
K. S. L. Jones, PhD Thesis, Aston University, 2021 || 1

DISCERNING THE UNDERSTANDING OF NOVICE PROGRAMMERS THROUGH
EXAMINATION OF THEIR INTERACTIONS WITH CODE PUZZLES

KATRINA SARAH LYNNE JONES

Doctor of Philosophy

ASTON UNIVERSITY

August 2021

© Katrina Sarah Lynne Jones, 2021 asserts her moral right to be identified as the author of this
thesis.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to
recognise that its copyright rests with its author and that no quotation from the thesis and no

information derived from it may be published without appropriate permission or acknowledgement.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 2

Aston University

Discerning the Understanding of Novice Programmers through Examination
of their Interactions with Code Puzzles

Katrina Sarah Lynne Jones

Doctor of Philosophy, 2021

Thesis Summary

Programming could be viewed as a difficult discipline that some novice programmers (NPs) struggle
to grasp, and the effect of this can be viewed in the inflated drop-out rates in Computer Science
courses (Channel 4 News, 2017; HESA, 2020). The difficulty of programming can be partially
attributed to the complexity of developing and applying effective computational thinking strategies,
as programmers need to learn how to select, incorporate, evaluate and refine relevant programming
constructs to create a program; implicitly requiring the knowledge of programming concepts,
paradigms, execution models, and relevant domain-based knowledge. Due to this complexity, NPs
can find it difficult to explain why they are struggling with programming to their tutors, making it
difficult for tutors to identify the cause(s) of an NP’s issues, leading to frustration and
discouragement; consequently, the focus of this thesis is to explore a potential method for how to
minimise this communication barrier.

This thesis documents the findings of three interpretivist, mixed-methods studies which asked 21
participants to rearrange modified 2D Parson’s (referred to as Code Puzzles) into a working Java class
while explaining their movements (think-aloud protocol) to an observer. Their times, movements,
written feedback, and dialogue were recorded and analysed. For the secondary study involving 13
participants, the researcher discovered that 69% of participants believed the observer had correctly
deduced their understanding of the programming concepts, and that 84% of participants believed
the observer had correctly deduced their approach to creating a program, suggesting that using
paper-based Code Puzzles may help tutors identify problem areas at a conceptual-based and
approach-based level in a one-to-one setting.

Our approach led to the discovery of a novel area not incorporated into the original Parson’s
Problems design, known as the ‘workspace’, where participants grouped pieces together based on
perceived similarity of the underlying programming concepts and/or context in which the pieces
were used providing an insight into how NPs understand abstract programming concepts. This
discovery led to the proposal of using the following in the context of investigating communication
between programmers: think-aloud protocols, interpretivism over post-positivism research
philosophies, cluster-based puzzles to analyse how NPs relate concepts and the proposal of a design
of a diagnostic toolkit to analyse an NP’s understanding.

Keywords: Code Puzzles, Parson’s Problems, paper-based, Phenomenology, Programming, novice
programmers, understanding, Java, Computer Science, Education, Cognitive Psychology

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 3

Personal Acknowledgements

This thesis is dedicated to the many persons who have aided in both my professional and personal
development between the years of 2016 and 2021.

I would like to express sincere gratitude towards Aston University for providing me with this
extraordinary opportunity to conduct research into an area that I feel passionately about, and for
providing me with funding to support my endeavour.

I wish to thank my supervisor, BSc lecturer and friend Dr. Tony Beaumont, for his time, support and
effort throughout my PhD journey. His vast expertise in the fields of CS and pedagogical research has
aided me greatly during this piece of research. Not only has he selflessly contributed many hours of
his time in giving me feedback during a viral apocalypse, his genuine, kind and caring demeanour has
always supported me through my periods of ill health as well. Without his expert guidance, and
continued support, it is likely that I would have been unable to complete my studies and for that I
am, truly, indebted to him for this. I would also like to thank my associate supervisor, Dr. Alina
Patelli, for her time – not only for myself, but my primary supervisor as well. I would also like to
thank my ex- supervisor and MSc project supervisor, Dr. Errol Thompson whose passion for the world
of pedagogical research inspired me to pursue my PhD. Despite unfortunately needing to leave my
PhD journey in 2018, his kind, caring and genuine demeanour helped me through the early stages of
my PhD.

