
1
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Abstract—Fuzzy rule interpolation (FRI) strongly supports1

approximate inference when a new observation matches no rules,2

through selecting and subsequently interpolating appropriate3

rules close to the observation from the given (sparse) rule4

base. Traditional ways of implementing the critical rule selection5

process are typically based on the exploitation of Euclidean6

distances between the observation and rules. It is conceptually7

straightforward for implementation but applying this distance8

metric may systematically lead to inferior results because it fails9

to reflect the variations of the relevance or significance levels10

amongst different domain features. To address this important11

issue, a novel transformation-based FRI approach is presented,12

on the basis of utilising the Mahalanobis distance metric. The13

new FRI method works by transforming a given sparse rule14

base into a coordinates system where the distance between15

instances of the same category becomes closer while that between16

different categories becomes further apart. In so doing, when an17

observation is present that matches no rules, the most relevant18

neighbouring rules to implement the required interpolation are19

more likely to be selected. Following this, the scale and move20

factors within the classical transformation-based FRI procedure21

are also modified by Choquet integral. Systematic experimental22

investigation over a range of classification problems demonstrates23

that the proposed approach remarkably outperforms the existing24

state-of-the-art FRI methods in both accuracy and efficiency.25

Index Terms—Fuzzy rule interpolation, transformation-based26

FRI, approximate inference, Mahalanobis distance, Choquet27

integral.28

I. INTRODUCTION29

THANKS to the capability of performing approximate30

inference with a sparse rule base, fuzzy rule interpo-31

lation (FRI) [1] greatly expands the scope of applications32

of the classical compositional rule of inference (CRI) [2],33

which would otherwise collapse when an observation does34

not match any rule antecedent from the rule base. FRI has35

gained considerable developments for the past two decades.36

Its core working principle is to implement linear interpola-37

tive reasoning by manipulating selected rules that flank the38
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unmatched observation, or to perform extrapolative reasoning 39

if the antecedent variables of certain neighbouring fuzzy rules 40

do not flank the observation [3]. 41

In general, many rules in a given (sparse) rule base may be 42

used to implement interpolative or extrapolative inferences. 43

However, (at least) because of computational complexity, it 44

is not advisable to make use of all the rules from the rule 45

base for interpolation (or extrapolation, but for presentational 46

simplicity only interpolation is hereafter referred to given the 47

mathematical dual form of both types of reasoning). Therefore, 48

just close neighbouring rules to the observation are employed 49

to participate in interpolative reasoning for most FRI methods. 50

The rationale for using neighbouring rules is their similarity to 51

the observation. Whilst attempt exists to automatically select 52

rules for interpolation without manually setting the number of 53

closest rules [4], a great majority of FRI approaches [5]–[15] 54

typically utilise Euclidean distances between an unmatched 55

observation and the given rule base to select such closest 56

rules. The procedure of rule selection plays very critical roles 57

in the subsequent inferential process, in the vicinity of the 58

observation. Although the use of Euclidean distance metric 59

is classical and conceptually straightforward to implement, its 60

employment can lead to utilising an inferior subset of rules 61

when multiple antecedent variables have different levels of, or 62

weights on, contribution to the reasoning outcomes [1]. 63

Feature selection tools [16] can help a reasoning system 64

learn different weighting scores of antecedent variables auto- 65

matically. In particular, the potential of feature evaluation has 66

been exploited through integrating such a tool within FRI [17], 67

[18]. These applications have revealed that by considering 68

degrees of relative feature importance in calculating distances 69

from an observation to the rules is useful for the system to find 70

the most relevant rules to perform FRI. The resulting weighted 71

FRI methods can attain better performance in addressing clas- 72

sification problems than their original unweighted ones. Whilst 73

effective, this type of weighted approach may become void 74

for problems where there is no clear distinction of importance 75

between the features. In addition, the use of weighting scores 76

assigned to every domain feature for distance calculation in- 77

evitably increases computational complexity. Such techniques 78

do not eliminate any coupling between features, which means 79

that after feature evaluation, variables may remain interrelated 80

in the feature space, thereby (adversely) retaining redundant 81

information [19]. 82

Unlike Euclidean distance, Mahalanobis distance [20] is a 83

distance measure that incorporates the dealing of correlations 84
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between features. It was originally proposed to introduce a85

form of covariance measure that considers the distribution of86

data in a given feature space. However, in employing it to87

cope with classification problems, it has been recognised that88

a distance metric that examines just the internal relationship of89

features is not sufficient. A desirable metric should also reflect90

the relationships between domain attributes and data labels.91

This has led to the development of the modern Mahalanobis92

distance metric that possesses an inherent learning capacity,93

via so-called Mahalanobis metric learning [21]. The learning94

process aims to acquire a Mahalanobis matrixM to transform95

data samples to a new coordinates system where domain96

features from the original feature space are reconstructed.97

In the resulting feature space, data distribution becomes98

significantly more distinct, facilitating classification, because99

instances of the same category are gathered together while100

instances with different labels are separated far apart. Inspired101

by this observation, a novel FRI method is introduced herein102

by the use of Mahalanobis distance with metric learning that103

helps select more suitable rules involving weighted attributes104

to perform FRI.105

As a popular approach, scale and move transformation-106

based FRI (T-FRI) [7] has exceptional merits of yielding107

unique, normal and convex interpolative consequences. It108

enables the utilisation of sophisticated fuzzy representations,109

such as complex polygon, Gaussian or other bell-shaped fuzzy110

membership functions as well as simple triangular or trapi-111

zoidal ones. Therefore, T-FRI is employed in this work to serve112

as the underlying FRI platform. In addition, Choquet integral,113

a particular non-additive aggregation function, is adopted in114

an effort to support an effective integration of weights into115

the T-FRI inference process. Furthermore, a systematic exper-116

imental evaluation of five distinct metric learning algorithms is117

conducted to ensure that the proposed approach does not rely118

on a certain particular metric learning technique. The results119

of running over a wide range of classification problems (in120

comparison with state-of-the-art T-FRI methods) demonstrate121

that the approach presented herein substantially facilitates the122

improvement of the underlying T-FRI.123

The paper is organised as follows. Section II outlines the124

relevant background of T-FRI and the basic ideas of Maha-125

lanobis distance. Section III describes the proposed framework126

of Mahalanobis distance-supported T-FRI with metric learning127

and provides a theoretical analysis of the proposed approach.128

Section IV discusses the results of comparative experimental129

studies. Section V concludes the paper and suggests future130

enhancements.131

II. BACKGROUND132

This section presents the relevant background work, includ-133

ing an outline of FRI based on scale and move transformations134

and a brief description of Mahalanobis distance as well as135

Mahalanobis metric learning.136

A. Transformation-Based FRI (T-FRI)137

Without losing generality, suppose that a fuzzy rule base 138

with multiple multi-antecedent rules is expressed as follows: 139

Rule Ri :

If x1 is Ai1 and x2 is Ai2 and · · · and xm is Aim,
then y is Bi

(1)

where i = 1, 2, . . . , N with N being the number of rules 140

for this rule base; Ri is the ith rule; m is the number of 141

antecedent attributes; Aij and Bi represent the value of the jth 142

(j ∈ [1,m]) antecedent variable and that of the consequent in 143

Ri, respectively, each defined by a fuzzy set. An observation 144

(or input) for this fuzzy reasoning system is given by 145

Observation O∗ : A∗1, A
∗
2, · · · , A∗j , · · · , A∗m (2)

where A∗j denotes the fuzzy set of the jth antecedent variable. 146

As an important notion in T-FRI, the representative value 147

(Rep) of a fuzzy set is widely used to guide fuzzy interpolative 148

reasoning. The Rep value of a fuzzy set reflects the essential 149

information embedded within both the overall location of its 150

domain range and the geometric shape of its membership 151

function. For instance, the general form of Rep for an arbitrary 152

polygonal fuzzy set A = (a1, a2, . . . , an) is defined by 153

Rep(A) =

n∑
t=1

wtat (3)

where at, t = 1, 2, . . . , n are the abscissas of vertices depicting 154

the polygonal with their ordinates defining the membership 155

values, and wt denotes the weight assigned to at. 156

The triangular membership function is very popular in 157

encoding fuzzy sets within fuzzy systems owing to its com- 158

putational simplicity. The abscissas of the three vertices for 159

a fuzzy triangular membership function A are a1, a2, a3, and 160

the representative value of such a fuzzy set can be defined as 161

Rep(A) =
a1 + a2 + a3

3
(4)

with the wt, t = 1, 2, 3 all being set to 1
3 . 162

Given the above preliminaries, when an observation does 163

not match any of the rules from the given rule base, T-FRI 164

performs interpolative inference through four core procedures 165

as graphically illustrated in Fig. 1 and outlined below. Note 166

that, for simple depiction, the fuzzy rule base is portrayed in 167

this figure by a small number of points (with different shapes 168

representing different consequent classes) and projected onto 169

a two-dimensional space. 170

1) Neighbouring Rule Selection: Considering computation 171

efficacy, not all the rules in the rule base are necessarily 172

taken for taking part in interpolation. As the first step of T- 173

FRI, n closest or nearest neighbouring rules to an unmatched 174

observation O∗ are selected from the rule base, which have 175

the n smallest distances to O∗. Specifically, while computing 176

the distance from O∗ to Ri, i = 1, 2, . . . , N , the distance 177

between the value pair of each relevant antecedent variable 178

(per observation) is defined by 179

d(A∗j , Aij) =
|Rep(A∗j )− Rep(Aij)|

rangej
(5)
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Fig. 1. Framework of T-FRI.

