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a b s t r a c t 

Data Envelopment Analysis (DEA), provides an empirical estimation of the production frontier, based on 

an observed sample of decision making units (DMUs). Except for the single input-single output case, 

the asymptotic distribution of the DEA estimator can only be approximated through bootstrapping ap- 

proaches. Therefore, bootstrapping techniques have been widely applied in the DEA literature to make 

statistical inference for the cases when the production process has a single-stage structure. However, in 

many cases, the transformation of inputs into outputs has an inner structure that needs to be consid- 

ered. This paper examines the applicability of the subsampling bootstrap procedure in the approximation 

of the asymptotic distribution of the DEA estimator when the production process has a network struc- 

ture, and in the presence of undesirable factors. Evidence on the performance of subsampling bootstrap 

is obtained through Monte Carlo experiments for the case of two-stage series structures, where overall 

and stage efficiency estimates are calculated using the additive decomposition approach. Results indicate 

great sensitivity both to the sample and subsample size, as well as to the data generating process. Sub- 

sampling methodology is then applied to construct confidence interval estimates for the overall and stage 

efficiency scores of railways in 22 European countries, where the railway transport process is decomposed 

into two stages and the railway noise pollution problem is considered as an undesirable output. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Data envelopment analysis (DEA) is a non-parametric technique 

ased on linear programming, which is used to assess the rela- 

ive performance of a homogeneous set of decision making units 

DMUs). Based on the seminal work of Farrell (1957) , Charnes, 

ooper, & Rhodes (1978) and Banker, Charnes, & Cooper (1984) in- 

roduced the two basic DEA models under the assumptions of the 

onstant returns to scale (CRS) and the variable returns to scale 

VRS) case, respectively. 

In DEA, the efficiency of a DMU is measured as its distance 

rom an empirically constructed efficient boundary, and therefore, 

ts efficiency score depends on the available set of DMUs that 

hape the frontier. Assuming that the available set of DMUs is a 

ample generated from a population, the true efficient frontier is 

nknown, and statistical inference methods can be used to pro- 

ide estimations for the true efficiency scores. Banker (1993) was 

mong the first researchers to consider DEA as a consistent, but bi- 
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sed maximum likelihood estimator (MLE) of the efficient frontier. 

ince then, many studies have focused on deriving the convergence 

ate of DEA estimator and its asymptotic distribution. Several boot- 

trapping techniques have been developed and used to obtain the 

ampling distribution of DEA estimators, as in multi-dimensional 

ettings, an analytical form is not possible to be derived. 

Until now, studies on making statistical inference about DEA 

ave been limited to production processes with one-stage struc- 

ure. However, there is a high volume of studies in the DEA field, 

hat have developed the Network DEA (NDEA) models to measure 

he efficiency of DMUs with more complex production processes 

hat involve more than one stages to produce the final outputs. 

The aim of this paper is to address this deficiency in the DEA 

iterature by studying the performance of subsampling bootstrap 

n NDEA, through Monte Carlo simulations. Among the different 

ootstrapping approaches, subsampling bootstrap is the computa- 

ionally easiest one, and therefore, was chosen as the most appro- 

riate for NDEA where the dimensions of the model are usually 

igher compared to one-stage structures. In this paper, the gen- 

ral two-stage structure is being studied and the stage efficiency 

stimates are calculated using the additive decomposition ap- 

roach, upon the assumption of VRS. Coverage probabilities of the 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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onfidence intervals for a fixed point coming from two data gener- 

ting processes (DGPs) - defined on a five and a seven-dimensional 

nput-output space, respectively - are calculated. We show that in 

DEA coverage probabilities are more sensitive to the choice of 

ubsample size than in one-stage structures. Finally, the subsam- 

ling methodology is applied on a data set referring to European 

ailways to demonstrate the performance of subsampling bootstrap 

n real world cases. 

The remainder of this paper is structured as follows. 

ection 2 is a review of the main literature in statistical inference 

bout DEA and NDEA. In Section 3 , the DEA estimator in the gen-

ral two-stage production process is defined. In Section 4 subsam- 

ling methodology is adapted to NDEA. Section 5 includes details 

bout the Monte Carlo simulations and discussion of the results. 

ection 6 is an illustration of subsampling to a data set, where 

he production model has a network structure. Finally, in Section 7 , 

onclusions, limitations and future directions of this study are pro- 

ided. 

. Literature review 

Several studies focused on investigating the statistical proper- 

ies of the CRS and VRS DEA estimators in different dimensions 

nd established their rates of convergence. Kneip, Park, & Simar 

1998) proved that the convergence rate of the VRS-DEA point es- 

imator depends on the smoothness of the frontier. For the case 

hen the frontier is twice differentiable, and under the consis- 

ency requirement that the input-output density is positive close 

o the frontier and strictly positive on the frontier, they found that 

he convergence rate is n 
− 2 

p+ q +1 , where p and q are the number of 

nputs and outputs respectively. Under the global CRS assumption, 

ark, Jeong, & Simar (2010) proved that DEA estimator converges 

aster, at rate n 
− 2 

p+ q . In all cases, the rate at which the DEA es-

imator converges to the true frontier depends on the number of 

nputs and outputs; as the dimensions of the model increase, the 

umber of data records should increase exponentially in order to 

chieve the same rate of convergence. Simar & Wilson (2008) pro- 

ided a more detailed discussion on the curse of dimensionality of 

EA estimators and a comparison with parametric estimators. 

Gijbels, Mammen, Park, & Simar (1999) derived the analytical 

orm of the asymptotic distribution of DEA estimator under the 

RS, for the case of one input and one output. This is the only 

ase where the asymptotic distribution can be used in practice to 

ake inference. Jeong & Park (2006) extended their work to higher 

utput dimensions. Under the global CRS assumption, Park et al. 

2010) found that the DEA estimator follows an exponential dis- 

ribution. However, in the multivariate cases it is difficult to esti- 

ate the distribution’s parameters and thus, in practice, these re- 

ults cannot be used for making inference. 

In practice, except for the bivariate case, the only way to get the 

ampling distribution of the DEA estimators in higher dimensions 

s by using bootstrapping techniques. Bootstrap was first suggested 

y Efron (1979) as a method to obtain the sampling distribution of 

andom variables through simulations. In bootstrap techniques, the 

bserved sample X N , which consists of N random and independent 

raws from a population, is assumed to mimic the population that 

t comes from. Therefore, a bootstrap sample X ∗
N 

drawn from the 

riginal sample with replacement, can be treated as a sample gen- 

rated from the population itself. This is known as naïve bootstrap- 

ing. By repeatedly imitating the data generating process (DGP) it 

s possible to get a sufficiently large number of bootstrap samples. 

he bootstrap sampling distribution obtained, mimics the original 

ampling distribution. 

In the DEA framework, the first study that applied a bootstrap 

echnique to approximate the distribution of the DEA estimator un- 
2 
er the VRS assumption, was by Simar & Wilson (1998) . DEA esti- 

ates obtained with naïve bootstrapping are inconsistent close to 

he boundary, i.e. as the sample size tends to infinity, the estima- 

or does not converge to the true parameter. This happens because 

he naïve bootstrap estimate will equal with the sample estimate 

ith non-zero probability, whereas the probability that the sam- 

le estimate equals with the true parameter is zero. See Simar & 

ilson ( 1998; 20 0 0 ) and Kneip, Simar, & Wilson (20 08) for further

iscussion and proof. 

To overcome the inconsistency problem, Simar & Wilson 

1998) applied a homogeneous smooth bootstrap making the as- 

umption that the distribution of inefficiencies is common for all 

MUs. Although the homogeneity assumption is restrictive, this 

ethod can give good estimations even with a relatively small data 

et. Simar & Wilson (20 0 0) extended their previous work to a het- 

rogeneous smooth bootstrap, where the distribution of inefficien- 

ies varies across the DMUs. In both studies, confidence intervals 

or the efficiency scores of a fixed point (x, y ) are constructed us- 

ng the bias-corrected estimator. Simar & Wilson (1999) applied 

he homogeneous bootstrap to estimate Malmquist indices and 

uggested a procedure for confidence interval construction with- 

ut the explicit use of the bias-corrected estimates. Simar & Wil- 

on (2002) developed hypothesis tests for examining the returns to 

cale and suggested bootstrap procedures for the estimation of the 

ritical values for the test statistics. 

Kneip et al. (2008) proved the consistency of two more 

ootstrapping techniques, based on smoothing and subsampling, 

espectively. The smoothing approach, requires smoothing both 

he input/output density function and the frontier estimate and 

s computationally very demanding. Kneip, Simar, & Wilson 

2011) suggested a simplified version of the double-smoothed 

ootstrap. However, subsampling bootstrap - originally suggested 

y Swanepoel (1986) - is computationally easier. It consists of 

rawing m = N 

κ observations, usually with replacement, for κ ∈ 

0 , 1) . In this way, the frequency at which the sample maximum is

rawn, is reduced, overcoming the inconsistency problem of naïve 

ootstrap. They also suggested a method to construct confidence 

ntervals without using the bias-corrected estimates to avoid ad- 

itional noise in the estimation procedure. Subsampling is easy to 

mplement, however, its performance is sensitive to the choice of 

he subsample size m. Based on the minimum volatility criterion 

uggested by Politis, Romano, & Wolf (2001) for the subsample size 

election, Simar & Wilson (2010) suggested an algorithm to choose 

n optimal subsample size in the DEA context. They also studied 

oth subsampling with and without replacement and found that 

he first one yields better results. 

Various bootstrapping techniques have been widely applied in 

ne-stage DEA to obtain bias-corrected estimates and confidence 

ntervals for the efficiency scores. For example, in the DEA trans- 

ortation literature, Wanke (2012) used a Gaussian kernel to draw 

ootstrap samples and provide confidence interval estimates for 

he BCC efficiency scores of 68 Brazilian airports, and for testing 

he returns-to-scale. Marchetti & Wanke (2017) applied a second 

tage bootstrap truncated regression to assess the impact of con- 

extual variables in the performance of the Brazilian rail conces- 

ionaires. In Nwaogbe, Wanke, Barros, & Azad (2017) , the impact 

f contextual variables on 30 major Nigerian airports was assessed 

y combining first stage bootstrap efficiency estimations with a 

econd stage censored quantile regression. Moradi-Motlagh & Em- 

ouznejad (2022) provide a review of the main methodological de- 

elopments and of the relevant software that was developed, as 

ell as an extensive overview of the most impactful articles on the 

eld. 

In conventional DEA, the production of outputs is considered 

o occur in one stage and the inner structure of the produc- 

ion process is not taken into account. However, the operating 
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Fig. 1. General two-stage series network structure of a DMU. 
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rocess of a DMU may involve intermediate products which are 

utputs of one stage and inputs to the next stage. Färe & Whittaker 

1995) and Färe & Grosskopf (1996) were among the first studies 

hat considered the network structure of a DMU in its efficiency 

ssessment. 

There are two main efficiency decomposition approaches that 

re used in NDEA literature; the multiplicative and the additive 

pproach. Kao & Hwang (2008) suggested decomposing the overall 

fficiency as the product of the two stage efficiencies. They linked 

he two stages assuming that the aggregated outputs of the first 

tage are introduced unchanged in the second stage. However, the 

ultiplicative decomposition approach can only be applied under 

he CRS assumption, as under the VRS, the resulting models cannot 

e linearised. Another limitation of the conventional multiplica- 

ive approach is that it can be generalised to multi-stage series 

tructures only in the cases when there are no stage specific in- 

uts and outputs. For general network structures, alternative mul- 

iplicative approaches have been developed, such as converting the 

riginal model to a parametric linear one (see for example Zha & 

iang, 2010 ). Chen, Cook, Li, & Zhu (2009) decomposed the over- 

ll efficiency of a DMU as the weighted average of the stage ef- 

ciencies. They defined the decomposition weights endogenously, 

o they can reflect the relative contribution of each stage to the 

verall process. The additive decomposition approach has the ad- 

antage that it can be used both under the CRS and the VRS as- 

umptions. Cook, Zhu, Bi, & Yang (2010) extended the additive de- 

omposition methodology to general multistage series structures. 

n NDEA, adjusting the inputs or outputs of a DMU by its efficiency 

cores will not necessarily project the DMU on the frontier. Chen, 

ook, & Zhu (2010) suggested a model to get frontier projections in 

wo stage structures. Chen, Cook, Kao, & Zhu (2013) demonstrated 

hat in NDEA the duality between the envelopment and the mul- 

iplier model does not hold and suggested using the first one to 

et the frontier projections and the second one for calculating the 

verall and stage efficiency scores. 