With Tony's mind and spirit, and Errol’s heart, I think we have created a piece of research that will
hopefully be used in future work to help inspire and support novice programmers.

I also wish to thank my parents – Lynne and Peter – for their continued support of me throughout my
studies; their love, patience, and support has been paramount to the completion of my research. I
am forever indebted to them for such a wonderful opportunity! I would like to thank my brother
Andrew, uncle Steve, and my late grandmother, Margaret for their support from afar. Similarly, I
would like to thank my late and current feline companions for their continued affection and much
needed distractions from my work.

I would like to thank a few of my research colleagues from the Aston STEM Education Centre – Dr.
Sylvia Wong, Roger Howell and Andrew Kay – for all their feedback on my research throughout the
years. As well as Professor Jo Lumsden and Dr. Aniko Ekart of the EAS department for their patience,
kindness and support throughout the years.

Similarly, a huge thank you to all of my friends whose continued support, care, and understanding
throughout the years has truly helped me through the toughest of times and has helped me remain
(relatively) sane, namely: Sally F., Marcus C., Bethany H., Cameron E., Amanda H., Henry P., Tom M.,
John B., Rachel C., Kaylee S., Jess C., Jon E., Chris S., Jade M., Andrew D., Selina C., Jodie S., Megan B.,
Lizzie I., Jamie C., Matthew B., Priyanka J., Nisha J., Jordan D., Henrik H., Tien T., Asim M., Timea H.,
Tiffany W., Hayley C., and Alison D.. I hope you know how much I value you all!

And finally, thank you to all who participated in my research – without your feedback, there would
be no thesis.

Collaborator Acknowledgements

This research was conducted by the research student and guided by the wisdom of her supervisor,
Dr. Tony Beaumont, associate supervisor Dr. Alina Patelli, and former supervisor, Dr. Errol Thompson.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 4

Related Dissemination of Work

This research was presented at a couple of conferences, listed below:

• Jones, K. S. L., Thompson, E. T. and Beaumont, A. J. (2018). Can Learners’ Interactions with
Code Puzzle Pieces Accurately Match their Perceptions of the Related Programming
Concepts?. Higher Education Academy Conference. England: Birmingham. Programme
Available at:
<https://www.heacademy.ac.uk/system/files/downloads/Advance%20HE%20TLConf18%20a
bstracts_Day%203%2C%205%20July_STEM.pdf>

The preliminary pilot study data was presented at this conference, with particular focus on
approaching Code Puzzles from a differing perspective than in previous research.

• Jones, K. S. L., Thompson, E. T., and Beaumont, A. J. (2018). Aston University EAS
Postgraduate Research Conference. Engineering and Applied Science. Aston University:
Birmingham.

This poster reported on the findings of the pilot study data and focused on the advantages and
disadvantages of using Code Puzzles as a learning aide.

This research was also published as part of the Birmingham Digital Projects, available from their
website as of 2020:

• Jones, K. S. L., Thompson, E. T., and Beaumont, A. J. (2018). Can we use Code Puzzles to
understand an NP’s thought processes? Birmingham Digital Project. Aston University:
Birmingham. [ONLINE] Available from: <https://www.birminghamdigitalstudent.co.uk/single-
post/2018/05/11/Learner-interactions-with-code-puzzles>

Ethical Approval Granted by Engineering and Applied Sciences Ethics
Committee

This is to confirm that the EAS Ethics Committee approved and granted permission for Study #1115
to commence from April 2017-September 2020. If you have any concerns about the way that this
research has been conducted, please contact the EAS Ethics Committee at the first possible instance.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 5