where rangej = maxAj −minAj , j = 1, 2, . . . ,m represents 180

the domain range of the jth antecedent feature. Then, the181

distance between O∗ and Ri is formulated by182

d(O∗, Ri) =

√√√√ m∑
j=1

d(A∗j , Aij)
2. (6)

Based on this, the n closest rules having the least distance183

measurements with regard to O∗ are selected to be employed184

in the next step.185

2) Intermediate Rule Construction: This step is concerned186

with the process of constructing a required intermediate rule,187

comprised of both antecedent and consequent parts, mimicking188

the general representation format of the rules in the given rule189

base. This is implemented through the use of the principle of190

analogical reasoning [7], which basically states that if there191

exists a certain degree of similarity between the values of192

antecedent variables A′j and A∗j , then the consequent parts193

B′ and B∗ should share the same similarity degree. This194

principle forms the intuitive justification not just for this step,195

but throughout the entire subsequent FRI procedures.196

Let wij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m, represent the197

weight degree to which the jth antecedent variable of the ith198

rule contributes to building the jth antecedent fuzzy set A′j of199

the intermediate rule. It is negatively related to the distance200

between A∗j and Aij201

wij =
1

1 + d(A∗j , Aij)
(7)

where d(A∗j , Aij) is defined by Eqn. (5). To guarantee that202

the sum over attribute j equals to 1, this term needs to be203

normalised such that204

w̃ij =
wij∑

t=1,2,...,n wtj
. (8)

Thus, the intermediate antecedent A′′j is obtained by205

A′′j =
∑

i=1,2,...,n

w̃ijAij . (9)

Note that the fuzzy terms A′′j calculated via Eqn. (9) are not the206

required values of the intermediate antecedent features since207

they do not have the same representative values as A∗j from the208

observation. In order to ensure the consistency of these vital209

Rep values before and after transformation, new intermediate 210

fuzzy antecedent values A′j , j = 1, 2, . . . ,m, are obtained by 211

A′j = A′′j + δjrangej (10)

where rangej = maxAj −minAj as with Eqn. (5) and δj is 212

defined by 213

δj =
Rep(A∗j )− Rep(A′′j )

rangej
. (11)

Similar to the antecedent part, the intermediate consequent 214

part B′ is then calculated by 215

B′ =
∑

i=1,2,...,n

w̃ibBi + δ̃brangeB (12)

where Bi is the consequent value of the ith rule; rangeB = 216

maxB −minB ; and the two significant factors w̃ib and δ̃b are 217

computed as follows: 218

w̃ib =
1

m

m∑
j=1

w̃ij , (13)

219

δ̃b =
1

m

m∑
j=1

δj (14)

where w̃ij and δj are calculated from Eqn. (8) and Eqn. (11), 220

respectively. 221

After the above two steps, the most similar n fuzzy rules to 222

the observation are aggregated into a single intermediate rule 223

(IR): 224

Intermediate Rule:
If x1 is A′1 and x2 is A′2 and · · · and xm is A′m,

then y is B′.
(15)

The rest of the interpolative inference is again, based on the 225

exploitation of the analogical reasoning. In order to achieve 226

this, the subsequent inference procedures firstly transform 227

the intermediate rule as per Eqn. (15) into a scaled inter- 228

mediate rule comprised of A†1, A
†
2, . . . , A

†
m and B†, where 229

fuzzy terms A†j , j = 1, 2, . . . ,m, and B† denote the scaled 230

intermediate fuzzy sets for the antecedent and the consequent 231

part respectively. Secondly, the scaled intermediate rule is 232
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further transformed into one that governs the relationship 233

between the given observation in the form of Eqn. (2) and234

an interpolative consequent value B∗. These two steps are235

called scale and move transformations, controlled by two236

critical factors (namely, scale and move factors) that ensure237

the reasoning system attaining the similarity degree between238

A′j and A∗j .239

3) Scale Transformation: Throughout this paper, following240

the mainstream T-FRI implementations, triangular member-241

ship functions are utilised to represent fuzzy sets (purely242

for computational simplicity). For an arbitrary fuzzy term243

A′j(a
′
j1, a

′
j2, a

′
j3) employed by the intermediate rule, the scale244

rate is computed by245

sAj =
a∗j3 − a∗j1
a′j3 − a′j1

. (16)

Applying sAj to an antecedent feature value, the correspond-246

ing scaled intermediate antecedent fuzzy set A†j(a
†
j1, a

†
j2, a

†
j3)247

is given by248  a†j1
a†j2
a†j3

 =
1

3

 1 + 2sAj 1− sAj 1− sAj
1− sAj 1 + 2sAj 1− sAj
1− sAj 1− sAj 1 + 2sAj

 a′j1
a′j2
a′j3

.
(17)

In doing so, the representative values for every feature remain249

consistent throughout the transformation. Note that the defi-250

nitions of sAj and the computation of A†j for other types of251

complex membership functions can be found in [7].252

According to the aforementioned analogical reasoning prin-253

ciple, it is intuitive to acquire the consequent scaled interme-254

diate fuzzy set B†(b†1, b
†
2, b
†
3) such that255  b†1

b†2
b†3

 =
1

3

 1 + 2s̃b 1− s̃b 1− s̃b
1− s̃b 1 + 2s̃b 1− s̃b
1− s̃b 1− s̃b 1 + 2s̃b

 b′1
b′2
b′3

 (18)

where s̃b is the average of sAj :256

s̃b =
1

m

m∑
j=1

sAj (19)

4) Move Transformation: Following scale transformation,257

this step strives to move A†j to the position that coincides258

with the position of the original observation A∗j , and similarly259

shifts B† to yield the desirable analogical reasoning outcome260

B∗. This procedure is accomplished by applying the following261

move ratio to A†j :262

mAj =


3(a∗j1−a

†
j1)

a†j2−a
†
j1

, if a∗j1 ≥ a
†
j1

3(a∗j1−a
†
j1)

a†j3−a
†
j2

, otherwise;
(20)

with a similar application to B†. Akin to scale transformation,263

the move rate m̃b for the consequent attribute is calculated by264

averaging those of the antecedent variables, such that265

m̃b =
1

m

m∑
j=1

mAj . (21)

Finally, the required interpolative reasoning consequence266

B∗(b∗1, b
∗
2, b
∗
3) is computed by 267

 b∗1
b∗2
b∗3

 =



1
3

 3− m̃b m̃b 0

2m̃b 3− 2m̃b 0

−m̃b m̃b 3


 b†1
b†2
b†3

, if m̃b ≥ 0

1
3

 3 −m̃b m̃b

0 3 + 2m̃b −2m̃b

0 −m̃b 3 + m̃b


 b†1
b†2
b†3

, otherwise.

