs along with Independent GPs (per category) on different data 
sets, where responses were generated using various simulators. 

Chapter 6 gave a brief introduction into how GPs are used for binary classifi- 

cation, where inputs, x;, only contain continuous entries. The likelihood, p(y|X, f) 

which is Bernoulli distributed. Approximation techniques for the posterior distri- 
bution, p(f|X,y,@) were explored; and in specific the Laplace approximation. The 

distribution, p(f|X, y, 9) (or its approximating distribution) was needed to calculate 
the predictive distribution at test points. Hyper-parameters, 9, appearing in the 

kernel, K of the GP prior were chosen based on maximizing the variational lower 

bound of the evidence (where distribution q(f|X, y, @) is fixed). The EM-type algo- 
rithm used, was briefly reviewed, where this involves optimizing q(f|X,y,@) and @ 

until some convergence crietia has been reached. This framework was applied to the 

Embedded GP (nominal case) model for a simple example. 

Other schemes were not discussed in detail, such as the EM-EP which could be 

used to find the approximate distribution, (f|X,y,@) and hyper-parameters, 0. 

Model selection was briefly discussed in this chapter, where this explored whether 
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7.2._ KEY FINDINGS FROM EXPERIMENTS 

categories could be embedded into the reals, using a many-to-one relationship. This 

was applied to a simple example using the Embedded GP (nominal) model, where 

different combinations of groups were ranked using the BIC criterion. For categories, 

having the same mapping into the reals, where the Embedded (nominal) GP uses 

prior GP(f|0, K), gvae the same predictive plots, where these indicate averaging the 

responses between these categories. Hyper-parameters in this case are optimized us- 

ing MAP. 

The aim of this chapter, was to be able to show that Embedded GP model can be 

extended to other tasks, such as classification and model selection. 

7.2 Key Findings from Experiments 

‘The following conclusions can be drawn from the experimentation performed in 

Chapter 5 when comparing the various GP models, Embedded GP, Hypersphere GP, 

Independent GPs per category and the Treed GP-LLM models for the regression task, 

e Using data where the responses have been generated using the Tree simula- 
tor, has shown that using the Embedded GP is more appropriate than using 
separate GPs per category, which ignores correlations between the outputs of 

the categories. The Embedded GP has better validation scores, for the MSE, 

NLPD and Dawid score consistently for each data set used. This is because the 

responses from each category are similar and therefore it is beneficial to learn 
the correlation between the outputs of the categories. Treed GP-LLMs have 
difficulty in partitioning on the categories, giving different partition sizes for 

each data set tested on, where for some data. sets this is appropriate whilst for 

others it could badly affect validation scores. 

e Data sets, where the responses were generated using the Friedmann simulator 

have shown there is no benefit of learning the categorical mappings in the Em- 

bedded GP model. Both the Embedded GP and separate GPs per category gave 

very similar validation scores here in terms of MSE, NLPD and Dawid score. 
This is because the responses from each category are (almost) unrelated. Treed 
GP-LLMs were able to partition on the categories correctly, giving validation 
scores close to that the Embedded GP and Hypersphere GP models. 

e By integrating out the hyper-parameters, @ in Equation 2.16, does not signifi- 

cantly improve the quality of the validation scores, otherwise offered by MAP 
(shown in Experiment 2 in Chapter 5) for the generated data set. 

e The Embedded GP and Hypersphere GP models perform very close in valida- 

tion scores (for most) of the experiments that they are compared. Differences 

in these two GP models emerge when using twenty (training) data points per 
category (with a lower noise level), where the Embedded GP performs better 

of the two GP models. This could be due to the amount of parameters used in 

each of these models. 

e When using any of the GP models, ensure multiple instances of @ are used 

to find the maximum of the posterior, p(@|X,y) or likelihood, p(y|X,@), as 
there is a risk of multi-modality. Note, that these parameter estimates, @ are 

then used in the predictive distribution. GP models such as the Hypersphere 

GP, independent GPs (per category), Embedded GP (for ordinal and nominal 
categorical inputs) which use the posterior (or likelihood) surfaces, were often 
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multi-modal. Posterior surfaces are multi-modal, due to the training data, 

(X,y). Multiple initializations ensure the highest possible maximum (and even 

possibly the global maximum) is found. 

