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ABSTRACT

Data Envelopment Analysis (DEA), provides an empirical estimation of the production frontier, based on
an observed sample of decision making units (DMUs). Except for the single input-single output case,
the asymptotic distribution of the DEA estimator can only be approximated through bootstrapping ap-
proaches. Therefore, bootstrapping techniques have been widely applied in the DEA literature to make
statistical inference for the cases when the production process has a single-stage structure. However, in
many cases, the transformation of inputs into outputs has an inner structure that needs to be consid-
ered. This paper examines the applicability of the subsampling bootstrap procedure in the approximation
of the asymptotic distribution of the DEA estimator when the production process has a network struc-
ture, and in the presence of undesirable factors. Evidence on the performance of subsampling bootstrap
is obtained through Monte Carlo experiments for the case of two-stage series structures, where overall
and stage efficiency estimates are calculated using the additive decomposition approach. Results indicate
great sensitivity both to the sample and subsample size, as well as to the data generating process. Sub-
sampling methodology is then applied to construct confidence interval estimates for the overall and stage
efficiency scores of railways in 22 European countries, where the railway transport process is decomposed

into two stages and the railway noise pollution problem is considered as an undesirable output.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Data envelopment analysis (DEA) is a non-parametric technique
based on linear programming, which is used to assess the rela-
tive performance of a homogeneous set of decision making units
(DMUs). Based on the seminal work of Farrell (1957), Charnes,
Cooper, & Rhodes (1978) and Banker, Charnes, & Cooper (1984) in-
troduced the two basic DEA models under the assumptions of the
constant returns to scale (CRS) and the variable returns to scale
(VRS) case, respectively.

In DEA, the efficiency of a DMU is measured as its distance
from an empirically constructed efficient boundary, and therefore,
its efficiency score depends on the available set of DMUs that
shape the frontier. Assuming that the available set of DMUs is a
sample generated from a population, the true efficient frontier is
unknown, and statistical inference methods can be used to pro-
vide estimations for the true efficiency scores. Banker (1993) was
among the first researchers to consider DEA as a consistent, but bi-
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ased maximum likelihood estimator (MLE) of the efficient frontier.
Since then, many studies have focused on deriving the convergence
rate of DEA estimator and its asymptotic distribution. Several boot-
strapping techniques have been developed and used to obtain the
sampling distribution of DEA estimators, as in multi-dimensional
settings, an analytical form is not possible to be derived.

Until now, studies on making statistical inference about DEA
have been limited to production processes with one-stage struc-
ture. However, there is a high volume of studies in the DEA field,
that have developed the Network DEA (NDEA) models to measure
the efficiency of DMUs with more complex production processes
that involve more than one stages to produce the final outputs.

The aim of this paper is to address this deficiency in the DEA
literature by studying the performance of subsampling bootstrap
in NDEA, through Monte Carlo simulations. Among the different
bootstrapping approaches, subsampling bootstrap is the computa-
tionally easiest one, and therefore, was chosen as the most appro-
priate for NDEA where the dimensions of the model are usually
higher compared to one-stage structures. In this paper, the gen-
eral two-stage structure is being studied and the stage efficiency
estimates are calculated using the additive decomposition ap-
proach, upon the assumption of VRS. Coverage probabilities of the
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confidence intervals for a fixed point coming from two data gener-
ating processes (DGPs) - defined on a five and a seven-dimensional
input-output space, respectively - are calculated. We show that in
NDEA coverage probabilities are more sensitive to the choice of
subsample size than in one-stage structures. Finally, the subsam-
pling methodology is applied on a data set referring to European
railways to demonstrate the performance of subsampling bootstrap
in real world cases.

The remainder of this paper is structured as follows.
Section 2 is a review of the main literature in statistical inference
about DEA and NDEA. In Section 3, the DEA estimator in the gen-
eral two-stage production process is defined. In Section 4 subsam-
pling methodology is adapted to NDEA. Section 5 includes details
about the Monte Carlo simulations and discussion of the results.
Section 6 is an illustration of subsampling to a data set, where
the production model has a network structure. Finally, in Section 7,
conclusions, limitations and future directions of this study are pro-
vided.

2. Literature review

Several studies focused on investigating the statistical proper-
ties of the CRS and VRS DEA estimators in different dimensions
and established their rates of convergence. Kneip, Park, & Simar
(1998) proved that the convergence rate of the VRS-DEA point es-
timator depends on the smoothness of the frontier. For the case
when the frontier is twice differentiable, and under the consis-
tency requirement that the input-output density is positive close
to the frontier and strictly positive on the frontier, they found that

2
the convergence rate is n~ p+¢+T, where p and q are the number of
inputs and outputs respectively. Under the global CRS assumption,
Park, Jeong, & Simar (2010) proved that DEA estimator converges

faster, at rate n” P¥a. In all cases, the rate at which the DEA es-
timator converges to the true frontier depends on the number of
inputs and outputs; as the dimensions of the model increase, the
number of data records should increase exponentially in order to
achieve the same rate of convergence. Simar & Wilson (2008) pro-
vided a more detailed discussion on the curse of dimensionality of
DEA estimators and a comparison with parametric estimators.

Gijbels, Mammen, Park, & Simar (1999) derived the analytical
form of the asymptotic distribution of DEA estimator under the
VRS, for the case of one input and one output. This is the only
case where the asymptotic distribution can be used in practice to
make inference. Jeong & Park (2006) extended their work to higher
output dimensions. Under the global CRS assumption, Park et al.
(2010) found that the DEA estimator follows an exponential dis-
tribution. However, in the multivariate cases it is difficult to esti-
mate the distribution’s parameters and thus, in practice, these re-
sults cannot be used for making inference.

In practice, except for the bivariate case, the only way to get the
sampling distribution of the DEA estimators in higher dimensions
is by using bootstrapping techniques. Bootstrap was first suggested
by Efron (1979) as a method to obtain the sampling distribution of
random variables through simulations. In bootstrap techniques, the
observed sample Xy, which consists of N random and independent
draws from a population, is assumed to mimic the population that
it comes from. Therefore, a bootstrap sample X}, drawn from the
original sample with replacement, can be treated as a sample gen-
erated from the population itself. This is known as naive bootstrap-
ping. By repeatedly imitating the data generating process (DGP) it
is possible to get a sufficiently large number of bootstrap samples.
The bootstrap sampling distribution obtained, mimics the original
sampling distribution.

In the DEA framework, the first study that applied a bootstrap
technique to approximate the distribution of the DEA estimator un-
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der the VRS assumption, was by Simar & Wilson (1998). DEA esti-
mates obtained with naive bootstrapping are inconsistent close to
the boundary, i.e. as the sample size tends to infinity, the estima-
tor does not converge to the true parameter. This happens because
the naive bootstrap estimate will equal with the sample estimate
with non-zero probability, whereas the probability that the sam-
ple estimate equals with the true parameter is zero. See Simar &
Wilson (1998; 2000) and Kneip, Simar, & Wilson (2008) for further
discussion and proof.

To overcome the inconsistency problem, Simar & Wilson
(1998) applied a homogeneous smooth bootstrap making the as-
sumption that the distribution of inefficiencies is common for all
DMUs. Although the homogeneity assumption is restrictive, this
method can give good estimations even with a relatively small data
set. Simar & Wilson (2000) extended their previous work to a het-
erogeneous smooth bootstrap, where the distribution of inefficien-
cies varies across the DMUs. In both studies, confidence intervals
for the efficiency scores of a fixed point (x,y) are constructed us-
ing the bias-corrected estimator. Simar & Wilson (1999) applied
the homogeneous bootstrap to estimate Malmquist indices and
suggested a procedure for confidence interval construction with-
out the explicit use of the bias-corrected estimates. Simar & Wil-
son (2002) developed hypothesis tests for examining the returns to
scale and suggested bootstrap procedures for the estimation of the
critical values for the test statistics.

Kneip et al. (2008) proved the consistency of two more
bootstrapping techniques, based on smoothing and subsampling,
respectively. The smoothing approach, requires smoothing both
the input/output density function and the frontier estimate and
is computationally very demanding. Kneip, Simar, & Wilson
(2011) suggested a simplified version of the double-smoothed
bootstrap. However, subsampling bootstrap - originally suggested
by Swanepoel (1986) - is computationally easier. It consists of
drawing m = N¥ observations, usually with replacement, for k ¢
(0, 1). In this way, the frequency at which the sample maximum is
drawn, is reduced, overcoming the inconsistency problem of naive
bootstrap. They also suggested a method to construct confidence
intervals without using the bias-corrected estimates to avoid ad-
ditional noise in the estimation procedure. Subsampling is easy to
implement, however, its performance is sensitive to the choice of
the subsample size m. Based on the minimum volatility criterion
suggested by Politis, Romano, & Wolf (2001) for the subsample size
selection, Simar & Wilson (2010) suggested an algorithm to choose
an optimal subsample size in the DEA context. They also studied
both subsampling with and without replacement and found that
the first one yields better results.

Various bootstrapping techniques have been widely applied in
one-stage DEA to obtain bias-corrected estimates and confidence
intervals for the efficiency scores. For example, in the DEA trans-
portation literature, Wanke (2012) used a Gaussian kernel to draw
bootstrap samples and provide confidence interval estimates for
the BCC efficiency scores of 68 Brazilian airports, and for testing
the returns-to-scale. Marchetti & Wanke (2017) applied a second
stage bootstrap truncated regression to assess the impact of con-
textual variables in the performance of the Brazilian rail conces-
sionaires. In Nwaogbe, Wanke, Barros, & Azad (2017), the impact
of contextual variables on 30 major Nigerian airports was assessed
by combining first stage bootstrap efficiency estimations with a
second stage censored quantile regression. Moradi-Motlagh & Em-
rouznejad (2022) provide a review of the main methodological de-
velopments and of the relevant software that was developed, as
well as an extensive overview of the most impactful articles on the
field.

In conventional DEA, the production of outputs is considered
to occur in one stage and the inner structure of the produc-
tion process is not taken into account. However, the operating
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process of a DMU may involve intermediate products which are
outputs of one stage and inputs to the next stage. Fire & Whittaker
(1995) and Fdre & Grosskopf (1996) were among the first studies
that considered the network structure of a DMU in its efficiency
assessment.