(22)

B. Mahalanobis Distance and Metric Learning 268

This subsection presents the basic ideas of the Mahalanobis 269

distance metric and introduces five typical metric learning 270

methods, any of which may be utilised to support adapting 271

Mahalanobis distance measures. 272

1) Mahalanobis Distance: Dissimilar to Euclidean dis- 273

tance, Mahalanobis distance [20] measures relationships be- 274

tween data instances of a given problem domain, by consider- 275

ing the correlation between features. Suppose that x1 and x2 276

are two samples from a dataset. The calculation of Euclidean 277

distance between them can be expressed by 278

d(x1,x2) =

√
(x1 − x2)T (x1 − x2). (23)

If however, both are projected onto a new linear space through 279

linear transformations (x1 7→ Ax1 and x2 7→ Ax2, where A 280

is a transformation matrix), then the distance in the new space 281

becomes: 282

d(x1, x2) =

√
(Ax1 −Ax2)T (Ax1 −Ax2)

=

√
(x1 − x2)TATA(x1 − x2)

=

√
(x1 − x2)TM(x1 − x2)

(24)

whereM is termed a Mahalanobis matrix. 283

To induce a distance metric, M should be a positive semi 284

definite (PSD) matrix. By imposing singular value decom- 285

position on M, it can be decomposed into M = PT ΣP , 286

where P is a unitary matrix, satisfying PTP = I , with I 287

denoting the identity matrix; and Σ is a diagonal matrix with 288

the diagonal elements being singular values [22]. From this, 289

the Mahalanobis distance is defined as: 290

dM(x1, x2) =

√
(x1 − x2)TPT ΣP(x1 − x2)

=
√

(Px1 − Px2)TΣ(Px1 − Px2).
(25)

As such, in the context of T-FRI, if replacing Euclidean 291

distance with Mahalanobis distance, two main functionalities 292

of the Mahalanobis distance metric can be exploited. One is 293

to discover an optimal orthogonal matrix P that removes the 294

couplings amongst antecedent features, mapping the original 295

samples onto a new coordinates system; and the other is to 296

assign weights from the associated diagonal matrix Σ to the 297

transformed features, reflecting the relationship between them 298

and the consequent within the resulting coordinates system. 299

The traditional Mahalanobis matrix M = S−1, where S 300

is the covariance matrix of the dataset, takes into account 301
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the distribution of data on the original feature space. This 302

can be expanded and strengthened through the application of303

modern metric learning techniques. In particular, as introduced304

in the seminal work of [21], metric learning can be formulated305

as a convex optimisation problem, such that the relationship306

between instances of the same class becomes closer to one307

another, whilst instances of different classes are farther away308

from each other. The following briefly outlines five metric309

learning methods for deriving the Mahalanobis matrix that310

each can help achieve such Mahalanobis distance measures.311

2) Large Margin Nearest Neighbours (LMNN): LMNN312

works by enablingM to pull the k nearest examples belong-313

ing to the same class together while pushing off the examples314

from different classes [23]. In order to achieve this, two types315

of constraint are imposed: (i) a set of must-link constraints,316

Slmnn, such that one of the k nearest points xj to xi must317

belong to the same category of xi (e.g., yj = yi, where yi318

and yj are the labels of xi and xj respectively); and (ii) a set319

of ternary constraints, Rlmnn, such that in the three-member320

set (xi, xj, xk), (xi, xj) fall into the same category but xk321

does not belong to it (e.g., yj = yi, yk 6= yj , where yk is the322

label of xk). From these, Mahalanobis matrix is learned by a323

program for convex optimisation:324

min
M�0,ξ≥0

(1− µ)
∑

(xi,xj)∈Slmnn

d2M(xi, xj) + µ
∑
i,j,k

ξijk

s.t.

d2M(xi, xk)− d2M(xi, xj) ≥ 1− ξijk ∀(xi, xj, xk) ∈ Rlmnn
(26)

where ξijk is a nonnegative slack variable, aimed at measuring325

the amount by which a differently labelled input xk invades326

the area around xi, the boundary of which is defined by the327

same class for the input xj . Therefore, similar to linear support328

vector machine algorithm (SVM), ξijk works as a penalty329

parameter to adjust the objective function, with µ ∈ [0, 1]330

balancing the above two sets of constraints of the objective331

function.332

3) Information-Theoretic Metric Learning (ITML): ITML333

works based on exploiting Information Theory [24]. Suppose334

that the distance between two multivariate Gaussian distribu-335

tions is generally defined by336

KL
(
p(x;M0) ‖ p(x;M)

)
=

∫
p(x;M0) log

p(x;M0)

p(x;M)
dx

(27)
where M is a metric matrix to be learned and M0 is a337

priori metric matrix (usually M0 = S−1); p(x;M0) =338

1
z exp

(
− 1

2dM0(x, µ)
)

and p(x;M) = 1
z exp

(
− 1

2dM(x, µ)
)

339

are two Gaussian distributions, where µ is the mean of Gaus-340

sians and z is a normalising constant; and KL(·) measures341

relative entropy. Then, the metric learning problem can be342

formulated as one of Bregman optimisation [25] by computing343

the following:344

min
M

KL
(
p(x;M0) ‖ p(x;M)

)
s.t. dM(xi,xj) ≤ µ, (xi,xj) ∈ S

dM(xi,xj) ≥ l, (xi,xj) ∈ D

(28)

where µ and l are parameters; S is a set of pairwise similarity345

constraints; D is a set of pairwise dissimilarity constraints; and 346

KL(·) is computed by 347

KL
(
p(x;M0) ‖ p(x;M)

)
=

1

2
Dld(M,M0)

1

2
Dld(M,M0) = tr(MM−1

0 )− log det(MM−1
0 )− d

(29)

where Dld(·) is termed Bregman divergence; tr(·) is a matrix 348

trace; and log det(·) is the logarithm of the determinant of 349

a matrix. The main purpose of Eqn. (28) is to regularise 350

the matrix M to remain possibly close to M0, under soft 351

constraints on keeping distances between points belonging to 352

S smaller than µ and those between dissimilar points larger 353

than l. 354

4) Sparse Determinant Metric Learning (SDML): SDML 355

aims to deal with the problems where the dimensionality 356

of the feature space is much greater than the sample size 357

[26]. Compared with ITML, it utilises a double regularisation 358

(namely, log det(·)- and l1-norm) on the off-diagonal elements 359

ofM. The optimisation problem concerned can be described 360

as: 361

min
M�0

tr(M−1
0 M)− log det(M)+

λ ‖M‖1,off + ηL(S,D)
(30)

where ‖M‖1,off is the off-diagonal l1-norm of M 362

(‖M‖1,off =
∑
i 6=j |Mij |); λ is a balance parameter; 363

L(S,D) is a loss function defined on the constraints of S 364

and D, as defined in Eqn. (28); and η is a positive balance 365

parameter trading off between the loss function and the 366

regulariser. As M0 is a constant matrix, the relative entropy 367

defined by Eqn. (29) is simplified to the first two terms of 368

Eqn. (30), makingM as close as possible to the givenM0. 369

5) Least Squares Metric Learning (LSML): LSML learns 370

a Mahalanobis matrix from training data by comparing their 371

relative distances [27]. Suppose that a set of data samples can 372

be arranged such that 373

C = {(xi, xj, xk, xl) : d(xi, xj) < d(xk, xl)}.

The optimisation problem is given in the form of 374

min
M�0

Dld(M,M0)+∑
(xi,xj ,xk,xl)∈C

ωi,j,k,lH(dM(xi, xj)− dM(xk, xl))
(31)

where Dld(M,M0) is defined in Eqn. (29) and H(·) is the 375

squared hinge function defined as follows: 376

H(x) =

{
x2, if x > 0

0, if x ≤ 0.
(32)

6) Relevant Component Analysis (RCA): RCA was orig- 377

inally designed for image retrieval [28]. As with principal 378

component analysis (PCA), RCA compresses data along the 379

axes with the greatest irrelevant variability. Particularly, the 380

Mahalanobis matrix M learned by RCA is based on a 381

weighted sum of in-chunklets covariance matrices, assigning 382
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weights depending on the perceived “relevance”, which is 383

estimated using “chunklets” (namely, groups of points of384

the same class). It is of high computational efficiency for385

implementation by calculating the following matrix:386

Ĉ =
1

n

k∑
j=1

nj∑
i=1

(xji − m̂j)(xji − m̂j)
T (33)