Despite the great number of applications of NDEA, there are 

ery limited attempts for making statistical inference in NDEA. 

rinh & Zelenuyk (2015) , based on the work of Simar & Wilson 

2002) , developed hypothesis tests to examine whether the dif- 

erence between the first moments and the difference between 

he density distributions of the efficiency scores in one-stage DEA 

nd NDEA is significant. Bostian et al. (2018) suggested a statisti- 

al approach to make inference about NDEA based on a parametric 

ayesian approach. 

Dia, Takouda, & Golmohammadi (2020) applied a kernel 

moothing-bootstrap in a three-stage NDEA assessing the efficiency 

f Canadian credit unions, where the CRS and VRS efficiency score 

f each stage are calculated independently. The overall efficiency 

s then calculated as the average or as the product of the stage 

fficiency scores. To the best of our knowledge, there is no study 

nvestigating the construction of confidence interval estimates for 

he overall and stage efficiency scores in network production struc- 

ures taking into account the connection between the stages. 

. DEA estimator in two-stage production processes 

Consider a general two-stage series structure depicted in Fig. 1 . 

uppose that a Decision Making Unit (DMU) in a first stage 

onsumes P inputs x p = (x 1 , . . . , x P ) ∈ R 

P + to produce R final first

tage outputs l r = (l 1 , . . . , l R ) ∈ R 

R + and Q intermediate outputs z q =
z 1 , . . . , z Q ) ∈ R 

Q 
+ . In the second stage, intermediate products ob-

ained from the first stage, and external second stage inputs g t = 

g 1 , . . . , g T ) ∈ R 

T + are consumed to produce S final outputs y s =
y 1 , . . . , y S ) ∈ R 

S + . 
3 
In this network structure, the true production possibility set 

PPS) of the overall production process is defined as 

 = 

{
(x, l, z, g, y ) ∈ R 

P+ R + Q+ T + S 
+ 

∣∣∣x can produce l, and z, 

z and g can produce y 

}
. (1) 

Consider the decomposition of the production process into its 

omponent stages and let T 1 and T 2 denote the PPSs of the first 

nd second stage respectively. Then, 

 1 = { (x, l, z) ∈ R 

P+ R + Q 
+ |∃ (g, y ) ∈ R 

T + S 
+ : (x, l, z, g, y ) ∈ T } , (2) 

 2 = { (z, g, y ) ∈ R 

Q+ T + S 
+ |∃ (x, l) ∈ R 

P+ R 
+ : (x, l, z, g, y ) ∈ T } . (3) 

 , T 1 and T 2 can be described by their input or output correspon- 

ence sets, which inherit their properties. The input possibility sets 

or the overall process, the first and the second stage, respectively 

re 

 (l, y ) = { (x, z, g) ∈ R 

P+ Q+ T 
+ | (x, l, z, g, y ) ∈ T } , (4) 

 1 (l, z) = { x ∈ R 

P 
+ | (x, l, z) ∈ T 1 } , (5) 

 2 (y ) = { (z, g) ∈ R 

Q+ T 
+ | (z, g, y ) ∈ T 2 } , (6) 

nd the output possibility sets of the overall process, the first and 

econd stage, respectively, are 

 (x, z, g) = { (l, y ) ∈ R 

R + Q+ S 
+ | (x, l, z, g, y ) ∈ T } , (7) 

 1 (x ) = { (l, z) ∈ R 

R + Q 
+ | (x, l, z) ∈ T 1 } , (8) 

 2 (z, g) = { y ∈ R 

S 
+ | (z, g, y ) ∈ T 2 } . (9) 

Concerning the properties of the input and output possibility 

ets, the assumptions discussed in Shephard (1970) and ( Banker 

t al., 1984 ) are adopted in this study. Therefore, it is assumed that 

ll input/output sets defined above are closed, the input (output) 

ossibility sets are convex for all outputs (inputs), all inputs and 

utputs are strongly disposable, and that each of the input/output 

ossibility sets defined above is the intersection of all the sets sat- 

sfying these three properties. 

The efficient boundaries of the input possibility sets are defined 

s 

X(l, y ) = { (x, z, g) | (x, z, g) ∈ X(l, y ) , θ0 (x, z, g) / ∈ X(l, y ) , ∀ 0 < θ0 < 1 } , 
(10) 

X 1 (l, z) = { x | x ∈ X (l, z) , θ1 x / ∈ X (l, z, y ) , ∀ 0 < θ1 < 1 } , (11) 
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X 2 (y ) = { (z, g) | (z, g) ∈ X (y ) , θ2 (z, g) / ∈ X (y ) , ∀ 0 < θ2 < 1 } . 
(12) 

Let DMU j 0 
denote a DMU under evaluation. Then, the Farrell 

1957) input efficiency measure of DMU j 0 
for the overall process 

nd the two stages, respectively can be defined as 

0 (x, l, z, g, y ) = inf { θ0 | θ0 (x, z, g) ∈ X (l, y ) } , (13) 

1 (x, l, z) = inf { θ1 | θ1 x ∈ X 1 (l, z) } , (14) 

2 (z, g, y ) = inf { θ2 | θ2 (z, g) ∈ X 2 (y ) } . (15) 

or simplicity of notation, let θ0 (x, l, z, g, y ) ≡ θ0 , θ1 (x, l, z) ≡ θ1 ,

nd θ2 (z, g, y ) ≡ θ2 . The Farrell input efficiency measure θφ
j 0 

, φ = 

 , 1 , 2 of the DMU j 0 
under evaluation is the euclidean distance

f the point (x j 0 , l j 0 , z j 0 , g j 0 , y j 0 ) from its projection to the over-

ll or stage-efficient boundary, respectively, in direction parallel to 

he subspace defined by the overall or stage-specific input coordi- 

ates, respectively, while keeping the level of outputs fixed. The 

utput efficiency measures can be defined in a similar way, using 

he overall and stage output feasibility sets, and can be found in 

he Appendix . Note also that the above formulations refer to the 

pecific network structure, but they can be easily adapted to define 

he efficiency measure when the production process has a different 

tructure. 

In practice, the true production sets T , T 1 , T 2 are unknown, and

herefore, the efficiency scores θφ
j 0 

, φ = 0 , 1 , 2 of a DMU j 0 
need

o be estimated based on the observed sample of DMUs. Let S N = 

 (x j , l j , z j , g j , y j ) | j = 1 , . . . , N} be a random sample of N DMUs that

s assumed to be generated by an unknown data generating pro- 

ess (DGP), P . It is assumed that the DGP P is such that the DMUs

ncluded in S N are i.i.d random variables belonging to the con- 

ex PPS T , and (x j , l j , z j ) ∈ T 1 , (z j , g j , y j ) ∈ T 2 , with j = 1 , . . . , N.

et also ̂ θ0 
j 
, ̂ θ1 

j 
and 

̂ θ2 
j 

denote the estimators of the overall, the 

rst stage and the second stage efficiency, respectively, for DMU j , 

j = 1 , 2 , ., N, with respect to the observed sample S N . 

Estimates can be obtained by solving the mathematical pro- 

rammes for the observed sample of DMUs. As noted by Chen et al. 

2013) , in NDEA, the envelopment model can provide the overall 

fficiency estimates and the frontier projections, but no informa- 

ion on the stage efficiency estimates, while the multiplier model 

an be used to obtain the overall and stage efficiency estimates. 

ince the scope of this study is to make statistical inference about 

he overall and stage efficiency scores, the multiplier model is be- 

ng used. 

Under the VRS assumption, the independent efficiency score es- 

imates of each stage for a DMU j 0 
, in the input orientation, can be

btained by solving the following fractional programmes: 

ax ̂ θ1 
j 0 

= 

∑ Q 
q =1 γ

A 
q z q j 0 + 

∑ R 
r=1 μr l r j 0 + u 

A ∑ P 
p=1 v p x p j 0 

s.t. ̂ θ1 
j ≤ 1 , j = 1 , . . . , N (16a) 

v p , μr , γ
A 

q > 0 , 

u 

A free in sign 

ax ̂ θ2 
j 0 

= 

∑ S 
s =1 ηs y s j 0 + u 

B ∑ Q 
q =1 γ

B 
q z q j 0 + 

∑ T 
t=1 πt g t j 0 

s.t. ̂ θ2 
j ≤ 1 , j = 1 , . . . , N (16b) 

γ B 
q , πt , ηs > 0 , 

u 

B free in sign. 
4 
In order to link the two stages, as in Kao & Hwang (2008) , it is

ssumed that the optimal aggregated intermediate outputs of the 

rst stage become inputs to the second stage, i.e. it is assumed that 
A 

q = γ B 
q = γq . 

Adopting the additive decomposition approach ( Chen et al., 

009 ), the overall efficiency θ0 
j 0 

of DMU j 0 
is decomposed as the 

eighted sum of the stage efficiencies, 

 

0 
j 0 

= 

̂ w 1 j 0 ̂
 θ1 
j 0 

+ ̂

 w 2 j 0 ̂
 θ2 
j 0 
, and 

̂ w 1 j 0 + ̂

 w 2 j 0 = 1 . (17) 

y solving the system of these two equations, the decomposition 

eights can be obtained as functions of the model variables, as 

̂ 

 1 j = 

∑ P 
p=1 v p x p j ∑ P 

p=1 v p x p j + 

∑ Q 
q =1 γq z q j + 

∑ T 
t=1 πt g t j 

, (18) 

̂ 

 2 j = 

∑ Q 
q =1 γq z q j + 

∑ T 
t=1 πt g t j ∑ P 

p=1 v p x p j + 

∑ Q 
q =1 γq z q j + 

∑ T 
t=1 πt g t j 

. (19) 

The decomposition weights are defined endogenously as the ra- 

io of each stage’s inputs to the total amount of inputs, to reflect 

he relative contribution of each stage to the overall process. Then, 

he overall efficiency ̂ θ0 
j 0 

of DMU j 0 
is given by the fractional model 

 

0 ∗
j 0 

= max 

∑ Q 
q =1 γq z q j 0 + 

∑ R 
r=1 μr l r j 0 + u 

A + 

∑ S 
s =1 ηs y s j 0 + u 

B ∑ P 
p=1 v p x p j 0 + 

∑ Q 
q =1 γq z q j 0 + 

∑ T 
t=1 πt g t j 0 

s.t. ̂ θ1 
j ≤ 1 , j = 1 , . . . , N (20) ̂ θ2 
j ≤ 1 , j = 1 , . . . , N 

v p , μr , γq , πt , ηs > 0 , 

u 

A , u 

B free in sign, 

here ̂ θ0 ∗
j 0 

denotes the optimal objective value of model (20) . 

In the calculation of the optimal stage efficiency levels of a 

MU j 0 
, one of the two stages will be given pre-emptive priority. 

his stage’s efficiency score will be maximised while the optimal 

verall efficiency is preserved. Let p denote the priority stage, and 

 

φp∗
j 0 

, φ = 1 , 2 denote the efficiency estimate of the priority stage 

or DMU j 0 
and assume that the first stage is given priority over the 

econd stage. Then, 

 

1 p∗
j 0 

= max ̂ θ1 
j 0 

s.t. ̂ θ1 
j ≤ 1 , j = 1 , . . . , N ̂ θ2 
j ≤ 1 , j = 1 , . . . , N (21) ∑ Q 

q =1 γq z q j 0 + 

∑ R 
r=1 μr l r j 0 + u 

A + 

∑ S 
s =1 ηs y s j 0 + u 

B ∑ P 
p=1 v p x p j 0 + 

∑ Q 
q =1 γq z q j 0 + 

∑ T 
t=1 πt g t j 0 

= ̂

 θ0 ∗
j 0 

v p , μr , γq , πt , ηs > 0 . 

Models (20) and (21) can be converted into linear ones using 

he Charnes-Cooper transformation ( Charnes & Cooper, 1962 ) (see 

ppendix ). 

Let ( ̂  θ0 ∗
j 0 

, v ∗p , γ ∗
r , μ

∗
q , π

∗
t , η

∗
s ) be the optimal solution to model

20) . The optimal decomposition weights for DMU j 0 
are calculated 

ubstituting the optimal multipliers into relations (18) and (19) . 

hen, the efficiency estimate of the second stage is given from the 

ptimal decomposition equation as 

 

2 ∗
j 0 

= 

̂ θ0 ∗
j 0 

− ̂ w 

∗
1 j 0 ̂

 θ1 p∗
j 0 ̂ w 

∗
2 j 0 

. (22) 

f the second stage was given pre-emptive priority, then second 

tage efficiency would be calculated first, in a similar way, main- 

aining the overall efficiency level estimate, and then the fist stage 
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o

fficiency estimate would result from the optimal decomposition 

quation. Unless a DMU j , j = 1 , . . . , N shows infeasibility problems, 

he additive decomposition of the overall efficiency is unique, and 

he choice of the priority stage does not affect the stage efficiency 

stimates. 

