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Abstract:  We report frequency locking at Farey fractions of a breather mode-locked fibre
laser. The ratios of the breathing frequency to the cavity-repetition frequency show the Farey-
tree’s hierarchy and devil-staircase’s structure with a 0.906 fractal dimension. © 2022 The
Author(s)

1. Introduction

The theoretical model describing nonlinear systems with two competing frequencies [1] predicts frequency locking,
in which the system locks into a resonant periodic response featuring a rational frequency ratio, and quasi-periodicity
following the hierarchy of the Farey tree and the structure of the devil’s staircase [2]. In lasers, the two interacting
frequencies can be the repetition rate of the cavity and a frequency that is externally applied to the system such as in
modulated semiconductor lasers [3,4]. Conversely, breathing solitons, which have recently emerged as a ubiquitous
mode-locked regime of ultrafast fibre lasers [5—7], naturally trigger a second characteristic frequency in the nonlinear
system, which therefore shows competition between the cavity repetition rate and the breathing frequency.

To date, the link between breathers and frequency locking in fibre lasers is largely missing, arguably because
tuning the breathing frequency is a laborious task when done manually, requiring precise control of multiple laser
parameters. Here we circumvent this difficulty by a machine-learning approach based on the use of an evolutionary
algorithm (EA) and demonstrate, for the first time, frequency locking at Farey fractions of a breather mode-locked
fibre laser. The frequency-locked states occur in the sequence they appear in the Farey tree and within a pump-power
interval given by the width of the corresponding step in the devil’s staircase. The breather laser may therefore serve as
a simple model system to explore universal synchronisation dynamics of nonlinear systems. Further, frequency-locked
breathers can give rise to wide and dense frequency combs, thereby providing an attractive alternative to the use of
ultra-long unstable cavities in many practical applications such as, for instance, in high-resolution spectroscopy.

2. Breather Fibre Laser, Farey Tree and Devil’s Staircase

The laser was an erbium-doped fibre ring cavity with normal dispersion, in which the transfer function of the
nonlinear-polarisation evolution-based mode locking was controlled by three wave plates based on liquid crystal (LC)
phase retarders working together with a polarisation beam splitter. The repetition rate of the laser was f, = 34.2 MHz.
The laser output was split into two ports: a fraction was directly detected by a fast photodiode plugged to a real-time
oscilloscope, while the remaining part was sent through a time-stretch dispersive Fourier transform (DFT) setup for
spectral measurements. The oscilloscope was connected to a computer that ran the EA and controlled the polarisation
state through the voltages applied on the LCs. The radio-frequency (RF) spectral properties of the laser output were
further characterised by an electrical spectrum analyser (ESA).

Breathing solitons can be excited in a laser cavity by tuning the gain (pump strength) and the cavity loss (polari-
sation controllers) [5]. Panels (al) and (a2) of Fig. 1 show two examples of breather operations of the laser recorded
at different system parameters. The train of output pulses in Fig. 1(al) shows periodic variations in intensity occur-
ring across a well-defined period of 5 cavity roundtrips. The corresponding spatio-spectral representation of the laser
regime (not shown) evidenced a periodic compression and stretching of the optical spectrum over cavity roundtrips,
accompanied by synchronous periodic changes in pulse energy, which is a distinctive feature of breathing solitons.
Whilst the period of oscillation seems to be unchanged for the pulse train in Fig. 1(a2), the quality of the periodic
behaviour is clearly degraded in comparison with the previous case. The RF spectra of the laser emission taken
from the ESA reveal the major difference between the two breather states. The breathing frequency of the unstable
(quasi-periodic) breather state exhibits a noisy and broad structure (Fig. 1(a4)). By contrast, the stable breather state
features a neat breathing frequency with narrow line-width (0.5 Hz) and high signal-to-noise ratio (SNR; Fig. 1(a3)).
The breathing frequency of the stable breather state is f;, = 6.84 MHz exactly equalling one fifth of the fundamental
repetition frequency, hence corresponding to a rational winding number of f,/f, = 1/5.

