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Abstract: We present an analytical and numerical study of optical parametric amplification in
coupled waveguides amplifiers accounting for presence of losses and spatially dependent coupling.
Spatially dependent coupling enables to compensate for mismatch dynamically arising from pump
attenuation and to achieve improved performances in terms of bandwidth and bandwidth-gain
product compared to standard single-waveguide solutions. Our results suggest the effective
design of a novel class of parametric amplifiers and could be especially relevant for integrated
silicon nitride devices.
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1. Introduction

The constantly growing demand for increasing information data rate transmitted in optical
communications, required by the pivotal role played by internet in modern interconnected
societies, is driving research towards solutions capable of expanding the spectral bandwidth (BW)
of transmitted signals. Broadband signal spectrum requires equivalently broadband amplifiers
to regenerate signals upon propagation along optical fiber systems. Currently the workhorse
for signal amplification in commercially available fiber optics communication systems are
Erbium-doped fiber amplifiers (EDFAs) [1,2] which cover a BW of approximately 40 nm.

However alternative broad band solutions such as Raman fiber amplifiers [3], semiconductor
optical amplifiers [4] and optical parametric amplifiers [5–8] are currently being actively
investigated. In particular, optical parametric amplifiers are excellent candidates for broadband
amplification exceeding 100 nm [9]. Parametric amplifiers operate based the on the physical
phenomenon of modulation instability [10,11] originally demonstrated in single mode fibers more
than 30 years ago [12]. Modulation instability refers to energy transfer from a powerful pump
wave to symmetrically located spectral sidebands (called Stokes and anti-Stokes waves) thanks to
the interplay between cubic Kerr nonlinearity and anomalous group velocity dispersion. This is
more generally described within the so called four-wave mixing process where, provided certain
phase-matching conditions associated to energy and momentum conservation are satisfied, two
photons from the pump frequency are annihilated and one photon at signal and idler frequency
respectively are created [13].

Not relying on stimulated emission process parametric amplifiers are immune to quantum
noise added to the signal upon interaction with the gain medium, and their noise properties
are limited by the input noise of the pump wave potentially reaching a zero dBs noise figure
in the phase-sensitive configuration [14–16]. Parametric amplification has been investigated
theoretically, experimentally or both, especially in silica fibers platforms, where a variety of
architectures have been explored. Among these we mention the possibility of phase sensitive
amplification exploiting phase relation between pump signal and idler waves [17], Raman assisted
parametric amplification [9], polarisation diverse schemes [18], quasi phase-matching [19,20],
dual-core (DC) fibers [21,22], and multimode fibers [23].

Recent advances in silicon nitride waveguides fabrication techniques have enabled the
demonstration of parametric amplification in integrated devices too [24]. Besides the potential
for ultra small dimensions (a fixed height of 950 nm and different widths ranging from 600 nm
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to 1500 nm has been reported in [25]), the absence of Brillouin scattering in silicon nitride
eliminates one of the major impairments which affects the operation of silica fibers parametric
amplifiers requiring phase-modulation (dithering) of the pump: 20 kW stimulated Brillouin
scattering threshold has been demonstrated for 1 m of silicon nitride waveguide [26], which
compares to 100 W in silica single mode fiber with the same length. However silicon nitride
waveguides suffer from strong losses of the order of 1 dB/m [27], which makes the spatial scale
over which pump attenuation takes place comparable to the nonlinear length of the system which
is the characteristic scale of the amplifier gain performances. While the theory of modulation
instability in presence of frequency independent losses [28] and the expression for the parametric
amplifier gain in a lossy fiber [29] have been obtained some years ago, a first theoretical study
of the impact of losses in realistic silicon nitride parametric amplifiers has been presented only
recently in [30] using an approximation analogous to that of [29] based on the replacement of
the amplifier length with the losses effective length. It has been furthermore suggested that
waveguide tapering resulting in a spatially decreasing group velocity dispersion could compensate
for the losses induced change in the mismatch parameter (leading to a reduction of the nonlinear
contribution) hence preventing performance degradation [31]. While two-photon absorption
(TPA) can indeed influence processes based on modulation instability phenomena [32], silicon
nitride has favourable characteristics for parametric amplification since it is not affected by TPA
for wavelengths above 800 nm [33] and therefore supports high pump powers.