In some cases, the optimisation process results in 

̂ w 

∗
1 j 

= 0 or ̂ 

 

∗
2 j 

= 0 , which means that the contribution of one of the two 

tages to the overall process is ignored. In those cases, the decom- 

osition weight restrictions w 1 j , w 2 j ≥ κ, for some κ ∈ (0 , 0 . 5] , can

e added to model (20) or to its linear equivalent. 

efinition 3.1. A DMU j 0 
is considered to be overall efficient if and 

nly if ̂ θφ∗
j 0 

= 1 , for φ = 0 , 1 , 2 . It is stage efficient if ̂ θ1 ∗
j 0 

= 1 or

 2 ∗
j 0 

= 1 . 

Because the efficiency measurement described above is radial, a 

MU j 0 
may be overall efficient, but be able to further improve its 

ctivity due to the existence of slacks (weak efficiency). However, 

n this study the existence of slacks is not examined. 

Note that the true PPS always includes the sample PPS, i.e 
 

 ⊂ T , ̂ T 1 ⊂ T 1 and 

̂ T 2 ⊂ T 2 . Therefore, it holds that ̂ θ0 ≥ θ0 , for all 

oints (x, l, z, g, y ) ∈ ̂

 T , ̂ θ1 ≥ θ1 , for all (x, l, z) ∈ 

̂ T 1 , and 

̂ θ2 ≥ θ2 ,

or all (z, g, y ) ∈ 

̂ T 2 . Kneip et al. (1998) proved that the rate at

hich the estimator converges depends on the number of input 

nd output variables and the degree of the true frontier smooth- 

ess. If it is assumed that the true frontier is twice differen- 

iable then, the rate of convergence in the one-stage structure is 

 

− 2 
(p−1)+ q +2 , where N is the size of the sample and p, q are the

umber of inputs and outputs, respectively. This result can be eas- 

ly extended to series network structures. 

A common approach of demonstrating the convergence of an 

stimator is by proving that the estimator is bounded in probabil- 

ty. A set of random variables X N is bounded in probability if there 

xist M ε and N ε such that for all N > N ε , and ε > 0 , P rob(X N >

 ε ) < ε. This is denoted by X N = O p (1) . Similarly, if X N = O p (N 

−a )

or a > 0 means that X N /N 

−a is O p (1) . Then, it can be considered

hat X N converges at a rate N 

−a . The convergence rates of the over-

ll and stage processes, respectively, are given in the following 

roposition. 

roposition 3.1. For a two-stage process with final first stage inputs 

nd second stage outputs, under the assumptions of VRS and the true 

rontier being twice differentiable, it holds that 

 0 − θ0 = O p (N 

− 2 
P+ Q+ R + T+ S+1 ) (23) 

 1 − θ1 = O p (N 

− 2 
P+ Q+ R +1 ) (24) 

 2 − θ2 = O p (N 

− 2 
Q+ T+ S+1 ) (25) 

roof. The proof for the convergence rate for each stage results 

rom the proof of the convergence rate in the one-stage structure 

rovided by Kneip et al. (1998, pg. 7–9) considering the input and 

utput possibility sets of each stage and the overall process, as 

hose are defined in relations (4)–(6) and (7)–(9) . �

In the next section, the subsampling bootstrap methodology 

sed for the approximation of the distribution of ̂ θφ/θφ = 0 , 1 , 2

s discussed. 

. Bootstrapping with subsampling 

As it was mentioned in the previous section, T , T 1 , T 2 , the DGP

 and θ0 
j 
, θ1 

j 
, θ2 

j 
for a DMU j , j = 1 , . . . , N are unknown and the ob-

erved sample S N needs to be used to provide estimates for the 

rue efficiency scores. However, when the dimensions increase, it 
5 
s not possible to derive the sampling properties of the estima- 

ors analytically. Since S N is the only sample available, bootstrap- 

ing techniques can be used to derive the sampling distribution of 

he estimators. 

The main assumption in bootstrapping is that the original 

ample S N generated from the unknown P, mimics the underly- 

ng population that it comes from. Therefore, a bootstrap sample 

 

∗
N { (x ∗

i 
, l ∗

i 
, z ∗

i 
, g ∗

i 
, y ∗

i 
) | i = 1 , . . . , N} generated from the original sam-

le through a known DGP ˆ P can be used to estimate the unknown 

ampling distribution of ̂ θφ
j 
, j = 1 , . . . , N. In other words, ˆ θ is an

stimator of θ obtained from the sample S N through P , and 

̂ 

̂ θ is 

n estimator of ˆ θ obtained from the bootstrap sample S ∗
N 

through 

ˆ 
 . If ˆ P is a consistent estimator of P, i.e. ˆ P converges to P , for a

iven DMU j 0 
, it holds that 

̂ 

̂ θ
φ

j 0 ̂ θφ
j 0 

∣∣∣ ˆ P ∼
̂ θφ

j 0 

θφ
j 0 

∣∣∣P, for φ = 0 , 1 , 2 . (26) 

The distribution of the right-hand side of relation (26) is un- 

nown, but Monte Carlo simulations of the left-hand side can pro- 

ide approximations of it. By generating a sufficiently large number 

 of bootstrap samples and applying the NDEA estimator to each 

ne of those, a set of B estimates ̂ 

̂ θ
φ
j 0 

, φ = 0 , 1 , 2 can be obtained.

hese can be used to derive the empirical distribution of the left- 

and side in relation (26) . As B, N → ∞ , the approximation of the

ight hand side becomes accurate. 

In order for the relation (26) to hold, it is necessary that 
ˆ 
 is a consistent estimator of P. Naïve bootstrapping does not 

ield consistent boundary estimations (see Bickel & Freedman, 

981 , pg. 1210). Smoothing and subsampling techniques have been 

roven to give consistent estimations of the production frontier. 

ubsampling allows for heterogeneity in the efficiency of DMUs 

nd, among the different bootstrapping techniques, is computa- 

ionally the easiest one, as it does not require any kernel smooth- 

ng to achieve consistency. In NDEA, where more than one stages 

re involved in the production process, the computational burden 

f kernel smoothing may be prohibitive and subsampling seems to 

e the most appropriate method for statistical inference. 

The subsampling methodology suggested by Kneip et al. 

2008) and Simar & Wilson (2010) can be adapted to the 

DEA case, by considering the inner structure of DMUs. Kneip 

t al. proved that drawing pseudo-samples of size m = N 

k , for 

 ∈ (0 , 1) , where N is the original sample size, allows for consis-

ent inference. 

Consider the general two-stage network structure depicted in 

ig. 1 and let S N be the original sample of N DMUs. In each repli-

ation, a bootstrap subsample 

 

∗
m 

= { (x ∗j , l 
∗
j , z 

∗
j , g 

∗
j , y 

∗
j ) | j = 1 , . . . , m } 

onsists of m < N independent and identically distributed (iid) 

raws with replacement from the original sample. 

For each bootstrap subsample, for a DMU j 0 
, models (20), 

21) and Eq. (22) are used to get the overall and stage boot- 

trap efficiency estimates ̂ 

̂ θ
0 ∗
j 0 

, ̂  

̂ θ
1 ∗
j 0 

and 

̂ 

̂ θ
2 ∗
j 0 

, respectively. Kneip 

t al. (2008) proved for one-stage structures that the bootstrap 

istribution of m 

2 / (P+ Q+1) 
( ̂ ̂ θ j 0 ̂ θ j 0 

− 1 

)
approximates the distribu- 

ion of N 

2 / (P+ Q+1) 
( ̂ θ j 0 

θ j 0 

− 1 

)
, where P the number of inputs and 

the number of outputs. Let A = 2 / (P + R + Q + T + S + 1) , B = 

 / (P + R + Q + 1) and 
 = 2 / (Q + T + S + 1) . Adjusting the result 

f Kneip et al. (2008) to the specific general network structure, it 



M. Michali, A. Emrouznejad, A. Dehnokhalaji et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; July 26, 2022;0:16 ] 

h

m

T

c

r

t

 

t

m

a

P

a

P

w

c

(

t

s[
f

5

i

T

w

d  

a  

1

e

s  

f  

w

o

t

v

i

t

d

c

t

s

fi

t  

fi

z

i

s

s  

w  

D

t

a  

o

t

a

(  

fi  (
 

t

e

s

o

w

i

e  

e

fi

p

i  

g

w

c

t

t

T

a  

r

p

w

 

0  

g

w  

a  

p

p

o

o

(

i

o

p

l

o

s

b

m

d

z

F

o

e

t

z

f

s

t

t

a

olds that 

 

τ
(̂ 

̂ θ
φ

j 0 ̂ θφ
j 0 

− 1 

)
approx ∼ N 

τ
(̂ θφ

j 0 

θφ
j 0 

− 1 

)
, (τ, φ) ∈ { (A, 0) , (B, 1) , (
, 2) } . 

(27) 

herefore, the bootstrap estimates of the overall and stage effi- 

iencies, respectively, of a DMU j 0 
can be used to approximate the 

ight-hand side in relations (27) and construct the confidence in- 

ervals for the true overall and stage efficiencies. 

For a DMU j 0 
, for a chosen confidence level a ∈ (0 , 1) , the quan-

iles c a/ 2 ,m 

and c 1 −a/ 2 ,m 

of the unknown distributions can be esti- 

ated using the quantiles of the bootstrap distribution, obtained 

s 

 rob 

(
m 

τ
(̂ 

̂ θ
φ

j 0 ̂ θφ
j 0 

− 1 

)
≤ ̂ c a/ 2 ,m 

| S N 
)

= a/ 2 

nd 

 rob 

(
m 

τ
(̂ 

̂ θ
φ

j 0 ̂ θφ
j 0 

− 1 

)
≤ ̂ c 1 −a/ 2 ,m 

| S N 
)

= 1 − a/ 2 , 

here (τ, φ) ∈ { (A, 0) , (B, 1) , (
, 2) } . 
In practice, this involves sorting the values m 

τ
( ̂ ̂ θ

φ

j 0 ̂ θ
φ
j 0 

− 1 

)
in as- 

ending order and then assigning ̂  c a/ 2 ,m 

the first value that exceeds 

a/ 2)100% of the observations and 

̂ c 1 −a/ 2 ,m 

the value that is less 

han (1 − a/ 2)100% of the observations. Then the true overall and 

tage efficiencies will lie in the confidence intervals 
 ̂ θφ

j 0 (
1 + N 

−τ̂ c 1 −a/ 2 ,m 

) , 

̂ θφ
j 0 (

1 + N 

−τ̂ c a/ 2 ,m 

)] 

, (28) 

or (τ, φ) ∈ { (A, 0) , (B, 1) , (
, 2) } , respectively. 

. Monte Carlo simulations 

In order to examine the performance of subsampling bootstrap 

n network structures, Monte Carlo simulations were performed. 

wo sets of experiments were conducted for the general net- 

ork structure (see Fig. 1 ) with five-dimensional and seven- 

imensional DGPs, respectively, i.e. for P = R = Q = T = S = 1

nd for P = R = T = 1 , Q = S = 2 . Each experiment consists of

0 0 0 Monte Carlo trials with 20 0 0 bootstrap replications in 

ach trial. Also, experiments were conducted for four sample 

izes N ∈ { 25 , 50 , 100 , 200 } and twelve subsample sizes m = [ N 

k ] ,

or k ∈ { 0 . 4 , 0 . 45 , 0 . 5 , 0 . 55 , 0 . 6 , 0 . 65 , 0 . 7 , 0 . 75 , 0 . 8 , 0 . 85 , 0 . 9 , 0 . 95 } ,
here [ N 

k ] denotes the integer part of N 

k . 

In all the experiments, the confidence intervals for the true 

verall and stage efficiencies of a fixed point were estimated. Due 

o sampling noise, the true probability that the confidence inter- 

al contains the true efficiency score may differ from the nom- 

nal probability that the confidence level represents. Therefore, 

hrough the Monte Carlo trials, the true probability of the confi- 

ence interval containing the true parameter is approximated by 

alculating the coverage probabilities, i.e. the actual proportion of 

he estimated confidence intervals that include the true efficiency 

core. 

