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Abstract

Tirzepatide is a novel glucose-dependent insulinotropic polypeptide/glucagon-like

peptide 1 (GLP-1) receptor agonist approved in the United States as an adjunct to

diet and exercise to improve glycaemic control in adults with type 2 diabetes and

under investigation for use in chronic weight management, major adverse cardiovas-

cular events and the management of other conditions, including heart failure with

preserved ejection fraction and obesity and non-cirrhotic non-alcoholic steatohepati-

tis. The Phase 3 SURPASS 1-5 clinical trial programme was designed to assess effi-

cacy and safety of once-weekly subcutaneously injected tirzepatide (5, 10 and

15 mg), as monotherapy or combination therapy, across a broad spectrum of people

with type 2 diabetes. Use of tirzepatide in clinical studies was associated with marked

reductions of glycated haemoglobin (�1.87 to �2.59%, �20 to �28 mmol/mol) and

body weight (�6.2 to �12.9 kg), as well as reductions in parameters commonly asso-

ciated with heightened cardiometabolic risk such as blood pressure, visceral adiposity

and circulating triglycerides. In SUPRASS-2, these reductions were greater than with

the GLP-1 receptor agonist semaglutide 1 mg. Tirzepatide was well tolerated, with a

low risk of hypoglycaemia when used without insulin or insulin secretagogues and

showed a generally similar safety profile to the GLP-1 receptor agonist class. Accord-

ingly, evidence from these clinical trials suggests that tirzepatide offers a new oppor-

tunity for the effective lowering of glycated haemoglobin and body weight in adults

with type 2 diabetes.

1 | INTRODUCTION

Type 2 diabetes is characterized by a multiplicity of pathophysiologi-

cal components, which includes insulin resistance, defective insulin

secretion, adiposity, decreased incretin effect, increased glucagon

secretion and dyslipidaemia.1-5 Consequently, type 2 diabetes is more

than a challenge of hyperglycaemia. For example, a retrospective

study of more than one million adults with type 2 diabetes in the

United States [median age of 65 years, diabetes duration of 4 years

and glycated haemoglobin (HbA1c 6.8%)] reported that 82% had

hypertension, 78% had obesity or overweight, 24% had chronic kid-

ney disease and 22% cardiovascular disease.6 Furthermore, a meta-

analysis of observational studies from 20 countries reported that the

global prevalence of non-alcoholic fatty liver disease among people

with type 2 diabetes was 56% and the prevalence of non-alcoholic

steatohepatitis was 37%.7
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Obesity is the strongest risk factor for type 2 diabetes,8,9 a major

contributor to insulin resistance,2,10 and is involved in the pathophysiol-

ogy of hypertension, dyslipidaemia and non-alcoholic fatty liver dis-

ease.11,12 Given their intertwined pathophysiology, body weight loss

can have beneficial effects on glycaemic control, insulin sensitivity and

comorbidities.10,13 The American Diabetes Association (ADA) recom-

mends weight loss of at least 5% through diet, physical activity and

behavioural therapy for most people with type 2 diabetes who have

overweight or obesity.14 Greater weight loss may offer the possibility

of reversing the metabolic abnormalities of type 2 diabetes resulting in

improvement of glycaemia up to the achievement of diabetes remis-

sion.15-19 The possibility of achieving remission of type 2 diabetes asso-

ciated with weight loss was reported in several studies evaluating

different types of intervention (lifestyle changes, medication, bariatric

surgery, or a combination of those), having different designs and con-

ducted in different settings. The exact definitions of remission, based

generally on the ability to maintain non-diabetes glycaemia without

glucose-lowering treatment, differed between these studies. Nonethe-

less, the beneficial effects of greater weight loss on glycaemia reinforce

the importance of weight management for people with type 2 diabe-

tes.19 Modest weight loss of at least 5% can improve cardiovascular risk

factors such as blood pressure and lipids,14,20,21 and weight losses of

≥7% may improve non-alcoholic fatty liver disease.22,23

Although several classes of glucose-lowering agents are available

as treatments for type 2 diabetes, half to three-quarters of people

may not meet individualized glycaemic targets.24-28 With lifestyle

intervention in the trial setting, as few as two-fifths of participants

achieve modest weight loss of ≥5% or ≥7% in the first year.29-31 There

is currently a need for more effective therapies to enable people to

achieve glycaemic control, address the metabolic disorders associated

with type 2 diabetes, and meet more ambitious weight loss targets, as

part of individualized treatment plans.

Two gut-derived incretin hormones, glucose-dependent insulino-

tropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are

secreted in response to nutrients, mediate the incretin effect and facili-

tate glycaemic control (Figure 1).32 This effect is diminished in people

with type 2 diabetes but can be partially restored with glucose-lowering

interventions.33-37 GLP-1 receptor agonists can improve glycaemic con-

trol and reduce body weight in people with type 2 diabetes through

enhancement of glucose-stimulated insulin secretion, reduced food

intake, inhibition of glucagon secretion in hyperglycaemic or euglycae-

mic states, and delayed gastric emptying.33,38-44 GIP also enhances

glucose-stimulated insulin secretion in people without type 2 diabetes

whereas this effect is diminished in people with type 2 diabetes, but

unlike GLP-1, it stimulates glucagon secretion in hypoglycaemic

states.45-51 In normal physiology, these two incretin hormones exert

relatively short-lived effects at their respective receptors because of

their rapid degradation by the dipeptidyl peptidase-4 enzyme and a

resulting half-life of minutes.52 Tirzepatide is a single modified peptide

with GIP and GLP-1 receptor agonism approved for treatment of peo-

ple with type 2 diabetes in the United States and under investigation

for its effects on chronic weight management, heart failure with pre-

served ejection fraction and obesity, major adverse cardiovascular

events (MACE) and non-cirrhotic non-alcoholic steatohepatitis (NASH).