7.3 Future Work 

The future work that could extend the results presented in this report is outlined Future Work 

in the list below. 

e Each of the GP models used in Chapter 5 should be applied to more real-life 

data set examples. This is to ensure that the following arguments made in the 

previous section are consistent. 

e Use model selection to decrease the number of parameters used for inference 

of the Embedded GP (both ordinal and nominal setting), where this will be 
necessary when using the Embedded GP with a large number of categories. 
Exploring all possible models exhaustively will be computationally expensive, 

because the number of models to be explored grows exponentially as the num- 

ber of categories increase. Similar responses from different categories could be 

explained by using less variables. 

Throughout this thesis, there as been an assumption that all GP models, such 

the Embedded GP, or Independent GPs per category are built independently. 

Another interesting extension, would be to create a sequential framework, where 

for D categories, data corresponding to D, categories are used for the Embedded 

GP model, where D; < D. For data corresponding to the remaining categories 

either, independent GPs (per category) could be built or another Embedded GP 
could be fitted using data from a subset of the remaining categories. However, 

other issues would need to considered here for instance, 

— How many Embedded GP models should we use? 

— How many categories should be used for each Embedded GP model? 

Test each of the GP models, the Embedded GP, Hypersphere GP, and Indepen- 

dent GPs (per category) using a different kernel functions. Throughout Chapter 
5, the experiments use a Matern covariance kernel (with order v = 3), because 

of its numerical stability for covariance matrix, K. Different kernel functions 

could possibly have different results. 

e Test the Embedded GP (Nominal) model where there are different process 
variances a? for each category which would add a further d parameters to be 

estimated through MAP or ML. No separate signal variance for the cross cate- 

gories, because of the categorical mappings, g1,;,j = 1,..-;%c, would enter into 

the covariance, k(x;,x;). Separate signal variances (per category), would give 
the Embedded GP more flexibility. The additional benefit of having separate 

signal variances per category, is that the pre-processing step of rescaling the 

responses (per category) could be removed. NB: This model had been built, 

but there was not enough time to test this model. 

Another possible extension, would be to use a different embedding for the Em- 

bedded GP framework. In this thesis, we have considered embedding categories 
onto a 1-D axis (for ordinal categories) and n,-dimensional space (for n¢ nominal 
categorical variables) using the 1-out-of-n, encoding. Suppose now embedding 

nominal categories into a 2-D space, where each category is associated with a 
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two-dimensional vector, (s1, 82). This would have the advantage of not assign- 

ing categories directly onto the axis. Note, that the Embedded GP (nominal) 
model as it has been constructed using the 1-out-of-n, encoding, cannot handle 
groups of categories, which have similar responses. If responses from different 

categories are similar, then using the Embedded GP (nominal) model, yields 

mapping values close to zero (hence forming a cluster of categories). 
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Appendix A 

Design Input Issue: Example 

Suppose there is one qualitative factor, where there are two possible categories, 

‘Sean’ and ‘Mike’ , which both have a categorical mapping value of 0. The kernel 
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The determinant of matrix, K, which excludes the elements from the last row and 

column, has a determinant of zero. The matrix K has broken the rules of positive 
definiteness, where this requires that all principal minors have determinants that are jyinor Kees 
strictly positive. The matrix, K needs to be positive definite, in order to perform 

cholesky decomposition on it in MATLAB. This problem would occur even if different: 

initial mapping values for each of the categories were used (but the same for both 

categories), because the design input points have been chosen poorly in the algorithm. 
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Appendix B 

Various Implementations of GP 

models 

This section outlines the more specific implementations of the GP models used for 

experimentation in Chapter 5. 

B.1 Embedded GP (ordinal case) for Regression with 

GP prior, GP(0, K) 

Given training and test data, (X,y) and (X*,y*) which has ng continuous co- 
variates and n, categories (or n. combinations of the qualitative factors). Note there 
are jp qualitative factors. The following steps are taken for this algorithm, 

1. Gather all training and test data points which have the same qualitative cat- 
egorical inputs. Choose kernel, k which will be used in Embedded GP model. 