In the first set of experiments (five-dimensional case), an ef- 

cient first stage input x e is drawn from the uniform distribu- 

ion U[5 , 20] . The efficient input is used to generate one final

rst stage output l = (x e ) 
β and one intermediate first stage output 

 = (x e ) γ , where β, γ > 0 . Second stage-specific efficient input g e 
s also drawn from the uniform distribution U[5 , 20] . The second 

tage efficient input and the intermediate product from the first 

tage, are used to generate one final output y = 

(
(g e ) 

ζ z ξ e −0 . 2 | ε| )ν ,
6

here ε ∼ N(0 , 1) and ζ , ξ , ν > 0 . The term e −0 . 2 | ε| is added to the

GP to better reflect real-world scenarios by adding some stochas- 

icity to the data. 

For the experiments of the second set (seven-dimensional case), 

 similar DGP is used. An efficient first stage input x e and a sec-

nd stage-specific input g e are drawn from the uniform distribu- 

ion U[5 , 20] . One final first stage output is given by l = (x e ) 
β

nd the two intermediate first stage outputs are given by z 1 = 

x e ) γ and z 2 = (x e ) δ, respectively, for some β, γ , δ > 0 . The two

nal outputs are generated by y 1 = 

(
(g e ) ζ z 

ξ
1 

z λ
2 

e −0 . 2 | ε| )ν and y 2 =
(g e ) ζ z λ

1 
z 
ξ
2 

e −0 . 2 | ε| )ν , where ε ∼ N(0 , 1) and ζ , ξ , λ, ν > 0 . Both in

he five and the seven-dimensional case, the DGP ensures that at 

ach stage, as well as in the overall process, an increase in stage- 

pecific inputs results in a non-proportional increase in the stage 

utputs, to account for VRS. 

Estimates of the overall and the stage efficiencies, respectively, 

ere obtained through different experiments. In the set of exper- 

ments that were performed to estimate the overall efficiency, in- 

fficiency was added to the first stage inputs x = x e e 
0 . 2 | ε| . The in-

fficient inputs were then used to calculate the sample overall ef- 

ciency of the fixed point under investigation. In the set of ex- 

eriments concerning the true stage efficiencies, inefficiency was 

ntroduced to each stage’s specific inputs, i.e., x = x e e 
0 . 2 | ε| and g =

 e e 
0 . 2 | ε| , and these inefficient first and second stage-specific inputs 

ere used to calculate the first and second stage sample efficien- 

ies of the fixed point. Since the input orientation is considered, 

he true overall inefficiency can be defined as the proportion of 

he input going to the production that exceeds the efficient input. 

herefore, the true first and second stage efficiencies are defined 

s x e /x and g e /g, respectively. In the case of multiple inputs, since

adial projections are used, all inputs are reduced by the same pro- 

ortion, and the true efficiency score would be defined in a similar 

ay. 

Experiments were performed for β = 0 . 6 , γ = 0 . 7 , δ = 0 . 8 , ζ =
 . 1 , ξ = 0 . 3 , λ = 0 . 5 and ν = 0 . 8 , and for the case when x e =
 e . All the efficiency scores were obtained for the fixed point 

ith (x e 0 , g e 0 ) = (13 , 13) and ε0 = 1 , and with true overall

nd stage efficiency score θφ
0 

= 0 . 8187 , for φ = 0 , 1 , 2 . This

oint lies about in the middle of the cloud of the generated 

oints. 

In many subsamples, the fixed point shows infeasibility in one 

f the two stages. Infeasibility problems occur when one (or more) 

f the outputs of the fixed point (overall or stage-specific output) is 

are) greater than the respective maximum output(s) of the points 

ncluded in the subsample, and/or when one or more of the inputs 

f the fixed point is (are) less than the corresponding minimum in- 

ut(s) of the points belonging to the subsample. Infeasibility prob- 

ems in the subsamples occur more often in NDEA compared to 

ne stage DEA because of the higher dimensions. Therefore, in this 

tudy, in all bootstrap replications the fixed point of interest was 

eing added to the subsample. 

Another way to treat infeasibilities is to set the efficiency esti- 

ate of the infeasible DMU equal to one. In the additive efficiency 

ecomposition approach, in some cases the algorithm may give 

ero optimal multipliers and therefore, zero efficiency estimates. 

or the overall process this happens in cases where the DMU is 

verall efficient. Therefore, for DMUs with zero overall efficiency 

stimate, it can be set that their overall efficiency estimate is equal 

o one. However, it may also happen a DMU to be assigned a non- 

ero overall efficiency estimate, and get a zero efficiency estimate 

or the one of the two stages when a stage is considered as priority 

tage, but get a non-zero efficiency estimate - less than one - when 

he priority stage changes. Including the DMU under evaluation in 

he subsample significantly reduces the times when this happens 

nd therefore, provides a partial solution to the problem, whereas 
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Table 1 

Coverage probabilities for the confidence interval estimates when P = R = Q = T = S = 1 and the DMU under evaluation is included in the subsample. 

Overall 1st Stage 2nd Stage 

1- α 1- α 1- α

N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

25 0.40 0.938 0.976 0.983 0.930 0.965 0.976 0.980 0.984 0.985 

0.45 0.984 0.988 0.988 0.965 0.982 0.985 0.986 0.987 0.987 

0.50 0.989 0.989 0.989 0.978 0.985 0.985 0.991 0.991 0.991 

0.55 0.989 0.989 0.989 0.979 0.983 0.985 0.990 0.991 0.991 

0.60 0.990 0.990 0.990 0.981 0.988 0.988 0.990 0.995 0.995 

0.65 0.984 0.992 0.992 0.981 0.990 0.993 0.959 0.985 0.996 

0.70 0.974 0.994 0.995 0.972 0.990 0.993 0.930 0.970 0.995 

0.75 0.943 0.975 0.996 0.938 0.973 0.992 0.837 0.917 0.988 

0.80 0.889 0.951 0.993 0.903 0.951 0.983 0.740 0.861 0.969 

0.85 0.833 0.910 0.978 0.879 0.923 0.977 0.647 0.783 0.944 

0.90 0.742 0.841 0.964 0.818 0.880 0.962 0.517 0.670 0.878 

0.95 0.646 0.787 0.924 0.766 0.857 0.931 0.410 0.576 0.808 

50 0.40 0.986 0.999 0.999 0.920 0.986 1.000 0.999 0.999 0.999 

0.45 1.000 1.000 1.000 0.941 0.993 1.000 1.000 1.000 1.000 

0.50 1.000 1.000 1.000 0.978 1.000 1.000 0.999 1.000 1.000 

0.55 1.000 1.000 1.000 0.987 1.000 1.000 0.995 0.999 1.000 

0.60 0.995 1.000 1.000 0.997 1.000 1.000 0.969 0.994 1.000 

0.65 0.987 0.998 1.000 0.994 0.999 1.000 0.906 0.973 0.999 

0.70 0.958 0.982 0.999 0.983 0.996 1.000 0.767 0.905 0.992 

0.75 0.910 0.966 0.994 0.969 0.987 1.000 0.618 0.787 0.968 

0.80 0.826 0.915 0.980 0.937 0.974 0.995 0.434 0.643 0.910 

0.85 0.707 0.826 0.954 0.900 0.942 0.984 0.296 0.466 0.771 

0.90 0.556 0.723 0.905 0.855 0.909 0.975 0.180 0.320 0.643 

0.95 0.412 0.568 0.821 0.769 0.859 0.949 0.104 0.205 0.481 

100 0.40 1.000 1.000 1.000 0.868 0.967 1.000 1.000 1.000 1.000 

0.45 1.000 1.000 1.000 0.900 0.977 1.000 1.000 1.000 1.000 

0.50 1.000 1.000 1.000 0.958 0.993 1.000 0.989 0.998 1.000 

0.55 1.000 1.000 1.000 0.980 0.996 1.000 0.945 0.987 0.999 

0.60 0.996 1.000 1.000 0.988 0.997 1.000 0.791 0.941 0.999 

0.65 0.973 0.995 1.000 0.995 0.999 1.000 0.539 0.792 0.983 

0.70 0.903 0.959 0.997 0.988 0.996 1.000 0.261 0.488 0.884 

0.75 0.786 0.899 0.986 0.975 0.991 0.999 0.130 0.300 0.730 

0.80 0.563 0.789 0.947 0.944 0.978 0.996 0.047 0.140 0.489 

0.85 0.361 0.556 0.868 0.903 0.946 0.988 0.015 0.059 0.273 

0.90 0.210 0.363 0.717 0.839 0.908 0.973 0.007 0.025 0.131 

0.95 0.106 0.211 0.515 0.773 0.850 0.940 0.006 0.009 0.069 

200 0.40 1.000 1.000 1.000 0.737 0.929 0.999 1.000 1.000 1.000 

0.45 1.000 1.000 1.000 0.819 0.958 0.999 0.995 1.000 1.000 

0.50 1.000 1.000 1.000 0.920 0.982 0.999 0.817 0.976 1.000 

0.55 0.998 1.000 1.000 0.958 0.994 1.000 0.430 0.791 0.995 

0.60 0.971 0.996 1.000 0.985 0.997 1.000 0.098 0.365 0.907 

0.65 0.868 0.964 0.999 0.995 0.997 1.000 0.014 0.103 0.621 

0.70 0.628 0.841 0.985 0.994 1.000 1.000 0.001 0.015 0.288 

0.75 0.333 0.569 0.903 0.987 0.996 1.000 0.000 0.000 0.077 

0.80 0.136 0.310 0.731 0.967 0.988 0.999 0.000 0.000 0.017 

0.85 0.037 0.124 0.442 0.925 0.964 0.997 0.000 0.000 0.002 

0.90 0.011 0.036 0.226 0.861 0.927 0.984 0.000 0.000 0.001 

0.95 0.007 0.013 0.087 0.773 0.846 0.949 0.000 0.000 0.001 
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etting the efficiency estimate of the infeasible DMUs equal to one 

oes not treat this issue. 

Confidence interval estimates for the true efficiency scores were 

btained for three levels of significance, α ∈ { 0 . 1 , 0 . 05 , 0 . 01 } to get

he 90% , 95% and 99% confidence intervals. Coverage probabilities 

epresent the proportion of confidence intervals, i.e. the proportion 

f Monte Carlo trials, that the true efficiency score is included in 

he estimated confidence interval. The resulting coverage probabil- 

ties of the confidence intervals for the overall and stage efficien- 

ies, for the five and seven-dimensional cases, respectively, when 

he DMU under evaluation is included in the subsample are given 

n Tables 1 and 2 . 

Results from Monte Carlo simulations when the DMU under 

valuation is not included in the subsample, the efficiency score 

f infeasible DMUs is set equal to one and both stages are consid- 

red alternately as priority stages are provided in Tables A.2 and 

.3 in the Appendix . The issue lies in the additive decomposition 

lgorithm, which in some cases assigns zero efficiency scores. If 

his happens at a stage level, and not to the overall efficiency, then 
7

his mainly affects the coverage probabilities of that stage. In most 

f the cases, the confidence intervals obtained with this approach 

ave higher range compared to those obtained when the DMU un- 

er evaluation is included in the subsample. 

The results indicate that the choice of the subsample size is 

rucial for getting high coverage probabilities, irrespective of the 

riginal sample size. However, as the sample size increases, sensi- 

ivity on the subsample size seems to increase. Coverage probabil- 

ties of the confidence intervals for the true overall and first stage 

fficiency seem to rise as k increases and then, in most cases, af- 

er some point they show a downturn. These conclusions seem to 

e in accordance with those for one stage structures (see Kneip 

t al., 2008 , pg. 1682–1683). According to the results, one of the 

wo stages shows greater sensitivity to the subsample size, and for 

ome subsample sizes confidence interval estimates can even have 

ero coverage probabilities. However, this sensitivity is not related 

o the choice of priority stage. Monte Carlo simulations were per- 

ormed both by treating first stage as the priority stage, and then 

y treating the second stage as the priority stage, and coverage 
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Table 2 

Coverage probabilities for the confidence interval estimates when P = R = T = 1 , Q = S = 2 and the DMU under evaluation is included in the subsample. 