In this article we present the theoretical and numerical study of a parametric amplifier consisting
of two evanescently coupled waveguides, including the effect of optical losses but especially
investigating the role of spatially dependent coupling. Parametric amplification in dual-waveguide
(DW) fibers with coupled cylindrical core has been proposed theoretically, promising wide
bandwidth, flat broadband gain spectrum, exponential evolution of the gain over the propagation
length, [21] and 0 dBs noise figure, when operated in phase-sensitive mode [22]. In [22] the
possibility was explored to use the coupling of the two waveguides instead of the customary
nonlinear coupling provided by the pump in single-waveguide (SW) parametric amplifiers, in
order to provide the necessary interference between the signal and its copy. This allows to achieve
a 6 dBs gain advantage over phase-insensitive mode of operation, and it is beneficial since the
coupling, not possessing phase, makes the phase-sensitive gain dependent only on the relative
phase between signal in the first waveguide and its copy in the second waveguide. In this way it
is possible potentially to avoid state of the art solutions using pump recovery [8]. A first attempt
to manufacture such DWs using cylindrical core single mode fibers for the purpose of parametric
amplification and wavelength conversion was made in [34]. In this work we fully generalise and
improve the formalism developed in [21] for a conservative scenario and with constant coupling,
making it suitable for realistic applications both in integrated coupled waveguides and in coupled
core silica fibers too. Our numerical results, obtained with realistic parameters for silicon nitride
waveguides show that the DW architecture with spatial dependent coupling can provide, for
certain parameters, a broader gain spectrum and an increased bandwidth-gain (BWG) product
compared to a SW device even when fiber tapering is included.

The paper is structured as follows. In section 2 the general analytical theory of parametric
amplification in coupled waveguides with spatially dependent coupling and losses is formulated
and presented. In section 3 the analytical predictions for the amplifier gain are compared with
numerical simulations results. In section 4 a performance comparison with realistic lossy silicon
nitride waveguides based parametric amplifiers with and without dispersion management is
presented. Conclusions are discussed in section 5.
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2. Analytical theory

We consider two identical coupled waveguides where the electric fields slowly varying envelope
evolution is described by two coupled nonlinear Schrödinger equations (NLSEs)

∂U1
∂z = i

∞∑︁
n=2

in βn
n!

∂nU1
∂tn + iγU1 |U1 |

2 − α
2 U1 + iC(z)U2

∂U2
∂z = i

∞∑︁
n=2

in βn
n!

∂nU2
∂tn + iγU2 |U2 |

2 − α
2 U2 + iC(z)U1.

(1)

Here U1,2 are the two field amplitudes defined in a co-moving temporal reference frame of
coordinate t and evolving along spatial coordinate z. γ, βn and α are nonlinearity, n-th order
dispersion and loss coefficient respectively. C(z) denotes the space dependent evanescent coupling
strength.

The theory of modulation instability in coupled nonlinear waveguides has been developed
for a series of particular cases [35–43], but only recently a first description of a parametric
amplifier based on coupled waveguides (specifically dual coupled core single-mode fibers) has
been developed obtaining an analytical solution [21,22].

Starting from Eq. (1) it is possible to derive the coupled evolution equations for the pump
(up1, up2), signal (us1, us2), and idler (ui1, ui2) wave amplitudes, where the subscripts 1, 2 refer to
the two waveguides respectively and the subscripts p, s, i refer to quantities connected to pump,
signal and idler waves:

∂up1
∂z = iup1

(︁
βp1 + γ(2P1 − |up1 |

2)
)︁
+ iγ2u∗p1us1ui1 + iC(z)up2 −

α
2 up1

∂us1
∂z = ius1

(︁
βs1 + γ(2P1 − |us1 |

2)
)︁
+ iγu2

p1u∗i1 + iC(z)us2 −
α
2 us1

∂ui1
∂z = iui1

(︁
βi1 + γ(2P1 − |ui1 |

2)
)︁
+ iγu2

p1u∗s1 + iC(z)ui2 −
α
2 ui1

∂up2
∂z = iup2

(︁
βp2 + γ(2P2 − |up2 |

2)
)︁
+ iγ2u∗p2us2ui2 + iC(z)up1 −

α
2 up2

∂us2
∂z = ius2

(︁
βs2 + γ(2P2 − |us2 |

2)
)︁
+ iγu2

p2u∗i2 + iC(z)us1 −
α
2 us2

∂ui2
∂z = iui2

(︁
βi2 + γ(2P2 − |ui2 |

2)
)︁
+ iγu2

p2u∗s2 + iC(z)ui1 −
α
2 ui2.