F IGURE 1 Gluco-regulatory actions of GIP and GLP-1 proposed based on preclinical and clinical studies, and actions of tirzepatide in adults
with type 2 diabetes. GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; T2D, type 2 diabetes
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1.1 | Tirzepatide molecule overview

Tirzepatide is a single modified GIP/GLP-1 receptor agonist engineered

from the GIP sequence to also have GLP-1 activity. Tirzepatide was

designed to achieve GIP receptor affinity comparable with that of

native GIP and to bind the GLP-1 receptor with approximately 5-fold

weaker affinity than native GLP-1 (Panel).53 The molecule is a 39 amino

acid linear peptide that includes a C20 fatty diacid moiety and has a

half-life of approximately 5 days to enable once-weekly subcutaneous

injection.54 In preclinical models, tirzepatide engages the GLP-1 recep-

tor as a biased agonist signalling towards the generation of cyclic aden-

osine monophosphate (cAMP) with reduced recruitment of β-arrestin

potentially leading to diminished GLP-1 receptor internalization.53

These experiments suggest this mechanism may enable sustained sig-

nalling of tirzepatide at the GLP-1 receptor potentially contributing to a

greater insulinotropic effect at pancreatic beta cells.53 However, the

clinical implications of biased agonism remain unclear.

Clinical studies showed that the effects of tirzepatide on glycaemic

control are underpinned by concurrent improvements in β-cell function,

insulin sensitivity and α-cell function.55-57 Tirzepatide (15 mg) signifi-

cantly improved first phase, second phase, and total insulin secretion

and insulin sensitivity.57 In meal tolerance testing, tirzepatide also

reduced fasting and meal-stimulated glucagon secretion.57 Evidence

from studies in mice suggest that the improvements in insulin resistance

with tirzepatide are both weight dependent and independent.58 Initial

studies in humans indicate that weight loss may only partly account for

improvement in insulin sensitivity and that tirzepatide may provide

greater improvement in insulin sensitivity than a selective GLP-1 recep-

tor agonist per unit weight loss, with this effect being most evident in

those with greater weight loss.55,59

Additional results from mechanism of action studies indicate that

tirzepatide reduced energy intake and may reduce appetite, as

assessed via a visual analogue scale.60,61 However, these reductions

did not differ from the GLP-1 receptor agonist semaglutide.61

PANEL. PRECLINICAL CHARACTERIZATION,
PHARMACOKINETICS AND PHARMACODYNAMICS
OF TIRZEPATIDE

Tirzepatide binds with high affinity to human GLP-1 and GIP recep-

tors expressed on transfected HEK293 cells.54

Binding affinity [Ki +/�SEM (nM)]

• GIP receptors: 0.135 +/�0.020

• GLP-1 receptors: 4.23 +/�0.23

Tirzepatide potently stimulates cAMP accumulation by human

GLP-1 and GIP receptors expressed on transfected HEK293 cells.54

Intracellular cAMP accumulation [EC50 +/�SEM (nM)]

• GIP receptors: 0.0224 +/�0.0053

• GLP-1 receptors: 0.934 +/�0.068

Tirzepatide stimulated cAMP accumulation in differentiated

human adipocytes that express GIP receptors but not GLP-1 recep-

tors. The effect was comparable with that of GIP alone.54

Pharmacokinetics below are average values from healthy single

ascending dose cohorts administered 0.25-8.0 mg doses subcutane-

ously. Pharmacokinetics in healthy participants are comparable with

those with type 2 diabetes54

• Geometric mean maximum observed drug concentration (Cmax) for

5.0 mg: 397 ng/ml

� Intersubject variability for Cmax ≤30% across doses

• t1/2: �5 days

• CL/F: 0.056 L/h

• Vz/F: 9.5 L

Pharmacokinetics appear dose proportional, Cmax reached within

24-48 h post-dose.

Average accumulation following four weekly doses: 1.58.

Tirzepatide delays gastric emptying; e greatest after 1 dose and

undergoes tachyphylaxis with repeated once-weekly dosing.64

Intrinsic factors

• no clinically meaningful effect of renal or hepatic impairment62,63;

• dose adjustment may not be required in patients with renal

impairment;

• dose adjustment may not be required in patients with hepatic

impairment.

Binding affinity and cAMP potency data are mean +/�SEM,

Cmax, Cl/F and Vz/F are geometric mean (% CV). Where, CL/F,

apparent total body clearance of drug following subcutaneous

administration; T1/2, half-life associated with the terminal rate

constant in non-compartmental analysis; Vz/F, apparent volume of

distribution of drug during terminal phase following subcutaneous

administration.