The total number of training and test points to be used in the model altogether 

is given by Qi and Qe respectively. 

2. Given n, different combinations of qualitative factors, assign each combination 

to a hyper-parameter g1,; Vj, wherel < j < ne. 

This transforms data input, 

i i 
XE (5,1 5,25 +0+5 Visngy Wiggs Wijas Wig) FP Xi = (Gi1 Ti,2s +5 Ling M13) + 

The transformed input will be used in the Embedded GP. 

3, Hyper-parameters, 02 (noise variance), oO; (process variance), ¢;,4 = 1,...,na n 
(length scales for separable kernels), ¢ (length scale for isotropic kernels) and 
91,j.9 =1,-.; Ne all re-parameterized to a form such as m?, exp™ to ensure the 

parameters are constrained to be positive. All hyper-parameters are contained 

in 0. 

4. Assign an initial value for each hyper-parameter in @ using samples from Gaus- 

sian distributions. 

5. Use an optimization routine such as, scaled conjugate (SCG) to minimize, 

—logp(4|X,y) = -1 x ((-0.5 x e) — (0.5 x (y’ x (4’ \ (A \ (y)))) — & x 
log(2 x 1)) — log(p(0)), 
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B.2. INDEPENDENT GPS PER CATEGORY WITH GP PRIOR, GP(M, K) 

in respect to @, where e = oe log Aj, Ai = eig( K(X, X)), A = chol( K(X, Xe 
A is an upper triangular matrix has a result of performing Cholesky decomposi- 
tion on K(X, X). Prior distribution over the hyper-parameters defined as, p(@) 
assumes to be factorizable over each hyper-parameter, 6;. 

6. Once having obtained 8 which maximizes distribution, p(0|X, y), use 6 to trans- 
form the test points such that, 

5 1 (pt a * * *« + (at ot * 8 
x, = (hr, Bh os +s Ding, Wh jr Wh jg os Whip) ay (i 1, Fh) +) Bing 91,9) . 

7. Use remaining hyper-parameters, 02, as, ¢i,4 = 1,..., na (for separable kernels), 

¢ (for isotropic kernels) to evaluate moments of the predictive distribution, 

P(yj ly, X,x}, Gop), where again Cholesky decomposition is used, 

© E(yfly, X,x}, 6) = cov(x}, X) x (A’\(A\ (y’))); 
© Var(yjly, X, x}, 8) = cov(x},x}) — cov(xf, X) x (A’ \ (A \ cov(X, xf). 

suggestions 

Note that, 

e If the minimization of the likelihood, p(y|X,@) is required minimize, 

= log p(y|X, 8) = -1 x ((—0.5 x e) — (0.5 x (y' x (A’\ (A\ (¥)))) - 9 x 
log(2 x 7)) instead of using Step 5. 

in the case of nominal case, transform data input, 

Xp = (Bes ass Pinal ign; Weare Wean) > i 
Xi = (Win, Fi,25 -++5 Pings 91,191) 91,2525 4 91,391») J1ncOne) in place of Step 
2 and replace Step 6 by, 

XP (@i 1 hay Zing Vij Via 9 Vhip) > i i Es és , 
XP = (Gf 1, Phy ey ings GiOL 91,2525 ---5 91,99}, +) MneIne) » 
The notation, 6; = 1 if the data point belongs to category j whilst the 

other variables, 6, =0,k =1,...,Ne,k £ j. 

  

B.2 Independent GPs per category with GP prior, GP(m, K) 

Given training and test data, (X,y) and (X*,y*) which has nq continuous co- 
variates for a given level of qualitative factors, perform the following steps, independent GP 

model procedure 
1. Choose kernel, k which will be used in the Independent-GP model. 