(2)

Here P1 = |up1 |
2 + |us1 |

2 + |ui1 |
2, P2 = |up2 |

2 + |us2 |
2 + |ui2 |

2 and the β coefficients describe the
propagation constants. We assume that being the two waveguides identical: βp1 = βp2, βs1 = βs2,
and βi1 = βi2.

We now assume that both waveguides are pumped with the same input pump power such that
Pp1 + Pp2 = Pp and consider the small sidebands approximation, Pp/2>> |us,i |

2, corresponding
to the fact that signals and idlers do not deplete the pump waves. Under this approximation the
pump amplitudes admit the following solutions

up1(z) =
√︂

Pp
2 eiφ0+iβpz+i γ2

∫ z
0 Ppe−αz′dz′+i

∫ z
0 C(z′)dz′− α

2 z

up2(z) =
√︂

Pp
2 eiφ0+iβpz+i γ2

∫ z
0 Ppe−αz′dz′+i

∫ z
0 C(z′)dz′− α

2 z
(3)

where ϕ0 is a common phase factor. We furthermore write the sidebands amplitudes in the two
waveguides as a function of the new amplitudes es1(z), ei1(z), es2(z), ei2(z):

us1,i1,s2,i2(z) = es1,i1,s2,i2(z)eiφ0+iβs1,i1,s2,i2z+i γ2
∫ z
0 Ppe−αz′dz′−i ∆β2 z+i

∫ z
0 C(z′)dz′ (4)

where ∆β = βs + βi − 2βp is the linear mismatch. Using the above mentioned approximations
and definitions we can write the set of linear coupled differential equations ruling the evolution
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of E⃗ = col(es1, e∗i1, es2, e∗i2)(z) in matrix form as:

∂E⃗
∂z
= M(z)E⃗ (5)

where

M(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

iK0(z) − α
2 iγ Pp

2 e−αz iC(z) 0

−iγ Pp
2 e−αz −iK0(z) − α

2 0 −iC(z)

iC(z) 0 iK0(z) − α
2 iγ Pp

2 e−αz

0 −iC(z) −iγ Pp
2 e−αz −iK0(z) − α

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6)

K0(z) = γ
Pp
2 e−αz +

∆β
2 −C(z) is the total mismatch parameter accounting for nonlinear, linear and

coupling contribution. We can appreciate how losses make the nonlinear contribution spatially
dependent. Regarding the linear mismatch, in this study we will consider the presence of the
second order dispersion β2 only, such that ∆β = β2(ωs −ωp)

2 where ωp and ωs are the pump and
signal frequency respectively; but we emphasize that higher order dispersion can be accounted
for by this formalism too.

Equation (5) admits the following approximated analytical solution: E⃗(z) = e
∫ z
0 M(z′)dz′E⃗(0) =

N(z)E⃗(0). We start from computing the integral of the matrix M which reads:

I(z) =
∫ z
0 M(z′)dz′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

iK0(z) − α
2 z iγ Pp

2 Leff iCeff 0

−iγ Pp
2 Leff −iK0(z) − α

2 z 0 −iCeff

iCeff 0 iK0(z) − α
2 z iγ Pp

2 Leff

0 −iCeff −iγ Pp
2 Leff −iK0(z) − α

2 z

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(7)

where K0(z) = γ
Pp
2 Leff +

∆β
2 z − Ceff and we have defined a losses effective length Leff =

1−e−αz

α ,
and the effective coupling Ceff =

∫ z
0 C(z′)dz′.

Knowing I(z) we can now proceed to calculate the matrix exponential eI(z). This results in a
very large matrix of the form

N(z) = eI(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A B C D

B∗ A∗ D∗ C∗

C D A B

D∗ C∗ B∗ A∗

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (8)

The matrix elements are:

A = 1
2e− α

2 z
(︂
cosh

(︁√
σ
)︁
+

√
ρ cosh(

√
ρ)+iθ sinh(

√
ρ)

√
ρ

+
iχ sinh (

√
σ)

√
σ

)︂
B = i 1

4e− α
2 zγPpLeff

(︂
sinh(

√
ρ)

√
ρ
+

sinh(
√
σ)

√
σ

)︂
C = 1

2e− α
2 z

(︂
cosh

(︁√
σ
)︁
− cosh

(︁√
ρ
)︁
+

iχ sinh (
√
σ)

√
σ

− i θ sinh(
√
ρ)

√
ρ

)︂
D = i 1

4e− α
2 zγPpLeff

(︂
sinh(

√
σ)

√
σ

−
sinh(

√
ρ)

√
ρ

)︂
;

(9)

where

σ = −

(︂
γPpLeff +

∆β
2 z

)︂
∆βz

2 , ρ =
(︂
2Ceff −

∆β
2 z

)︂ (︂
−2Ceff + γPpLeff +

∆β
2 z

)︂
,

θ =
(︂
−2Ceff +

γPpLeff
2 +

∆β
2 z

)︂
, χ =

(︂
γPpLeff

2 +
∆β
2 z

)︂
.