1.2 | Dosing and administration

The preclinical characterization, clinical pharmacokinetics and pharma-

codynamics of tirzepatide are presented in the Panel. Tirzepatide

pharmacokinetics were similar in participants with renal impairment

(lowest estimated glomerular filtration rate category: end stage renal

disease (ESRD)) or hepatic [up to severe (class C) on Child-Pugh score]

impairment compared with healthy subjects, indicating that dose

adjustment may not be required for these groups.62,63 Tirzepatide also

delays gastric emptying with this effect diminishing over time.64 An

approximate 20% reduction in the overall exposure of oral contracep-

tives was observed following the administration of a single 5 mg dose

of tirzepatide.65 These results were observed in a study conducted at

a point where the effect on gastric emptying was maximal, namely fol-

lowing a single 5 mg dose.65 This study reflects the effect of a single

5 mg dose of tirzepatide on oral contraceptive absorption and does
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not take into account tachyphylaxis observed with repeated dosing.65

A gastric emptying delay is also observed in patients taking other

GLP-1 receptor agonists and the effect diminishes over time.66-72 The

dosing recommendation for tirzepatide is to initiate treatment at

2.5 mg and escalate in 2.5 mg doses at 4-week intervals.65

In the Phase 3 studies, as in the approved prescribing information,

the tirzepatide initiating dose was 2.5 mg once weekly and tirzepatide

was increased by 2.5 mg every 4 weeks. In the Phase 3 studies, this

was done until the target dose (5, 10 or 15 mg) was reached

(Figure 2). The prescribing information indicates that the 2.5 mg dose

is for treatment initiation and is not intended for glycaemic control.65

This gradual dose escalation scheme was informed by earlier studies

that indicated a low starting dose with small dose increments

improved tolerability and was associated with a more favourable side-

effect profile.77,78

1.3 | Design of the SURPASS 1-5 clinical
programme

The Phase 3 SURPASS 1-5 clinical trial programme was designed to

capture a spectrum of patient populations reflective of the disease

continuum and differing treatment options seen within clinical prac-

tice for type 2 diabetes.56,73-76

Figure 2 provides an overview of the SURPASS 1-5 studies. In

addition to HbA1c measurement, SURPASS-3 included a continuous

glucose monitoring substudy to evaluate 24-hour glucose profiles, as

well as a magnetic resonance imaging (MRI) substudy to examine the

effect of treatment on liver fat content and other measures, such as

visceral fat.79,80 The criteria for increased cardiovascular risk in

SURPASS-4 were known coronary, peripheral arterial or cerebrovas-

cular disease, or aged ≥50 years with either history of chronic kidney

disease and an estimated glomerular filtration rate of <60 ml/min per

1.73 m2 or history of congestive heart failure (New York Heart Asso-

ciation Class II or III).75

As different populations were recruited to reflect the type 2 dia-

betes disease continuum, baseline characteristics (such as diabetes

duration and mean HbA1c) varied across the studies (Figure 2).

Data presented here are from the efficacy estimand of each

study, which represents on-treatment efficacy without the influence

of rescue therapy. Results from the efficacy estimand are generally

aligned with those from the treatment-regimen estimand, which rep-

resents efficacy irrespective of adherence to study drug or initiation

of rescue therapy.56,73-76

F IGURE 2 Overview of the Phase 3 SURPASS 1-5 clinical programme56,73-76 presenting population, baseline therapeutics, comparators and
key baseline demographics for SURPASS 1-5 reflecting the progression of disease; molecule structure (tirzepatide is a 39 amino acid synthetic
peptide, GIP/GLP-1 receptor agonist conjugated to a C20 fatty diacid moiety); and dose esclation sheme (doses initiated at 2.5 mg once weekly
and increased by 2.5 mg every 4 weeks until assigned dose was reached and maintained for duration of trial). BMI, body mass index; CV,
cardiovascular; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide-1; HbA1c, glycosylated haemoglobin A1c; OAM,
oral antihyperglycaemic medication; SGLT-2i, sodium-glucose cotransporter-2 inhibitor; SU, sulphonylurea
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1.3.1 | Study durations

Study durations of 40 weeks (SURPASS-1, -2 and -5) and 52 weeks

(SURPASS-3) allowed for the gradual dose escalation scheme of up to

20 weeks to reach the 15 mg dose and a maintenance period to assess

therapeutic efficacy of the 15 mg dose for periods up to 32 weeks. In

SURPASS-4, the primary endpoint was at 52 weeks with treatment

continued to a maximum of 104 weeks for some participants.

1.3.2 | Study comparators

Comparators included placebo (SURPASS-1 and -5), the GLP-1

receptor agonist semaglutide 1 mg, which was the highest available

dose at trial initiation (SURPASS-2), and titrated basal insulins, insu-

lin degludec 100 U/ml (SURPASS-3) and insulin glargine 100 U/ml

(SURPASS-4).

1.3.3 | Insulin use in SURPASS-3, -4 and -5

In SURPASS-3 and -4, the basal insulin comparators were titrated

using well-established treat-to-target algorithms to reach a prespeci-

fied fasting blood glucose value.74,75 The HbA1c change from baseline

results in the insulin arms using this treat-to-target algorithm were

comparable with those disclosed in Phase 3 trials.81-83 The mean daily

use at Week 52 was 48.8 U for insulin degludec and 43.5 U for insulin

glargine 100 U/ml. In SURPASS-5, background daily insulin glargine

100 U/ml (mean baseline: 0.4 U/kg/day) could be adjusted to main-

tain a target fasting blood glucose using self-monitored blood glucose

of <100 mg/dl. Whereas participants taking insulin glargine alone had

an increase of 25.1 U (75%) from baseline at Week 40, participants

taking tirzepatide required significantly less insulin [4.4 to �3.8 U

(13% to �11%)].76 Of note, participants could lower insulin use but,

per protocol, could not discontinue insulin therapy.