where n is the total number of points in the k chunklets;387

chunklet j is composed of {xji}
nj
i=1 with m̂j being its mean;388

the number of chunklets and each chunklet size are both389

randomly set initially, with the former normally set to be much390

larger than the number of classes of the underlying problem391

concerned; and Ĉ
−1

= M. Importantly, the within-chunklet392

variability can be significantly reduced by identifying features393

irrelevant to the task, leading to the optimal solution to the394

optimisation problem which minimises the distances between395

data of the same class (as proven in [28]).396

The above descriptions provide five different approaches;397

any one of them may be utilised for implementation. This398

shows the flexibility of the present work. However, there is399

no established rule for making a choice of which method to400

use under what conditions. Empirically, LMNN is excellent at401

coping with various supervised metric learning tasks because402

it makes no assumptions about the data distribution. ITML403

is capable to handle a wide variety of constraints under404

weakly supervised conditions due to its independence of405

eigenvalue calculation and semi-definite programming. SDML406

can address sparse metric learning within a high-dimensional407

feature space. LSML is particularly useful when the pairwise408

constraints are not obtained naturally. RCA enjoys good per-409

formance in performing specific tasks such as face recognition.410

Thus, when presented with a certain application, a trial-and-411

error approach may be taken to determine which of the412

methods would be best suitable for addressing the problem413

at hand.414

III. FRI BASED ON MAHALANOBIS DISTANCE415

Given the above preliminaries, this section presents a novel416

framework of T-FRI based on redefining the distance metric417

employed, through Mahalanobis metric learning, as illustrated418

in Fig. 2. Again, for illustrative simplicity, the fuzzy rule419

base is depicted by a few points (herein with just three420

types of shape for class labels, a number of axes for various421

dimensions, and a sphere for a hypersphere in describing a422

sub-problem space). Of course, this does not mean that the423

relevant theoretical development and practical implementation424

are subject to such a simplified version. The following speci-425

fies the transformation process of a fuzzy rule base and that of426

an observation, and the utilisation of Choquet Integral [29] for427

the effective implementation of the aggregation operations in428

T-FRI. Note that any of the metric learning methods introduced429

above can be employed to implement the learning of the430

required Mahalanobis matrixM.431

A. Transformation of Fuzzy Rule Base and Observation432

There are four steps to implement the transformation of a 433

fuzzy rule base and an observation, three for rule bases and 434

one for observations. 435

Firstly, for a given fuzzy rule base generally represented in 436

the form of Eqn. (1), representative values of the fuzzy sets 437

involved within the rules are utilised to facilitate the learning 438

of the Mahalanobis matrix. From this, the fuzzy rule base is 439

translated into: 440
Rep(A11) Rep(A12) · · · Rep(A1m) Rep(B1)
Rep(A21) Rep(A22) · · · Rep(A2m) Rep(B2)

...
...

...
...

...
Rep(AN1) Rep(AN2) · · · Rep(ANm) Rep(BN )

 ,
(34)

which is artificially considered as a set of training data 441

(xi, yi), i ∈ [1, N ], in preparation for use in Mahalanobis 442

metric learning. 443

Secondly, in order to obtain the required Mahalanobis 444

matrixM any one of the previously reviewed metric learning 445

methods is applied to the artificial training data resulting from 446

the first step. As a direct application of such learning methods, 447

no attempt is herein made to optimise the hyper-parameters in 448

these methods (e.g., the number of neighbours in LMNN, the 449

maximum number of iterations in ITML, and the number of 450

chunks to generate in RCA). Instead, their default settings as 451

proposed in the respective literature are adopted. 452

Thirdly, the original (sparse) fuzzy rule base is transformed 453

into a reformulated representation within a new feature space, 454

through the application of the learned Mahalanobis matrix. 455

Recall that triangular membership functions are employed 456

to define fuzzy sets in this work. Hence, suppose that an 457

arbitrary fuzzy set Aij given in a rule expressed by Eqn. (1) 458

is represented as a ternary vector (aij1 , aij2 , aij3)T , where 459

the elements are the abscissas of the three vertices of the 460

fuzzy membership function (s.t., aij1 ≤ aij2 ≤ aij3 ). Then, 461

by left multiplying such vectors collectively, with the learned 462

transformation matrixM, the antecedent values (respectively 463

defined by Aij) of the original fuzzy rules are mapped onto 464

a new linear space. For example, the antecedent feature 465

values of the ith rule Ri which are defined by fuzzy sets 466

(Ai1, Ai2, . . . , Aim) are transformed into 467

M

 ai11 ai21 . . . aim1

ai12 ai22 . . . aim2

ai13 ai23 . . . aim3

T

=

 âi11 âi21 . . . âim1

âi12 âi22 . . . âim2

âi13 âi23 . . . âim3

T
(35)

where (âij1 , âij2 , âij3)T denotes the transformed fuzzy set 468

with respect to Aij . The consequent part of Ri can be 469

acquired in the same way, but for classification problems and 470

therefore, the crisp output, this procedure is omitted to save 471

computational effort. As the outcome of this third procedure, 472
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Fig. 2. Framework of proposed method.

the transformed rule base is developed in the new space as 473

follows:474

Rule R̂i :

If x1 is Âi1 and x2 is Âi2 and · · · and xm is Âim,
then y is Bi

(36)

where Âij = (âij1 , âij2 , âij3)T .475

Lastly, given an observation if it does not match any rule476

within the original sparse rule base (and hence, no conven-477

tional fuzzy reasoning can be carried out using CRI [2]), it is478

then projected onto the new coordinates system with the trans-479

formation matrix by the same procedure that transforms rule480

antecedents as given in the last step. That is, the transformed481

observation with respect to an unmatched observation O∗ is482

Observation Ô∗ : Â∗1, Â
∗
2, · · · , Â∗j , · · · , Â∗m (37)

where Â∗j = (â∗j1 , â
∗
j2
, â∗j3)T denotes the fuzzy set value of the483

jth transformed antecedent feature.484

To exemplify the above transformation processes, consider485

a trivial sparse fuzzy rule base concerning the Iris dataset486

(simplified from the KEEL dataset repository [30]). The rule487

base before and that after the transformation are illustrated in488

Fig. 3 and Fig. 4, respectively. In particular, Fig. 3 depicts489

the pairwise relationships between each original feature, and490

Fig. 4 shows their corresponding relationships after being491

transformed into the new space. Note that all antecedent492

fuzzy variables are expressed using their representative values,493

with different colours representing different consequent labels.494

Importantly, it can be seen from Fig. 4 that each pair of495

transformed features, as well as every individual transformed496

feature, have almost equal ability for use to distinguish various497

classes, forming a sharp contrast with their originals in Fig. 3.498

The introduction of Mahalanobis distance metric is (mainly)499

to help the underlying FRI process to improve the selection500

of the n nearest rules in an effort to derive an intermediate501

rule. Having accomplished the above four steps, fuzzy rule502

interpolation-based inference could be performed as done with503

the traditional T-FRI, using the fuzzy rules R̂i, i ∈ [1, N ] and504

any observation Ô∗. Such a process would then start with505

Fig. 3. Pairwise relationships of original rule base (Iris dataset).

Fig. 4. Pairwise relationships of transformed rule base (Iris dataset).
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the selection of n nearest transformed rules to construct the506

imperative intermediate fuzzy rule, determined by Euclidean507

distance as below:508

d(Ô∗, R̂i) =

√√√√ m∑
j=1

d(Â∗j , Âij)
2. (38)

For classification problems, the inference process would be509

straightforward, since while transforming the original fuzzy510

rule antecedent attributes, no change is made to the conse-511

quent part of any rule. The inferred class for an unmatched512

observation using rules from the new space is the final output513

of the entire reasoning system. For regression problems, as the514

transformation processes are linear, the inferred results of the515

overall system could be calculated by left multiplyingM−1 to516

the output produced. However, to further exploit the potential517

of utilising transformed rules and observation gained in the518

resulting new feature space, the remaining steps of T-FRI that519

involve the use of four key reasoning parameters are modified,520

as follows.521

As outlined in Section II-A, the interpolative consequence522

of T-FRI is inferred via manipulation of four key parameters:523

w̃ib, δ̃b, s̃b and m̃b (referring to Eqns. (13), (14), (19) and524

(21) respectively). For existing T-FRI approaches, the overall525

inference process and hence, the ultimately interpolated results526

are highly dependent on the use of what aggregation function527

is adopted to accomplish the required operations. For instance,528

arithmetic mean is applied in the seminal T-FRI [7] and529

weighted arithmetic mean in the most recently developed530

weighted T-FRI (denoted WT-FRI hereafter) [17].531

Generally speaking, the operation of combining or merging532

different values into a single compound one is termed aggrega-533

tion, and the function performing this operation is referred to534

as an aggregation function [31]. Mathematically, a large family535

of operators can be employed to serve as a powerful aggregator536

to integrate diverse domain attribute values. Arithmetic mean537

and weighted arithmetic mean are just two ones popularly used538

in T-FRI. This work adopts the aggregation function named539

Choquet integral for use with the transformed new feature540

space. It seeks to enhance the efficacy of constructing the541

intermediate rules in the implementation of required scale and542

move transformations.543

Choquet integral is capable of assessing and hence, exploit-544

ing contributions of elements being compounded, taking into545

consideration not only the significance of individual attributes546

but also their underlying groups (be they clusters or classes)547

[29]. Thus, it is of particular relevance to performing classi-548

fication tasks. It is because of this recognition that Choquet549

integral-based aggregation is herein implemented to modify550

the aforementioned four key factors as follows:551

̂̃wib =

m∑
j=1

(̂̃wiσ(j) − ˜̂wiσ(j−1))µ(Û̃wiσ(j)
) (39)