(10)



Research Article Vol. 30, No. 10 / 9 May 2022 / Optics Express 17618

Given the initial conditions E⃗(0) = col(es1, e∗i1, es2, e∗i2)(0) one can compute the evolution of
signals and idlers amplitudes after propagation distance L by multiplying the initial condition
vector by the matrix N(z) evaluated at z = L. These solutions enable to calculate the amplifier gain
for arbitrary initial conditions and both in the phase-sensitive and phase-insensitive operational
regime.

3. Numerical-analytical comparison

We have performed numerical simulations using E⃗(0) = col(es1(0), 0, es2(0), 0), with es2(0) =
−es1(0) as initial conditions. The input signal is a comb of continuous waves (CWs) equally
spaced by 0.8 nm, and each with -70 dBm power, in order to avoid pump depletion and additional
nonlinear crosstalk terms that could eventually interfere with gain computation. The pump
power per waveguide considered was 3 W (total power, Pp = 6 W), the pump wavelength
λp = 1560 nm, γ = 1.2 W−1m−1, the loss coefficient α = 3 dB/m, L = 6 m is the length of
the waveguide. Different values of β2 have been considered in our study, including spatially
dependent scenarios as well; and are specified later. These parameters are the DW equivalent to
those considered in [30]. The coupling coefficient has been taken with the following functional
form C(z) = C(0)e−cαz, which is set in order to have the best properties of phase matching
and gain flatness over a wide-bandwidth which corresponds to low values of the mismatch
parameter K0(z); C(0) = γPp

4 is the coupling coefficient at the waveguide input, i.e. at z = 0.
The aforementioned functional form makes the two waveguides getting further apart towards the
amplifier end at a rate proportional to parameter c and to the loss coefficient of the waveguide α.

This is schematically shown in Fig. 1, where we present the simulation setup for the coupled
waveguide system, where the two waveguides get further apart along the silicon nitride amplifier
following an exponential decreasing evolution of the coupling.

The simulation setup consists of a high power CW pump, separated by a designated wavelength
shift in nm from the zero dispersion wavelength in order to match the dispersion of the waveguides.
Both signal and pump waves are mixed together by a 50/50 coupler and 50% of each wave
is reintroduced in each waveguide. With the aid of the phase-shifting provided by the 50/50
coupler and the π

2 phase-shifting provided by the phase-shifter (PS), at the input of the DWs the
pump/signal wave in waveguide 1 is co-phased/counter-phased, with respect to the pump/signal
wave in waveguide 2, respectively. This allows to have the nice properties of flat, wide and low
noise figure of the amplifier as described in [21,22]. The signals and pump propagate through
the silicon nitride DW and after proper phase re-alignement, signal waves exit from one port
and pump waves exit from the other port of the output coupler, due to constructive/destructive
interferference properties of the 50/50 coupler. An experimental implementation of this setup
will require phase-locking the pumps and matching their amplitudes at the input of the DWs,
otherwise there will be an exchange of power between the cores upon propagation due to the
coupling. The DW amplifier with couplers constitutes basically a Mach-Zehnder interferometer.
If the phase-shifts on both arms of the Mach-Zehnder interferometer are identical no pump power
will leak into the “Signal out" port. Moreover pump power in “Pump out" port shall be stable
(continuous wave), if not we will know that the pump phases and amplitudes at the DW input are
different. We can therefore monitor the pump power in the “Pump out" port and compare it with
a reference signal in order to create an error signal, which, by using a proportional integrator
derivative (PID) controller, will tune the PS at the input of the DW in order to lock the phases of
the pumps. In order to monitor the power of the pumps 1% tap couplers can be used. See for
example [44] for an experimental demonstration of the phase-locking system.
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Signal in

Pump in Pump out
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PS PS

50/50 50/50
1

2

DW

Fig. 1. Setup/schematic of the coupled waveguides amplifier with spatially dependent
coupling. PS, phase-shifter.