Overall 1st Stage 2nd Stage 

1- α 1- α 1- α

N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

25 0.40 0.728 0.872 0.978 0.948 0.977 0.988 0.171 0.331 0.769 

0.45 0.882 0.957 0.996 0.970 0.985 0.989 0.312 0.517 0.901 

0.50 0.950 0.987 0.997 0.982 0.990 0.990 0.460 0.756 0.962 

0.55 0.945 0.985 0.997 0.982 0.989 0.990 0.450 0.751 0.964 

0.60 0.977 0.995 0.997 0.983 0.990 0.990 0.557 0.854 0.988 

0.65 0.993 0.998 0.998 0.986 0.992 0.992 0.872 0.957 1.000 

0.70 0.993 0.997 0.998 0.977 0.992 0.993 0.917 0.969 1.000 

0.75 0.972 0.993 0.998 0.958 0.982 0.992 0.960 1.000 1.000 

0.80 0.939 0.974 0.997 0.930 0.964 0.988 1.000 1.000 1.000 

0.85 0.908 0.951 0.994 0.895 0.942 0.980 1.000 1.000 1.000 

0.90 0.849 0.914 0.980 0.817 0.901 0.966 0.999 1.000 1.000 

0.95 0.774 0.871 0.952 0.748 0.845 0.943 0.996 0.998 1.000 

50 0.40 0.598 0.808 0.980 0.908 0.984 1.000 0.056 0.193 0.585 

0.45 0.761 0.903 0.995 0.935 0.989 1.000 0.147 0.320 0.748 

0.50 0.910 0.978 0.999 0.977 1.000 1.000 0.303 0.491 0.893 

0.55 0.941 0.990 1.000 0.983 0.999 1.000 0.375 0.570 0.930 

0.60 0.980 0.996 1.000 0.995 1.000 1.000 0.497 0.785 0.965 

0.65 0.987 0.999 1.000 0.996 1.000 1.000 0.597 0.891 0.998 

0.70 0.990 0.996 1.000 0.991 0.997 1.000 0.847 0.946 1.000 

0.75 0.977 0.990 0.999 0.972 0.989 1.000 0.917 0.980 1.000 

0.80 0.947 0.976 0.996 0.935 0.973 0.997 0.954 1.000 1.000 

0.85 0.907 0.949 0.985 0.890 0.940 0.986 1.000 1.000 1.000 

0.90 0.851 0.910 0.969 0.830 0.898 0.964 1.000 1.000 1.000 

0.95 0.753 0.842 0.943 0.751 0.831 0.935 0.998 1.000 1.000 

100 0.40 0.556 0.770 0.985 0.816 0.956 0.999 0.048 0.170 0.543 

0.45 0.652 0.845 0.992 0.858 0.972 1.000 0.075 0.242 0.618 

0.50 0.863 0.970 0.998 0.940 0.983 1.000 0.229 0.418 0.814 

0.55 0.929 0.986 1.000 0.969 0.995 1.000 0.317 0.508 0.887 

0.60 0.972 0.994 1.000 0.987 0.998 1.000 0.419 0.634 0.943 

0.65 0.991 0.998 1.000 0.992 1.000 1.000 0.566 0.791 0.976 

0.70 0.991 0.999 0.999 0.988 0.998 1.000 0.697 0.915 0.999 

0.75 0.983 0.993 0.999 0.976 0.990 0.999 0.886 0.962 1.000 

0.80 0.949 0.979 0.998 0.944 0.975 0.996 0.954 0.997 1.000 

0.85 0.894 0.943 0.991 0.899 0.943 0.984 0.996 1.000 1.000 

0.90 0.820 0.887 0.964 0.832 0.896 0.963 0.999 1.000 1.000 

0.95 0.726 0.808 0.923 0.746 0.832 0.928 0.995 0.999 1.000 

200 0.40 0.385 0.642 0.969 0.627 0.868 0.997 0.020 0.111 0.497 

0.45 0.536 0.794 0.988 0.734 0.910 0.998 0.051 0.197 0.600 

0.50 0.753 0.918 0.999 0.860 0.970 1.000 0.160 0.370 0.733 

0.55 0.894 0.978 1.000 0.935 0.990 1.000 0.281 0.518 0.854 

0.60 0.964 0.991 1.000 0.974 0.994 1.000 0.449 0.642 0.926 

0.65 0.986 0.998 1.000 0.987 1.000 1.000 0.581 0.733 0.969 

0.70 0.993 0.998 1.000 0.993 0.998 1.000 0.690 0.880 0.992 

0.75 0.983 0.994 0.999 0.977 0.993 0.999 0.848 0.953 1.000 

0.80 0.962 0.984 0.997 0.944 0.976 0.994 0.934 0.987 1.000 

0.85 0.901 0.959 0.989 0.880 0.938 0.983 0.975 1.000 1.000 

0.90 0.819 0.887 0.970 0.828 0.876 0.956 0.999 1.000 1.000 

0.95 0.697 0.788 0.913 0.749 0.823 0.901 0.988 0.999 1.000 

Table 3 

Mode, mean and range of the optimal subsample size values among the different Monte Carlo trials, using the minimum volatility algorithm, in the five-dimensional case. 

Overall 1st Stage 2nd Stage 

1- α 1- α 1- α

N 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

25 mode 5 5 5 5 5 5 5 5 5 

mean 8.149 7.874 7.297 9.423 9.144 9.126 9.835 8.458 6.952 

range 13 13 13 14 13 13 13 13 13 

50 mode 33 33 8 33 33 33 33 33 8 

mean 25 21.5 15.3 23.67 22.67 20.56 25.67 24.33 19.74 

range 28 28 26 28 28 26 28 28 26 

100 mode 63 63 63 63 63 63 63 63 63 

mean 55.4 50.04 41.54 48.79 45.32 44.94 51.04 50.28 41.48 

range 56 56 56 56 56 56 51 56 56 

200 mode 117 117 117 117 117 117 117 117 117 

mean 105.6 104.4 96.71 91.26 86.74 84.37 97.59 96.99 91.59 

range 93 93 107 99 99 107 93 93 99 

8 
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Table 4 

Mode, mean and range of the optimal subsample size among the different Monte Carlo trials, using the minimum volatility algorithm, in the seven-dimensional case. 

Overall 1st Stage 2nd Stage 

1- α 1- α 1- α

N 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

25 mode 5 5 5 5 5 5 5 5 5 

mean 6.926 7.010 7.617 7.913 7.827 8.67 10.1 10.63 10.8 

range 13 14 13 13 14 13 13 13 13 

50 mode 33 33 8 33 33 8 8 8 12 

mean 24.41 19.28 12.06 21.90 20.54 16.94 15.15 16.5 17.67 

range 28 28 26 28 28 26 28 28 26 

100 mode 63 63 63 63 63 63 12 12 12 

mean 55.08 51.66 34.63 52.16 47.91 42.93 22.92 21.05 23.47 

range 46 46 46 56 56 56 56 56 56 

200 mode 117 117 117 117 117 117 10 10 10 

mean 101.7 100.8 95.59 96.43 95.84 93.6 39.97 34.07 27.09 

range 93 86 107 93 86 107 107 107 107 

Table 5 

Data Set. 

DMU Invest. Costs (bn €) O&M Costs(bn €) TSIWagons Total Wagons Length of Lines (km) Freight MT-km Pass. M-km L den ≥ 55 dB 

1 Austria 2.61 1.66 6,511 23,345 5,491 21,361 12,497 1,081,900 

2 Belgium 1.78 0.38 2,312 12,013 3,607 0 10,025 324,400 

3 Bulgaria 0.30 0.25 568 16,915 4,029 3,434 1,455 42,300 

4 Croatia 0.19 0.30 383 2,274 2,604 2,160 827 26,400 

5 Czech Rep. 1.35 1.36 8,000 42,199 9,564 15,619 8,738 268,500 

6 Denmark 0.39 0.13 225 366 2045 2,616 6,332 84,300 

7 Estonia 0.06 0.14 0 20,849 1,161 2,340 316 6,100 

8 Finland 0.41 0.18 200 9,942 5,926 9,456 3,868 119,400 

9 France 5.09 3.67 8,558 77,678 28,364 32,569 90,612 3,780,000 

10 Germany 7.74 3.92 59,626 165,653 38,623 126,686 95,465 6,390,500 

11 Ireland 0.16 0.21 100 254 1,931 101 1,991 42,600 

12 Latvia 0.11 0.17 0 11,888 1,860 15,873 584 40,600 

13 Lithuania 0.22 0.31 0 14,828 1,911 13,790 280 11,600 

14 Netherlands 2.73 1.02 9,000 21,226 3,058 6,641 17,483 312,500 

15 Poland 3.50 0.69 2,750 83,500 19,132 50,650 19,067 419,700 

16 Portugal 0.71 0.26 3,123 3,313 2,546 2,774 4,266 137,100 

17 Slovenia 0.23 0.18 226 3,230 1,209 4,360 611 47,600 

18 Spain 5.23 0.73 6,781 20,833 16,167 10,550 26,646 69,300 

19 Sweden 1.07 0.45 931 11,000 10,882 21,406 12,800 549,400 

20 UK 6.46 3.45 15,467 18,246 16,253 17,053 68,010 1,709,400 

21 Norway 0.52 0.48 516 1,623 3,895 3,312 3,695 123,400 

22 Switzerland 2.50 1.58 19,236 21,200 3,650 12,447 20,657 482,400 
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robabilities were not affected. Results for stage one being the pri- 

rity stage and then for stage two being the priority stage, when 

he DMU under evaluation is not included in the subsample can 

e found in the Appendix . The number of bootstrap replications 

ertainly affects the coverage probabilities in NDEA more than in 

onventional DEA due to the lower convergence rate. However, it 

s computationally difficult to further increase the replications to a 

umber significantly higher than 20 0 0. 

In the five-dimensional case (see Table 1 ), coverage probabili- 

ies for the overall and the second stage efficiency are very high 

or lower values of k, but as k increases they get very poor and

ven tend to zero as the original sample size increases. In the cases 

hen the estimations of the overall efficiency scores are poor, the 

overage probabilities of the second stage seem to be also affected. 

or the first stage, k = 0 . 60 or k = 0 . 65 seems to result in higher

overages. 

In the seven-dimensional case (see Table 2 ), for the overall and 

he first stage, subsample sizes resulting from k = 0 . 65 or k = 0 . 70 ,

n most of the cases, yield higher coverage probabilities, however, 

or a wide range of k, coverage probabilities are still very high. 

overage probabilities for the second stage true efficiency are very 

oor for the first half values of k, especially for the larger sample 

izes. Nonetheless, as k increases coverage probabilities for the sec- 

nd stage become very high; for this stage, in most of the cases, a 

alue of k around 0.9 gives the best coverage probabilities. The dif- 

erence between the results in the five and the seven-dimensional 
9 
ases indicate that the coverage probabilities and the optimal sub- 

ample sizes strongly depend on the DGP. 

Wrong choice of subsample size may result in totally mis- 

eading confidence interval estimates. Politis et al. (2001) sug- 

ested a minimum volatility criterion for the selection of 

he optimal subsample size. Let I m,low 

and I m,up be the 

ower and the upper bounds of a confidence interval esti- 

ate, resulting from subsampling bootstrap, with subsample 

ize m. For a small r ∈ Z 

+ , Politis et al. suggested calculat- 

ng the volatility index V m 

= 

∑ m big 
m = m small 

sd{ I m −r,low 

, . . . , I m + r,low 

} + 

 m big 
m = m small 

sd{ I m −r,up , . . . , I m + r,up } and then choosing the subsample 

ize m that corresponds to the minimum V m 

. 

Results from applying the above algorithm to the confidence in- 

erval estimates of each Monte Carlo trial are given in Tables 3 and 

 , for the five and seven-dimensional case, respectively. 

According to the results, in the five-dimensional DGP (see 

able 3 ), in almost all the cases, the mode for the optimal subsam- 

le size is the same for obtaining the overall and stage efficiency 

stimations and does not change for the different levels of signifi- 

ance. However, from the range of the optimal subsample values, it 

an be seen that the optimal subsample size can vary significantly 

mong the different Monte Carlo trials, although all samples are 

enerated through the same DGP, and it should be expected that 

he algorithm would yield similar values for the optimal subsam- 

le size. 
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Fig. 2. Confidence interval estimates for (a) the overall, (b) the first stage, and (c) 

the second stage efficiency scores of European railways, for k = 0 . 65 , m = 7 , and 

a = 0 . 1 , when the DMU under evaluation is included in the subsample. 
Furthermore, as it was mentioned previously, for this five- 

imensional DGP, values of k = 0 . 60 and k = 0 . 65 yielded the high-

st coverage probabilities in most of the cases. These values corre- 

pond to subsample sizes [25 0 . 60 ] = 6 and [25 0 . 65 ] = 8 , respectively,

hen N = 25 , subsample sizes 10 and 12 when N = 50 , 15 and 19

hen N = 100 and 24 and 31 respectively, when N = 200 . These

ubsample sizes, however, are much lower than those indicated by 

he algorithm, especially when the sample size increases. 