There are two main efficiency decomposition approaches that
are used in NDEA literature; the multiplicative and the additive
approach. Kao & Hwang (2008) suggested decomposing the overall
efficiency as the product of the two stage efficiencies. They linked
the two stages assuming that the aggregated outputs of the first
stage are introduced unchanged in the second stage. However, the
multiplicative decomposition approach can only be applied under
the CRS assumption, as under the VRS, the resulting models cannot
be linearised. Another limitation of the conventional multiplica-
tive approach is that it can be generalised to multi-stage series
structures only in the cases when there are no stage specific in-
puts and outputs. For general network structures, alternative mul-
tiplicative approaches have been developed, such as converting the
original model to a parametric linear one (see for example Zha &
Liang, 2010). Chen, Cook, Li, & Zhu (2009) decomposed the over-
all efficiency of a DMU as the weighted average of the stage ef-
ficiencies. They defined the decomposition weights endogenously,
so they can reflect the relative contribution of each stage to the
overall process. The additive decomposition approach has the ad-
vantage that it can be used both under the CRS and the VRS as-
sumptions. Cook, Zhu, Bi, & Yang (2010) extended the additive de-
composition methodology to general multistage series structures.
In NDEA, adjusting the inputs or outputs of a DMU by its efficiency
scores will not necessarily project the DMU on the frontier. Chen,
Cook, & Zhu (2010) suggested a model to get frontier projections in
two stage structures. Chen, Cook, Kao, & Zhu (2013) demonstrated
that in NDEA the duality between the envelopment and the mul-
tiplier model does not hold and suggested using the first one to
get the frontier projections and the second one for calculating the
overall and stage efficiency scores.

Despite the great number of applications of NDEA, there are
very limited attempts for making statistical inference in NDEA.
Trinh & Zelenuyk (2015), based on the work of Simar & Wilson
(2002), developed hypothesis tests to examine whether the dif-
ference between the first moments and the difference between
the density distributions of the efficiency scores in one-stage DEA
and NDEA is significant. Bostian et al. (2018) suggested a statisti-
cal approach to make inference about NDEA based on a parametric
Bayesian approach.

Dia, Takouda, & Golmohammadi (2020) applied a kernel
smoothing-bootstrap in a three-stage NDEA assessing the efficiency
of Canadian credit unions, where the CRS and VRS efficiency score
of each stage are calculated independently. The overall efficiency
is then calculated as the average or as the product of the stage
efficiency scores. To the best of our knowledge, there is no study
investigating the construction of confidence interval estimates for
the overall and stage efficiency scores in network production struc-
tures taking into account the connection between the stages.

3. DEA estimator in two-stage production processes

Consider a general two-stage series structure depicted in Fig. 1.
Suppose that a Decision Making Unit (DMU) in a first stage
consumes P inputs x, = (Xq,..., Xp) € Ri to produce R final first
stage outputs I = (I, ..., lz) € RR and Q intermediate outputs z; =
(z1.....29) € R%. In the second stage, intermediate products ob-
tained from the first stage, and external second stage inputs g; =
&1, gr) € Rfr are consumed to produce S final outputs ys =
(y1,‘..,ys) GR‘i.
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g.t=1...T
x,p=1...P zq,qzl,...,Q l l V,os=L..8
. R
Stage 1 Stage 2
S e
l,,r=1..R

Fig. 1. General two-stage series network structure of a DMU.

In this network structure, the true production possibility set
(PPS) of the overall production process is defined as

T= {(x, l,z,8y) e REFEF TSI can produce I, and z,

z and g can produce y}. (1)

Consider the decomposition of the production process into its
component stages and let T; and T, denote the PPSs of the first
and second stage respectively. Then,

T ={(x1,2) e RS**Q3(gy) e RIS : (x,1,2,8,y) € T}, (2)

T, ={(z8y) e RYT*3(x, 1) e R"*R: (x,1,2,8,y) e T}. (3)

T,T; and T, can be described by their input or output correspon-
dence sets, which inherit their properties. The input possibility sets
for the overall process, the first and the second stage, respectively
are

X(Ly) ={(x.2.8 eR*T|(x.1,2.gy) T}, (4)
Xi(l,z2) ={xeRE|(x,1,2) e T}, (5)
X)) ={(z8 eR¥|(z.8y) e B} (6)

and the output possibility sets of the overall process, the first and
second stage, respectively, are

Y(x,2,8) ={(Ly) e RS 5|(x,1,2,8.y) e T}, (7)
Y] (X) = {(I’Z) € ]RiJrQl(X? 172) S Tl}’ (8)
Y>(z.8) ={y e R}|(z.8y) e T>}. (9)

Concerning the properties of the input and output possibility
sets, the assumptions discussed in Shephard (1970) and (Banker
et al., 1984) are adopted in this study. Therefore, it is assumed that
all input/output sets defined above are closed, the input (output)
possibility sets are convex for all outputs (inputs), all inputs and
outputs are strongly disposable, and that each of the input/output
possibility sets defined above is the intersection of all the sets sat-
isfying these three properties.

The efficient boundaries of the input possibility sets are defined
as

X(Ly) ={(x,2.8)|(x.2,8) € X(1,y),0°(x,2z,8) ¢ X(I,y),V0 < 6° ?1135

0X1(,z) ={xlx e X(1,2),0'x ¢ X(1,z,y), Y0 < 6! < 1}, (11)
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%) ={z91(z8 eX(¥).0%(z,8) ¢ X(¥), V0 < 0? < 1}-( ”
1

Let DMU;j, denote a DMU under evaluation. Then, the Farrell
(1957) input efficiency measure of DMU;, for the overall process
and the two stages, respectively can be defined as

0°(x,1,z,g,y) = inf{6°10%°(x,z, g) € X, y)}, (13)
01(x,1,z) =inf{81|0'x € X, (I, 2)}, (14)
62(z,8.y) = inf{62|6%(z.8) € X>(y)}. (15)

For simplicity of notation, let 0%(x,1,z,g,y) =69, 01 (x,1,z) =6",
and 92(z,g,y) = 62. The Farrell input efficiency measure 9]‘.7;, ¢ =

0,1,2 of the DMU;; under evaluation is the euclidean distance
of the point (x;, 1, z;,.8j,.¥j,) from its projection to the over-
all or stage-efficient boundary, respectively, in direction parallel to
the subspace defined by the overall or stage-specific input coordi-
nates, respectively, while keeping the level of outputs fixed. The
output efficiency measures can be defined in a similar way, using
the overall and stage output feasibility sets, and can be found in
the Appendix. Note also that the above formulations refer to the
specific network structure, but they can be easily adapted to define
the efficiency measure when the production process has a different
structure.

In practice, the true production sets T, Ty, T, are unknown, and
therefore, the efficiency scores 9],4;, ¢ =0,1,2 of a DMUj, need

to be estimated based on the observed sample of DMUs. Let Sy =
{(xj.1j,2j,8;.y|ji=1.....N} be a random sample of N DMUs that
is assumed to be generated by an unknown data generating pro-
cess (DGP), P. It is assumed that the DGP P is such that the DMUs
included in Sy are ii.d random variables belonging to the con-
vex PPS T, and (xj,1;,z;) € Ty, (zj,8;.y;) € Tp, with j=1,..., N.
Let also QA]Q, 6! and 62 denote the estimators of the overall, the
first stage and the second stage efficiency, respectively, for DMU;,
j=1,2,., N, with respect to the observed sample Sy.

Estimates can be obtained by solving the mathematical pro-
grammes for the observed sample of DMUs. As noted by Chen et al.
(2013), in NDEA, the envelopment model can provide the overall
efficiency estimates and the frontier projections, but no informa-
tion on the stage efficiency estimates, while the multiplier model
can be used to obtain the overall and stage efficiency estimates.
Since the scope of this study is to make statistical inference about
the overall and stage efficiency scores, the multiplier model is be-
ing used.

Under the VRS assumption, the independent efficiency score es-
timates of each stage for a DMU; , in the input orientation, can be

Jo’
obtained by solving the following fractional programmes:

R
Zqul Ya'zqj, + Yrer Mrlrj, +uf

e ) = T 150
Zp:] vPXPjU
st.fl <1, j=1...N (16a)
Up. fr, Vg > 0,
u” free in sign
N B
i tu
max '0\]‘20 _ 5 ZSB=1 NsYsjo ‘;
2 q=1 Ya Zajo + 2t=1 Teijy
st.62<1, j=1,....N (16b)

i =
B 0
Vg T Ns > U,

u® free in sign.
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In order to link the two stages, as in Kao & Hwang (2008), it is
assumed that the optimal aggregated intermediate outputs of the
first stage become inputs to the second stage, i.e. it is assumed that

A_ B _
yq = yq =Yg

Adopting the additive decomposition approach (Chen et al.,

2009), the overall efficiency 9}% of DMUj, is decomposed as the
weighted sum of the stage efficiencies,
20 _ &~ o1 &~ 02
Qjo = leoefo + szﬂejo’
By solving the system of these two equations, the decomposition
weights can be obtained as functions of the model variables, as

P
2 p=1VpXpj

P T ;
> p=1 VpXpj + 23:1 YaZqj + Dto1 Te&j

and WUU-I-WZJ'O:]. (17)

Wyj =

(18)

T
Z(?:] YaZqj + D=1 Tt8i;j

P Q T :

D p=1 UpXpj + 2 g1 VaZaj + 2m1 i)

The decomposition weights are defined endogenously as the ra-

tio of each stage’s inputs to the total amount of inputs, to reflect

the relative contribution of each stage to the overall process. Then,
the overall efficiency 91% of DMUj; is given by the fractional model

Wy = (19)

é‘g* — max ZqQ=1 ngqjo +35, M(rllrju +ut + Z;;:] NsYsj, + u®
2_p=1 VpXpjo T g1 YaZajo T 2t=1 Tt8ijo
st.0l <1, j=1...N (20)
02 <1, j=1...N

Up, Ur, Vg, e, s > O;
u?, u free in sign,

where 67]‘?* denotes the optimal objective value of model (20).

In the calculation of the optimal stage efficiency levels of a
DMUj;, one of the two stages will be given pre-emptive priority.
This stage’s efficiency score will be maximised while the optimal
overall efficiency is preserved. Let p denote the priority stage, and
9]‘{””*, ¢ = 1,2 denote the efficiency estimate of the priority stage
for DMUj, and assume that the first stage is given priority over the
second stage. Then,

917 _max 6!
Jo Jo
st.0j <1, j=1,...,N

02<1. j=1....N (21)

R s
23:1 YaZajo + Loret Mrlrjy + Ut + 300 nsysj, + uP By
P T — i
2 p=1UpXpjy + fo=1 YaZqjo + 2t=1 Tt&tjo ’
Vp, Urs Vg, Tt Ns > 0.

Models (20) and (21) can be converted into linear ones using
the Charnes-Cooper transformation (Charnes & Cooper, 1962) (see
Appendix).

Let (92)*,1/’;7,%*,/13,7{;‘,17;*) be the optimal solution to model
(20). The optimal decomposition weights for DMU;, are calculated
substituting the optimal multipliers into relations (18) and (19).
Then, the efficiency estimate of the second stage is given from the
optimal decomposition equation as

50v o Flpr

0% —wr. 6.P

Jo VAV*”O Jo (22)
2jo

N2+ _
0]0 -
If the second stage was given pre-emptive priority, then second

stage efficiency would be calculated first, in a similar way, main-
taining the overall efficiency level estimate, and then the fist stage
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efficiency estimate would result from the optimal decomposition
equation. Unless a DMU;, j=1,..., N shows infeasibility problems,
the additive decomposition of the overall efficiency is unique, and
the choice of the priority stage does not affect the stage efficiency
estimates.