List of Contents

Nomenclature .. 18

Abbreviations ... 18

Chapter 1. Why is it important to understand Novice Programmers? .. 19

1.1 Why are programmers in demand? ... 19

1.2 Why is there a shortage of skilled programmers? ... 20

1.2.1 The difficulty of programming .. 22

1.2.2 Student misconceptions about CS courses and programming ... 25

1.2.3 Communication barriers preventing effective dialogue between CS students and tutors .. 27

1.2.3.1 Psychology of Communication Barriers and why they occur ... 27

1.2.3.2 Reasons for CS Communication Barriers .. 28

1.2.3.3 Frameworks for Analysing Communication ... 30

1.2.3.4 Pair programming as a technique to reduce communication barriers 31

1.2.4 The way programming is taught and assessed is not optimal for NPs 33

1.3 Research Motivation, Problem, Scope and Limitations ... 34

1.4 Research Purpose and Question .. 37

1.5 Research Aims .. 37

1.6 Research Objectives ... 40

1.7 Research Outcomes ... 41

1.8 Brief Overview of Research Approach and Chosen Methodology ... 42

1.9 Thesis Structure .. 42

1.10 Chapter 1 Summary ... 47

Chapter 2. The Challenges of Identifying the Understanding of NPs .. 49

2.1 The Philosophy of Identifying Understanding and Knowledge .. 49

2.2 Cognitive Models: How are mental representations formed? .. 51

2.3 Mental Representations found in Programmers ... 52

2.4 Pedagogical Frameworks (aimed at influencing and examining mental representations) 54

2.5 Thesis’ Definition of Understanding ... 58

2.6 Research Gap: Can gamification be used to quicken the process of identifying understanding

accurately? ... 58

2.7 Chapter 2 Summary ... 59

Chapter 3. The Potential of Using Gamification to Identify Understanding .. 60

3.1 Parson’s Puzzles ... 63

3.1.1 Parson’s Puzzles Tools ... 65

3.2.1.2 How effective are Parson’s Puzzles at detecting difficulties or issues with NPs? 66

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 6

3.2 Chapter 3 Summary ... 67

Chapter 4: Research Methodology .. 68

4.1 Philosophy and Choice of Interpretivism ... 69

4.2 The Philosophy of Phenomenology: Husserl’s Transcendental Phenomenology 72

4.3 Collecting Data Using Observations ... 76

4.4 Qualitative Data Analysis using Coding and Straussian Grounded Theory 77

4.5 Sampling: Purposeful and Convenience Sampling ... 80

4.6 Recruitment, Conduction and General Procedure of Studies .. 81

4.6.1 Advertising and Recruitment Process ... 85

4.6.2 Observation Room Set Up and Procedure .. 86

4.6.3 Follow-up Procedure ... 91

4.7 Pre-Processing Procedures and Consequent Data Analysis ... 91

4.7.1 Qualitative Data Analysis Procedures: Using IPA and Straussian Grounded Theory 91

4.7.2 Quantitative Data Analysis Procedures: Time Analysis and Movement Classification 92

4.8 Protocol Amendments and Ethical Considerations ... 92

4.9 Bracketing (for Pilot, Secondary and Tertiary Studies) .. 98

4.10 Chapter 4 Summary ... 104

Chapter 5. Pilot Study: Identifying Understanding .. 105

5.1 Hypotheses ... 105

5.2 Methodology .. 105

5.2.1 Advertising and Recruitment Process ... 106

5.2.2 Procedure and Data Collection ... 106

5.2.3 Data Analysis ... 108

5.3 Results .. 116

5.3.1 Time Observations .. 116

5.3.1.1 Code Puzzle 1 Time Intervals ... 117

5.3.1.2 Code Puzzle 2 Time Intervals ... 124

5.3.2 Movement Observations .. 137

5.3.2.1 Frequency of Movements .. 137

5.3.2.2 Order of Movements .. 142

5.3.2.3 Types of Movements Observed ... 150

5.3.2.4 Correct versus Incorrect Placements ... 157

5.3.2.5 Participants’ Approaches and Analysis of the Workspace ... 162

5.3.3 Analysis of the Submitted Solutions ... 174

5.3.4 Post-Puzzle Questionnaires ... 179

5.3.5 Analysis of Participants’ Speech .. 183

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 7

5.4 Discussion ... 185

5.5 Limitations and Evaluation ... 188

5.6 Conclusion .. 189

5.7 Chapter 5 Summary ... 190

Chapter 6. Secondary Study: Understanding NPs and Workspace Influence 191

6.1 Hypotheses ... 191

6.2 Secondary Study Procedure, Results and Discussion ... 192

6.2.1 Time, Solution Confidence, Perceived Task Difficulty, and Movement Results 193

6.2.2 Background Questionnaire Results ... 202

6.2.3 Movement Frequency and Types of Movements Made ... 213

‘6.2.4 Final Solutions .. 222

6.2.5 Post-Study Questionnaire Results ... 236

6.3 Chapter 6 Summary ... 240

Chapter 7. Tertiary Study: Observing Coding on a Realistic Learning Environment 241