2. Hyper-parameters, 02 (noise variance), $;,i = 1,...,q (length scales for sepa- 

rable kernels), @ (length scale for isotropic kernels) and o (process variance), 

all re-parameterized to a form such as m?, e~™() to ensure the parameters 

are constrained to be positive. All hyper-parameters are contained in 6. Inde- 

pendent GPs (built for a particular category) contains fewer parameters than 
the Embedded GP model, hence they do not contain any knowledge of the 

categories. 

3. Use the mean function, m(x;) = h(x:)7B. Prior distribution used for B is a 
Gaussian distribution, N(G|b, B). Note that hyper-parameters, 3 were analyt- 
ically integrated out (see section 2.5) and are hyper-parameters not included in 

6. Parameters, 0, are estimated by MAP/ML. 
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B.3._ EMBEDDED GP (NOMINAL CASE) FOR REGRESSION WITH GP PRIOR, GP(M, K) 

4. Assign initial values to each hyper-parameter in @ using samples from Gaussian 

distributions. 

5. Use an optimization routine such as, scaled conjugate gradient (SCG) to mini- 

mize, 

= log p(8|X,y) = 1 x ((—0.5 x e) — (0.5 x (y— #) x (4’\ (A\ (y= H1)))) - 
Me x log(2 x m)) — log(p(@)) in respect to 0, where e = oe log Ai, Aa = 

eig(K(X,X) +h" Bh), A = chol(K(X,X) +h’ Bh)? yp represents the mean 
function evaluated at each of the training points. A is an upper triangular 

matrix has a result of performing Cholesky decomposition on K(X, X). 

6. Use the hyper-parameters, 07, op ¢i,t = 1,...,Na (for separable kernels), 

@ (for isotropic kernels) to evaluate moments of the predictive distribution, 

p(y; ly, X,x;,@), where again Cholesky decomposition is used, 

© Blutly, X,x1,0) = w* + cov(xt, X) x (4’\ (A\ (vy —#)s 
© Var(ysly, X, x}, 6) = cov(sct, x¥) — eou(cf, X) x (A’ \ (A\ eou(X,x})). 

where j1* represents the mean function evaluated at each of the test points. 

7. Perform steps 1-6 for each combination of qualitative factors (or hence cate- 

gories). 
Note that, 

e If the minimization of the likelihood, p(y|X,@) is required minimize, 
} j 

~logp(y|X, 8) = —1 x ((-0.5 x e) ~ (0.5 x (y' x (4'\ (A\ (y)))) — $ x 
log(2 x 7)) instead of using Step 5. 

B.3. Embedded GP (nominal case) for Regression with 
GP prior, GP(m, K) 

Given training and test data, (X,y) and (X*,y*) which has nq continuous co- Embedded GP 
variates and n, categories (or n- different levels of qualitative factors). The following model for the 

steps are taken for this algorithm, eae inputs 

1. Gather all training and test data points which have the same qualitative fac- 

tors. Choose kernel, K which will be used in Embedded GP model. The total 

number of training and test points used in this model is given by Qj, and Qie 

respectively. The number of qualitative factors used in this algorithm is given 

by, jp. 

2. Given n, different combinations of qualitative factors, assign each combination 

to a hyper-parameter i,j. 

This transforms data input, x; = (24,1, 4,2, .--; Tings Wigi) Wixjar-1 Wi,jp) 

Xi = (5,1, Vi, 25-4) Tings V14 V2, -+-5 Une) + 
Vector v = (v1,025-:+sUnc) = (91,1915 91,2525 «+5 91,95} +++) JLinene)» 

The transformed input will be used in the Embedded GP. The notation, 6; = 1 

if the data point belongs to category j whilst the other variables, 6, = 0,k = 

deere oe Je 
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B.4, SAMPLING: EMBEDDED GP (ORDINAL CASE) FOR REGRESSION WITH GP PRIOR, GP(0, K 

3. Hyper-parameters, 2 (noise variance), oO; (process variance), j,i = 1,...,na 

(length scales for separable kernels), ¢ (length scale for isotropic kernels) and 

91,313 = 1,+-)Ne all re-parameterized to a form such as m?, e~™) to ensure 

the parameters are constrained to be positive. These hyper-parameters are 

contained in 0. 