552 ̂̃
δb =

m∑
j=1

(δ̂σ(j) − δ̂σ(j−1))µ(U
δ̂σ(j)

) (40)

553 ̂̃sb =

m∑
j=1

(ŝAσ(j))− ̂sAσ(j−1)
)µ(UŝAσ(j)

) (41)

̂̃mb =

m∑
j=1

(m̂Aσ(j))− m̂Aσ(j−1)
)µ(Um̂Aσ(j)

) (42)

where ·̂ denotes any value or parameter considered554

in the newly transformed coordinates system; 555

(σ(1), σ(2), . . . , σ(m)) is a non-decreasing permutation, 556

e.g., {̂̃wiσ(1),̂̃wiσ(2), . . . , ̂̃wiσ(m)} is a non-decreasing value 557

permutation of antecedent features {̂̃wi1,̂̃wi2, . . . , ̂̃wim} with 558

·σ(0) = 0 by convention and m being the number of the 559

features; Û·σ(j) = {·̂σ(j), ̂·σ(j+1), . . . , ·̂σ(m)} is the subset of 560

indices of the m − j + 1 largest components of ·̂σ(·); and µ 561

is a fuzzy measure function. Note that these modifications 562

on the four parameters within T-FRI are linear and so, 563

the computational complexity of the original T-FRI is not 564

adversely affected. 565

The use of an aggregation operator (Choquet integral or 566

else) can nonetheless be cumbersome with the 2m elements 567

to address, especially when there are numerous variables (or 568

m is large). To reduce computational complexity, the power 569

measure [32] is exploited to define the required fuzzy measure 570

function, which is formulated by 571

µ(U) = (
|U |
m

)q, with q > 0 (43)

where |U | stands for the cardinality of the set U (i.e., the 572

number of elements in U ). Note that when q = 1, the power 573

measure degenerates to an additive fuzzy measure. In general, 574

if q is a fixed real value, then the number of required elements 575

for calculating Choquet integral is m−1 that is much smaller 576

than 2m. In this work, for computational simplicity, q is set 577

to 2 (unless otherwise stated). 578

Having obtained the four key T-FRI parameters with rep- 579

resentations in the new feature space, the following execution 580

of the FRI process remains the same as the traditional T-FRI 581

(or WT-FRI). 582

B. Theoretical analysis 583

As the above proposed approach is based on the existing 584

work of T-FRI, it is interesting to theoretically compare it 585

with the seminal T-FRI algorithm and the state-of-the-art WT- 586

FRI method. According to Eqn. (25), the Mahalanobis distance 587

between a given rule Rp and an observation as defined per 588

Eqns. (1) and (2) can be rewritten by 589

d2M(O∗, Rp)

= (x∗ − xp)TPT ΣP(x∗ − xp)

= (P(x∗ − xp))TΣ(P(x∗ − xp))

= (P(x∗ − xp))T


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 0 · · · Σm

(P(x∗ − xp))

(44)

where Σ is a m × m diagonal matrix; x∗ 590

= (Rep(A∗1),Rep(A∗2), . . . ,Rep(A∗m))T= (x∗1, x
∗
2,. . . , 591

x∗m)T and xp = (Rep(Ap1),Rep(Ap2), . . . ,Rep(Apm))T 592

= (xp1, xp2, . . . , xpm)T . 593
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According to WT-FRI (which degenerates to the standard T- 594

FRI if all feature weights are equal) [17], the distance between595

O∗ and Rp is calculated by aggregating weights of all features:596

d̃2W (O∗, Rp) =

∑m
j=1((1−Wj)d(O∗j , Apj))

2∑m
j=1(1−Wj)2

(45)

where Wj represents the weight associated with the jth feature597

and the distance between two fuzzy sets O∗j and Apj is given598

as Eqn. (5). Since the normalisation term
∑m
j=1(1−Wj)

2 in599

Eqn. (45) is a constant, it can be omitted in the process of600

calculating the distances as only information on the relevant601

distance measures is of use for selecting the nearest neigh-602

bouring rules. Therefore, Eqn. (45) defined in [17] can be603

simplified by604

d2W (O∗, Rp)

=

m∑
j=1

(
(1−Wj)

|Rep(A∗j )−Rep(Apj)|
rangej

)2

=

m∑
j=1

(
(1−Wj)

x∗j − xpj
rangej

)2

.

(46)

Note that Wj and rangej are constants for a given rule base.605

Note also that with the above proposed new approach (and606

indeed, for any T-FRI method), a more general version of607

the inference mechanism directly using fuzzy sets themselves608

instead of fuzzy representative values could be introduced if609

preferred. Nonetheless, this would incur a significant decrease610

in FRI efficiency. Hence, given the underlying inference is of611

an approximate nature in the first place, such development is612

left out of the scope of the present work.613

C. T-FRI with Aggregation Function614

Let Cj =
1−Wj

rangej
, j = 1, 2, . . . ,m. Then, Eqn. and (46) can615

be rewritten in matrix form as follows:616

d2W (O∗, Rp)

= (C1(x∗1 − xp1))
2

+ · · ·+ (Cm(x∗m − xpm))
2

=
[
C1(x∗1 − xp1), · · · , Cm(x∗m − xpm)

] C1(x∗1 − xp1)
...

Cm(x∗m − xpm)



=

([
(x∗1 − xp1), · · · , (x∗m − xpm)

]C1 · · · 0
...

. . .
...

0 · · · Cm


T)

(C1 · · · 0
...

. . .
...

0 · · · Cm


 (x∗1 − xp1)

...
(x∗m − xpm)

)

= (x∗ − xp)T

C
2
1 · · · 0
...

. . .
...

0 · · · C2
m

(x∗ − xp)

(47)

where x∗ − xp =
[
(x∗1 − xp1), · · · , (x∗m − xpm)

]T
.617

As WT-FRI is an extension to T-FRI, the above distance618

degenerates to the simple Euclidean distance measure that is 619

used in T-FRI and is simply formulated by 620

d2T (O∗, Rp) = (x∗ − xp)T (x∗ − xp). (48)

Based on the above discussions, especially through com- 621

paring Eqns. (44), (47) and (48), the following points can be 622

observed: 623

1) : Distances between an observation and a rule in T- 624

FRI and WT-FRI are both computed in the original feature 625

space. The difference is that, unlike T-FRI, the distance 626

used in WT-FRI reinforces the role of important features 627

through assigning to the features different weights Wj (see 628

Eqn. (45) or Cj in Eqn. (47)) learned by a feature ranking 629

mechanism. In so doing, WT-FRI gains a great advantage of 630

choosing the closest rules to perform interpolation, yielding 631

impressive improvement over the original T-FRI. However, 632

for certain problems, one or several features from the original 633

feature space may not have any prominent contributions to the 634

interpolative inference process, or there may not be a clear 635

distinction of importance between different features. Thus, 636

WT-FRI may not achieve an intended improvement. Moreover, 637

statistical correlations among some (original) features are al- 638

most universal in real-world applications. Retaining all of them 639

often leads to information redundancy, thereby restricting and 640

reducing the efficiency of interpolative inference, especially 641

when the number of features is large. if there exists noise in 642

the redundant features, then the effectiveness of the reasoning 643

process is also adversely affected. 644

2) : Distance between an observation and a rule in the 645

present approach is calculated in the newly transformed feature 646

space. With all data transformed through a unitary matrix P , 647

where the original features no longer play a direct role, the 648

relationships between the transformed features are reestab- 649

lished. Particularly, the new features are linearly independent 650

of each other and may reflect various degrees of significance. 651

As such, in calculating the distances, different weights Σj 652

(as per Eqn. 44) can be readily assigned to the features. 653

In addition, Rank(P) ≤ m, where m is the number of 654

original features. This means that there may be zero value(s) 655

in Σ1,Σ2, . . . ,Σm, which will enable the computation of the 656

Mahalanobis distances on a r-dimensional space (r ≤ m). 657

Obviously, this is very helpful when the number of features 658

becomes large. 659

3) : The complexity of selecting the nearest rules by 660

calculating distances between an unmatched observation and 661

each individual rule incurred by the proposed approach is 662

rather different from that associated with WT-FRI. Here, it 663

is computed by measuring the simple Euclidean distances 664

within the transformed coordinates system. However, the cor- 665

responding computing process for WT-FRI is not simply using 666

Euclidean distance but through aggregating weights of all 667

features involved. Remarkably, the computational cost of the 668

overall fuzzy rule interpolative inference is largely dependent 669

upon the selection of the neighbouring rules nearest to the 670

observation, whilst the subsequent computational procedures 671

are of the same order of complexity amongst the family of T- 672

FRI-based methods. Thus, it becomes evident that the present 673
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TABLE I
DATASETS EMPLOYED