2 | EFFICACY

2.1 | Glycaemic efficacy

The primary endpoint for all five studies was change from baseline in

HbA1c at either 40 or 52 weeks, with a baseline HbA1c of 7.94% to

8.52% (63-70 mmol/mmol).56,73-76 In all five studies, tirzepatide was

associated with mean reductions from baseline in HbA1c ranging

from �1.87% to �2.59% (�20 to �28 mmol/mol) (Figure 3A). These

reductions were dose dependent and significantly greater with tirze-

patide 5, 10 and 15 mg than placebo (0.04%, SURPASS-1), semaglu-

tide 1 mg (�1.86%, SURPASS-2), insulin degludec (�1.34%,

SURPASS-3), insulin glargine 100 U/ml (�1.44%, SURPASS-4) and

placebo with background insulin (�0.93%, SURPASS-5). Data from

SURPASS-4 indicate that HbA1c reductions were maintained at

78 and 104 weeks, although participant numbers were smaller at the

latter time point, providing evidence for sustained glycaemic control

with tirzepatide treatment beyond 1 year.75 Across the five studies,

the magnitude of HbA1c reductions achieved were greatest in

SURPASS-4 and -5, probably reflecting higher baseline HbA1c in

these studies. In SURPASS-1, the less pronounced dose-response

could reflect the relatively early course of type 2 diabetes and

potentially more β-cell function in this population, as all three tirze-

patide doses led to near-normoglycaemia at 40 weeks and presum-

ably reaching a floor effect (mean HbA1c of 5.9%-6.1%;

41-43 mmol/mol).

Corresponding with the marked HbA1c reductions from baseline,

substantial proportions of tirzepatide-treated participants in each study

achieved an HbA1c of <7.0% (53 mmol/mol) and ≤6.5% (48 nmol/mol),

corresponding to treatment guideline recommendations for most people

by the ADA and European Association for the Study of Diabetes

(EASD).84,85 Across the five trials, 81%-97% of participants receiving tir-

zepatide achieved HbA1c <7% (53 mmol/mol) and 66%-95% HbA1c

≤6.5% (48 mmol/mol) (Figure 3B,C).56,73-76 For all doses and both

treatment goals, these results were significantly greater compared

with either placebo, semaglutide 1 mg, insulin degludec, insulin glar-

gine 100 U/ml, or placebo with background insulin. More partici-

pants who received tirzepatide also achieved HbA1c <5.7%

(39 mmol/mol) compared with all comparators (Figure 3D).56,73-76

In SURPASS-2, a composite endpoint assessing the proportion of

participants who achieved HbA1c ≤6.5% (48 mmol/mol) without clini-

cally significant (<54 mg/dl) or severe hypoglycaemia and with ≥10%

weight loss was met by 32%-60% of participants who received tirze-

patide compared with 22% who received semaglutide 1 mg.56

Fasting serum glucose (FSG) was significantly reduced by all tirze-

patide doses in SURPASS-1, -2 and -5 at either 40 or 52 weeks com-

pared with placebo, semaglutide 1 mg and placebo with background

insulin, respectively.56,73,76 FSG levels at endpoint did not differ from

insulin degludec in the 10- and 15-mg groups in SURPASS-3 and in

SURPASS-4 did not differ from insulin glargine 100 U/ml in the 5-

and 10-mg groups but were significantly lower in the 15-mg group

(Figure S1). In SURPASS-3 and -4, significant reductions in FSG com-

pared with baseline were apparent as early as 2 weeks (the earliest

measurement) after treatment initiation when all participants received

2.5 mg.74,75 Across the two studies and three dose groups, the magni-

tude of this change at 2 weeks was �30.3 to �34.0 mg/dl (�18% to

�20%). In a small Phase 1 study, 24 h following treatment with a

2.5 mg initiating dose of tirzepatide, there was a non-statistically sig-

nificant (vs. placebo) decrease from baseline of –19 mg/dl in FSG.

However, on Day 8 (pre-dose) a statistically significant (vs. placebo)

reduction of �39 mg/dl occurred, indicating early glucose-lowering

potential following tirzepatide initiation.86

Overall daily mean, premeal daily mean and 2-h postmeal daily

mean measured during 7-point self-monitored blood glucose profiles

indicate that tirzepatide enabled participants to maintain a signifi-

cantly lower blood glucose level throughout the day in all five studies

at 40 or 52 weeks.56,73-76

In addition to the significant reductions in HbA1c and FSG, tirze-

patide treatment significantly increased (to 73%) the proportion of a
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F IGURE 4 Body weight loss with tirzepatide in SURPASS 1-5.56,73-76,87 Data are estimated mean (SE) or percentage and from the modified
intention-to-treat population (efficacy analysis set) of each study. (A) Body weight change from baseline to the primary study endpoint;
(B) proportion of participants achieving ≥5% weight loss at the primary study endpoint; (C) body weight change from baseline over time in
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Sema, semaglutide; SGLT-2i, sodium-glucose cotransporter-2 inhibitor; SU, sulphonylurea
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24-h period spent within a tight target glucose range (71-140 mg/dl,

3.9-7.8 mmol/L) compared with insulin degludec treatment (48%) at

52 weeks.79 This time spent in tight target glucose range was also

accompanied with a smaller within-day glucose coefficient of variation

(CV %) and significant reduction in CV% compared with insulin deglu-

dec, indicating low glycaemic variability with tirzepatide.