4. Assign an initial value to each hyper-parameter in 8 using samples from Gaus- 
sian distributions. 

5. Use the mean function, m(x;) = h(x;)"3. The particular form of basis functions 
considered for data point, x;, were ha; = vjl, haji = vjxia Vj, 1 <j < 

Ne. Notice that for a particular input, x; the mean function will only contain 

two terms, yielding a separate mean function per category. Prior distribution 

used for @ is a Gaussian distribution, N(G|b,B). Hyper-parameters, 6 are 

analytically integrated out (see section 2.5), so therefore are not included as 

part of @. 

6. Use an optimization routine such as, scaled conjugate gradient (SCG) to mini- 

mize, i 

= log p(4|X, y) = —1x((—0.5xe)—(0.5x (y—(u)"b) x(A’\(A\(y—(1))"b))) — 
Qe x log(2 x m)) — log(p(@)) in respect to @, where e = )>* log A;,Ai; = 

eig(K(X,X) +h™Bh), A = chol(K(X,X) +h? Bh)’, and pw is Qy x 1- 
dimensional where this is the mean evaluated at each of the training inputs, 

X. Ais an upper triangular matrix has a result of performing Cholesky decom- 
position on K(X, X), and h? is an Qty X ne matrix where each row represents 

the evaluation of each basis function for a given data point, x;. 

7. Once having obtained @ which is a mode of p(@|X,y) use @ to transform the 

test points such that, 

; XP = hha Magy Wess Migr Why) > 
xf = (fa) hg, oo fgg V1 V2) 0+ Une) > where vector v = (v1,U2,.--;Unz) = 

(91,1915 91,2925 «+5 91,7555 +++s 91yne9ne)- 
The notation, 6; = 1 if the data point belongs to category j whilst the other 

variables, 6, =0,k =1,...,Nc,k # j. 

8. Use remaining hyper-parameters, 07, en ¢;,% = 1,...,nq (for separable kernels), 

¢ (for isotropic kernels) to evaluate moments of the predictive distribution, 

Plu ly, X,x?,@). Note that, suggestions 

e If the minimization of the likelihood, p(y|X,@) is required minimize, do 

not include — log p(@) in Step 6. 

B.4 Sampling: Embedded GP (ordinal case) for Regres- 

sion with GP prior, GP(0, K) 

Given training and test data, (X,y) and (X*,y*) which has ng continuous co- using the 

variates, and n- categories (or n¢ levels of qualitative factors). The number of qual- Embedded GP; 
itative factors used in the algorithm is jp. The following steps are taken for this eee oo 

algorithm, rior/likelihood 
rocedu 

1. Gather all training and test data points which have the same qualitative cate- » as 
gorical inputs. Choose kernel, & which will be used in Embedded GP. This GP 

model however contains a total of Qj, training and Qi test points. 
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B.4._ SAMPLING: EMBEDDED GP (ORDINAL CASE) FOR REGRESSION WITH GP PRIOR, GP(0, K) 

2. Given n¢ different combinations of qualitative factors, assign each combination 

to a hyper-parameter g),;. 

This transforms data input, 

5p = (G41 Beas ors Beas Wagga Wagar ey hap) 8 = (irs Pia, 4 Bing Gi) - 

‘The transformed input will be used in the Embedded GP. 

3. Hyper-parameters, 0? (noise variance), o (process variance), j,4 = 1,...;na 

(length scales for separable kernels), ¢ (length scale for isotropic kernels) and 
91,j.3 = 1,.+;Ne all re-parameterized to a form such as m, e-™ to ensure 

the parameters are constrained to be positive. These hyper-parameters are 

contained in 0. 

4. Choose initial values for @ using designs such as sampling from Gaussian dis- 

tributions. 

5. Use an sampling routine to obtain samples from, 

(0X, y) = exp7(-2X(-0.5xe)-(0.5x(y' x(4 \(A\(9)))) = 4 xlog(27)) —log(P(6)))) iliere 

C= ea log Ai, Ai = eig( K(X, X)), A = chol(K(X, X))'. Ais an upper trian- 
gular matrix has a result of performing Cholesky decomposition on K(X, X). 