Datasets #Instances #Attributes #Classes
Wine 178 13 3
Iris 150 4 3

NewThyroid 215 5 3
Balance 625 4 3

Phoneme 5404 5 2
Pima 768 8 2

Appendicitis 106 7 2
WDBC 569 30 2

Ionosphere 351 33 2
Sonar 208 60 2
Glass 214 9 7

approach is of a lower complexity than WT-FRI, while being 674

of an equivalent complexity to that of the original T-FRI.675

IV. EXPERIMENTAL RESULTS676

This section conducts systematic experimental evaluations677

to assess the classification performance of an FRI system678

implementing the proposed approach. This is carried out via679

comparing with the aforementioned two FRI techniques, on680

a wide range of benchmark problems [30]. The 11 datasets681

concerned involve multi-class and multivariate classifications,682

and cover tasks in rather different domains (including medical,683

chemical, and morphological). Additionally, extra experiments684

are implemented to investigate the effect of dimensionality685

reduction in conjunction with the novel approach.686

A. Experimental Set-up687

All experiments are tested in Pycharm Professional 2020688

implemented on a MacBook Pro with M1 Chip and MacOS689

Big Sur. The details of these datasets are summarised in690

Table I. As indicated previously, the fuzzy values of all domain691

variables are represented herein by triangular membership692

functions (but more sophisticated ones such as trapezoidal,693

complex polygon or other bell-shaped fuzzy membership func-694

tions could be employed if preferred [1]). A practical approach695

[33] devised to tackle classification problems is utilised herein696

to generate a dense fuzzy rule base from data (which has697

the potential of deleting redundant rules by considering the698

significance degrees of emerging rules). Of course, alternative699

rule induction methods (e.g., [34], [35]) may be employed700

if desired, which may be particularly useful for dealing with701

regression problems.702

To minimise any bias in performance comparison, all feature703

value domains are normalised into the common range of 0704

to 1, and each is uniformly partitioned into five fuzzy sets.705

Then, 80% rules from the resulting dense fuzzy rule base are706

randomly selected to constitute a sparse rule base to validate707

the performance of FRI. Note that in resolving real-world708

problems, should there be a dense rule base available then no709

FRI would be required, but the application of conventional710

CRI. The present setup (of deliberately removing 20% of711

learned rules) is purely for the purpose of evaluating FRI712

methods when facing a sparse rule base. Reasoning results713

are compared with the underlying ground truth to assess the 714

average accuracy through 10×10-fold cross-validation. 715

Each metric learning method reviewed previously is em- 716

ployed in the comparative studies, and the results are compared 717

with those attainable by the state-of-the-art T-FRI and WT- 718

FRI. The weights of features are derived from Information 719

Gain (IG) as with the common approach typically exploited 720

in the literature [17]. In order to optimise the selection of the 721

nearest neighbouring rules, the weighted degree of each rule 722

produced in the process of fuzzy rule induction is used to 723

modify each distance metric such that 724

d̂2(O∗, Rp) = d2(O∗, Rp)×
1

1 +RWp
(49)

where d2(·) denotes any of the three types of distance metric 725

(namely, d2T , d2W and d2M); and RWp is the weight degree of 726

the rule Rp. Empirically, for many existing FRI techniques, an 727

increase in the number of the nearest rules used to construct 728

the intermediate rule does not necessarily lead to a noticeable 729

improvement in accuracy, whilst the computational efficiency 730

may sharply deteriorate [18]. Thus, only the least number, 731

i.e., two of the nearest rules are exploited for interpolation, 732

following the common practice in T-FRI. 733

B. Results and Discussion 734

Interpolative reasoning outcomes are reported and analysed 735

here, covering studies on both effectiveness and efficiency. 736

1) Accuracy: Experimental results consisting of the average 737

classification accuracies and standard deviations (SDs) on the 738

11 benchmark datasets run are summarised in Table II. Note 739

that the results reported are those obtained by an integrated 740

application of both FRI and CRI. This does not affect fair 741

comparison amongst different FRI techniques as they each 742

runs CRI over the same original (sparse) rule base. The 743

underperformance of running CRI alone without the support 744

of FRI is not presented here since it is obvious that such an 745

approach would not be able to yield a reasonable inference 746

outcome given the high sparsity of the original rule base 747

(which has also been generally proven in the relevant literature 748

[1]). 749

According to Table II, the proposed approach offers the 750

highest classification accuracy with a low SD for all cases, 751

beating both the original and weighted T-FRI method (albeit 752

not each of the five implementations performs equally excel- 753

lently). It remarkably surpasses the original T-FRI on the Wine, 754

Iris, WDBC and Ionosphere datasets (with 10%-20% improve- 755

ments over the performance of T-FRI). Although WT-FRI is 756

the state-of-the-art strengthened version of T-FRI, providing 757

an excellent method for handling fuzzy classification problems 758

(see the results on Iris, NewThyroid and Appendicitis), it only 759

has a marginal improvement on the Wine, WDBC, Ionosphere 760

and Sonar datasets. The superior performance of the present 761

experimental investigation conforms to the outcome of the 762

theoretical analysis reported earlier. This implies that it is more 763

significant to distribute different weights to antecedent features 764

when they are independent, and that the aggregation operation 765
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TABLE II
AVERAGE CLASSIFICATION ACCURACIES WITH STANDARD DEVIATION OVER 10×10-FOLD CROSS VALIDATION

Datasets T-FRI WT-FRI LMNN-T-FRI ITML-T-FRI SDML-T-FRI LSML-T-FRI RCA-T-FRI

Wine 0.7657 ± 0.0247 0.7681 ± 0.0128 0.9340 ± 0.0073 0.9499 ± 0.0115 0.9214 ± 0.0196 0.8480 ± 0.0165 0.9256 ± 0.0164
Iris 0.7854 ± 0.0371 0.8904 ± 0.0142 0.9174 ± 0.0091 0.8094 ± 0.0131 0.9000 ± 0.0137 0.8280 ± 0.0173 0.8812 ± 0.0159

NewThyroid 0.8081 ± 0.0362 0.8471 ± 0.0203 0.8929 ± 0.0120 0.8829 ± 0.0186 0.8671 ± 0.0148 0.8069 ± 0.0222 0.8572 ± 0.0235
Balance 0.6861 ± 0.0110 0.6176 ± 0.0145 0.7514 ± 0.0107 0.7811 ± 0.0071 0.7459 ± 0.0050 0.7559 ± 0.0095 0.7890 ± 0.0089

Phoneme 0.7652 ± 0.0062 0.7628 ± 0.0047 0.7879 ± 0.0021 0.7734 ± 0.0075 0.7844 ± 0.0032 0.7669 ± 0.0024 0.7595 ± 0.0028
Pima 0.6685 ± 0.0108 0.6784 ± 0.0120 0.6871 ± 0.0140 0.7073 ± 0.0078 0.6808 ± 0.0074 0.6943 ± 0.0165 0.6995 ± 0.0133

Appendicitis 0.7620 ± 0.0097 0.7960 ± 0.0263 0.8335 ± 0.0212 0.8202 ± 0.0154 0.8224 ± 0.0072 0.8198 ± 0.0175 0.8311 ± 0.0132
WDBC 0.7435 ± 0.0118 0.7628 ± 0.0108 0.9391 ± 0.0060 0.9498 ± 0.0056 0.9310 ± 0.0019 0.7756 ± 0.0098 0.8250 ± 0.0099