7.1 Methodology .. 244

7.1.1 Advertising and Recruitment Process ... 244

7.1.2 Procedure and Data Collection ... 244

7.1.3 Data Analysis ... 245

7.2 Results .. 246

7.2.1 Time Observations .. 246

7.2.1.1 Code Puzzle 1 Time Intervals ... 247

7.2.1.2 Code Puzzle 2 Time Intervals ... 254

7.2.2 Movement Observations .. 259

7.2.2.1 Frequency of Movements .. 259

7.2.2.2 Types of Movements Observed ... 264

7.2.3 Analysis of the Submitted Solutions ... 264

7.2.4 Questionnaires .. 269

7.2.4.1 Background Questionnaire .. 269

7.3 Discussion ... 281

7.4 Limitations and Evaluation ... 284

7.5 Conclusion .. 285

7.6 Chapter 7 Summary ... 285

Chapter 8: Collective Discussion: Workspace and Think Aloud Protocols ... 287

8.1 Conception and Implications of the Workspace .. 287

8.1.1 Analysis of the use of the workspace .. 290

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 8

8.1.2 Analysis of how workspace and non-workspace participants spoke about Code Puzzles

 .. 294

8.2 Research Output .. 303

8.2.1 Proposal of a Diagnostic Tool Kit ... 303

8.2.1.1 Factor of Difficulty .. 304

8.3 Chapter 8 Summary ... 310

Chapter 9: Limitations, Future Work and Concluding Thoughts .. 311

9.1 Reflection on Research Aims .. 313

9.2 Future Research ... 317

9.2.1 Task Description Modifications ... 317

9.2.2 Using Cluster-based Puzzles and the Potential for QUI .. 318

9.2.3 Using Other Languages, Levels of Programmer and/or Parson’s Problem GUI Implications

 .. 321

9.3 Conclusion and Final Thoughts .. 321

Chapter 10: Bibliography and References.. 322

10.1 List of Bibliography ... 322

10.2 List of References ... 323

Chapter 11. Appendices ... 331

11.1 Study Supplements .. 331

11.1.1 CP1: Task Description .. 331

11.1.2 CP1 and 2 Displays for Tertiary Study Only ... 332

11.1.3 CP2: Task Description .. 334

11.1.4 Blackboard Announcements ... 334

11.1.4.1 Pilot and Secondary Study Announcement ... 334

11.1.4.2 Tertiary Study Announcement ... 335

11.1.5 Questionnaires .. 336

11.1.5.1 Pre-Puzzle Questionnaire (Secondary and Tertiary Study Only) 336

11.1.5.2 Post-Puzzle Questionnaire ... 337

11.1.5.3 Post Study Questionnaire (Secondary and Tertiary Study Only) 338

11.1.5.4 Background Questionnaire (Secondary and Tertiary Study Only) 338

11.1.6 Consent Forms and Participant Information Sheet .. 340

11.1.6.1 Pilot Study Consent Form and Participant Information Sheet 340

11.1.6.2 Secondary Study Consent Form and Participant Information Sheet 341

11.1.6.3 Tertiary Study Consent Form ... 343

11.1.6.4 Tertiary Study Participant Information Sheet .. 344

11.1.7 Ethics Submission: Amendment Documentation ... 348

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 9

List of Tables

Table 1: Research Question ... 37

Table 2: Research Aims .. 38

Table 3: Research Objectives ... 41

Table 4: Research Outcomes ... 41

Table 5: An interpretation of SOLO Taxonomy (Biggs and Collis, 1982; Biggs, 1995; Biggs and Tang,

2011) applied to NPs .. 56

Table 6: How this research utilised the different types of coding (based on advice given in the works

of Elbardan and Kholeif, 2017) ... 78

Table 7: CP1's Model Answer .. 82

Table 8: CP2's Model Answer .. 82

Table 9: Anticipated Movement Types and Indicator ... 92

Table 10: Summarised Personal Reflexivity: what potential researcher biases could be present? These

datapoints originate from short, written pieces before the beginning of each study. 101