In some cases, the optimisation process results in W} 1= =0 or
W;] =0, which means that the contribution of one of the two
stages to the overall process is ignored. In those cases, the decom-
position weight restrictions wqj, w, > &, for some « € (0, 0.5], can
be added to model (20) or to its linear equivalent.

Definition 3.1. A DMUj; is considered to be overall efficient if and
only if 54(’)* =1, for ¢ =0,1,2. It is stage efficient if 51.10* =1or
62 = 1.

Jo

Because the efficiency measurement described above is radial, a
DMU;, may be overall efficient, but be able to further improve its
activity due to the existence of slacks (weak efficiency). However,
in this study the existence of slacks is not examined.

Note that the true PPS always includes the sample PPS, ie
TcT, T,cTy and T2 C T,. Therefore, it holds that 00 > 00 for all
points (x,1,z.g,y) eT, 0101, for all (x,1,2) e Ty, and 02 > 62,
for all (z,g.y) eTz. Kneip et al. (1998) proved that the rate at
which the estimator converges depends on the number of input
and output variables and the degree of the true frontier smooth-
ness. If it is assumed that the true frontier is twice differen-
tiable then, the rate of convergence in the one-stage structure is

N_W, where N is the size of the sample and p,q are the
number of inputs and outputs, respectively. This result can be eas-
ily extended to series network structures.

A common approach of demonstrating the convergence of an
estimator is by proving that the estimator is bounded in probabil-
ity. A set of random variables Xy is bounded in probability if there
exist M¢ and N¢ such that for all N> N¢, and € > 0, Prob(Xy >
Me) < €. This is denoted by Xy = Op(1). Similarly, if Xy = Op(N~%)
for a > 0 means that Xy/N~% is Op(1). Then, it can be considered
that Xy converges at a rate N~9. The convergence rates of the over-
all and stage processes, respectively, are given in the following
Proposition.

Proposition 3.1. For a two-stage process with final first stage inputs
and second stage outputs, under the assumptions of VRS and the true
frontier being twice differentiable, it holds that

60 — 0° = 0, (N~ FraTsssn) (23)
61 — 0" = 0, (N rcwT) (24)
62 — 9% = 0, (N- w5 ) (25)

Proof. The proof for the convergence rate for each stage results
from the proof of the convergence rate in the one-stage structure
provided by Kneip et al. (1998, pg. 7-9) considering the input and
output possibility sets of each stage and the overall process, as
those are defined in relations (4)-(6) and (7)-(9). O

In the next section, the subsampling bootstrap methodology
used for the approximation of the distribution of 0¢/0¢’ 0,1,2
is discussed.

4. Bootstrapping with subsampling

As it was mentioned in the previous section, T, Ty, T,, the DGP
P and 9}9, 9].1, 9].2 foraDMU;, j=1...., N are unknown and the ob-
served sample Sy needs to be used to provide estimates for the
true efficiency scores. However, when the dimensions increase, it
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is not possible to derive the sampling properties of the estima-
tors analytically. Since Sy is the only sample available, bootstrap-
ping techniques can be used to derive the sampling distribution of
the estimators.

The main assumption in bootstrapping is that the original
sample Sy generated from the unknown P, mimics the underly-
ing population that it comes from. Therefore, a bootstrap sample
Syl Ix, zr, gf, y9)li=1,..., N} generated from the original sam-
ple through a known DGP P can be used to estimate the unknown
sampling distribution of 5]‘?, j=1,....N. In other words, 8 is an

estimator of ¢ obtained from the sample Sy through P, and 0 is
an estimator of 6 obtained from the bootstrap sample Sy, through
P. If P is a consistent estimator of P, i.e. P converges to P, for a
given DMU; , it holds that

o 0%
il %
0% ¢
9]0 9]0

P, for ¢ =0,1,2. (26)

The distribution of the right-hand side of relation (26) is un-
known, but Monte Carlo simulations of the left-hand side can pro-
vide approximations of it. By generating a sufficiently large number
B of bootstrap samples and applying the NDEA estimator to each

one of those, a set of B estimates @\TO ¢ =0,1,2 can be obtained.
These can be used to derive the empirical distribution of the left-
hand side in relation (26). As B, N — oo, the approximation of the
right hand side becomes accurate.

In order for the relation (26) to hold, it is necessary that
P is a consistent estimator of P. Naive bootstrapping does not
yield consistent boundary estimations (see Bickel & Freedman,
1981, pg. 1210). Smoothing and subsampling techniques have been
proven to give consistent estimations of the production frontier.
Subsampling allows for heterogeneity in the efficiency of DMUs
and, among the different bootstrapping techniques, is computa-
tionally the easiest one, as it does not require any kernel smooth-
ing to achieve consistency. In NDEA, where more than one stages
are involved in the production process, the computational burden
of kernel smoothing may be prohibitive and subsampling seems to
be the most appropriate method for statistical inference.

The subsampling methodology suggested by Kneip et al
(2008) and Simar & Wilson (2010) can be adapted to the
NDEA case, by considering the inner structure of DMUs. Kneip
et al. proved that drawing pseudo-samples of size m = N, for
k € (0,1), where N is the original sample size, allows for consis-
tent inference.

Consider the general two-stage network structure depicted in
Fig. 1 and let Sy be the original sample of N DMUs. In each repli-
cation, a bootstrap subsample

S;:{(X]’l* Z_,?g* y])|J_1 }

consists of m < N independent and identically distributed (iid)
draws with replacement from the original sample.

For each bootstrap subsample, for a DMU; , models (20),
(21) and Eq. (22) are used to get the overall and stage boot-

~1x . .
strap efficiency estimates 9 “ 0 j, and 9 , Tespectively. Kneip

et al. (2008) proved for ong stage structures that the bootstrap

distribution of m%/® +‘1”)(79’&—1) approximates the distribu-
Jo

0.
tion of Nz/(”t‘zﬂ)(@’—,0 - 1), where P the number of inputs and
io

Q the number of outputs. Let A=2/(P+R+Q+T+S+1), B=
2/(P+R+Q+1) and I' =2/(Q+T + S+ 1). Adjusting the result
of Kneip et al. (2008) to the specific general network structure, it
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holds that
5 5
mf(?;; - ) approx NT<9—’(Z - 1), (.)€ [(A,0), (B, 1), (T, 2)}.
Jo Jo

(27)

Therefore, the bootstrap estimates of the overall and stage effi-
ciencies, respectively, of a DMU;; can be used to approximate the
right-hand side in relations (27) and construct the confidence in-
tervals for the true overall and stage efficiencies.

For a DMUj,, for a chosen confidence level a (0, 1), the quan-
tiles ¢q/2.m and ¢y_q/2,;m Of the unknown distributions can be esti-
mated using the quantiles of the bootstrap distribution, obtained
as

4
Prob(m’ <A—j° - ) < ?a/z‘mISN) =a/2
¢
Jo
and
X4
Prob(m’(%" - 1) < a_a/z,m|sN) —1-ay2,
6
Jo
where (7,¢) € {(A,0), (B, 1), (T, 2)}.
o~
In practice, this involves sorting the values m® (% -
J
cending order and then assigning ¢, m the first valueothat exceeds
(a/2)100% of the observations and Cy_q/2,m the value that is less
than (1 —a/2)100% of the observations. Then the true overall and
stage efficiencies will lie in the confidence intervals

? o
0 0
(1+N-"Caom) (1+N"Capm)

for (t,¢) € {(A,0), (B, 1), (', 2)}, respectively.

1) in as-

(28)

5. Monte Carlo simulations

In order to examine the performance of subsampling bootstrap
in network structures, Monte Carlo simulations were performed.
Two sets of experiments were conducted for the general net-
work structure (see Fig. 1) with five-dimensional and seven-
dimensional DGPs, respectively, i.e. for P=R=Q=T=S=1
and for P=R=T =1, Q =S=2. Each experiment consists of
1000 Monte Carlo trials with 2000 bootstrap replications in
each trial. Also, experiments were conducted for four sample
sizes N € {25, 50, 100,200} and twelve subsample sizes m = [NK],
for ke{0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.85,0.9, 0.95},
where [NK] denotes the integer part of NK.

In all the experiments, the confidence intervals for the true
overall and stage efficiencies of a fixed point were estimated. Due
to sampling noise, the true probability that the confidence inter-
val contains the true efficiency score may differ from the nom-
inal probability that the confidence level represents. Therefore,
through the Monte Carlo trials, the true probability of the confi-
dence interval containing the true parameter is approximated by
calculating the coverage probabilities, i.e. the actual proportion of
the estimated confidence intervals that include the true efficiency
score.

In the first set of experiments (five-dimensional case), an ef-
ficient first stage input x. is drawn from the uniform distribu-
tion U[5,20]. The efficient input is used to generate one final
first stage output | = (x¢)? and one intermediate first stage output
Z= (Xe)V, where B,y > 0. Second stage-specific efficient input g,
is also drawn from the uniform distribution U[5, 20]. The second
stage efficient input and the intermediate product from the first
stage, are used to generate one final output y = ((ge)¢z5e02l€l)v,
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where € ~ N(0,1) and ¢, &, v > 0. The term e~02l¢l is added to the
DGP to better reflect real-world scenarios by adding some stochas-
ticity to the data.

For the experiments of the second set (seven-dimensional case),
a similar DGP is used. An efficient first stage input x. and a sec-
ond stage-specific input g, are drawn from the uniform distribu-
tion U[5,20]. One final first stage output is given by [ = (x¢)?
and the two intermediate first stage outputs are given by z; =
(xe)” and z, = (x¢)%, respectively, for some B,y,8 > 0. The two
final outputs are generated by y; = ((ge)izfzﬁ\e‘o-z‘ﬂ)“ and y, =

((ge)fz}ziefo‘zk‘)”, where € ~N(0,1) and ¢,£,A,v > 0. Both in
the five and the seven-dimensional case, the DGP ensures that at
each stage, as well as in the overall process, an increase in stage-
specific inputs results in a non-proportional increase in the stage
outputs, to account for VRS.

Estimates of the overall and the stage efficiencies, respectively,
were obtained through different experiments. In the set of exper-
iments that were performed to estimate the overall efficiency, in-
efficiency was added to the first stage inputs x = x.e%2/€l. The in-
efficient inputs were then used to calculate the sample overall ef-
ficiency of the fixed point under investigation. In the set of ex-
periments concerning the true stage efficiencies, inefficiency was
introduced to each stage’s specific inputs, i.e., x = x.e%2l¢l and g =
gee%2l¢land these inefficient first and second stage-specific inputs
were used to calculate the first and second stage sample efficien-
cies of the fixed point. Since the input orientation is considered,
the true overall inefficiency can be defined as the proportion of
the input going to the production that exceeds the efficient input.
Therefore, the true first and second stage efficiencies are defined
as xe/x and g./g, respectively. In the case of multiple inputs, since
radial projections are used, all inputs are reduced by the same pro-
portion, and the true efficiency score would be defined in a similar
way.