Ionosphere 0.6777 ± 0.0137 0.6829 ± 0.0129 0.8735 ± 0.0081 0.8672 ± 0.0118 0.8338 ± 0.0067 0.8477 ± 0.0134 0.8154 ± 0.0050
Sonar 0.6848 ± 0.0088 0.6968 ± 0.0090 0.8353 ± 0.0115 0.7974 ± 0.0108 0.7663 ± 0.0210 0.7004 ± 0.0148 0.7785 ± 0.0110
Glass 0.4085 ± 0.0334 0.4039 ± 0.0225 0.4744 ± 0.0176 0.5100 ± 0.0123 0.4850 ± 0.0187 0.4565 ± 0.0282 0.4688 ± 0.0429

within WT-FRI over the selected nearest rules may become 766

less effective if there is no marked difference in the relative767

importance levels amongst features.768

Particularly, LMNN-T-FRI and ITML-T-FRI exhibit great769

power in doing their jobs, for they nearly occupy the top770

position in terms of accuracy rank across all bar one dataset771

(with the corresponding mean and SD figures highlighted in772

bold in Table II). However, the test record of LSML-T-FRI is773

mediocre, and its performance may not even be so good as774

WT-FRI for two datasets (Iris and NewThyroid). Nonetheless,775

when dealing with harder, multi-feature tasks (e.g., WDBC,776

Ionosphere and Sonar), the proposed approach facilitates the777

underlying T-FRI system to outperform its competitors. Note778

that given the sparse rule base, all types of T-FRI system779

examined herein are encountered with a challenge on the Glass780

dataset, which a fairly significant number (i.e., 7) of classes.781

Notwithstanding this general observation, it is still a thrill to782

find that the proposed approach achieves better results than783

the other two, no matter which metric learning method is784

employed.785

2) Friedman and Nemenyi Tests: The above results only786

show the simple averaged inference accuracies for each indi-787

vidual dataset. To have a more in-depth comparative exami-788

nation of the performance concerning the proposed approach,789

statistical tests are done, in terms of both Friedman test and790

Nemenyi test (in recognition of their suitability for comparing791

two or more classifiers on multiple datasets [36]).792

Friedman test compares multiple algorithms starting with793

the null hypothesis that all algorithms concerned have the same794

performance. All candidate methods are sorted and ranked795

with regard to their performances on different datasets, as796

shown in Table III, where the best is ranked number 1 and797

those algorithms that have the same performance share the798

average of the otherwise individual ranking values. The test is799

based on the evaluation of the following parameter [37]:800

τF =
(Num− 1)τχ2

Num(Alm− 1)− τχ2

(50)

where Alm and Num are the number of algorithms and that801

of datasets, respectively, and τχ2 is computed by802

τχ2 =
Alm− 1

Alm
× 12Num

Alm2 − 1

Alm∑
i=1

(ri −
Alm+ 1

2
)2

=
12Num

Alm(Alm+ 1)
(

Alm∑
i=1

r2i −
Alm(Alm+ 1)2

4
)

(51)

with ri representing the average ranking number of algorithm 803

i. If the value of τF is greater than the critical threshold 804

(obtained from the scipy.stats.f.ppf function [37] in response 805

to a given confidence level), the null hypothesis is rejected and 806

therefore, the performances of these algorithms are judged to 807

be not the same. 808

For the present application, given that Alm = 7 and 809

Num = 11, τF = 17.153. Following the common practice 810

in the literature, suppose that the p-value for hypothesis test is 811

5% (or the level of confidence is 95%). Then, by referring to 812

scipy.stats.f.ppf it is found that the critical value is 2.2541 813

(which is less than τF ). Thus, the null hypothesis that all 814

the seven algorithms compared have the same performance 815

is rejected. In other words, it can be claimed with a signifi- 816

cant confidence that different methods investigated herein do 817

perform differently. 818

The conclusion drawn by the Friedman test can only suggest 819

that there are significant differences between these algorithms, 820

but it cannot indicate which of them are different. Nemenyi 821

test [38] is then applied to show the differences between the 822

individual methods. For this, the value of the so-called critical 823

difference (CD) is first calculated by: 824

CD = qα

√
Alm(Alm+ 1)

6Num
(52)

where the critical value qα is obtained from a given look-up 825

table [36], with the α reflecting the confidence level p = 1−α. 826

For instance, given a confidence level of 95%, α = 0.05, 827

qα = 2.949 and therefore, CD = 2.716. From this, differences 828

in the average ranks between the methods compared are 829

calculated as summarised in Table IV. These figures are then 830

compared against CD: If the difference is greater than CD, 831
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TABLE III
ORDER OF PERFORMANCE OF EACH ALGORITHM

Datasets T-FRI WT-FRI LMNN-T-FRI ITML-T-FRI SDML-T-FRI LSML-T-FRI RCA-T-FRI

Wine 6.5 6.5 2 1 3.5 5 3.5
Iris 7 2.5 1 6 2.5 5 4

NewThyroid 6.5 5 1 2 3 6.5 4
Balance 6 7 3.5 1.5 5 3.5 1.5

Phoneme 5 5 1.5 3 1.5 5 7
Pima 7 6 4.5 1 4.5 2.5 2.5

Appendicitis 7 6 1.5 3.5 3.5 5 1.5
WDBC 7 6 2 1 3 5 4

Ionosphere 7 6 1 2 4 3 5
Sonar 7 5.5 1 2 4 5.5 3
Glass 6.5 6.5 3 1 2 5 4

Average 6.591 5.636 2 2.182 3.318 4.636 3.636

TABLE IV
ABSOLUTE DIFFERENCES OF AVERAGE RANKS BETWEEN METHODS

Datasets T-FRI WT-FRI LMNN-T-FRI ITML-T-FRI SDML-T-FRI LSML-T-FRI RCA-T-FRI

T-FRI 0 0.955 4.591 4.409 3.273 1.955 2.955
WT-FRI 0.955 0 3.636 3.454 2.318 1 2

LMNN-T-FRI 4.591 3.636 0 0.182 1.318 2.636 1.636
ITML-T-FRI 4.409 3.454 0.182 0 1.136 2.454 1.454
SDML-T-FRI 3.273 2.318 1.318 1.136 0 1.318 0.318
LSML-T-FRI 1.955 1 2.636 2.454 1.318 0 1
RCA-T-FRI 2.955 2 1.636 1.454 0.318 1 0

* Figures bigger than CD are highlighted in bold type.

the corresponding two methods are considered being of a 832

significant difference.833

From Table IV, it can be seen that there are six pairs of834

algorithms of a difference larger than CD. This means that the835

test should reject the null hypothesis given a significant level836

of p=5%, while asserting with confidence that fair distinction837

exists in performance between each of these six pairs of838

algorithms. In particular, for the five algorithms implementing839

the proposed approach, all but LSML-T-FRI are strikingly840

different from the original T-FRI. Also, LMNN-T-FRI and841

ITML-T-FRI are dissimilar to WT-FRI. Amongst the five new842

methods themselves, whilst different metric learning methods843

are employed, their performances do not show any significant844

difference.845

The above results are reinforced by Fig. 5, where the846

central dot and short line regarding each method show the847

corresponding average rank and CD range, respectively. If the848

lines of the two algorithms overlap, then they are not strongly849

distinct, and vice versa. This forms a further testimony to both850

the theoretical and empirical results attained previously.851

3) Efficiency: It is theoretically presumed that the proposed852

approach is as efficient as T-FRI, being more efficient than853

WT-FRI. This requires experimental confirmation. For this854

purpose, the time complexity of each of the algorithms con-855

cerned is assessed here. To reduce computational overloads,856

without loss of generality, five datasets from the previous 11857

Fig. 5. Friedman test.

are randomly selected to carry out this verification. Fig. 6858

presents the bar chart showing the results of running each 859

method on these datasets with the time consumption averaged 860

through 10×10-fold cross validation. It demonstrates that WT- 861

FRI has a lower efficiency than the other six methods across 862

all the five datasets. Forming sharp contrast with the compu- 863

tational cost of WT-FRI, that of each algorithm implementing 864

the proposed approach is consistently comparable to that of 865
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Fig. 6. Average time cost.