2.2 | Weight loss

Across the five SURPASS studies and the spectrum of people with

type 2 diabetes represented in them, the mean baseline body weight

ranged from 86 to 95 kg.56,73-76 Tirzepatide showed clinically mean-

ingful reductions in body weight and a significantly higher proportion

of participants achieving 5%, 10% and 15% body weight loss targets

versus placebo and active comparators.56,73-76

The average weight loss ranged from 6.2 to 12.9 kg across the

three dose groups for all five studies. Weight loss followed an

approximately dose proportional pattern where tirzepatide 5 mg

was associated with 6.2 to 7.8 kg loss, 10 mg with 7.8 to 10.7 kg

loss and for 15 mg 9.5 to 12.9 kg loss (Figure 4A).56,73-76 All tirze-

patide doses significantly reduced body weight compared with

semaglutide 1 mg, and weight loss with tirzepatide 15 mg

(�12.4 kg) was double that with semaglutide 1 mg (�6.2 kg).56

Body weight reductions were also evident when tirzepatide was

combined with therapies associated with weight gain, such as

insulin or sulphonylureas.39,75,76,85

Up to 88% of participants who were assigned tirzepatide 15 mg

reached at least 5% weight loss from baseline at Week 52, where the

average starting weight was 94.3 kg and 32% were being treated with

metformin plus an sodium-glucose cotransporter-2 (SGLT2) inhibitor

(range 77%-88% for SURPASS 1-5) (Figure 4B).56,73-76 Among partici-

pants who received tirzepatide 15 mg, at least 10% weight loss was

achieved by up to 69% (range 47%-69%), and at least 15% weight loss

was achieved by up to 43% (range 27%-43%) (Figure S2A,B).56,73-76 The

proportion of participants assigned to tirzepatide who reached these

weight loss targets was consistently higher compared with semaglutide

1 mg (Figures 4B and S2A,B).56,87 In tirzepatide-treated participants who

used background insulin, 7% to 85% reached the weight loss targets of

at least 5%, 10% or 15% (Figures 4B and S2A,B).76

Weight reduction with tirzepatide began during the dose-escala-

tion phase as early as 4 weeks after treatment initation and continued

without appearing to plateau by the primary study endpoints at 40 or

52 weeks.56,73-76 In SURPASS-4, with a variable treatment period up

to 104 weeks, weight loss reached a plateau at about 1 year and was

sustained for up to 18 months to 2 years (Figure 4C).75

2.3 | Cardiometabolic measures

The substantial reductions in body weight achieved with tirzepatide

were accompanied by significant reductions in waist circumference

compared with placebo or active comparator in each study.56,73-76 For

example, in SURPASS-2 waist circumference decreased by 6.9 to

9.9 cm with tirzepatide and 5.6 cm with semaglutide 1 mg at Week

40 from a mean baseline waist circumference of 109.3 cm.56 Similarly

in SURPASS-4, a reduction in waist circumference was observed to

52 weeks in the tirzepatide arms and this was sustained through to

104 weeks, although participant numbers gradually decreased beyond

52 weeks.75

Regarding lipid profile changes, at 40 weeks in SURPASS-2, tri-

glyceride levels were lower in those who received tirzepatide

(�19.0% to �24.8%) than semaglutide 1 mg (�11.5%) and high-

density lipoprotein cholesterol levels were higher (6.8%-7.9%

vs. 4.4%).56 Changes in low-density lipoprotein cholesterol (�5.2% to

�7.7% vs. �6.4%) and total cholesterol (�5.5% to �6.3% vs �4.8%)

levels were similar between tirzepatide and semaglutide 1 mg. In the

high cardiovascular risk population of SURPASS-4, all tirzepatide arms

reduced triglycerides (�16.3% to �22.5% vs. �6.4%), low-density

lipoprotein cholesterol (�6.8% to �8.3% vs 1.4%) and total choles-

terol (�5.1% to �5.6% vs. 0%) and increased high-density lipoprotein

cholesterol (6.7%-10.8% vs. 2.9%) compared with baseline and insulin

glargine 100 U/ml.75 These improvements occurred on top of back-

ground lipid-lowering therapy use, which 82% used at baseline with

little change throughout the study.75

Normal liver fat content is generally considered to be <5%, although

this varies depending on the measurement method used.88 A ≥30% rela-

tive reduction in liver fat assessed by MRI-proton density fat fraction

(PDFF) has been associated with improvement in NASH.89 In a meta-

analysis, people with a ≥30% relative decline in MRI-PDFF were more

likely to have a histological response (51% vs. 14%, p < .001) and NASH

resolution (41% vs. 7%; p < .001) than those with a smaller decline.90 In

people with type 2 diabetes, elevated liver fat content and increased vis-

ceral fat have been associated with an increased risk of cardiometabolic

complications.91,92 In the MRI substudy of SURPASS-3, tirzepatide

reduced liver fat content (measured by MRI-PDFF) to a significantly

greater extent than insulin degludec (�8.09% vs. �3.38%) at Week 52.80

More tirzepatide-treated participants achieved a liver fat content of

≤10% (60%-78% vs. 35%) and a relative decrease in liver fat content

from baseline of ≥30% (67%-81% vs. 32%). In addition, up to 48% of par-

ticipants who received tirzepatide reached a liver fat content <6%. Tirze-

patide was also associated with clinically meaningful reductions in

abdominal visceral adipose tissue (�1.10 to �1.65 L) and abdominal sub-

cutaneous adipose tissue (�1.40 to �2.25 L) volumes, both of which

increased in the insulin degludec arm (0.38 and 0.63 L, respectively).