Experiments were performed for 8 =0.6,y =0.7,6 =0.8,{ =
01, =03,2=05 and v=0.8, and for the case when x, =
g.. All the efficiency scores were obtained for the fixed point
with  (Xe0,80) = (13,13) and €3 =1, and with true overall
and stage efficiency score Oc‘f’ =0.8187, for ¢ =0,1,2. This
point lies about in the middle of the cloud of the generated
points.

In many subsamples, the fixed point shows infeasibility in one
of the two stages. Infeasibility problems occur when one (or more)
of the outputs of the fixed point (overall or stage-specific output) is
(are) greater than the respective maximum output(s) of the points
included in the subsample, and/or when one or more of the inputs
of the fixed point is (are) less than the corresponding minimum in-
put(s) of the points belonging to the subsample. Infeasibility prob-
lems in the subsamples occur more often in NDEA compared to
one stage DEA because of the higher dimensions. Therefore, in this
study, in all bootstrap replications the fixed point of interest was
being added to the subsample.

Another way to treat infeasibilities is to set the efficiency esti-
mate of the infeasible DMU equal to one. In the additive efficiency
decomposition approach, in some cases the algorithm may give
zero optimal multipliers and therefore, zero efficiency estimates.
For the overall process this happens in cases where the DMU is
overall efficient. Therefore, for DMUs with zero overall efficiency
estimate, it can be set that their overall efficiency estimate is equal
to one. However, it may also happen a DMU to be assigned a non-
zero overall efficiency estimate, and get a zero efficiency estimate
for the one of the two stages when a stage is considered as priority
stage, but get a non-zero efficiency estimate - less than one - when
the priority stage changes. Including the DMU under evaluation in
the subsample significantly reduces the times when this happens
and therefore, provides a partial solution to the problem, whereas
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Table 1
Coverage probabilities for the confidence interval estimates when P=R=Q =T =5 =1 and the DMU under evaluation is included in the subsample.
Overall 1st Stage 2nd Stage
1-o 1-a 1-a

N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

25 0.40 0.938 0.976 0.983 0.930 0.965 0.976 0.980 0.984 0.985
0.45 0.984 0.988 0.988 0.965 0.982 0.985 0.986 0.987 0.987
0.50 0.989 0.989 0.989 0.978 0.985 0.985 0.991 0.991 0.991
0.55 0.989 0.989 0.989 0.979 0.983 0.985 0.990 0.991 0.991
0.60 0.990 0.990 0.990 0.981 0.988 0.988 0.990 0.995 0.995
0.65 0.984 0.992 0.992 0.981 0.990 0.993 0.959 0.985 0.996
0.70 0.974 0.994 0.995 0.972 0.990 0.993 0.930 0.970 0.995
0.75 0.943 0.975 0.996 0.938 0.973 0.992 0.837 0.917 0.988
0.80 0.889 0.951 0.993 0.903 0.951 0.983 0.740 0.861 0.969
0.85 0.833 0.910 0.978 0.879 0.923 0.977 0.647 0.783 0.944
0.90 0.742 0.841 0.964 0.818 0.880 0.962 0.517 0.670 0.878
0.95 0.646 0.787 0.924 0.766 0.857 0.931 0.410 0.576 0.808

50 0.40 0.986 0.999 0.999 0.920 0.986 1.000 0.999 0.999 0.999
0.45 1.000 1.000 1.000 0.941 0.993 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 0.978 1.000 1.000 0.999 1.000 1.000
0.55 1.000 1.000 1.000 0.987 1.000 1.000 0.995 0.999 1.000
0.60 0.995 1.000 1.000 0.997 1.000 1.000 0.969 0.994 1.000
0.65 0.987 0.998 1.000 0.994 0.999 1.000 0.906 0.973 0.999
0.70 0.958 0.982 0.999 0.983 0.996 1.000 0.767 0.905 0.992
0.75 0.910 0.966 0.994 0.969 0.987 1.000 0.618 0.787 0.968
0.80 0.826 0.915 0.980 0.937 0.974 0.995 0.434 0.643 0.910
0.85 0.707 0.826 0.954 0.900 0.942 0.984 0.296 0.466 0.771
0.90 0.556 0.723 0.905 0.855 0.909 0.975 0.180 0.320 0.643
0.95 0.412 0.568 0.821 0.769 0.859 0.949 0.104 0.205 0.481

100 0.40 1.000 1.000 1.000 0.868 0.967 1.000 1.000 1.000 1.000
0.45 1.000 1.000 1.000 0.900 0.977 1.000 1.000 1.000 1.000
0.50 1.000 1.000 1.000 0.958 0.993 1.000 0.989 0.998 1.000
0.55 1.000 1.000 1.000 0.980 0.996 1.000 0.945 0.987 0.999
0.60 0.996 1.000 1.000 0.988 0.997 1.000 0.791 0.941 0.999
0.65 0.973 0.995 1.000 0.995 0.999 1.000 0.539 0.792 0.983
0.70 0.903 0.959 0.997 0.988 0.996 1.000 0.261 0.488 0.884
0.75 0.786 0.899 0.986 0.975 0.991 0.999 0.130 0.300 0.730
0.80 0.563 0.789 0.947 0.944 0.978 0.996 0.047 0.140 0.489
0.85 0.361 0.556 0.868 0.903 0.946 0.988 0.015 0.059 0.273
0.90 0.210 0.363 0.717 0.839 0.908 0.973 0.007 0.025 0.131
0.95 0.106 0.211 0.515 0.773 0.850 0.940 0.006 0.009 0.069

200 0.40 1.000 1.000 1.000 0.737 0.929 0.999 1.000 1.000 1.000
0.45 1.000 1.000 1.000 0.819 0.958 0.999 0.995 1.000 1.000
0.50 1.000 1.000 1.000 0.920 0.982 0.999 0.817 0.976 1.000
0.55 0.998 1.000 1.000 0.958 0.994 1.000 0.430 0.791 0.995
0.60 0.971 0.996 1.000 0.985 0.997 1.000 0.098 0.365 0.907
0.65 0.868 0.964 0.999 0.995 0.997 1.000 0.014 0.103 0.621
0.70 0.628 0.841 0.985 0.994 1.000 1.000 0.001 0.015 0.288
0.75 0.333 0.569 0.903 0.987 0.996 1.000 0.000 0.000 0.077
0.80 0.136 0.310 0.731 0.967 0.988 0.999 0.000 0.000 0.017
0.85 0.037 0.124 0.442 0.925 0.964 0.997 0.000 0.000 0.002
0.90 0.011 0.036 0.226 0.861 0.927 0.984 0.000 0.000 0.001
0.95 0.007 0.013 0.087 0.773 0.846 0.949 0.000 0.000 0.001

setting the efficiency estimate of the infeasible DMUs equal to one
does not treat this issue.

Confidence interval estimates for the true efficiency scores were
obtained for three levels of significance, o € {0.1,0.05, 0.01} to get
the 90%,95% and 99% confidence intervals. Coverage probabilities
represent the proportion of confidence intervals, i.e. the proportion
of Monte Carlo trials, that the true efficiency score is included in
the estimated confidence interval. The resulting coverage probabil-
ities of the confidence intervals for the overall and stage efficien-
cies, for the five and seven-dimensional cases, respectively, when
the DMU under evaluation is included in the subsample are given
in Tables 1 and 2.

Results from Monte Carlo simulations when the DMU under
evaluation is not included in the subsample, the efficiency score
of infeasible DMUs is set equal to one and both stages are consid-
ered alternately as priority stages are provided in Tables A.2 and
A.3 in the Appendix. The issue lies in the additive decomposition
algorithm, which in some cases assigns zero efficiency scores. If
this happens at a stage level, and not to the overall efficiency, then

this mainly affects the coverage probabilities of that stage. In most
of the cases, the confidence intervals obtained with this approach
have higher range compared to those obtained when the DMU un-
der evaluation is included in the subsample.