The gain for the DW amplifier can be computed as

G(z) =

|︁|︁|︁√2
2 es1(z) −

√
2

2 es2(z)
|︁|︁|︁2|︁|︁|︁√2

2 es1(0) −
√

2
2 es2(0)

|︁|︁|︁2 (11)

where the
√

2
2 factor is related with the transfer matrix function of the input and output 50/50

couplers [45]. To calculate the gain in the SW case, we set the coupling coefficient C = 0 and
obtain:

GSW (z) =
|es1(z)|2

|es1(0)|2
. (12)

In order to validate the analytical model described in section 2, we simulated the coupled
NLSEs (1) with a split step Fourier transform (SSFT) method. If we set the linear and nonlinear
operators as Dk = i

∑︁∞
n=2 in βn

n!
∂n

∂tn − α
2 and Nk = iγ |Uk |

2 where k is the waveguide index number,
the SSFT method solves Eq. 1) by giving the solution of the DWs at each interval dz, and coupling
them by a 2x2 coupler transfer matrix R(z) given by [46]:

R(z) = ⎛⎜⎝
cos(C(z)dz) i sin(C(z)dz)

i sin(C(z)dz) cos(C(z)dz)
⎞⎟⎠ . (13)

Note that R(z) provides the solution of the system neglecting Dk and Nk operators from (1).
Therefore at each step dz the solution of Eq. (1) is given by

⎛⎜⎝
U1(z + dz)

U2(z + dz)
⎞⎟⎠ ≈ R(z) ⎛⎜⎝

eD1dz/2eN1dzeD1dz/2U1(z)

eD2dz/2eN2dzeD2dz/2U2(z)
⎞⎟⎠ . (14)

This solution is valid for dz much shorter than the characteristic lengths of the DW system, i e.,
coupling length, nonlinear length and dispersion length. Figure 2 shows the comparison between
analytical solutions developed in section 2 and the SSFT method solution of Eq. (1).

We can see an excellent agreement between theory and numerical simulations for the spatially
varying coupling case where C(z) = C(0)e−cαz with C(0) = 1.8 m−1 and c = 1. However in the
case of constant coupling, C(z) = C(0), the agreement is good only at small propagation distance
and discrepancies arise when z ≥ Leff ≈ 1

α = 1.42 m (note that this is analogous to the failure of
the theoretical model of a SW lossy parametric amplifier at large distances [30]). From Fig. 2 we
can appreciate the superior performances of the spatially varying coupling scenario compared to
the constant coupling one. Figure 2(b), 2(c) and 2(d) shows the respective gain spectrum for
z = 1, z = 2.4 and z = 6 m. Superior agreement between analytical and the numerical solution of
Eq. (1) is achieved for shorter propagation distances and for spatially dependent coupling case.
From Figs. 2(b)–2(d) we notice that the numerical solution of Fig. (1) (solid lines), results in an
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Fig. 2. Comparison of analytical predictions (dashed lines) with numerical results (solid
lines) for β2 = −50 ps2km−1: in panel a) we plot the maximum amplifier gain versus
amplifier length for constant coupling (red lines) and spatially varying coupling (blue lines);
in panel b) to d) we show a comparison of the gain spectrum obtained in theory and numerical
simulations respectively for b) z = 1 m , c) z = 2.4 m and d) z = 6 m. As a reference panel b)
to d) has 1 additional curve (green line) showing the spectrum, when there is no losses, i.e.,
α = 0.

asymmetric gain spectrum in the spectral regions where gain is negligible or even negative. This
is due to poor conversion efficiency in these spectral regions, and to the fact that the signal comb
of CW waves was launched in the positive side of the spectrum, leading to very low power idlers
being generated in the negative side of the spectrum. Thus, since gain was calculated as the
output signal/idler power divided by input signal power, this generates an asymmetry in the gain
spectrum. Additionally we have plotted, in green in Figs. 2(b)–2(d), the analytical curve for the
gain spectrum for the case of constant coupling and α = 0, in order to show that accounting for
losses effect is strictly necessary to have realistic theoretical predictions of the amplifier behavior.