3 | SAFETY

3.1 | Overview and adverse events

The safety profile of tirzepatide was generally similar to that of the

GLP-1 receptor agonist class and tirzepatide-related safety findings

were consistent across SURPASS 1-5.56,73-76 Tirzepatide was gener-

ally well tolerated. However, discontinuation because of adverse

events varied between tirzepatide and comparators in some studies
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(Table S1).56,73-76 Overall, 3% to 11% of participants who received tir-

zepatide reported treatment discontinuation because of adverse

events, in comparison with placebo (3%), semaglutide 1 mg (4%), basal

insulins (1%-5%) and placebo with background insulin (3%). Consider-

ing SURPASS-2 specifically, adverse events were the most common

reason for treatment discontinuation with tirzepatide and semaglu-

tide. This was more common with tirzepatide 10 [40 participants (9%)]

and 15 mg [40 participants (9%)] than with tirzepatide 5 mg [28 partic-

ipants (6%)] and semaglutide 1 mg [19 participants (4%)].56 The pro-

portion of participants experiencing ≥1 treatment-emergent adverse

event (TEAE) was similar between tirzepatide and comparator in each

study (Table S1), and similar TEAEs emerged as common across the

studies (Table S2).56,73-76

Generally, the proportions of participants who reported serious

adverse events (SAEs) were similarly distributed between tirzepatide

and comparator treatment arms (Table S1), and the range of SAEs

reported is consistent with that reported for semaglutide 1 mg in

the SUSTAIN programme.93-97 A higher number of SAEs was

reported in tirzepatide-treated participants than those who received

semaglutide 1 mg in SURPASS-2. The most frequent SAE reported

was COVID-19-related pneumonia in both the tirzepatide (0.4%)

and semaglutide 1 mg (0.9%) groups.56 Overall, 79 deaths occurred

in the SURPASS 1-5 studies, 41 (1%) in the tirzepatide arms and

38 (2%) in the comparator arms (Table S1). In SURPASS-2, there

were five deaths related to COVID-19, with the death of a sixth

being adjudicated as from cardiovascular causes but with suspected

COVID-19.56 These occurred in five (0.4%) participants who

received tirzepatide and one who received semaglutide (0.2%). In

the high-risk population of SURPASS-4, six (0.6%) COVID-

19-related deaths were reported in the tirzepatide arms and eight

(0.8%) in the insulin glargine 100 U/ml arm.75 There was one

COVID-19-related death in a tirzepatide-treated participant in
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SURPASS-3 (<0.1%) and none in SURPASS-1 or -5.73,74,76 No deaths

were considered related to study medications.

3.2 | Gastrointestinal adverse events

As expected from the GLP-1 receptor agonist class, gastrointestinal

adverse events (including nausea, vomiting and diarrhoea) occurred; their

incidence was similar to those in the semaglutide 1-mg group of the

SUSTAIN programme.93-97 In SURPASS-2, with direct comparison with

semaglutide 1 mg, gastrointestinal adverse events (40%-46% vs. 41%),

nausea (17%-22% vs. 18%), vomiting (6%-10% vs. 8%) and diarrhoea

(13%-16% vs. 12%) were reported for participants on tirzepatide and

semaglutide 1 mg.56 As shown in time-course plots (Figure 5), most

events were mild or moderate in severity and occurred more frequently

in the dose-escalation phase in all groups. In SURPASS-4 (a population

with a relatively long duration of diabetes, high background medication

use, high number of comorbidities and the longest follow-up period) nau-

sea was reported in 12%-23% on tirzepatide and 2% on insulin glargine

100 U/ml; vomiting in 5%-9% and 2%; and diarrhoea in 13%-22% and

4%, respectively.75 Gastrointestinal side effects were also reported more

frequently than insulin glargine 100 U/ml with GLP-1 receptor ago-

nists.94,98,99 Consistent with the low rate of study treatment discontinua-

tion, ≤3% of participants who received at least one dose of tirzepatide

discontinued treatment because of either nausea, vomiting or diarrhoea

(Table S1).56,73-76

3.3 | Hypoglycaemia

Despite the magnitude of the observed effect of tirzepatide on glycae-

mia, the incidence of hypoglycaemia, defined as clinically significant

[blood glucose <54 mg/dl (<3 mmol/L)] or severe, was low across the

SURPASS studies.56,73-76 The incidence of hypoglycaemia was lower

for insulin-naïve participants assigned to tirzepatide (1%-2%) compared

with insulin degludec (7%) and for tirzepatide (6%-9%) compared with

insulin glargine 100 U/ml (19%).74,75 In the high cardiovascular risk

population of SURPASS-4, 145 hypoglycaemic episodes occurred in

the tirzepatide arms and 492 in the insulin glargine 100 U/ml arm.75

The incidence appeared to be dependent on concomitant medication

use; hypoglycaemia occurred in 10%-14% of tirzepatide-treated partici-

pants using a sulphonylurea at baseline and 1%-3% of those who did

not use a sulphonylurea. In SURPASS-5 (in which participants used

background insulin) tirzepatide did not increase hypoglycaemia com-

pared with placebo (14%-19% vs. 13%, respectively).76 These results

suggest that the risk of hypoglycaemia attributable to tirzepatide is low

when not combined with an insulin secretagogue or insulin.