The results indicate that the choice of the subsample size is
crucial for getting high coverage probabilities, irrespective of the
original sample size. However, as the sample size increases, sensi-
tivity on the subsample size seems to increase. Coverage probabil-
ities of the confidence intervals for the true overall and first stage
efficiency seem to rise as k increases and then, in most cases, af-
ter some point they show a downturn. These conclusions seem to
be in accordance with those for one stage structures (see Kneip
et al., 2008, pg. 1682-1683). According to the results, one of the
two stages shows greater sensitivity to the subsample size, and for
some subsample sizes confidence interval estimates can even have
zero coverage probabilities. However, this sensitivity is not related
to the choice of priority stage. Monte Carlo simulations were per-
formed both by treating first stage as the priority stage, and then
by treating the second stage as the priority stage, and coverage
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Table 2
Coverage probabilities for the confidence interval estimates when P=R=T =1, Q =S =2 and the DMU under evaluation is included in the subsample.
Overall 1st Stage 2nd Stage
1-a 1-o 1-a
N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 0.40 0.728 0.872 0.978 0.948 0.977 0.988 0.171 0.331 0.769
0.45 0.882 0.957 0.996 0.970 0.985 0.989 0.312 0.517 0.901
0.50 0.950 0.987 0.997 0.982 0.990 0.990 0.460 0.756 0.962
0.55 0.945 0.985 0.997 0.982 0.989 0.990 0.450 0.751 0.964
0.60 0.977 0.995 0.997 0.983 0.990 0.990 0.557 0.854 0.988
0.65 0.993 0.998 0.998 0.986 0.992 0.992 0.872 0.957 1.000
0.70 0.993 0.997 0.998 0.977 0.992 0.993 0.917 0.969 1.000
0.75 0.972 0.993 0.998 0.958 0.982 0.992 0.960 1.000 1.000
0.80 0.939 0.974 0.997 0.930 0.964 0.988 1.000 1.000 1.000
0.85 0.908 0.951 0.994 0.895 0.942 0.980 1.000 1.000 1.000
0.90 0.849 0.914 0.980 0.817 0.901 0.966 0.999 1.000 1.000
0.95 0.774 0.871 0.952 0.748 0.845 0.943 0.996 0.998 1.000
50 0.40 0.598 0.808 0.980 0.908 0.984 1.000 0.056 0.193 0.585
0.45 0.761 0.903 0.995 0.935 0.989 1.000 0.147 0.320 0.748
0.50 0.910 0.978 0.999 0.977 1.000 1.000 0.303 0.491 0.893
0.55 0.941 0.990 1.000 0.983 0.999 1.000 0.375 0.570 0.930
0.60 0.980 0.996 1.000 0.995 1.000 1.000 0.497 0.785 0.965
0.65 0.987 0.999 1.000 0.996 1.000 1.000 0.597 0.891 0.998
0.70 0.990 0.996 1.000 0.991 0.997 1.000 0.847 0.946 1.000
0.75 0.977 0.990 0.999 0.972 0.989 1.000 0.917 0.980 1.000
0.80 0.947 0.976 0.996 0.935 0.973 0.997 0.954 1.000 1.000
0.85 0.907 0.949 0.985 0.890 0.940 0.986 1.000 1.000 1.000
0.90 0.851 0.910 0.969 0.830 0.898 0.964 1.000 1.000 1.000
0.95 0.753 0.842 0.943 0.751 0.831 0.935 0.998 1.000 1.000
100 0.40 0.556 0.770 0.985 0.816 0.956 0.999 0.048 0.170 0.543
0.45 0.652 0.845 0.992 0.858 0.972 1.000 0.075 0.242 0.618
0.50 0.863 0.970 0.998 0.940 0.983 1.000 0.229 0.418 0.814
0.55 0.929 0.986 1.000 0.969 0.995 1.000 0.317 0.508 0.887
0.60 0.972 0.994 1.000 0.987 0.998 1.000 0.419 0.634 0.943
0.65 0.991 0.998 1.000 0.992 1.000 1.000 0.566 0.791 0.976
0.70 0.991 0.999 0.999 0.988 0.998 1.000 0.697 0.915 0.999
0.75 0.983 0.993 0.999 0.976 0.990 0.999 0.886 0.962 1.000
0.80 0.949 0.979 0.998 0.944 0.975 0.996 0.954 0.997 1.000
0.85 0.894 0.943 0.991 0.899 0.943 0.984 0.996 1.000 1.000
0.90 0.820 0.887 0.964 0.832 0.896 0.963 0.999 1.000 1.000
0.95 0.726 0.808 0.923 0.746 0.832 0.928 0.995 0.999 1.000
200 0.40 0.385 0.642 0.969 0.627 0.868 0.997 0.020 0.111 0.497
0.45 0.536 0.794 0.988 0.734 0.910 0.998 0.051 0.197 0.600
0.50 0.753 0.918 0.999 0.860 0.970 1.000 0.160 0.370 0.733
0.55 0.894 0.978 1.000 0.935 0.990 1.000 0.281 0.518 0.854
0.60 0.964 0.991 1.000 0.974 0.994 1.000 0.449 0.642 0.926
0.65 0.986 0.998 1.000 0.987 1.000 1.000 0.581 0.733 0.969
0.70 0.993 0.998 1.000 0.993 0.998 1.000 0.690 0.880 0.992
0.75 0.983 0.994 0.999 0.977 0.993 0.999 0.848 0.953 1.000
0.80 0.962 0.984 0.997 0.944 0.976 0.994 0.934 0.987 1.000
0.85 0.901 0.959 0.989 0.880 0.938 0.983 0.975 1.000 1.000
0.90 0.819 0.887 0.970 0.828 0.876 0.956 0.999 1.000 1.000
0.95 0.697 0.788 0.913 0.749 0.823 0.901 0.988 0.999 1.000

Table 3
Mode, mean and range of the optimal subsample size values among the different Monte Carlo trials, using the minimum volatility algorithm, in the five-dimensional case.
Overall 1st Stage 2nd Stage
1-a 1-a 1-a
N 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 mode 5 5 5 5 5 5 5 5 5
mean 8.149 7.874 7.297 9.423 9.144 9.126 9.835 8.458 6.952
range 13 13 13 14 13 13 13 13 13
50 mode 33 33 8 33 33 33 33 33 8
mean 25 215 15.3 23.67 22.67 20.56 25.67 2433 19.74
range 28 28 26 28 28 26 28 28 26
100 mode 63 63 63 63 63 63 63 63 63
mean 55.4 50.04 41.54 48.79 45.32 44.94 51.04 50.28 41.48
range 56 56 56 56 56 56 51 56 56
200 mode 117 117 117 117 117 117 117 117 117
mean 105.6 104.4 96.71 91.26 86.74 84.37 97.59 96.99 91.59
range 93 93 107 99 99 107 93 93 99
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Table 4
Mode, mean and range of the optimal subsample size among the different Monte Carlo trials, using the minimum volatility algorithm, in the seven-dimensional case.
Overall 1st Stage 2nd Stage
1-o 1-a 1-a
N 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 mode 5 5 5 5 5 5 5 5 5
mean 6.926 7.010 7.617 7.913 7.827 8.67 10.1 10.63 10.8
range 13 14 13 13 14 13 13 13 13
50 mode 33 33 8 33 33 8 8 8 12
mean 2441 19.28 12.06 21.90 20.54 16.94 15.15 16.5 17.67
range 28 28 26 28 28 26 28 28 26
100 mode 63 63 63 63 63 63 12 12 12
mean 55.08 51.66 34.63 52.16 47.91 42.93 22.92 21.05 23.47
range 46 46 46 56 56 56 56 56 56
200 mode 117 117 117 117 117 117 10 10 10
mean 101.7 100.8 95.59 96.43 95.84 93.6 39.97 34.07 27.09
range 93 86 107 93 86 107 107 107 107
Table 5
Data Set.
DMU Invest. Costs (bn €)  O&M Costs(bn €)  TSIWagons  Total Wagons  Length of Lines (km)  Freight MT-km  Pass. M-km Ly, > 55dB
1 Austria 2.61 1.66 6,511 23,345 5,491 21,361 12,497 1,081,900
2 Belgium 1.78 0.38 2,312 12,013 3,607 0 10,025 324,400
3 Bulgaria 0.30 0.25 568 16,915 4,029 3,434 1,455 42,300
4 Croatia 0.19 0.30 383 2,274 2,604 2,160 827 26,400
5 Czech Rep. 1.35 1.36 8,000 42,199 9,564 15,619 8,738 268,500
6 Denmark 0.39 0.13 225 366 2045 2,616 6,332 84,300
7 Estonia 0.06 0.14 0 20,849 1,161 2,340 316 6,100
8 Finland 0.41 0.18 200 9,942 5,926 9,456 3,868 119,400
9 France 5.09 3.67 8,558 77,678 28,364 32,569 90,612 3,780,000
10  Germany 7.74 3.92 59,626 165,653 38,623 126,686 95,465 6,390,500
11 Ireland 0.16 0.21 100 254 1,931 101 1,991 42,600
12 latvia 0.11 0.17 0 11,888 1,860 15,873 584 40,600
13 Lithuania 0.22 0.31 0 14,828 1,911 13,790 280 11,600
14  Netherlands  2.73 1.02 9,000 21,226 3,058 6,641 17,483 312,500
15  Poland 3.50 0.69 2,750 83,500 19,132 50,650 19,067 419,700
16  Portugal 0.71 0.26 3,123 3,313 2,546 2,774 4,266 137,100
17  Slovenia 0.23 0.18 226 3,230 1,209 4,360 611 47,600
18  Spain 5.23 0.73 6,781 20,833 16,167 10,550 26,646 69,300
19  Sweden 1.07 0.45 931 11,000 10,882 21,406 12,800 549,400
20 UK 6.46 345 15,467 18,246 16,253 17,053 68,010 1,709,400
21 Norway 0.52 0.48 516 1,623 3,895 3,312 3,695 123,400
22 Switzerland  2.50 1.58 19,236 21,200 3,650 12,447 20,657 482,400

probabilities were not affected. Results for stage one being the pri-
ority stage and then for stage two being the priority stage, when
the DMU under evaluation is not included in the subsample can
be found in the Appendix. The number of bootstrap replications
certainly affects the coverage probabilities in NDEA more than in
conventional DEA due to the lower convergence rate. However, it
is computationally difficult to further increase the replications to a
number significantly higher than 2000.

In the five-dimensional case (see Table 1), coverage probabili-
ties for the overall and the second stage efficiency are very high
for lower values of k, but as k increases they get very poor and
even tend to zero as the original sample size increases. In the cases
when the estimations of the overall efficiency scores are poor, the
coverage probabilities of the second stage seem to be also affected.
For the first stage, k = 0.60 or k = 0.65 seems to result in higher
coverages.

In the seven-dimensional case (see Table 2), for the overall and
the first stage, subsample sizes resulting from k = 0.65 or k = 0.70,
in most of the cases, yield higher coverage probabilities, however,
for a wide range of k, coverage probabilities are still very high.
Coverage probabilities for the second stage true efficiency are very
poor for the first half values of k, especially for the larger sample
sizes. Nonetheless, as k increases coverage probabilities for the sec-
ond stage become very high; for this stage, in most of the cases, a
value of k around 0.9 gives the best coverage probabilities. The dif-
ference between the results in the five and the seven-dimensional

cases indicate that the coverage probabilities and the optimal sub-
sample sizes strongly depend on the DGP.

Wrong choice of subsample size may result in totally mis-
leading confidence interval estimates. Politis et al. (2001) sug-
gested a minimum volatility criterion for the selection of
the optimal subsample size. Let Iy, and Inup be the
lower and the upper bounds of a confidence interval esti-
mate, resulting from subsampling bootstrap, with subsample
size m. For a small reZ*", Politis et al. suggested calculat-

ing the volatility index Vi = Zzl’:"gmsma“ sA{ln_r.1ows - - - » Imartow) +
Mhig sd{lm—rup, --

- .. Im4rup} and then choosing the subsample
size m that corresponds to the minimum V.

Results from applying the above algorithm to the confidence in-
terval estimates of each Monte Carlo trial are given in Tables 3 and
4, for the five and seven-dimensional case, respectively.

According to the results, in the five-dimensional DGP (see
Table 3), in almost all the cases, the mode for the optimal subsam-
ple size is the same for obtaining the overall and stage efficiency
estimations and does not change for the different levels of signifi-
cance. However, from the range of the optimal subsample values, it
can be seen that the optimal subsample size can vary significantly
among the different Monte Carlo trials, although all samples are
generated through the same DGP, and it should be expected that
the algorithm would yield similar values for the optimal subsam-
ple size.
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Furthermore, as it was mentioned previously, for this five-
dimensional DGP, values of k = 0.60 and k = 0.65 yielded the high-
est coverage probabilities in most of the cases. These values corre-
spond to subsample sizes [25%60] = 6 and [25%65] = 8, respectively,
when N = 25, subsample sizes 10 and 12 when N = 50, 15 and 19
when N =100 and 24 and 31 respectively, when N = 200. These
subsample sizes, however, are much lower than those indicated by
the algorithm, especially when the sample size increases.