Table 11: Summarised Methodological Reflexivity: what potential changes are needed in order to

improve the methodology? These datapoints originate from short pieces made from the memos of

each participant observation. .. 103

Table 12: Theoretical Reflexivity – the summarised assumptions: what has the researcher assumed to

be true when analysing the data or conducting the study? This is based on transcriber notes of the

anonymised transcripts. ... 104

Table 13: Pilot Study Hypotheses ... 105

Table 14: Classification of movements seen in the pilot study ... 110

Table 15: Number and type of incorrect placements that were corrected prior to the final submission

by participants in CP1... 160

Table 16: Number and type of incorrect placements that were corrected prior to the final submission

by participants in CP2... 162

Table 17: How/Whether the pilot study findings supported the original hypotheses 187

Table 18: Secondary Study's Research Question ... 191

Table 19: Original hypotheses specifically for the secondary study .. 192

Table 20: Thematic Definitions for the background questions related to quality: ‘What qualities does

a programmer require (in your opinion)?’; ‘Which qualities of a programmer do you feel you have?’;

and ‘Which qualities of a programmer do you feel you need to improve on?’ 209

Table 21: How participants answered the question of "Can you describe the steps you take to solve a

programming task? " The number represents the step order for how they would approach an issue

 .. 212

Table 22: Tertiary Study's Research Question ... 241

Table 23: Tertiary Study's Hypotheses .. 243

Table 24: Reasoning for why the participant considered the tasks easy. ... 279

Table 25: Indicators demonstrated in the results of the pilot, secondary and tertiary studies which

imply lack of understanding or show understanding compared to understanding of their approach to

programming. ... 309

Table 26: Evaluating the Research Aims .. 313

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 10

List of Figures

Figure 1: Introductory Chapter’s 1 Structure Overview .. 43

Figure 2: Literature Review Chapters' Focus ... 44

Figure 3: Literature Review Chapters’ – 2 and 3 – structure overview ... 44

Figure 4: Research Methodology Chapter 4’s structure overview .. 45

Figure 5: Study Chapters' – 5, 6, and 7 – structure overview .. 45

Figure 6: Evaluation and Discussion Chapter 8 Structure Overview ... 46

Figure 7: Conclusion Chapter's structure overview ... 47

Figure 8: General process of conducting phenomenological research ... 75

Figure 9: The study timeline from the participants’ perspective; a general overview of the difference

in procedures between pilot and the secondary and tertiary studies ... 84

Figure 10: Diagram of the study set up. ... 87

Figure 11: Photo of the CP1’s pieces in the pilot study. .. 89

Figure 12: Photo of the setup of the secondary study; example of the camera and microphone set up.

 .. 90

Figure 13: Tertiary Study: How pieces were displayed to participants. .. 90

Figure 14: Overview of the type of Pilot Study data collected – referred to as Novice Programmer

(NP) interactions. ... 107

Figure 15: Overview of the way movement data was analysed, and what questions the analysis

needed to address. .. 109

Figure 16: How line placement was determined in the movement logs. .. 111

Figure 17: Diagram of an observed paper-based Code Puzzle experiment issue regarding the

judgement of ‘correct’ or ‘incorrect’ piece placement and explanation for ‘approximate line order’.

 .. 112

Figure 18: How missing pieces for CP1 were determined during the analysis of movement logs. 114

Figure 19: How missing pieces for CP2 were determined during the analysis of movement logs. 115

Figure 20: Line chart for time taken to complete the puzzle by each participant (CP1: range = 04:09-