In [8], we introduced an approach based on an EA for the search and optimisation of the breather mode-locking
regime in ultrafast fibre lasers, which relied on specific features of the RF spectrum of the breather laser output. Here,
we have further developed our approach to directly pinpoint frequency-locked breathers so that the EA tunes the
laser to these states only. Hence, benefiting from this reliable and efficient EA-based optimisation procedure, we have
explored the transitions between the different breather states of the laser that can be accessed by varying the pump



power starting from the range corresponding to a 1/5 frequency-locked state. Figure 1(b1) shows an example of a
plot of the breathing frequency as a function of the pump power, revealing the presence of various plateaux (steps).
The spectral measurements carried out with the ESA allow us to unambiguously relate the breathing frequencies
associated with the plateaux to rational winding numbers: as shown in panels (b2-b4), when the laser operates in
a frequency-locked state, the RF spectrum features a finite number n of spectral lines below the cavity repetition
frequency f, and equally spaced by f,/n. For example, in panel (b3) the frequency-locked breather regime brings
about the excitation of a RF comb that is 41 times denser than that obtained when the laser operates in the usual
single-pulse stationary regime. The most intense line in the spectrum is the breathing frequency f3, and if this is the
mth line from the short-frequency side, then the corresponding winding number is given by m/n.

Importantly, in Fig. 1(bl) the winding numbers appear from left to right in the order predicted by the Farey tree,
as shown in the inset of the figure, and the width of the step associated with a m/n frequency-locked state depends
on the level where m/n appears in the Farey tree’s hierarchy. The gaps (in pump power) between the stairs refer to
quasi-periodic breather oscillations similar to the example shown in Fig. 1(a2,a4). The fractal dimension D of the set
of gaps can be extracted from the width of the steps, and is calculated to be D = 0.906 4-0.025, which is close to the
value of 0.87 expected from a complete devil’s staircase [1]. Setting the laser to a slightly different initial polarisation
state, Farey fractions belonging to other two parts of the Farey tree could be identified through the RF spectra while
tuning the pump power. In both cases, the calculated dimension of the set complementary to the stairs approached that
of a complete devil’s staircase.

1
(a1) _ (b1)
3 0.225 a . 7.69
g 1 1
=; 4 5 7
§ ‘ 0.22 1 T 2 // 32 % b 7.52
= { Part of the Farey tree 2\ ~~~_ % ;:'3
o 5 0.215 1 > L735 S
2 T 2 >
(a2) : :
8 I g
g 2 o
g = 0.205 1 F7.01 £
B [
0 o
0 10 20 30 40 50 d
Time (Tr) 0.2 6.84
(33) 60 “
g -80 0.195 + T T T T 6.67
A 69 71 73 75 77
E:A‘OO Pump power (mW)
Ean| AN, ) -20 1
Vaimaa  Ymawv A = 9
- Vi T O PR S 1_f gf S¢
‘40-50 0 50 % M r ‘9 r ‘41 r
Relative frequency (Hz) = 70
-80 =
(a4) 2
£ I\ 2
£ M g
@ -100 F
2
z -120
§ 120 | M 0 7 14 21 28 30 7 14 21 28 3 0 7 14 21 28 35
= w. m “N Frequency (MHz) Frequency (MHz) Frequency (MHz)
.14075 ; . (b2) (b3) (b4)

Relative frequency (kHz)

Fig. 1. (a) Characteristics of frequency-locked ((al,a3)) and quasi-periodic ((a2,a4)) breather operations of
the laser. (al,a2): Photo-detected DFT output signals observed over 50 cavity roundtrips (7} is the roundtrip
time). (a3,a4): RF spectral measurements taken over spans of 100Hz and 10kHz, respectively. The reference
frequency is one fifth of the fundamental repetition frequency. (b) Farey tree, devil’s staircase and RF spectra.
(b1): Measured breather frequency (winding number) as a function of the pump power. In the inset is shown
the part of the Farey tree containing the observed Farey fractions. (b2-b4): RF spectra measured with the ESA
for the frequency-locked states corresponding to the winding numbers 1/5, 2/9 and 9/41, respectively.

3. Conclusion

We have demonstrated that a fibre laser working in the breathing-soliton generation regime is a passive system showing
frequency locking at Farey fractions. The frequency-locked breather states of the laser are characterised by robustness
against parameter (pump power and polarisation) variations and a breathing frequency with narrow line-width and
high SNR. The dimension of 0.906 determined from the measured devil’s staircase indicates the universal nature of
this nonlinear system. We have further demonstrated that frequency-locked breather lasers generate wide RF combs
with a line spacing that is not constrained by the length of the laser cavity and can reach the sub-MHz range.
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