For the seven-dimensional DGP, there is a substantial differ-
ence between the optimal subsample size for obtaining the overall
and first stage efficiency score, compared to the optimal subsam-
ple size for the second stage. That raises an important issue, as all
the estimations, for the overall, first and second stage efficiencies,
are based on the same subsample size, and it is not possible to
use the stage-specific optimal subsample size without affecting the
consistency of the results. This difference between the overall-first
stage and the second stage optimal subsample sizes in this DGP,
is also reflected in the coverage probabilities reported in Table 2,
where the value of k with higher coverage probabilities for the sec-
ond stage (k = 0.90), was significantly different compared to that
for the overall and first stage estimations (k = 0.65, 0.70). Similarly
to the five-dimensional case, the subsample sizes that resulted in
higher coverage probabilities in Table 2, do not coincide with the
optimal subsample sizes yielded by the minimum volatility algo-
rithm.

These issues indicate the great sensitivity of the algorithm, and
demonstrate the need for defining a more robust way for the sub-
sample size selection in NDEA. This variability of the optimal sub-
sample size among the different Monte Carlo trials and the differ-
ent stages can be imputed to the zero-efficiency score issue of the
NDEA algorithm that mainly affects the upper bounds of the con-
fidence intervals. This issue is further discussed in the following
Section were the subsampling bootstrap is applied in a real dataset,
and some suggestions for dealing with it are provided.

6. Application

In this section, the subsampling methodology is applied in the
efficiency analysis of railways in 22 European countries. The data
set has been previously used by Michali, Emrouznejad, Dehnokha-
laji, & Clegg (2021) and considers the noise-pollution problem aris-
ing from the operation of railways, with measurements referring
to 2016-2017. A limitation of this data set is that it does not in-
clude information about all the European countries, as countries
with missing data were excluded. As in DEA the efficient frontier
is empirically constructed from the available set of DMUs, omis-
sion of DMUs may have an impact on its shape and result in some
DMUs being assigned a higher efficiency score. Since the true fron-
tier is unknown, the subsampling methodology can be used to pro-
vide estimations of the efficiency scores of European railways.

Michali et al. (2021) divided the railway transport process into
assets and services related stages. Infrastructure investment and
operating costs are used as inputs to the first stage, and to de-
crease the dimensions of the model, they are added in a single in-
put that represents costs (x). The number of wagons in each coun-
try that are compliant with the noise emission standards set by the
European Commission are final outputs from the first stage (I) and
the total number of wagons (z;) and the length of railway lines (z;)
in each country are the intermediate products that are introduced
to the second stage. The second stage has two desirable outputs,
the millions of passengers (y;) and the million tonnes of freight
(y2) that travelled over one kilometre, and one undesirable output
(yp), the number of people exposed to high levels of railway noise
(Lgen = 55dB). The data set is provided in Table 5.

The undesirable output of the second stage is treated as input
to that stage, as the aim is to proportionally decrease it, together
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Fig. 2. Confidence interval estimates for (a) the overall, (b) the first stage, and (c)
the second stage efficiency scores of European railways, for k = 0.65, m =7, and
a = 0.1, when the DMU under evaluation is included in the subsample.
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with the second stage inputs. In this case, the structure of the
model is the same as the seven-dimensional case studied in the
previous section.

Michali et al. (2021) performed a sensitivity analysis for the
decomposition weights, for this specific data set, and suggested
the use of the restrictions Wy, Wj > 0.1 in model (20). There-
fore, in this analysis, the same decomposition weight restrictions
are being used. Furthermore, although the additive approach sug-
gested by Chen et al. (2009) usually provides a unique efficiency
decomposition, in this data set, due to infeasibilities, Portugal and
Switzerland do not have a unique efficiency decomposition, and
their stage efficiency scores change depending on which one of the
two stages is chosen as the priority stage.

Confidence interval estimates were obtained for different val-
ues of k, i.e. for various subsample sizes. Initially, the DMU un-
der evaluation was included in the subsample. For very small sub-
sample sizes, for many countries in this data set, the upper bound
of the confidence interval for some stage efficiency score was ei-
ther above one or negative. The negative bounds result very rarely,
and are due to the boundary condition of the efficiency score on
zero. An upper bound above one happens because in a significant
number of bootstrap replications, the algorithm was returning zero
values. This is an issue that can occur in efficiency decomposition
approaches, but becomes more common when applying the sub-
sampling bootstrap, because of the smaller size of the sample. If
this happens in more than (a/2)100% of the bootstrap replications,
the upper bound of the confidence interval is above one. This was
more common in the cases when the subsample size was very
small, but even for larger subsample sizes there were still some
DMUs for which the upper bound exceeds one.

In some cases, obtaining the bootstrapped stage efficiency es-
timates while treating both stages as priority stages, and use the
decomposition Eq. (22) - or the equivalent equation for the first
stage- to obtain the efficiency estimates of the stage when the
priority-stage-model yields infeasibility solves the zero efficiency
estimate issue, without further affecting the results. However, this
usually does not offer a solution to the problem, as both prior-
ity stages may yield zero bootstrap estimates. Therefore, removing
the zero bootstrap estimates seems to be the only way to prevent
them from distorting the upper bound of the confidence interval.
Although this reduces the size of the bootstrap efficiency sample,
if the number of bootstrap replications is large enough, it should
not affect the quality of the results.

The subsample size that was used was m = 7, for k = 0.65. The
choice of the subsample size was based on the coverage proba-
bilities obtained from the Monte Carlo simulations and the results
from the minimum volatility algorithm of Politis et al. (2001) for
the overall process.

The model was implemented in R. In order to minimise the
computational time, after drawing the 2000 bootstrap subsamples
for a specific k, i.e. for a specific subsample size, the confidence
intervals for each DMU were calculated separately and not in one
for loop- but based on the same subsamples. In this way, it is
possible to use parallel processing and reduce the computational
cost. Although this dataset is small, in larger datasets this approach
can make a significant difference in the computational time.

Figure 2 reports the sample overall and stage efficiency scores
and their corresponding confidence interval estimates, for k = 0.65
and subsample size m = [22%-65] = 7, for the significance level a =
0.1, when the DMU under evaluation is included in the subsample.
The specific values are provided in Table A.1 in the Appendix. The
original sample efficiency scores are also depicted in Fig. 2 with
small circles. In Fig. 3, the confidence interval estimates when the
DMU under evaluation is not included in the subsample are pro-
vided.
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For some efficient countries the confidence interval estimates
converge to a single point, as in the majority of the bootstrap repli-
cations these countries yield an efficiency score equal to one, even
for different subsample sizes.

According to the results, in this data set, the specific subsample
size yields better overall efficiency estimates compared to stage ef-
ficiency scores, and estimations about the second stage are in most
cases better compared to the first stage estimations. This is in ac-
cordance with Monte Carlo simulation results, where for one of the
two stages coverage probabilities were more sensitive to the sub-
sample size selection.

Confidence interval estimates reveal where the true efficiency
score for each country lies. Although some efficiency scores ap-
pear to be very high, the lower bound estimation for their true
efficiency is much lower, and sometimes a DMU with higher ef-
ficiency score from another might in reality be less efficient. For
example, based only on the original sample, France and Germany
are second stage efficient, whereas Sweden has a lower efficiency
score. However, the lower bound estimation for France and Ger-
many is lower than that of Sweeden. That means in reality, there
is a chance that those two countries are less efficient in the sec-
ond stage than Sweden. In this data set, confidence interval es-
timation is particularly useful in the second stage, where with-
out the bootstrap estimations, 11 countries appear to be efficient.
However, confidence interval estimates reveal that there might be
differences in their true efficiency scores. For the second stage ef-
ficient countries Poland, Spain and Netherlands, for example, the
lower bound remains above 0.9, whereas for the UK, the lower
bound is about 0.8. For Germany and France, the lower bounds lie
even lower. Therefore, confidence interval estimates should be con-
sidered from the countries to get a better insight into what is the
main source of inefficiency for their railway network, to be able to
form an effective improvement agenda. As it was indicated by the
results, considering these estimates, provides higher discrimination
among the different countries’ railway-efficiency level.

As was discussed in the previous section, not including the
DMU under evaluation in the subsample, increases the range of the
confidence intervals. In this dataset, this approach resulted in infi-
nite upper bounds for the majority of DMUs. The following adap-
tations resulted in avoiding the infinite upper bound, and signifi-
cantly reduced the range of the confidence intervals: (i) setting the
zero overall efficiency scores equal to one, (ii) treating both stages
as priority stage and (iii) using the decomposition equation when
the priority-stage-model yields zero efficiency score values Or al-
ternatively, (i) setting the zero overall efficiency scores equal to
one, and (ii) removing the stage bootstrap efficiency estimates that
are equal to zero. Confidence interval estimations for k = 0.65 and
a=0.1 when the DMU under evaluation is not included in the
subsample, are given in Fig. 3 in the Appendix.

7. Conclusion

The DEA approach, where the production frontier is constructed
empirically, does not consider for sampling noise. Bootstrapping
techniques are now well-established in the DEA literature, and
are broadly used to make statistical inference about the efficiency
scores in one stage production processes. However, in many cases,
the production structure of DMUs involves sub-stages which need
to be considered in the efficiency measurement. This paper exam-
ines the applicability and performance of bootstrapping in general
two-stage structures, where the additive decomposition approach
is used to calculate the overall and stage efficiency estimates, and
the VRS is assumed.

Bootstrapping can be computationally demanding, especially in
high-dimensional models. For this reason, among the different
bootstrapping techniques, in this paper the subsampling method-
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ology was considered, as it does not require any kernel smooth-
ing and also allows for heterogeneity in the efficiency distributions
among the different DMUs.

Monte Carlo simulations were performed, based on samples ob-
tained through two DGPs, defined for a five and a seven dimen-
sional two-stage series structure, respectively. According to the re-
sults, in network structures, the coverage probabilities are more
sensitive to the DGP compared to single-stage structures. Simi-
larly to one-stage processes, coverage probabilities are very sensi-
tive both to the sample and subsample sizes, and get lower as the
sample size increases. However, in contrast to conventional DEA,
in NDEA for some subsample sizes, coverage probabilities tend to
zero. That means that the subsample size should be selected very
carefully, notably when the size of the original sample is large, as
in any other case, the resulting confidence intervals could be mis-
leading.

The selection of the subsample size is a limitation of applying
subsampling bootstrap in NDEA. The algorithm suggested by Politis
et al. (2001) may offer a rule of thumb, especially in one-stage
structures, but in NDEA, it was shown that the optimal subsample
size resulting from the minimum volatility algorithm is not always
the one that yields the highest coverage probabilities. This issue
was further investigated and it seems that a peculiarity of the ad-
ditive efficiency decomposition approach that assigns zero optimal
weights to some DMUs when considering some stage as priority
stage affects the performance of the minimum volatility algorithm.
Therefore, in this study it was suggested to either always include
the DMU under evaluation in the subsample, or set the zero overall
efficiency scores equal to one and use the priority-stage model to
get the efficiency score of both stages, and then use the decompo-
sition equation in the cases when the priority-stage-model yields
zero optimal results.