3.4 | Blood pressure and cardiovascular outcomes

A cardiovascular meta-analysis, including people across the diabetes

clinical spectrum, indicated that tirzepatide did not increase the risk of

major cardiovascular events versus control (placebo or active compar-

ator).100 Overall, 142 people had at least one MACE-4 (cardiovascular

death, myocardial infarction, stroke and hospitalization because of

unstable angina) event, and the hazard ratio for tirzepatide versus

pooled control was 0.80 (95% CI: 0.57-1.11). Per regulatory guidance,

an upper bound of the 95% CI <1.8 for MACE-4 indicates that a drug

is not associated with an unacceptably high risk for cardiovascular

events versus comparators.101-104 There was also no increased risk in

the secondary composite outcome MACE-3 (cardiovascular death,

myocardial infarction and stroke). The ongoing SURPASS-CVOT,

which is anticipated to be completed in 2024, will evaluate the cardio-

vascular efficacy of tirzepatide compared with dulaglutide 1.5 mg

(NCT04255433); as such there is no cardiovascular indication

reflected on the prescribing information for tirzepatide.

Across the SURPASS studies, tirzepatide generally decreased blood

pressure over time with no return to baseline by the primary end-

point.56,73-76 Taking SURPASS-2 as an example, from a mean baseline

systolic blood pressure of 130.6 mmHg and diastolic blood pressure of

79.2 mmHg, mean systolic and diastolic blood pressure decreased with

tirzepatide (up to �6.5 and �2.9 mmHg, respectively), compared with

decreases of �3.6 and �1.0 mmHg, respectively, with semaglutide

1 mg at 40 weeks.56 In SURPASS-4, mean systolic and diastolic blood

pressures decreased with tirzepatide (up to �4.8 and �1.0 mmHg,

respectively) and increased with insulin glargine 100 U/ml (1.3 and

0.7 mmHg, respectively) at 52 weeks.75 A similar trend was observed

over the remainder of the study. As expected from the GLP-1 class,

transient increases in pulse rate were seen in the SURPASS studies,

with the magnitude of increase being similar to that observed with

GLP-1 receptor agonists in the literature and semaglutide 1 mg in

SURPASS-2.56,73-76,105-107 Although the mechanistic pathway is not

fully known, GLP-1 receptor agonists have shown neutral or protective

cardiovascular effects in cardiovascular outcomes trials.108

3.5 | Adverse events of special interest

The occurrence of adverse events of special interest are presented in

Table S3.56,73-76 Family or personal history of medullary thyroid carci-

noma was an exclusion criterion of SURPASS 1-5. No cases of medul-

lary thyroid carcinoma were reported during any of the trials.56,73-76

The prescribing information for tirzepatide includes a warning for the

risk of thyroid C-cell tumours. Hypersensitivity and injection site reac-

tions were infrequent with tirzepatide treatment.56,73-76 Few cases of

adjudicated pancreatitis and cholelithiasis were reported.56,73-76 Par-

ticipants with a history of proliferative diabetic retinopathy, diabetic

maculopathy, or non-proliferative diabetic retinopathy requiring acute

treatment were excluded from the Phase 3 studies. Few TEAEs of dia-

betic retinopathy were reported.56,73-76

In SURPASS-2 reductions in estimated glomerular filtration rate,

urine albumin/creatinine ratio, alanine transaminase and aspartate

aminotransferase at 40 weeks were comparable for tirzepatide and

semaglutide 1 mg.56 Although antidrug antibodies have been detected

in 51.1% among antidrug antibody-evaluable participants treated with
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tirzepatide across the Phase 3 studies there was no discernible impact

on efficacy, safety, or pharmacokinetics. Antidrug antibodies have also

been reported to varying extents with GLP-1 receptor agonists, again

with little apparent clinical relevance.109,110

4 | DISCUSSION

When considering treatment options for type 2 diabetes, in addi-

tion to glycaemic effects, factors such as comorbidities, hypogly-

caemia risk, effects on body weight, side effects and patient

preferences, including frequency of administration, should be con-

sidered.39,85,111 In addition to improving glycaemia, the take away

from the SURPASS 1-5 studies showed efficacy of tirzepatide to

reduce visceral adiposity, blood pressure, triglycerides, waist cir-

cumference, body weight and liver fat content. These improve-

ments were apparent across the diabetes continuum when used as

monotherapy in people newly diagnosed with type 2 diabetes and

as combination therapy with metformin, SGLT2 inhibitors and/or

sulphonylureas or insulin. The head-to-head SURPASS-2, -3 and -4

trials showed that tirzepatide achieved greater glucose lowering

and weight lowering than semaglutide 1 mg, titrated insulin glar-

gine 100 U/ml and titrated insulin degludec.