the original T-FRI. 866

4) Robust Performance against Dimensionality Reduction:867

From Fig. 6 it can also be seen that whilst the number of868

instances of the WDBC dataset is smaller than that of the Pima869

dataset, the average time cost for all tested T-FRI methods is870

much greater than that required for the Pima dataset. This871

is due to the higher dimensionality possessed by the WDBC872

dataset. Fortunately, as discussed previously (in Section III-B),873

when the number of features is large, the Mahalanobis distance874

can be computed on a lower-dimensional space by introducing875

a low-rank matrix P to transform the original rules, enabled876

by a dimensionality reduction scheme.877

Owing to its popularity and availability, Local Fisher Dis-878

criminant Analysis (LFDA) is herein employed to address the879

issue of dimensionality reduction (mathematical details of this880

algorithm are beyond the scope of this paper but can be found881

in [39]). For this experimental investigation, only three datasets882

of a relatively large number of features are utilised (namely,883

WDBC, Ionosphere and Sonar). Fig. 7 depicts the average884

classification accuracies and time costs on these three datasets.885

This figure shows the achieved performance indices against a886

different (reduced) number of antecedent features via the use887

of LFDA. Obviously, with the use of LFDA, the corresponding888

time cost over these datasets drops sharply with the decrease889

of the number of features. However, the accuracy rate does not890

have a marked fall until the number of antecedent variables891

has reduced to a low figure, but it is still higher than that892

attainable by T-FRI or WT-FRI.893

V. CONCLUSION894

This paper has presented a novel transformation-based895

fuzzy rule interpolation (T-FRI) technique that considerably896

enhances the performance of fuzzy interpolative reasoning,897

by the use of Mahalanobis distance metric. The metric is898

introduced in the crucial step of choosing the closest rules899

neighbouring an unmatched observation to implement rule900

interpolation. A number of metric learning methods are ad-901

dressed, each of which can be exploited to learn the required902

Mahalanobis matrix, indicating the flexibility of this approach.903

Additionally, Choquet integral is applied as the aggregation904

function to strengthen the performance of the underlying T-905

FRI method. This paper has provided both theoretical and ex- 906

perimental comparisons with the state-of-the-art T-FRI mech- 907

anisms, demonstrating the significant potential of the novel 908

approach in terms of both accuracy and efficiency. 909

The clear benefits of utilising Mahalanobis distance gives 910

rise to a question of whether other alternatives for distance 911

metric (e.g., Cosine similarity [40], Bilinear similarity [41] 912

and Histogram distance [42]) may be employed to bring 913

similar positive improvements over the existing T-FRI meth- 914

ods. Also, more aggregation functions may be utilised to 915

empower the interpolation process, such as Sugeno integral 916

[43], Penalty functions [44], and modified Choquet Integral 917

[45]. Therefore, much can be done to explore the possibility 918

of further consolidating the efficacies of T-FRI. Whilst the 919

present experimental investigations have covered statistical 920

analyses over a wide range of datasets, practical investigations 921

concerning complicated real-world problems such as network 922

security [15] and medical diagnosis [46] remain as active 923

research. Furthermore, the present approach is verified only 924

against Mamdani style fuzzy models [47], studies of how 925

this approach may be extended to addressing neuro-fuzzy 926

models such as ANFIS [48] and TSK-type fuzzy models [49] 927

form a piece of interesting future work. This would have 928

the potential to strengthen the most recent development in 929

performing approximate reasoning with such models [50]. 930
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(a)

(b)

(c)
Fig. 7. Average classification accuracies and time costs via 10× 10-fold cross validation: (a) WDBC. (b) Ionosphere. (c) Sonar.
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[6] P. Baranyi, L. T. Kóczy, and T. D. Gedeon, “A generalized concept for947

fuzzy rule interpolation,” IEEE Transactions on Fuzzy Systems, vol. 12,948

no. 6, pp. 820–837, 2004.949

[7] Z. Huang and Q. Shen, “Fuzzy interpolative reasoning via scale and950

move transformations,” IEEE Transactions on Fuzzy Systems, vol. 14,951

no. 2, pp. 340–359, 2006.952

[8] Y. Yam, M. L. Wong, and P. Baranyi, “Interpolation with function space953

representation of membership functions,” IEEE Transactions on Fuzzy954

Systems, vol. 14, no. 3, pp. 398–411, 2006.955

[9] Y. C. Chang, S. M. Chen, and C. J. Liau, “Fuzzy interpolative reasoning956

for sparse fuzzy-rule-based systems based on the areas of fuzzy sets,”957

IEEE Transactions on Fuzzy Systems, vol. 16, no. 5, pp. 1285–1301,958

2008.959

[10] L. Yang, F. Chao, and Q. Shen, “Generalized adaptive fuzzy rule960

interpolation,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 4, pp.961

839–853, 2017.962

[11] S. M. Chen and Y. C. Chang, “Weighted fuzzy rule interpolation based963

on ga-based weight-learning techniques,” IEEE Transactions on Fuzzy964

Systems, vol. 19, no. 4, pp. 729–744, 2011.965

[12] S. M. Chen, Y. C. Chang, and J. S. Pan, “Fuzzy rules interpolation966

for sparse fuzzy rule-based systems based on interval type-2 gaussian967

fuzzy sets and genetic algorithms,” IEEE Transactions on Fuzzy Systems,968

vol. 21, no. 3, pp. 412–425, 2013.969

[13] S. M. Chen, S. H. Cheng, and Z. J. Chen, “Fuzzy interpolative reasoning970

based on the ratio of fuzziness of rough-fuzzy sets,” Information971

Sciences, vol. 299, pp. 394–411, 2015.972

[14] S. Jin, R. Diao, C. Quek, and Q. Shen, “Backward fuzzy rule interpo-973

lation,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 6, pp. 1682–974

1698, 2014.975

[15] N. Naik, R. Diao, and Q. Shen, “Dynamic fuzzy rule interpolation and its976

application to intrusion detection,” IEEE Transactions on Fuzzy Systems,977

vol. 26, no. 4, pp. 1878–1892, 2018.978

[16] M. Dash and H. Liu, “Feature selection for classification,” Intelligent979

Data Analysis, vol. 1, no. 1, pp. 131–156, 1997.980

[17] F. Li, C. Shang, Y. Li, J. Yang, and Q. Shen, “Fuzzy rule based inter-981

polative reasoning supported by attribute ranking,” IEEE Transactions982

on Fuzzy Systems, vol. 26, no. 5, pp. 2758–2773, 2018.983

[18] F. Li, C. Shang, Y. Li, J. Yang, and Q. Shen, “Interpolation with just984

two nearest neighboring weighted fuzzy rules,” IEEE Transactions on985

Fuzzy Systems, vol. 28, no. 9, pp. 2255–2262, 2020.986

[19] A. Bellet, A. Habrard, and M. Sebban, Metric Learning. Morgan &987

Claypool Publishers, 2015.988

[20] R. De Maesschalck, D. Jouan-Rimbaud, and D. Massart, “The maha-989

lanobis distance,” Chemometrics and Intelligent Laboratory Systems,990

vol. 50, no. 1, pp. 1–18, 2000.991

[21] E. Xing, A. Ng, M. Jordan, and S. J. Russell, “Distance metric992

learning with application to clustering with side-information,” Advances993

in Neural Information Processing Systems, vol. 15, pp. 505–512, 2002.994

[22] J. Mei, M. Liu, H. R. Karimi, and H. Gao, “Logdet divergence-995

based metric learning with triplet constraints and its applications,” IEEE996

Transactions on Image Processing, vol. 23, no. 11, pp. 4920–4931, 2014.997

[23] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large998

margin nearest neighbor classification,” Journal of Machine Learning999

Research, vol. 10, no. 2, pp. 207–244, 2009.1000

[24] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon, “Information-1001

theoretic metric learning,” in Proceedings of 24th International Confer-1002

ence on Machine learning, 2007, pp. 209–216.1003

[25] L. Bregman, “The relaxation method of finding the common point of1004

convex sets and its application to the solution of problems in convex1005

programming,” USSR Computational Mathematics and Mathematical1006

Physics, vol. 7, no. 3, pp. 200–217, 1967. 1007

[26] G. J. Qi, J. Tang, Z. J. Zha, T. S. Chua, and H. J. Zhang, “An efficient 1008

sparse metric learning in high-dimensional space via l 1-penalized 1009

log-determinant regularization,” in Proceedings of 26th International 1010

Conference on Machine Learning, 2009, pp. 841–848. 1011

[27] E. Y. Liu, Z. Guo, X. Zhang, V. Jojic, and W. Wang, “Metric learning 1012

from relative comparisons by minimizing squared residual,” in Proceed- 1013

ings of 12th International Conference on Data Mining, 2012, pp. 978– 1014

983. 1015

[28] N. Shental, T. Hertz, D. Weinshall, and M. Pavel, “Adjustment learning 1016

and relevant component analysis,” in European Conference on Computer 1017

Vision. Springer, 2002, pp. 776–790. 1018

[29] G. Beliakov, A. Pradera, T. Calvo et al., Aggregation functions: A guide 1019

for practitioners. Springer, 2007, vol. 221. 1020
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