For the seven-dimensional DGP, there is a substantial differ- 

nce between the optimal subsample size for obtaining the overall 

nd first stage efficiency score, compared to the optimal subsam- 

le size for the second stage. That raises an important issue, as all 

he estimations, for the overall, first and second stage efficiencies, 

re based on the same subsample size, and it is not possible to 

se the stage-specific optimal subsample size without affecting the 

onsistency of the results. This difference between the overall-first 

tage and the second stage optimal subsample sizes in this DGP, 

s also reflected in the coverage probabilities reported in Table 2 , 

here the value of k with higher coverage probabilities for the sec- 

nd stage ( k = 0 . 90 ), was significantly different compared to that

or the overall and first stage estimations ( k = 0 . 65 , 0 . 70 ). Similarly

o the five-dimensional case, the subsample sizes that resulted in 

igher coverage probabilities in Table 2 , do not coincide with the 

ptimal subsample sizes yielded by the minimum volatility algo- 

ithm. 

These issues indicate the great sensitivity of the algorithm, and 

emonstrate the need for defining a more robust way for the sub- 

ample size selection in NDEA. This variability of the optimal sub- 

ample size among the different Monte Carlo trials and the differ- 

nt stages can be imputed to the zero-efficiency score issue of the 

DEA algorithm that mainly affects the upper bounds of the con- 

dence intervals. This issue is further discussed in the following 

ection were the subsampling bootstrap is applied in a real dataset, 

nd some suggestions for dealing with it are provided. 

. Application 

In this section, the subsampling methodology is applied in the 

fficiency analysis of railways in 22 European countries. The data 

et has been previously used by Michali, Emrouznejad, Dehnokha- 

aji, & Clegg (2021) and considers the noise-pollution problem aris- 

ng from the operation of railways, with measurements referring 

o 2016–2017. A limitation of this data set is that it does not in-

lude information about all the European countries, as countries 

ith missing data were excluded. As in DEA the efficient frontier 

s empirically constructed from the available set of DMUs, omis- 

ion of DMUs may have an impact on its shape and result in some 

MUs being assigned a higher efficiency score. Since the true fron- 

ier is unknown, the subsampling methodology can be used to pro- 

ide estimations of the efficiency scores of European railways. 

Michali et al. (2021) divided the railway transport process into 

ssets and services related stages. Infrastructure investment and 

perating costs are used as inputs to the first stage, and to de- 

rease the dimensions of the model, they are added in a single in- 

ut that represents costs ( x ). The number of wagons in each coun-

ry that are compliant with the noise emission standards set by the 

uropean Commission are final outputs from the first stage ( l) and 

he total number of wagons ( z 1 ) and the length of railway lines ( z 2 )

n each country are the intermediate products that are introduced 

o the second stage. The second stage has two desirable outputs, 

he millions of passengers ( y 1 ) and the million tonnes of freight 

 y 2 ) that travelled over one kilometre, and one undesirable output 

 y b ), the number of people exposed to high levels of railway noise

 L den ≥ 55 dB ). The data set is provided in Table 5 . 

The undesirable output of the second stage is treated as input 

o that stage, as the aim is to proportionally decrease it, together 
10 
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Fig. 3. Confidence interval estimates for (a) the overall, (b) the first stage, and (c) 

the second stage efficiency scores of European railways, for k = 0 . 65 , m = 7 , and 

a = 0 . 1 , when the DMU under evaluation is not included in the subsample. 
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11 
ith the second stage inputs. In this case, the structure of the 

odel is the same as the seven-dimensional case studied in the 

revious section. 

Michali et al. (2021) performed a sensitivity analysis for the 

ecomposition weights, for this specific data set, and suggested 

he use of the restrictions ˆ w 1 j , ˆ w 2 j ≥ 0 . 1 in model (20) . There-

ore, in this analysis, the same decomposition weight restrictions 

re being used. Furthermore, although the additive approach sug- 

ested by Chen et al. (2009) usually provides a unique efficiency 

ecomposition, in this data set, due to infeasibilities, Portugal and 

witzerland do not have a unique efficiency decomposition, and 

heir stage efficiency scores change depending on which one of the 

wo stages is chosen as the priority stage. 

Confidence interval estimates were obtained for different val- 

es of k, i.e. for various subsample sizes. Initially, the DMU un- 

er evaluation was included in the subsample. For very small sub- 

ample sizes, for many countries in this data set, the upper bound 

f the confidence interval for some stage efficiency score was ei- 

her above one or negative. The negative bounds result very rarely, 

nd are due to the boundary condition of the efficiency score on 

ero. An upper bound above one happens because in a significant 

umber of bootstrap replications, the algorithm was returning zero 

alues. This is an issue that can occur in efficiency decomposition 

pproaches, but becomes more common when applying the sub- 

ampling bootstrap, because of the smaller size of the sample. If 

his happens in more than (a/ 2)100% of the bootstrap replications, 

he upper bound of the confidence interval is above one. This was 

ore common in the cases when the subsample size was very 

mall, but even for larger subsample sizes there were still some 

MUs for which the upper bound exceeds one. 

In some cases, obtaining the bootstrapped stage efficiency es- 

imates while treating both stages as priority stages, and use the 

ecomposition Eq. (22) - or the equivalent equation for the first 

tage- to obtain the efficiency estimates of the stage when the 

riority-stage-model yields infeasibility solves the zero efficiency 

stimate issue, without further affecting the results. However, this 

sually does not offer a solution to the problem, as both prior- 

ty stages may yield zero bootstrap estimates. Therefore, removing 

he zero bootstrap estimates seems to be the only way to prevent 

hem from distorting the upper bound of the confidence interval. 

lthough this reduces the size of the bootstrap efficiency sample, 

f the number of bootstrap replications is large enough, it should 

ot affect the quality of the results. 

The subsample size that was used was m = 7 , for k = 0 . 65 . The

hoice of the subsample size was based on the coverage proba- 

ilities obtained from the Monte Carlo simulations and the results 

rom the minimum volatility algorithm of Politis et al. (2001) for 

he overall process. 

The model was implemented in R. In order to minimise the 

omputational time, after drawing the 20 0 0 bootstrap subsamples 

or a specific k , i.e. for a specific subsample size, the confidence 

ntervals for each DMU were calculated separately and not in one 

or loop- but based on the same subsamples. In this way, it is 

ossible to use parallel processing and reduce the computational 

ost. Although this dataset is small, in larger datasets this approach 

an make a significant difference in the computational time. 

Figure 2 reports the sample overall and stage efficiency scores 

nd their corresponding confidence interval estimates, for k = 0 . 65 

nd subsample size m = [22 0 . 65 ] = 7 , for the significance level a =
 . 1 , when the DMU under evaluation is included in the subsample. 

he specific values are provided in Table A.1 in the Appendix. The 

riginal sample efficiency scores are also depicted in Fig. 2 with 

mall circles. In Fig. 3 , the confidence interval estimates when the 

MU under evaluation is not included in the subsample are pro- 

ided. 
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For some efficient countries the confidence interval estimates 

onverge to a single point, as in the majority of the bootstrap repli- 

ations these countries yield an efficiency score equal to one, even 

or different subsample sizes. 

According to the results, in this data set, the specific subsample 

ize yields better overall efficiency estimates compared to stage ef- 

ciency scores, and estimations about the second stage are in most 

ases better compared to the first stage estimations. This is in ac- 

ordance with Monte Carlo simulation results, where for one of the 

wo stages coverage probabilities were more sensitive to the sub- 

ample size selection. 

Confidence interval estimates reveal where the true efficiency 

core for each country lies. Although some efficiency scores ap- 

ear to be very high, the lower bound estimation for their true 

fficiency is much lower, and sometimes a DMU with higher ef- 

ciency score from another might in reality be less efficient. For 

xample, based only on the original sample, France and Germany 

re second stage efficient, whereas Sweden has a lower efficiency 

core. However, the lower bound estimation for France and Ger- 

any is lower than that of Sweeden. That means in reality, there 

s a chance that those two countries are less efficient in the sec- 

nd stage than Sweden. In this data set, confidence interval es- 

imation is particularly useful in the second stage, where with- 

ut the bootstrap estimations, 11 countries appear to be efficient. 

owever, confidence interval estimates reveal that there might be 

ifferences in their true efficiency scores. For the second stage ef- 

cient countries Poland, Spain and Netherlands, for example, the 

ower bound remains above 0.9, whereas for the UK, the lower 

ound is about 0.8. For Germany and France, the lower bounds lie 

ven lower. Therefore, confidence interval estimates should be con- 

idered from the countries to get a better insight into what is the 

ain source of inefficiency for their railway network, to be able to 

orm an effective im provement agenda. As it was indicated by the 

esults, considering these estimates, provides higher discrimination 

mong the different countries’ railway-efficiency level. 

As was discussed in the previous section, not including the 

MU under evaluation in the subsample, increases the range of the 

onfidence intervals. In this dataset, this approach resulted in infi- 

ite upper bounds for the majority of DMUs. The following adap- 

ations resulted in avoiding the infinite upper bound, and signifi- 

antly reduced the range of the confidence intervals: (i) setting the 

ero overall efficiency scores equal to one, (ii) treating both stages 

s priority stage and (iii) using the decomposition equation when 

he priority-stage-model yields zero efficiency score values Or al- 

ernatively, (i) setting the zero overall efficiency scores equal to 

ne, and (ii) removing the stage bootstrap efficiency estimates that 

re equal to zero. Confidence interval estimations for k = 0 . 65 and

 = 0 . 1 when the DMU under evaluation is not included in the

ubsample, are given in Fig. 3 in the Appendix . 

. Conclusion 

The DEA approach, where the production frontier is constructed 

mpirically, does not consider for sampling noise. Bootstrapping 

echniques are now well-established in the DEA literature, and 

re broadly used to make statistical inference about the efficiency 

cores in one stage production processes. However, in many cases, 

he production structure of DMUs involves sub-stages which need 

o be considered in the efficiency measurement. This paper exam- 

nes the applicability and performance of bootstrapping in general 

wo-stage structures, where the additive decomposition approach 

s used to calculate the overall and stage efficiency estimates, and 

he VRS is assumed. 

Bootstrapping can be computationally demanding, especially in 

igh-dimensional models. For this reason, among the different 

ootstrapping techniques, in this paper the subsampling method- 
12 
logy was considered, as it does not require any kernel smooth- 

ng and also allows for heterogeneity in the efficiency distributions 

mong the different DMUs. 

Monte Carlo simulations were performed, based on samples ob- 

ained through two DGPs, defined for a five and a seven dimen- 

ional two-stage series structure, respectively. According to the re- 

ults, in network structures, the coverage probabilities are more 

ensitive to the DGP compared to single-stage structures. Simi- 

arly to one-stage processes, coverage probabilities are very sensi- 

ive both to the sample and subsample sizes, and get lower as the 

ample size increases. However, in contrast to conventional DEA, 

n NDEA for some subsample sizes, coverage probabilities tend to 

ero. That means that the subsample size should be selected very 

arefully, notably when the size of the original sample is large, as 

n any other case, the resulting confidence intervals could be mis- 

eading. 

The selection of the subsample size is a limitation of applying 

ubsampling bootstrap in NDEA. The algorithm suggested by Politis 

t al. (2001) may offer a rule of thumb, especially in one-stage 

tructures, but in NDEA, it was shown that the optimal subsample 

ize resulting from the minimum volatility algorithm is not always 

he one that yields the highest coverage probabilities. This issue 

as further investigated and it seems that a peculiarity of the ad- 

itive efficiency decomposition approach that assigns zero optimal 

eights to some DMUs when considering some stage as priority 

tage affects the performance of the minimum volatility algorithm. 

herefore, in this study it was suggested to either always include 

he DMU under evaluation in the subsample, or set the zero overall 

fficiency scores equal to one and use the priority-stage model to 

et the efficiency score of both stages, and then use the decompo- 

ition equation in the cases when the priority-stage-model yields 

ero optimal results. 

Future studies could focus on defining a reliable method for 

he subsample size selection, as well as studying the perfor- 

ance of bootstrapping in other network structures, under dif- 

erent returns to scale assumptions, and/or considering substi- 

ution effects. Extension to the output orientation can also be 

onsidered, although the model orientation should not affect the 

esults. 

ppendix 

The efficient boundaries of the output possibility sets are de- 

ned as 

Y (x, z, g) = { (l , y ) | (l , y ) ∈ Y (x, z, g) , λ0 (l, y ) / ∈ Y (x, z, g) , ∀ λ0 > 1 } ,
(A.1) 

Y 1 (x ) = { (l , z) | (l , z) ∈ Y 1 (x ) , λ1 (l, z) / ∈ Y 1 (x ) } , (A.2) 

Y 2 (z, g) = { y | y ∈ Y 2 (z, g) , λ2 y / ∈ Y 2 (z, g) } . (A.3) 

The Farrell (1957) output efficiency measure of DMU j 0 
for the 

verall process and the two stages, respectively is defined as 

0 (x, l, z, g, y ) = sup { λ0 | λ0 (l, y ) ∈ Y (x, z, g) } , (A.4) 

1 (x, l, z) = sup { λ1 | λ1 (l, z) ∈ Y 1 (x ) } , (A.5) 

2 (z, g, y ) = sup { λ2 | λ2 (y ) ∈ X 2 (z, g) } . (A.6) 
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Table A.1 

Sample efficiency scores and bootstrap confidence interval estimates when stage 1 is the priority stage and for a = 0.1. 