Future studies could focus on defining a reliable method for
the subsample size selection, as well as studying the perfor-
mance of bootstrapping in other network structures, under dif-
ferent returns to scale assumptions, and/or considering substi-
tution effects. Extension to the output orientation can also be
considered, although the model orientation should not affect the
results.

Appendix

The efficient boundaries of the output possibility sets are de-
fined as

Y (x,.2,8) ={UYI(y) eY(x2.8. °(ly) ¢Y(x.2.8).VA® > 1},

(A1)
Y1 (x) = {(l,2)|(I,2) e Y1(x), A (I, 2) ¢ Y1 (%)}, (A2)
2(2,8) = {yly € Y2(2.8). A%y ¢ Y2(2.9)}. (A3)

The Farrell (1957) output efficiency measure of DMU;, for the
overall process and the two stages, respectively is defined as

A0(x, 1,2, 8 y) =sup{A°|A%(L,y) e Y(x,z g)}, (A4)
Alx,1,2) = sup{A AT, 2) e Y1 (%)}, (A.5)
A2(z.8.y) = sup{A* A2 () € Xz(z. )} (A6)
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Table A1
Sample efficiency scores and bootstrap confidence interval estimates when stage 1 is the priority stage and for a=0.1.
DMU 90+ lower b. upper b. f1px lower b. upper b. 62+ lower b. upper b.
1 Austria 0.433637 0.215287 0.376686 0.274788 0.099529 0.301128 0.694873 0.537419 0.696555
2 Belgium 0.397365 0.182471 0.318035 0.333166 0.142657 0.399364 0.539735 0.344005 0.519700
3 Bulgaria 0.703788 0.530427 0.651790 0.908831 0.851818 0.851818 0.368453 0.171882 0.326891
4 Croatia 0.665272 0.478368 0.617430 0.727019 0.581371 0.899571 0.519453 0.321197 0.444597
5 Czech Rep. 0.667277 0.481022 0.594025 0.735596 0.593307 0.677312 0.511593 0.312524 0.452911
6 Denmark 0.762902 0.614582 0.700496 0.576000 0.386280 0.557439 1 1 1
7 Estonia 1 1 1 1 1 1 1 1 1
8 Finland 0.705130 0.532281 0.683309 1 1 1.010752 0.365703 0.169523 0.366258
9 France 0.988221 0.979159 0.988222 0.882214 0.810054 0.882215 1 0.577587 1
10 Germany 1 1 1 1 1 1 1 0.509655 1
1 Ireland 0.731261 0.568906 0.664852 0.737318 0.595714 0.731558 0.718122 0.569082 0.664763
12 Latvia 0.977333 0.960043 0.963409 0.918610 0.867337 0.918610 1 1 1
13 Lithuania 0.949317 0.911528 0.947552 0.493179 0.292572 0.493179 1 1 1
14 Netherlands 0.547971 0.334011 0.509601 0.438678 0.236643 0.433225 1 0.930982 1
15 Poland 1 1 1 1 1 1 1 0.930982 1
16 Portugal 0.787282 0.650746 0.730033 0.824983 0.722690 0.824984 0.447969 0.513432 0.675662
17 Slovenia 0.659973 0.471381 0.621496 0.576376 0.386729 0.623256 1 1 1.044866
18 Spain 0.955938 0.922906 0.954406 0.559388 0.366681 0.546500 1 0.930982 1
19 Sweden 0.805756 0.678702 0.721138 0.862833 0.780090 0.787411 0.769217 0.640919 0.701204
20 UK 0.938041 0.892275 0.937471 0.380410 0.182301 0.375570 1 0.874350 1
21 Norway 0.467649 0.259967 0.414903 0.481784 0.280487 1.008325 0.431738 0.229868 0.432147
22 Switzerland 0.893634 0.818026 0.863041 0.955176 0.926178 0.948139 0.339756 0.253971 0.509072
Table A.2
Coverage probabilities for the confidence interval estimates when P=R=Q =T =5 =1 and the DMU under evaluation is not included in the subsample.
Overall 1st Stage 2nd Stage
Stage 1 Priority Stage 2 Priority Stage 1 Priority Stage 2 Priority
1-a 1-a 1-a 1-a 1-a
N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 0.40 0.967 0.994 1.000 0.991 0.994 0.998 0.985 0.991 0.998 0.993 0.997 1.000 0.989 0.997 1.000
0.45 0.996 1.000 1.000 0.991 0.993 0.998 0.982 0.987 0.997 0.976 0.994 0.999 0.974 0.991 0.999
0.50 0.998 1.000 1.000 0.990 0.994 0.999 0.983 0.989 0.998 0.959 0.985 0.998 0.958 0.983 0.998
0.55 0.999 1.000 1.000 0.989 0.994 0.998 0.984 0.990 0.997 0.959 0.986 0.998 0.957 0.983 0.998
0.60 0.998 1.000 1.000 0.983 0.993 0.997 0.974 0.988 0.996 0.917 0.979 0.998 0.914 0.975 0.998
0.65 0.989 0.997 1.000 0.948 0.987 0.996 0.943 0.983 0.995 0.821 0.920 0.996 0.820 0.919 0.995
0.70 0.971 0.993 1.000 0.928 0.978 0.994 0.924 0.970 0.993 0.761 0.883 0.995 0.764 0.885 0.994
0.75 0.935 0.975 0.999 0.893 0.948 0.994 0.891 0.945 0.993 0.661 0.810 0.967 0.670 0.814 0.965
0.80 0.891 0.945 0.993 0.873 0.915 0.990 0.870 0.913 0.988 0.572 0.727 0.938 0.572 0.733 0.940
0.85 0.830 0.909 0.983 0.833 0.896 0.979 0.831 0.894 0.977 0.492 0.654 0.904 0.490 0.659 0.904
0.90 0.733 0.851 0.954 0.786 0.865 0.958 0.786 0.865 0.957 0.399 0.560 0.820 0.390 0.558 0.816
0.95 0.636 0.775 0.922 0.738 0.825 0.933 0.736 0.824 0.932 0.336 0.488 0.744 0.331 0.479 0.748
50 0.40 0.994 1.000 1.000 0.970 0.999 1.000 0.971 0.999 1.000 0.990 0.999 1.000 0.988 0.999 1.000
0.45 1.000 1.000 1.000 0.975 0.997 1.000 0.973 0.997 1.000 0.974 0.998 1.000 0.972 0.998 1.000
0.50 1.000 1.000 1.000 0.981 0.998 1.000 0.979 0.997 1.000 0.875 0.971 0.999 0.878 0.971 1.000
0.55 0.999 1.000 1.000 0.978 0.995 1.000 0.977 0.995 1.000 0.816 0.943 0.997 0.825 0.947 0.997
0.60 0.995 1.000 1.000 0.970 0.985 1.000 0.969 0.985 1.000 0.679 0.859 0.985 0.685 0.865 0.985
0.65 0.985 0.996 1.000 0.960 0.980 0.998 0.962 0.980 0.998 0.559 0.771 0.959 0.578 0.780 0.966
0.70 0.962 0.986 1.000 0.936 0.969 0.996 0.936 0.969 0.996 0.418 0.627 0.922 0.431 0.635 0.920
0.75 0.917 0.968 0.994 0.912 0.955 0.988 0.911 0.955 0.988 0.321 0.522 0.853 0.327 0.526 0.861
0.80 0.844 0.924 0.987 0.879 0.929 0.979 0.878 0.931 0.979 0.235 0.403 0.751 0.237 0.409 0.757
0.85 0.717 0.855 0.964 0.842 0.903 0.967 0.842 0.903 0.969 0.168 0.302 0.654 0172 0.302 0.658
0.90 0.587 0.744 0.920 0.801 0.873 0.946 0.800 0.871 0.946 0.115 0.230 0.532 0.121 0.227 0.531
0.95 0.427 0.599 0.839 0.749 0.823 0.919 0.747 0.822 0.919 0.075 0.174 0.430 0.066 0.168 0.425
100 0.40 1.000 1.000 1.000 0.975 0.996 1.000 0.976 0.997 1.000 0.845 0.984 1.000 0.851 0.984 1.000
0.45 1.000 1.000 1.000 0.982 0.998 1.000 0.983 0.998 1.000 0.732 0.942 1.000 0.747 0.943 1.000
0.50 1.000 1.000 1.000 0.986 0.996 1.000 0.985 0.996 1.000 0.363 0.704 0.986 0.387 0.735 0.989
0.55 0.999 1.000 1.000 0.979 0.994 0.998 0.980 0.994 0.998 0.212 0.541 0.943 0.230 0.561 0.952
0.60 0.997 0.999 1.000 0.977 0.989 0.997 0.977 0.989 0.997 0.110 0.326 0.849 0.123 0.346 0.861
0.65 0.972 0.996 1.000 0.965 0.981 0.997 0.966 0.981 0.997 0.056 0.175 0.668 0.059 0.186 0.690
0.70 0.904 0.961 0.997 0.947 0.971 0.992 0.947 0.971 0.992 0.018 0.090 0.463 0.019 0.096 0.480
0.75 0.781 0.910 0.989 0.933 0.959 0.985 0.933 0.959 0.985 0.009 0.050 0.315 0.009 0.053 0.323
0.80 0.567 0.772 0.957 0.900 0.946 0.981 0.898 0.946 0.981 0.008 0.031 0.189 0.007 0.029 0.199
0.85 0.355 0.555 0.872 0.854 0.912 0.964 0.853 0.909 0.964 0.005 0.014 0.118 0.004 0.014 0.118
0.90 0.205 0.367 0.700 0.796 0.871 0.953 0.796 0.870 0.953 0.002 0.012 0.077 0.001 0.009 0.076
0.95 0.104 0.211 0.511 0.734 0.828 0.929 0.734 0.826 0.928 0.001 0.009 0.055 0.002 0.006 0.053
200 0.40 1.000 1.000 1.000 0.936 0.993 1.000 0.936 0.993 1.000 0.012 0.269 0.982 0.020 0.294 0.982
0.45 1.000 1.000 1.000 0.957 0.996 1.000 0.957 0.996 1.000 0.004 0.056 0.833 0.004 0.071 0.846
0.50 1.000 1.000 1.000 0.982 0.997 1.000 0.982 0.997 1.000 0.000 0.003 0.325 0.001 0.005 0.357
0.55 0.996 0.999 1.000 0.986 0.997 1.000 0.986 0.997 1.000 0.000 0.003 0.104 0.000 0.002 0.128
0.60 0.970 0.993 1.000 0.978 0.997 1.000 0.978 0.996 1.000 0.000 0.001 0.025 0.000 0.001 0.029
0.65 0.858 0.965 0.998 0.974 0.990 0.999 0.973 0.990 0.999 0.000 0.000 0.005 0.000 0.000 0.009
0.70 0.613 0.842 0.988 0.960 0.981 0.998 0.960 0.981 0.998 0.000 0.000 0.004 0.000 0.000 0.003
0.75 0.303 0.567 0.914 0.929 0.971 0.995 0.929 0.970 0.995 0.000 0.000 0.000 0.000 0.000 0.000
0.80 0.106 0.279 0.721 0.898 0.945 0.988 0.897 0.943 0.988 0.000 0.000 0.000 0.000 0.000 0.000
0.85 0.041 0.103 0.442 0.848 0.906 0.977 0.847 0.904 0.976 0.000 0.000 0.000 0.000 0.000 0.000
0.90 0.022 0.048 0.200 0.780 0.865 0.957 0.780 0.864 0.957 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.010 0.024 0.078 0.714 0.799 0.915 0.714 0.799 0.914 0.000 0.000 0.000 0.000 0.000 0.000
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Table A.3
Coverage probabilities for the confidence interval estimates when P=R=T =1,Q =S =2 and the DMU under evaluation is not included in the subsample.
Overall 1st Stage 2nd Stage
Stage 1 Priority Stage 2 Priority Stage 1 Priority Stage 2 Priority
1-o 1-o 1-o 1-a 1-a
N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
25 0.40 0.810 0.931 0.995 0929 0.951 0.955 0929 0951 0.955 0911 0964 0.988 0938 0980 0.987
0.45 0930 0.982 1.000 0.957 0.965 0.968 0.957 0965 0.968 0963 0982 0.991 0.979 0.988  0.990
0.50 0972 0.996 1.000 0967 0.972 0972 0967 0972 0.972 0976 0993  0.993 0989 0992 0.992
0.55 0971 0.995 1.000 0.967 0.970 0.972 0967 0970 0.972 0976 0990 0.993 0987 0.990 0.992
0.60 0.982 0.998 0.999 0970 0.976 0.976 0971 0976 0.976 0.981 0.995 0.996 0991 0994 0.995
0.65 0989 0.996 0.999 0.968 0.984 0.986 0968 0984 0.986 0990 0.994 0.997 0988 0.993 0.996
0.70 0980 0.994 0.999 0.957 0.980 0.986 0.957 0981 0.987 0971 0993  0.998 0972 0993  0.997
0.75 0956 0.982  0.996 0934 0.962 0.987 0935 0962 0.987 0949 0979 0.998 0947 0978 0.997
0.80 0921 0.958 0.994 0902 0.949 0.985 0.902 0950 0.985 0923 0954 0.993 0922 0958 0.995
0.85 0.877 0.935 0.987 0.871 0.930 0.973 0.872 0930 0.973 0.891 0.938 0.985 0.890 0936 0.981
0.90 0.810 0.887 0.965 0.817 0.885 0.960 0.815 0.885 0.960 0.838 0901 0.965 0.832 0904 0.965
0.95 0.746  0.835 0.944 0.740 0.850 0.941 0.739 0.849 0.942 0.788 0.869 0.954 0.776  0.861 0.954
50 0.40 0.696 0.859  0.989 0960 0.995 1.000 0972 0995 1.000 0933 0987 0.998 0.955 0.997 1.000
0.45 0.818 0.932  0.999 0972 0.995 1.000 0976 0996 1.000 0974 0993 1.000 0991 1.000 1.000
0.50 0936 0.987 1.000 0.983 0.997 1.000 0.984 0998 1.000 0.988 0.998 1.000 0.997 1.000 1.000
0.55 0962 0.996 1.000 0.986 0.998 1.000 0.985 0.997 1.000 0991 0.997 1.000 0.997 0.999 1.000
0.60 0.984 0.998 1.000 0984 0.994 1.000 0984 0994 1.000 0989 0999 1.000 0993 0999 1.000
0.65 0.990 0.997 1.000 0971 0.991 1.000 0971 0990 1.000 0977 0995 0.999 0982 0995 0.999
0.70 0986 0.993 0.997 0.958 0.981 0.996 0.959 0980 0.995 0961 0979 0.999 0.957 0982 0.999
0.75 0972 0.988 0.997 0.928 0.966 0.991 0927 0967 0.991 0943 0968  0.992 0937 0967 0.993
0.80 0939 0.974 0.996 0.885 0.943 0.985 0.885 0943  0.986 0.893 0949 0.984 0.896 0944 0.986
0.85 0.893 0.938 0.985 0.835 0.903 0.973 0.835 0901 0.973 0.837 0905 0.972 0.829 0904 0.973
0.90 0.840 0.900 0.970 0.785 0.853  0.956 0.785 0.853  0.956 0.767 0.854  0.955 0.763  0.851  0.953
0.95 0.742  0.839 0.940 0.710 0.805 0.924 0.711  0.805 0.925 0.691 0.782 0.912 0.684 0.782 0.912
100 0.40 0.682 0.850 0.991 0.947 0.986 1.000 0.946 0.987  1.000 0.970 0.996 1.000 0.987 0999 1.000
0.45 0.753  0.913  0.995 0.953 0.990 1.000 0.953 0.990 1.000 0.983 0997 1.000 0.995 1.000 1.000
0.50 0902 0.976  0.999 0.980 0.995 1.000 0.980 0.995 1.000 0.993 1.000 1.000 0.997 1.000 1.000
0.55 0.955 0.989  1.000 0.988 0.995 1.000 0988 0995 1.000 0.994 1.000 1.000 0998 0.999 1.000
0.60 0977 0.994 1.000 0.988 0.996 1.000 0.988 0.996 1.000 0.990 0.998 1.000 0.993 0.998 1.000
0.65 0.987 0.999 1.000 0976 0.994 1.000 0975 0.994 1.000 0984 0993 1.000 0985 0.993 1.000
0.70 0988 0.994 1.000 0951 0.982 0.997 0952 0981 0.997 0957 0984 0.997 0953 0984 0.998
0.75 0975 0.989  0.999 0914 0.961 0.994 0915 0961 0.994 0916 0962  0.996 0923 0960 0.996
0.80 0938 0.974 0.994 0.880 0.924 0.986 0.880 0923  0.986 0.862 0929 0.985 0.862 0932 0.986
0.85 0.873 0.933 0.983 0.830 0.882 0.969 0.831 0.883 0.970 0.785 0.871  0.963 0.781 0.866 0.964
0.90 0.800 0.871 0.961 0.764 0.843 0.929 0.765 0.843  0.929 0.696 0.793  0.929 0.688 0.794 0.934
0.95 0.697 0.803 0918 0.689 0.781 0.894 0.684 0.781 0.893 0.610 0.724 0.879 0.588 0.705 0.876
200 040 0.557 0.789  0.986 0.869 0.984 1.000 0.871 0984 1.000 0986 0999 1.000 0.997 1.000 1.000
0.45 0.686 0.874 0.994 0918 0.994 1.000 0918 0994 1.000 0.996 1.000 1.000 1.000 1.000 1.000
0.50 0.860 0.955 1.000 0973 0.998 1.000 0.973 0998 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.55 0926 0.986 1.000 0.987 0.998 1.000 0.987 0998 1.000 0.997 1.000 1.000 0.999 1.000 1.000
0.60 0971  0.997 1.000 0.989 0.998 1.000 0.991 0998 1.000 0.992 0.998 1.000 0993 0999 1.000
0.65 0.989 0.997 1.000 0.983 0.997 1.000 0.983 0997 1.000 0965 0.990 1.000 0970 0991 1.000
0.70 0990 0.996 0.999 0979 0.990 0.998 0977 0990 0.998 0928 0970 0.997 0933 0974 0.998
0.75 0972 0.989  0.996 0.949 0.978 0.997 0949 0978 0.997 0.872 0932 0.992 0.885 0936 0.993
0.80 0941 0.969 0.994 0.900 0.957 0.988 0.901 0955 0.988 0816 0.886 0.972 0.823 0.889 0.971
0.85 0.882 0.938 0.982 0.869 0.905 0.979 0.869 0906 0.979 0.740  0.825 0.930 0.743  0.829 0.933
0.90 0.787 0.871  0.955 0.806 0.878 0.954 0.805 0.879 0.953 0.642 0.742 0.892 0.641 0.748 0.894
0.95 0.664 0.777  0.902 0.743  0.803 0917 0.744 0.803 0.918 0.553  0.658  0.822 0.538 0.656  0.822