The vast majority of participants treated with tirzepatide achieved

HbA1c targets of <7.0% and ≤6.5% (53 and 48 mmol/mol) recom-

mended by ADA/EASD and AACE/ACE for most people with type

2 diabetes.84,85,111 A higher proportion of participants who received

tirzepatide also reached an HbA1c <5.7% (39 mmol/mol; reflecting

near-normoglycaemia) than with comparators, including semaglutide

1 mg.56,73-76 This may offer further benefit in reducing the risk of

micro- and macrovascular complications, provided it can be achieved

without significant hypoglycaemia.84,112 The risk of hypoglycaemia

with tirzepatide treatment remained low when not combined with an

insulin secretagogue or insulin.

Treatment options for people with type 2 diabetes that pro-

vide clinically meaningful weight loss have been limited to selec-

tive GLP-1 receptor agonists in high doses and to a lesser extent

SGLT2 inhibitors.39,113 Consistent with the current awareness that

weight management is an important factor in overall diabetes

care,14,19,39 tirzepatide provided clinically meaningful weight

reductions, even when used in conjunction with therapies associ-

ated with weight gain. These reductions were of a greater magni-

tude than with semaglutide 1 mg in SURPASS-2. Ameliorative

effects of 15% weight loss on type 2 diabetes progression to date

have been shown with non-pharmacotherapy means, but to date

pharmacotherapies have not been able to achieve this.19 However,

the weight loss results in people with type 2 diabetes treated with

tirzepatide suggest that the more ambitious targets of 10% or 15%

weight loss may be feasible for some people taking tirzepatide,

thus potentially conferring additional glycaemic benefit. Data from

SURMOUNT-1 also indicate the potential of tirzepatide as a thera-

peutic for people living with obesity without type 2 diabetes. After

72 weeks of tirzepatide treatment (up to 15 mg), mean body

weight changes were up to �23.6 kg (�23%), and up to 96%, 90%

and 78% achieved ≥5%, ≥10% and ≥15% body weight loss,

respectively.114

As semaglutide 2 mg has only been recently approved (2022) for

use in Europe and the United States, the SURPASS Phase 3 clinical

trial programme was limited to those doses available at the time

(1.0 mg) and did not include the semaglutide 2 mg dose. However, an

adjusted indirect treatment comparison using data from SURPASS-2

and SUSTAIN FORTE, leveraged the semaglutide 1 mg comparator to

assess the treatment effect of semaglutide 2 mg and tirzepatide

5, 10 and 15 mg on an aggregate data population.115 In this adjusted

indirect treatment comparison, tirzepatide 10 and 15 mg significantly

reduced HbA1c and body weight versus semaglutide 2 mg whereas

there were no differences between tirzepatide 5 mg and semaglutide

2 mg. The magnitude of these differences were also clinically mean-

ingful, with an estimated treatment difference for HbA1c reduction of

0.4% and body weight reduction of 3-5 kg for tirzepatide 10 and

15 mg compared with semaglutide 2 mg.

Use of a GLP-1 receptor agonist is recommended by ADA/EASD

in people with type 2 diabetes and established atherosclerotic cardio-

vascular disease and should be considered for those at high risk of

cardiovascular disease to reduce MACE risk.116 The ongoing

SURPASS-CVOT (NCT04255433) will provide definitive evidence on

the impact of tirzepatide on cardiovascular risk relative to the GLP-1

receptor agonist dulaglutide, which is also indicated for the reduction

in cardiovascular risk for people with established cardiovascular dis-

ease or multiple risk factors. Cardiovascular outcome trials for some

GLP-1 receptor agonists, including semaglutide 1 mg, focused on

populations with established cardiovascular disease.117-119 In contrast,

most participants in the REWIND cardiovascular outcome trial for

dulaglutide 1.5 mg, which showed reduced cardiovascular outcomes

with a similar effect size to other GLP-1 receptor agonist trials, had

cardiovascular risk factors without established cardiovascular dis-

ease.120,121 This indicates that dulaglutide may be a robust compara-

tor for tirzepatide in the SURPASS-CVOT. Currently available data

from SURPASS indicate beneficial effects on blood pressure and

lipids. Data from the cardiovascular meta-analysis, including the high

cardiovascular risk population in SURPASS-4, suggest no increased

cardiovascular risk with tirzepatide.100

SURPASS 1-5 did not include all population groups. For example,

women who were pregnant or breastfeeding were excluded from the

studies. Although there was no upper age limit across SURPASS 1-5

and the age profile varied across the studies, reflecting the different

inclusion and exclusion criteria, few participants were ≥85 years of

age. While SURPASS 1-5 excluded people <18 years of age, study

NCT05260021 will evaluate tirzepatide in paediatric and adolescent

participants.

5 | CONCLUSION

In the Phase 3 SURPASS-1-5 studies, which included >6000 peo-

ple with type 2 diabetes, tirzepatide was associated with
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clinically meaningful reductions in both HbA1c and body weight

when used across the diabetes treatment continuum, from mono-

therapy to combination with basal insulin. These data were gen-

erally representative of a broad spectrum of people with type 2

diabetes in terms of disease duration, comorbidities and compli-

cations, similar to clinical practice. In each study, the magnitude

of glucose-lowering efficacy and weight loss with tirzepatide was

greater than with comparators, which included semaglutide 1 mg

and titrated basal insulin glargine 100 U/ml and insulin degludec.

Tirzepatide was well tolerated, and its safety profile appears gen-

erally similar to the GLP-1 receptor agonist class. These findings

suggest that tirzepatide may be a useful therapy for many people

with type 2 diabetes as part of individualized patient-

centred care.
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