DMU θ0 ∗ lower b. upper b. θ1 p∗ lower b. upper b. θ2 ∗ lower b. upper b. 

1 Austria 0.433637 0.215287 0.376686 0.274788 0.099529 0.301128 0.694873 0.537419 0.696555 

2 Belgium 0.397365 0.182471 0.318035 0.333166 0.142657 0.399364 0.539735 0.344005 0.519700 

3 Bulgaria 0.703788 0.530427 0.651790 0.908831 0.851818 0.851818 0.368453 0.171882 0.326891 

4 Croatia 0.665272 0.478368 0.617430 0.727019 0.581371 0.899571 0.519453 0.321197 0.4 4 4597 

5 Czech Rep. 0.667277 0.481022 0.594025 0.735596 0.593307 0.677312 0.511593 0.312524 0.452911 

6 Denmark 0.762902 0.614582 0.700496 0.5760 0 0 0.386280 0.557439 1 1 1 

7 Estonia 1 1 1 1 1 1 1 1 1 

8 Finland 0.705130 0.532281 0.683309 1 1 1.010752 0.365703 0.169523 0.366258 

9 France 0.988221 0.979159 0.988222 0.882214 0.810054 0.882215 1 0.577587 1 

10 Germany 1 1 1 1 1 1 1 0.509655 1 

11 Ireland 0.731261 0.568906 0.664852 0.737318 0.595714 0.731558 0.718122 0.569082 0.664763 

12 Latvia 0.977333 0.960043 0.963409 0.918610 0.867337 0.918610 1 1 1 

13 Lithuania 0.949317 0.911528 0.947552 0.493179 0.292572 0.493179 1 1 1 

14 Netherlands 0.547971 0.334011 0.509601 0.438678 0.236643 0.433225 1 0.930982 1 

15 Poland 1 1 1 1 1 1 1 0.930982 1 

16 Portugal 0.787282 0.650746 0.730033 0.824983 0.722690 0.824984 0.447969 0.513432 0.675662 

17 Slovenia 0.659973 0.471381 0.621496 0.576376 0.386729 0.623256 1 1 1.044866 

18 Spain 0.955938 0.922906 0.954406 0.559388 0.366681 0.546500 1 0.930982 1 

19 Sweden 0.805756 0.678702 0.721138 0.862833 0.780090 0.787411 0.769217 0.640919 0.701204 

20 UK 0.938041 0.892275 0.937471 0.380410 0.182301 0.375570 1 0.874350 1 

21 Norway 0.467649 0.259967 0.414903 0.481784 0.280487 1.008325 0.431738 0.229868 0.432147 

22 Switzerland 0.893634 0.818026 0.863041 0.955176 0.926178 0.948139 0.339756 0.253971 0.509072 

Table A.2 

Coverage probabilities for the confidence interval estimates when P = R = Q = T = S = 1 and the DMU under evaluation is not included in the subsample. 

Overall 1st Stage 2nd Stage 

Stage 1 Priority Stage 2 Priority Stage 1 Priority Stage 2 Priority 

1- α 1- α 1- α 1- α 1- α

N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

25 0.40 0.967 0.994 1.0 0 0 0.991 0.994 0.998 0.985 0.991 0.998 0.993 0.997 1.0 0 0 0.989 0.997 1.0 0 0 

0.45 0.996 1.0 0 0 1.0 0 0 0.991 0.993 0.998 0.982 0.987 0.997 0.976 0.994 0.999 0.974 0.991 0.999 

0.50 0.998 1.0 0 0 1.0 0 0 0.990 0.994 0.999 0.983 0.989 0.998 0.959 0.985 0.998 0.958 0.983 0.998 

0.55 0.999 1.0 0 0 1.0 0 0 0.989 0.994 0.998 0.984 0.990 0.997 0.959 0.986 0.998 0.957 0.983 0.998 

0.60 0.998 1.0 0 0 1.0 0 0 0.983 0.993 0.997 0.974 0.988 0.996 0.917 0.979 0.998 0.914 0.975 0.998 

0.65 0.989 0.997 1.0 0 0 0.948 0.987 0.996 0.943 0.983 0.995 0.821 0.920 0.996 0.820 0.919 0.995 

0.70 0.971 0.993 1.0 0 0 0.928 0.978 0.994 0.924 0.970 0.993 0.761 0.883 0.995 0.764 0.885 0.994 

0.75 0.935 0.975 0.999 0.893 0.948 0.994 0.891 0.945 0.993 0.661 0.810 0.967 0.670 0.814 0.965 

0.80 0.891 0.945 0.993 0.873 0.915 0.990 0.870 0.913 0.988 0.572 0.727 0.938 0.572 0.733 0.940 

0.85 0.830 0.909 0.983 0.833 0.896 0.979 0.831 0.894 0.977 0.492 0.654 0.904 0.490 0.659 0.904 

0.90 0.733 0.851 0.954 0.786 0.865 0.958 0.786 0.865 0.957 0.399 0.560 0.820 0.390 0.558 0.816 

0.95 0.636 0.775 0.922 0.738 0.825 0.933 0.736 0.824 0.932 0.336 0.488 0.744 0.331 0.479 0.748 

50 0.40 0.994 1.0 0 0 1.0 0 0 0.970 0.999 1.0 0 0 0.971 0.999 1.0 0 0 0.990 0.999 1.0 0 0 0.988 0.999 1.0 0 0 

0.45 1.0 0 0 1.0 0 0 1.0 0 0 0.975 0.997 1.0 0 0 0.973 0.997 1.0 0 0 0.974 0.998 1.0 0 0 0.972 0.998 1.0 0 0 

0.50 1.0 0 0 1.0 0 0 1.0 0 0 0.981 0.998 1.0 0 0 0.979 0.997 1.0 0 0 0.875 0.971 0.999 0.878 0.971 1.0 0 0 

0.55 0.999 1.0 0 0 1.0 0 0 0.978 0.995 1.0 0 0 0.977 0.995 1.0 0 0 0.816 0.943 0.997 0.825 0.947 0.997 

0.60 0.995 1.0 0 0 1.0 0 0 0.970 0.985 1.0 0 0 0.969 0.985 1.0 0 0 0.679 0.859 0.985 0.685 0.865 0.985 

0.65 0.985 0.996 1.0 0 0 0.960 0.980 0.998 0.962 0.980 0.998 0.559 0.771 0.959 0.578 0.780 0.966 

0.70 0.962 0.986 1.0 0 0 0.936 0.969 0.996 0.936 0.969 0.996 0.418 0.627 0.922 0.431 0.635 0.920 

0.75 0.917 0.968 0.994 0.912 0.955 0.988 0.911 0.955 0.988 0.321 0.522 0.853 0.327 0.526 0.861 

0.80 0.844 0.924 0.987 0.879 0.929 0.979 0.878 0.931 0.979 0.235 0.403 0.751 0.237 0.409 0.757 

0.85 0.717 0.855 0.964 0.842 0.903 0.967 0.842 0.903 0.969 0.168 0.302 0.654 0.172 0.302 0.658 

0.90 0.587 0.744 0.920 0.801 0.873 0.946 0.800 0.871 0.946 0.115 0.230 0.532 0.121 0.227 0.531 

0.95 0.427 0.599 0.839 0.749 0.823 0.919 0.747 0.822 0.919 0.075 0.174 0.430 0.066 0.168 0.425 

100 0.40 1.0 0 0 1.0 0 0 1.0 0 0 0.975 0.996 1.0 0 0 0.976 0.997 1.0 0 0 0.845 0.984 1.0 0 0 0.851 0.984 1.0 0 0 

0.45 1.0 0 0 1.0 0 0 1.0 0 0 0.982 0.998 1.0 0 0 0.983 0.998 1.0 0 0 0.732 0.942 1.0 0 0 0.747 0.943 1.0 0 0 

0.50 1.0 0 0 1.0 0 0 1.0 0 0 0.986 0.996 1.0 0 0 0.985 0.996 1.0 0 0 0.363 0.704 0.986 0.387 0.735 0.989 

0.55 0.999 1.0 0 0 1.0 0 0 0.979 0.994 0.998 0.980 0.994 0.998 0.212 0.541 0.943 0.230 0.561 0.952 

0.60 0.997 0.999 1.0 0 0 0.977 0.989 0.997 0.977 0.989 0.997 0.110 0.326 0.849 0.123 0.346 0.861 

0.65 0.972 0.996 1.0 0 0 0.965 0.981 0.997 0.966 0.981 0.997 0.056 0.175 0.668 0.059 0.186 0.690 

0.70 0.904 0.961 0.997 0.947 0.971 0.992 0.947 0.971 0.992 0.018 0.090 0.463 0.019 0.096 0.480 

0.75 0.781 0.910 0.989 0.933 0.959 0.985 0.933 0.959 0.985 0.009 0.050 0.315 0.009 0.053 0.323 

0.80 0.567 0.772 0.957 0.900 0.946 0.981 0.898 0.946 0.981 0.008 0.031 0.189 0.007 0.029 0.199 

0.85 0.355 0.555 0.872 0.854 0.912 0.964 0.853 0.909 0.964 0.005 0.014 0.118 0.004 0.014 0.118 

0.90 0.205 0.367 0.700 0.796 0.871 0.953 0.796 0.870 0.953 0.002 0.012 0.077 0.001 0.009 0.076 

0.95 0.104 0.211 0.511 0.734 0.828 0.929 0.734 0.826 0.928 0.001 0.009 0.055 0.002 0.006 0.053 

200 0.40 1.0 0 0 1.0 0 0 1.0 0 0 0.936 0.993 1.0 0 0 0.936 0.993 1.0 0 0 0.012 0.269 0.982 0.020 0.294 0.982 

0.45 1.0 0 0 1.0 0 0 1.0 0 0 0.957 0.996 1.0 0 0 0.957 0.996 1.0 0 0 0.004 0.056 0.833 0.004 0.071 0.846 

0.50 1.0 0 0 1.0 0 0 1.0 0 0 0.982 0.997 1.0 0 0 0.982 0.997 1.0 0 0 0.0 0 0 0.003 0.325 0.001 0.005 0.357 

0.55 0.996 0.999 1.0 0 0 0.986 0.997 1.0 0 0 0.986 0.997 1.0 0 0 0.0 0 0 0.003 0.104 0.0 0 0 0.002 0.128 

0.60 0.970 0.993 1.0 0 0 0.978 0.997 1.0 0 0 0.978 0.996 1.0 0 0 0.0 0 0 0.001 0.025 0.0 0 0 0.001 0.029 

0.65 0.858 0.965 0.998 0.974 0.990 0.999 0.973 0.990 0.999 0.0 0 0 0.0 0 0 0.005 0.0 0 0 0.0 0 0 0.009 

0.70 0.613 0.842 0.988 0.960 0.981 0.998 0.960 0.981 0.998 0.0 0 0 0.0 0 0 0.004 0.0 0 0 0.0 0 0 0.003 

0.75 0.303 0.567 0.914 0.929 0.971 0.995 0.929 0.970 0.995 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 

0.80 0.106 0.279 0.721 0.898 0.945 0.988 0.897 0.943 0.988 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 

0.85 0.041 0.103 0.442 0.848 0.906 0.977 0.847 0.904 0.976 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 

0.90 0.022 0.048 0.200 0.780 0.865 0.957 0.780 0.864 0.957 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 

0.95 0.010 0.024 0.078 0.714 0.799 0.915 0.714 0.799 0.914 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 

13 
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Table A.3 

Coverage probabilities for the confidence interval estimates when P = R = T = 1 , Q = S = 2 and the DMU under evaluation is not included in the subsample. 