07:08, M = 06:00, SD = 01:13|| CP2: range=09:18-19:43, M = 13:36, SD = 04:23). Distraction time was

labelled as moderate or severe interruptions (CP1: range=0:00-1:37, M = 0:27, SD = 0:42|| CP2:

range=0:00-0:59, M = 0:16, SD = 0:26). ... 116

Figure 21: Scatter graph for the average time spent on each piece per puzzle (bottom chart) (CP1:

range = 00:11-00:19, M = 00:16, SD = 00:03|| CP2: range=00:07-00:15, M = 00:10, SD = 00:03) for the

pilot study. ... 117

Figure 22: A bar chart of P1’s Grouped Time Intervals – i.e., the sum of the time taken to place each

piece - for CP1 .. 118

Figure 23: A line graph presenting a general overview of P1’s time placement pattern – i.e., the time

for each individual movement – for CP1. .. 119

Figure 24: A bar chart of P2’s Grouped Time Intervals .. 120

Figure 25: A line graph presenting a general overview of P2’s time placement pattern for CP1 121

Figure 26: A bar chart of P4’s Grouped Time Intervals for CP1 ... 122

Figure 27: A line graph presenting a general overview of P4’s time placement pattern for CP1. 122

Figure 28: A bar chart of P5’s Grouped Time Intervals for CP1. .. 123

Figure 29: A line graph presenting a general overview of P5’s time placement pattern for CP1. 123

Figure 30: A line chart which demonstrates the average time each participant spent on each part of

CP1. .. 124

Figure 31: A bar chart of P1’s Grouped Time Intervals .. 125

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 11

Figure 32: A line graph presenting a general overview of P1’s time placement pattern for CP2 126

Figure 33: A bar chart of P2’s Grouped Time Intervals .. 127

Figure 34: A line graph presenting a general overview of P2’s time placement pattern for CP2 128

Figure 35: A bar chart of P3’s Grouped Time Intervals for CP2 ... 129

Figure 36: A line graph presenting a general overview of P3’s time placement pattern for CP2 and a

table documenting the top five pieces that had the longest time intervals. 130

Figure 37: A bar chart of P4’s Grouped Time Intervals for CP2 ... 131

Figure 38: A line graph presenting a general overview of P4’s time placement pattern for CP2 132

Figure 39: A bar chart of P5’s Grouped Time Intervals for CP2 ... 133

Figure 40: A line graph presenting a general overview of P5’s time placement pattern for CP2 134

Figure 41: A line chart which demonstrates the average time each participant spent on each part of

CP2. .. 135

Figure 42: Series of line charts showing the average time taken chronologically for CP1 and CP2. ... 136

Figure 43: Clustered bar chart for the number of movements made by participants for Code Puzzle 1

(CP1) and Code Puzzle 2 (CP2). .. 137

Figure 44: Stacked bar chart illustrating the number of movements made per puzzle piece per

participant for CP1. .. 138

Figure 45: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1. 139

Figure 46: Stacked bar chart illustrating the number of movements made to create each line of code

per participant for CP2. .. 140

Figure 47: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1. P1’s 63

unclassifiable movements are omitted. ... 141

Figure 48: P1’s movement order for each puzzle (each piece is represented in this format: [order

number]|piece|). ... 143

Figure 49: P2’s movement order for each puzzle (each piece is represented in this format: [order

number]|piece|). ... 144

Figure 50: P3’s order of movements – the number to the left of each |piece| is associated to the

numerical step in their movement log. Underlined without a number means missing piece and

underlined with numbers means custom piece or custom placement of piece. 145

Figure 51: P4’s order of movements – the number to the left of each |piece| is associated to the

numerical step in their movement log. Underlined without a number means missing piece and

underlined with numbers means custom placement of piece. ... 146

Figure 52: P5’s order of movements – the number to the left of each |piece| is associated to the

numerical step in their movement log. Underlined without a number means missing piece and

underlined with numbers means custom placement of piece. ... 147

Figure 53: The generalised construction process that participants go through when construction

solutions for Puzzles 1 and 2; it should be noted there was very little deviation seen in the approach.

 .. 149

Figure 54: The classification of movement type for each participants’ movements in CP1 and CP2. 151

Figure 55: Diagram demonstrating P2’s 19 to 23 movements involving the same piece used with

different types of movements in close proximity of one another. .. 152

Figure 56: Diagram to represent P2’s usage of ‘Decide’ movement with

‘totalPotatoesRemainingInStore -= numOfPotatoes;’ piece in CP1 – they held the piece in mid-air for

approximately 10 seconds (5:13-5:24 on video footage). ... 153

Figure 57: Diagram demonstrating P3’s 72 to 74 movements involving grouping the pieces prior to

placing them in the final solution. ... 153

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 12

Figure 58: Diagram demonstrating P3’s 39 to 44 movements involving grouping of two pieces, and

perhaps a linked ‘add’ piece that was placed out of line but also separated from the group. 154

Figure 59: Diagram demonstrating P3’s 51 to 52 movements involving adding ‘after’ to a pre-existing

group defined 9 moves prior. .. 155

Figure 60: Diagram demonstrating P3’s 57 to 59 movements involving decide and back movements.