Prior distribution over the hyper-parameters is indicated by p(@) which is fac- 

torizable over each hyper-parameter in 0. 

6. Having obtained i, samples, 00), ..., G2) wv p(O|X,y)- 

7. Consider a single test input data point, xj. For i=1,...,4c, transform the test 

point such that, 

, (i) , 

XE = (hrs Th ass Teng) Why? Whegg?-) Ubi) > x} = (@e,1, tka, vey Thynay 913) . 

Compute this over all test points. 

8. Use remaining hyper-parameters, o?, es i,t = 1,...,na (for separable kernels), 

¢ (for isotropic kernels) from current sample, 0 to evaluate moments of the 

predictive distribution, p(yjly,X, x70), (where again Cholesky decomposi- 

tion is used), 

© Blyjly, X,xj,0) = cov(xj, X) x (A’\ (A\ (y"))), 
¢ Var(yjly, X, x%,0) = cov(x}, xj) —cou(xf, X) x (A’ \ (A\ (cou(X, x3))). 

9. Having performed step 9 for all i, samples, use the results from these steps to 

evaluate (where @ is integrated over), 

© E(ysix}, X,y) = £ Dizi Bujlx}, X,y, 0) 
© Var(ys|xt,X,y) = £ Di, Var(yj lx}, X,y, 0)+Var(E(yjly, X, x7, 0). ic Qi=1 

10. Perform steps 10-11 for all test data inputs, to obtain the moments of predictive 

distribution, p(y |x}, X,y). Note that, suggestions 

 Ifsampling from the likelihood, p(y|X, 8) is required use — log p(y|X,@) = 
-1x ((—0.5 x e) — (0.5 x (y’ x (A’\ (A\ (y)))) — 8 x log(2 x 7) instead 
of using Step 5. 
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B.5. HYPERSPHERE GP FOR REGRESSION WITH GP PRIOR, GP(0, K) 

e in the case of nominal case, transform data input 

Xe = (G41, 24.2) 6 Linas Wij, Wigar) Whdp) > 
Xi = (415 Bi25 5 ings $1151) 91,262) ~~ 91,571 ILneIne)_ in place of Step 
2 and replace Step 7 by, x = (@h 1) Pha) Thyngs Why» Whi 09 Die 

See = Coby Pearse as Ores gt pay.) sna ne) 

B.5 Hypersphere GP for Regression with GP prior, GP(0, K) 

Because, Zhou et al. (2010) does not provide the predictive variances for the Hy- 
persphere GP model (in MATLAB code), the decision was made to implement our 

version of the model in MATLAB. Our implementation of the Hypersphere GP model 

is shown below, 

Given training and test data, (X, y) and (X*,y*) which has ng continuous co-variates 
and n, categories (or n, levels of qualitative factors). The following steps are taken 

for this algorithm, 

1 Gather all training and test data points which have the same qualitative cat- 

egorical inputs. Choose kernel, k which will be used in the Hypersphere GP 
model. The total amount of training and test points used in this Hypersphere 

GP model is given by Qtr and Qi. respectively. 

. Given ne different combinations of qualitative factors, assign each combination 

to value j, where j = 1,...,nc, which will be referred to as categories. This 

variable is not being inferred. 

. For each pair of categories, i, and j, generate variables 1;,;,Vi < j. 

. Hyper-parameters, a? (noise variance), ay (process variance), ;,1 = 1,...,na 

(length scales for separable kernels), ¢ (length scale for isotropic kernels) 1i,;, 
* are all re-parameterized to a form such as m2, e~) to ensure the parameters 

are constrained to be positive. These hyper-parameters are contained in 0. 

. In addition, all variables, |;,; have to be constrained to lie in interval (0, 7]. 

This is achieved by using the following parameterization (arctanm + 4) for all 

1,3 Vi <j where i < j. 

. Assign initial values to each of the hyper-parameters, @ using a Latin Hypercube 
design or by sampling from Gaussian distributions. Construct the correlation 

matrix, T. 