The linear equivalents of models (20) and (21), respectively, are and

Q R
N1 1
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0o 1 2
= max Yz + 3wl 0l Y e
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’ / / 1 : N
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Up’ yrwu“q’nt’ Ns > 0,

u', u? free in sign.

List of notations:

j Index of DMUs.

Jo DMU under evaluation.

N Number of DMUs in the sample.

m Number of DMUs in the subsample

) Stage number indicator

Xpj = (X1j.....xp;) Vector of first stage inputs for DMU;.

Ij = (Lj.....lgj))  Vector of first stage outputs for DMU;.

z4j = (z1j.....2qj) Vector of intermediate products for DMU;.
8:j = (€1j.....&rj) Vector of second stage inputs for DMU;.
Ysj = (¥1j...-.ysj) Vector of second stage outputs for DMU;.

Xe Vector of first stage efficient inputs

2 Vector of second stage efficient inputs

vp = (vy,...,vp)  Vector of multipliers for the first stage inputs in the
fractional model.

Mr = (W1,..., ug) Vector of multipliers for the first stage outputs in the
fractional model.

Yqa= (V1.....¥o) Vector of multipliers for the intermediate products in the
fractional model.

7 = (mq,...,mr) Vector of multipliers for the second stage inputs in the
fractional model.

Ns=M1,...,Ns Vector of multipliers for the second stage outputs in the
fractional model.

v, = (v},...,vp)  Vector of multipliers for the first stage inputs in the
linear model.

My = (U, ..., up) Vector of multipliers for the first stage outputs in the
linear model.

V¢ = (..., ¥4) Vector of multipliers for the intermediate products in the
linear model.

/= (my,....m}) Vector of multipliers for the second stage inputs in the
linear model.

ne= (... 0% Vector of multipliers for the second stage outputs in the
linear model.

Wy Decomposition weight of the first stage.

Wyj Decomposition weight of the second stage.

07 True overall efficiency score of DMU;.

0].‘ True first stage efficiency score of DMU;.

Qz True second stage efficiency score of DMU;.

0% Estimation of the overall efficiency score of DMU;.

01 Estimation of the first stage efficiency score of DMU;.

02; Estimation of the second stage efficiency score of DMU;.

55] Bootstrap estimation of the overall efficiency score of

- DMU;.

o1 j Bootstrap estimation of the first stage efficiency score of

- DMU;.

02 j Bootstrap estimation of the second stage efficiency score
of DMU;.
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