4. Single-waveguide vs. coupled dual-waveguide amplifier performances

We have compared through numerical simulations the performances of a coupled DWs amplifier
with the ones of a SW amplifier (considering in DWs amplifier the pump power per waveguide
the same as the pump power of the SW amplifier). Two different functional shapes of the spatially
dependent coupling have been considered, namely C(z) = C(0)e−cαz with c = 2 (red curve)
and with c = 1 (black dashed curve). Regarding the SW amplifier we have considered both a
constant and a spatially changing group velocity dispersion coefficient to make a fair comparison
with results published in [31] regarding parametric amplification in tapered waveguides. In
particular we chose β2(z) = β2(0)e−αz (blue curve) and β2(z) = β2(0) = −50 ps2/km (green
curve). Figure 3(a) shows the maximum gain for all the 4 different amplifiers. Performances
are very similar among the different scenarios, except for the constant dispersion SW amplifier
which performs worse at large z. Blue and green curves are the cases reported in [31] and [30],
respectively.
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From Fig. 3(b) we can appreciate that distinct values of c, despite not affecting the maximum
gain achieved, affect the maximum BW which was calculated by drawing a constant line, at the
level of -3 dB below the maximum gain, and computing the intersection with the gain curve
using [47]. Just the positive wavelength shift side of the gain spectrum is taken into account
to calculate the BW. The discontinuity of red curve, observed at z ≈ 2.5 m is related to the
fact that for z>2.5 m the flatness of the gain spectrum is lost and the spectral shape of the gain
moves gradually from flat to something more related to the SW cases as can be seen in Fig. 3(d).
Therefore the BW moves from being calculated as the difference, between an intersection point in
the spectrum and the pump wavelength location, to be calculated as in the SW cases, where one
will have 4 intersection points all likely to be different than the pump location. BW is larger for
the red curve which leads to an higher BWG product given by BWG(z) = 10 log 10(G(z))· BW(z).
BWG product is shown in Fig. 3(c). We note that the DW amplifier with spatially dependent
coupling can perform, for particular amplifier lengths, up to almost twice as better than the SW
amplifier both with and without dispersion management: the limitation imposed by the losses of
the waveguide on the maximum attainable bandwidth and gain can be partially compensated
by using two waveguides, with a longitudinal variation of the coupling coefficient. However
SW amplifier outperforms the DW one, when z ≳ 2 m. Fig. 3(d) shows examples of the gain
spectral shapes for z = L. Analogous curves to the ones presented in Fig. 3 are shown in Fig. 4,
however this time considering β2 = −15 ps2/km; and similar conclusions to the ones made for
larger anomalous dispersion can be drawn in this case too. We can observe that BW is much
larger with smaller dispersion as it would be expected for a standard SW parametric amplifier.
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Fig. 3. SW vs. coupled DW amplifier performances in the form of a) peak gain b) bandwidth
(BW) c) BWG product d) gain spectrum at z = L; when β2(0)=-50 ps2/km. Plots are from
numerical solutions of the NLSEs.
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Fig. 4. SW vs. DW coupled waveguides amplifier performances in the form of a) peak gain
b) bandwdith (BW) c) BWG product d) gain spectrum at z = L when β2(0)=-15 ps2/km.
Plots are from numerical solutions of the NLSEs.

5. Conclusions

In this work we have presented the analytical theory for an optical parametric amplifier consisting
of two evanescently coupled lossy waveguides in presence of spatially dependent coupling. In
the undepleted pump and weak sidebands approximation we have provided an approximated
analytical solution for the signal and idler waves amplitudes evolution. We have shown that the
analytical predictions agree well with numerical simulations in the variable coupling regime,
while they exhibit some discrepancies at large propagation distances for constant coupling
consistently with the existing theoretical models for standard lossy parametric amplifiers. Our
model is suitable to the description of coupled silicon nitride waveguides and DWs silica fibers
with coupled cores; and is especially relevant for waveguides where the effective length is smaller
than, or comparable to, the nonlinear length. A comparison with single silicon nitride waveguide
parametric amplifier, both with and without dispersion management, shows that the amplifier
architecture studied in this paper can offer improved performances in terms of BW and BWG
product too, thanks to the fact that spatially varying coupling can compensate for mismatch
caused by dynamical pump attenuation. We envisage that advances in nonlinear waveguides
fabrication techniques will make the architecture presented in this work appealing for real world
applications of integrated optical parametric amplifiers. Furthermore alternative specific design
of the spatially dependent coupling strength, and higher number of coupled optical modes, could
be studied too hence enabling the possibility of engineering novel dissipative photonic devices
based on nonlinear four-wave mixing.
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