. Use an optimization routine such as, scaled conjugate gradient (SCG) to mini- 

mize, 

— log p(6|X, y) = —1 x ((—0.5 x e) — (0.5 x (y’ x (A’\ (A\ (y)))) = 9 x log(2 x 
m)) —log(p()) 

in respect to 0, where e = yee log Ai,Ai = eig(K(X, X)), a = chol( K(X, xe 
A is an upper triangular matrix has a result of performing Cholesky decompo- 

sition on K(X, X). 

. Once having obtained 6 which MAP, use these hyper-parameters, O24, Ge, oi,t= 

1,...,mq (for separable kernels), ¢ (for isotropic kernels) and |;,; Vi < j to 
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B.5. HYPERSPHERE GP FOR REGRESSION WITH GP PRIOR, GP(0, K) 

evaluate moments of the predictive distribution, p(yj|y, X, x}, 6), (where again 

Cholesky decomposition is used) 

© Elutly, X,xf,6) = cout, X) x (A’\(A\ (y’))), 
© Var(yly, X,x}, 8) = cou(x}, x?) — cov(s?, X) x (4’ \ (A\ (cov(X,2¢)))). »XG> 

Note that, suggestions 

    

e when the Hypersphere GP model uses a mean function, it will be in the 

form, m(x;) = h(xi)?B. The basis functions considered for data point, x; 
were ho; = vj1, and hgj_; = vj2;,1 for Vj, 1 < 7 < ne. Normal priors were 

used on 8, where N(G|b,B). These parameters, 3, were integrated out 
analytically. These parameters are not included in @. Instead of computing 

steps 7 — 8, steps 6 and 8 in Appendix B.3 are computed instead, with the 

notable difference in the hyper-parameters, @ used. 
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Appendix C 

Simulated Tempering Suggestion 

This section reviews the modified version of Simulated Tempering (ST) which was 

used for experimentation in Chapter 5. 

Suppose the distribution to be sampled from is p(@). Stationary distributions at 

each temperature level, i, on the temperature ladder, would have the form, 

log p(@) 

FO) = exp 7) 

A possible mode, {3p for distribution, p(@) could take a very big value, and pro- 
grams such as MATLAB could struggle with values such as exp” (-P(o)) in this case 
due to numerical reasons. To make ST more stable, the following ST algorithm has 

been suggested and used in our work. 

1. Use (non-linear) optimization routine such as SCG to find the maximum of 
the distribution, log p(@). Use the (global) mode of p(@) found to re-scale the 

stationary distributions, 7(0,7;). Stationary distributions will take the form, 

(= 25210) -Hos(p(60)) 
m;(0, Tj) = exp % . 

2. Choose the temperatures 7; on the temperature ladder of size m, and obtain the 

normalization constants, Z; for i = 1,...,m. The m temperature levels are indi- 

cated by i = 1,...,m. Normalization constants are obtained using importance 

sampling, where the sampling distribution is a product of uni-variate Gaussian 
distribution. 

3. Begin the ST algorithm at the highest temperature in the temperature ladder. 

Initialize values for 0. 

4. At the current temperature, update 8 by using component-wise MH updates 

using the distribution, 7(@, 7;). This is done for 6 iterations. 

5. Propose increasing or decreasing the temperature, J; by one temperature level,j = 

i+ 1, according to temperature transition probabilities, pj. = 1.0 if 7 = 1, 

Pmm-1 if t= m and pi,i41 = pii-1 = 0.5 ifl<i<m. 

6. MH-step is used to decide whether to accept or reject the proposed temperature, 

T; based on, 

oe = ZiTi(9, Ts) Di. 
Zini(0,T,)pig” 

where the temperature change from i-th to j-th positions in the temperature 

ladder is given with probability min(1, a). 
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7. Repeat steps 3-5 for a M number of temperature transitions, 

8. Keep the samples which correspond to the temperature 7; = 1. 

The normalization constant, Z; for the lowest temperature T; = = 1 on the ladder, 

could be very large because of mode, J, gives a high functional value, p(G)). By 

rescaling the stationary distributions as like this, will make the ST algorithm more 

stable. This version of ST will be used for experimentation. 
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