Overall 1st Stage 2nd Stage 

Stage 1 Priority Stage 2 Priority Stage 1 Priority Stage 2 Priority 

1- α 1- α 1- α 1- α 1- α

N k 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99 

25 0.40 0.810 0.931 0.995 0.929 0.951 0.955 0.929 0.951 0.955 0.911 0.964 0.988 0.938 0.980 0.987 

0.45 0.930 0.982 1.000 0.957 0.965 0.968 0.957 0.965 0.968 0.963 0.982 0.991 0.979 0.988 0.990 

0.50 0.972 0.996 1.000 0.967 0.972 0.972 0.967 0.972 0.972 0.976 0.993 0.993 0.989 0.992 0.992 

0.55 0.971 0.995 1.000 0.967 0.970 0.972 0.967 0.970 0.972 0.976 0.990 0.993 0.987 0.990 0.992 

0.60 0.982 0.998 0.999 0.970 0.976 0.976 0.971 0.976 0.976 0.981 0.995 0.996 0.991 0.994 0.995 

0.65 0.989 0.996 0.999 0.968 0.984 0.986 0.968 0.984 0.986 0.990 0.994 0.997 0.988 0.993 0.996 

0.70 0.980 0.994 0.999 0.957 0.980 0.986 0.957 0.981 0.987 0.971 0.993 0.998 0.972 0.993 0.997 

0.75 0.956 0.982 0.996 0.934 0.962 0.987 0.935 0.962 0.987 0.949 0.979 0.998 0.947 0.978 0.997 

0.80 0.921 0.958 0.994 0.902 0.949 0.985 0.902 0.950 0.985 0.923 0.954 0.993 0.922 0.958 0.995 

0.85 0.877 0.935 0.987 0.871 0.930 0.973 0.872 0.930 0.973 0.891 0.938 0.985 0.890 0.936 0.981 

0.90 0.810 0.887 0.965 0.817 0.885 0.960 0.815 0.885 0.960 0.838 0.901 0.965 0.832 0.904 0.965 

0.95 0.746 0.835 0.944 0.740 0.850 0.941 0.739 0.849 0.942 0.788 0.869 0.954 0.776 0.861 0.954 

50 0.40 0.696 0.859 0.989 0.960 0.995 1.000 0.972 0.995 1.000 0.933 0.987 0.998 0.955 0.997 1.000 

0.45 0.818 0.932 0.999 0.972 0.995 1.000 0.976 0.996 1.000 0.974 0.993 1.000 0.991 1.000 1.000 

0.50 0.936 0.987 1.000 0.983 0.997 1.000 0.984 0.998 1.000 0.988 0.998 1.000 0.997 1.000 1.000 

0.55 0.962 0.996 1.000 0.986 0.998 1.000 0.985 0.997 1.000 0.991 0.997 1.000 0.997 0.999 1.000 

0.60 0.984 0.998 1.000 0.984 0.994 1.000 0.984 0.994 1.000 0.989 0.999 1.000 0.993 0.999 1.000 

0.65 0.990 0.997 1.000 0.971 0.991 1.000 0.971 0.990 1.000 0.977 0.995 0.999 0.982 0.995 0.999 

0.70 0.986 0.993 0.997 0.958 0.981 0.996 0.959 0.980 0.995 0.961 0.979 0.999 0.957 0.982 0.999 

0.75 0.972 0.988 0.997 0.928 0.966 0.991 0.927 0.967 0.991 0.943 0.968 0.992 0.937 0.967 0.993 

0.80 0.939 0.974 0.996 0.885 0.943 0.985 0.885 0.943 0.986 0.893 0.949 0.984 0.896 0.944 0.986 

0.85 0.893 0.938 0.985 0.835 0.903 0.973 0.835 0.901 0.973 0.837 0.905 0.972 0.829 0.904 0.973 

0.90 0.840 0.900 0.970 0.785 0.853 0.956 0.785 0.853 0.956 0.767 0.854 0.955 0.763 0.851 0.953 

0.95 0.742 0.839 0.940 0.710 0.805 0.924 0.711 0.805 0.925 0.691 0.782 0.912 0.684 0.782 0.912 

100 0.40 0.682 0.850 0.991 0.947 0.986 1.000 0.946 0.987 1.000 0.970 0.996 1.000 0.987 0.999 1.000 

0.45 0.753 0.913 0.995 0.953 0.990 1.000 0.953 0.990 1.000 0.983 0.997 1.000 0.995 1.000 1.000 

0.50 0.902 0.976 0.999 0.980 0.995 1.000 0.980 0.995 1.000 0.993 1.000 1.000 0.997 1.000 1.000 

0.55 0.955 0.989 1.000 0.988 0.995 1.000 0.988 0.995 1.000 0.994 1.000 1.000 0.998 0.999 1.000 

0.60 0.977 0.994 1.000 0.988 0.996 1.000 0.988 0.996 1.000 0.990 0.998 1.000 0.993 0.998 1.000 

0.65 0.987 0.999 1.000 0.976 0.994 1.000 0.975 0.994 1.000 0.984 0.993 1.000 0.985 0.993 1.000 

0.70 0.988 0.994 1.000 0.951 0.982 0.997 0.952 0.981 0.997 0.957 0.984 0.997 0.953 0.984 0.998 

0.75 0.975 0.989 0.999 0.914 0.961 0.994 0.915 0.961 0.994 0.916 0.962 0.996 0.923 0.960 0.996 

0.80 0.938 0.974 0.994 0.880 0.924 0.986 0.880 0.923 0.986 0.862 0.929 0.985 0.862 0.932 0.986 

0.85 0.873 0.933 0.983 0.830 0.882 0.969 0.831 0.883 0.970 0.785 0.871 0.963 0.781 0.866 0.964 

0.90 0.800 0.871 0.961 0.764 0.843 0.929 0.765 0.843 0.929 0.696 0.793 0.929 0.688 0.794 0.934 

0.95 0.697 0.803 0.918 0.689 0.781 0.894 0.684 0.781 0.893 0.610 0.724 0.879 0.588 0.705 0.876 

200 0.40 0.557 0.789 0.986 0.869 0.984 1.000 0.871 0.984 1.000 0.986 0.999 1.000 0.997 1.000 1.000 

0.45 0.686 0.874 0.994 0.918 0.994 1.000 0.918 0.994 1.000 0.996 1.000 1.000 1.000 1.000 1.000 

0.50 0.860 0.955 1.000 0.973 0.998 1.000 0.973 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

0.55 0.926 0.986 1.000 0.987 0.998 1.000 0.987 0.998 1.000 0.997 1.000 1.000 0.999 1.000 1.000 

0.60 0.971 0.997 1.000 0.989 0.998 1.000 0.991 0.998 1.000 0.992 0.998 1.000 0.993 0.999 1.000 

0.65 0.989 0.997 1.000 0.983 0.997 1.000 0.983 0.997 1.000 0.965 0.990 1.000 0.970 0.991 1.000 

0.70 0.990 0.996 0.999 0.979 0.990 0.998 0.977 0.990 0.998 0.928 0.970 0.997 0.933 0.974 0.998 

0.75 0.972 0.989 0.996 0.949 0.978 0.997 0.949 0.978 0.997 0.872 0.932 0.992 0.885 0.936 0.993 

0.80 0.941 0.969 0.994 0.900 0.957 0.988 0.901 0.955 0.988 0.816 0.886 0.972 0.823 0.889 0.971 

0.85 0.882 0.938 0.982 0.869 0.905 0.979 0.869 0.906 0.979 0.740 0.825 0.930 0.743 0.829 0.933 

0.90 0.787 0.871 0.955 0.806 0.878 0.954 0.805 0.879 0.953 0.642 0.742 0.892 0.641 0.748 0.894 

0.95 0.664 0.777 0.902 0.743 0.803 0.917 0.744 0.803 0.918 0.553 0.658 0.822 0.538 0.656 0.822 

θ̂

a

θ̂

The linear equivalents of models (20) and (21) , respectively, are 

 

0 ∗
j 0 

= max 

Q ∑ 

q =1 

μ′ 
q z q j 0 + 

R ∑ 

r=1 

γ ′ 
r l r j 0 + u 1 + 

S ∑ 

s =1 

η′ 
s y s j 0 + u 2 

s.t. 

P ∑ 

p=1 

v ′ p x p j 0 + 

Q ∑ 

q =1 

μ′ 
q z q j 0 + 

T ∑ 

t=1 

π ′ 
t g t j 0 = 1 , 

Q ∑ 

q =1 

μ′ 
q z q j + 

R ∑ 

r=1 

γ ′ 
r l r j −

P ∑ 

p=1 

v ′ p x p j + u 1 ≤ 0 , j = 1 , . . . , N 

S ∑ 

s =1 

η′ 
s y s j −

Q ∑ 

q =1 

μ′ 
q z q j −

T ∑ 

t=1 

π ′ 
t g t j + u 2 ≤ 0 , j = 1 , . . . , N 

v ′ p , γ ′ 
r , μ

′ 
q , π

′ 
t , η

′ 
s > 0 , 

u 1 , u 2 free in sign. 
14 
nd 

 

1 p∗
j 0 

= max 

Q ∑ 

q =1 

μ′ 
q z q j 0 + 

R ∑ 

r=1 

γ ′ 
r l r j 0 + u 1 

s.t. 

P ∑ 

p=1 

v ′ p x pj 0 = 1 

Q ∑ 

q =1 

μ′ 
q z q j + 

R ∑ 

r=1 

γ ′ 
r l r j + u 1 −

P ∑ 

p=1 

v ′ p x pj ≤ 0 , j = 1 , . . . , N 

S ∑ 

s =1 

η′ 
s y s j + u 2 −

Q ∑ 

q =1 

μ′ 
q z q j −

T ∑ 

t=1 

π ′ 
t g t j ≤ 0 , j = 1 , . . . , N 

(1 − ̂ θ0 ∗
j 0 

) 

Q ∑ 

q =1 

μ′ 
q z q j 0 − ̂ θ0 ∗

j 0 

T ∑ 

t=1 

π ′ 
t g t j 0 + 

R ∑ 

r=1 

γ ′ 
r l r j 0 

+ 

S ∑ 

s =1 

η′ 
s y s j 0 + u 1 + u 2 = ̂

 θ0 ∗
j 0 
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r , μ
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q , π

′ 
t , η

′ 
s > 0 , 

u 1 , u 2 free in sign. 

List of notations: 

j Index of DMUs. 

j 0 DMU under evaluation. 

N Number of DMUs in the sample. 

m Number of DMUs in the subsample 

φ Stage number indicator 

x p j = (x 1 j , . . . , x P j ) Vector of first stage inputs for DMU j . 

l r j = (l 1 j , . . . , l R j ) Vector of first stage outputs for DMU j . 

z q j = (z 1 j , . . . , z Q j ) Vector of intermediate products for DMU j . 

g t j = (g 1 j , . . . , g T j ) Vector of second stage inputs for DMU j . 

y s j = (y 1 j , . . . , y S j ) Vector of second stage outputs for DMU j . 

x e Vector of first stage efficient inputs 

g e Vector of second stage efficient inputs 

v p = (v 1 , . . . , v P ) Vector of multipliers for the first stage inputs in the 

fractional model. 

μr = (μ1 , . . . , μR ) Vector of multipliers for the first stage outputs in the 

fractional model. 

γq = (γ1 , . . . , γQ ) Vector of multipliers for the intermediate products in the 

fractional model. 

πt = (π1 , . . . , πT ) Vector of multipliers for the second stage inputs in the 

fractional model. 

ηs = (η1 , . . . , ηS Vector of multipliers for the second stage outputs in the 

fractional model. 

v ′ p = (v ′ 1 , . . . , v ′ P ) Vector of multipliers for the first stage inputs in the 

linear model. 

μ′ 
r = (μ′ 

1 , . . . , μ
′ 
R ) Vector of multipliers for the first stage outputs in the 

linear model. 

γ ′ 
q = (γ ′ 

1 , . . . , γ
′ 

Q ) Vector of multipliers for the intermediate products in the 

linear model. 

π ′ 
t = (π ′ 

1 , . . . , π
′ 
T ) Vector of multipliers for the second stage inputs in the 

linear model. 

η′ 
s = (η′ 

1 , . . . , η
′ 
S Vector of multipliers for the second stage outputs in the 

linear model. 

w 1 j Decomposition weight of the first stage. 

w 2 j Decomposition weight of the second stage. 

θ0 
j 

True overall efficiency score of DMU j . 

θ1 
j 

True first stage efficiency score of DMU j . 

θ2 
j 

True second stage efficiency score of DMU j . ̂ θ0 
j Estimation of the overall efficiency score of DMU j . ̂ θ1 
j Estimation of the first stage efficiency score of DMU j . ̂ θ2 
j Estimation of the second stage efficiency score of DMU j . ̂ ̂ θ0 
j Bootstrap estimation of the overall efficiency score of 

DMU j . ̂ ̂ θ1 
j Bootstrap estimation of the first stage efficiency score of 

DMU j . ̂ ̂ θ2 
j Bootstrap estimation of the second stage efficiency score 

of DMU j . 
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