 .. 156

Figure 61: Diagram demonstrating P3’s 60 to 61 movements involving swapping ‘return’ and ‘}’

pieces. .. 156

Figure 62: Diagram demonstrating P3’s 78 to 79 movements involving swapping ‘true’ and ‘false’

pieces. .. 157

Figure 63: Bar chart illustrating the total number of missing pieces labelled as mistakes made by

participants in CP1 compared to CP2. .. 158

Figure 64: Bar chart illustrating the total number of incorrect placements made by participants in CP1

compared to CP2. ... 159

Figure 65: Stacked bar chart illustrating the types of mistakes made by participants in CP1. 160

Figure 66: Stacked bar chart illustrating the types of mistakes made by participants in CP2. 161

Figure 67: Pie chart that presents the locations the mistakes occurred in for CP2. 162

Figure 68: Pilot Study’s observations on the interface design of 2D Parson’s Problems. 163

Figure 69: Photo still of P1’s workspace for CP2 (left) with a generated diagram of the groupings of

the workspace indicated by P1’s audio transcript (right) .. 164

Figure 70: Co-ordinates generated from the photo still of the workspace for P1 assuming top left is

(0, 0) (left) and the scatter graph generated from the co-ordinates (right). 165

Figure 71: P1’s workspace for CP2’s inertia using the elbow method. ... 166

Figure 72: P1’s workspace for CP2’s optimal number of clusters calculated using Python’s EM

algorithm using a Gaussian Mixture (GM) to generate a log score. .. 167

Figure 73: P1’s workspace for CP2’s optimal number of clusters calculated using K-Means’ Silhouette

score. .. 168

Figure 74: Silhouette diagram of one of the ‘optimum’ number of KMeans clusters (n=5) determined

by the elbow method (generated using Python’s sklearn package) .. 169

Figure 75: Silhouette diagram of one of the ‘optimum’ number of KMeans clusters (n=6) determined

by the elbow method (generated using Python’s sklearn package) .. 170

Figure 76: Silhouette diagram of one of the ‘optimum’ numbers of KMeans clusters (n=7) determined

by the elbow method (generated using Python’s sklearn package) .. 171

Figure 77: Silhouette diagram of one of the ‘optimum’ numbers of KMeans clusters (n=8) determined

by the elbow method (generated using Python’s sklearn package) .. 172

Figure 78: Silhouette diagram of the ‘optimum’ numbers of KMeans clusters (n=21) determined by

the silhouette score (generated using Python’s sklearn package) .. 173

Figure 79: Representations of P1’s submitted solutions for CP1 (left) and CP2 (right)....................... 175

Figure 80: Representations of P2’s submitted solutions for CP1 (left) and CP2 (right)....................... 176

Figure 81: Representation of P3’s submitted solution for CP2, CP1 was unobtainable due to video

footage corruption. .. 177

Figure 82: Representations of P4’s submitted solutions for CP1 (left) and CP2 (right)....................... 178

Figure 83: Representations of P5’s submitted solutions for CP1 (left) and CP2 (right)....................... 179

Figure 84: Pilot Study’s participants’ confidence in their submitted solution for CP1 based on a 5-

point Likert Scale – 5 indicates they believed their solution worked without any errors, 1 indicates

they would not know if the solution worked. .. 180

Figure 85: Pilot Study’s participants’ opinions of difficulty for CP1 based on a 7-point Likert Scale – 7

indicates very easy, 1 indicates very hard. .. 180

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 13

Figure 86: Pilot Study’s participants’ confidence in their submitted solution for CP2 based on a 5-

point Likert Scale – 5 indicates they believed their solution worked without any errors, 1 indicates

they would not know if the solution worked. .. 181

Figure 87: Pilot Study’s participants’ opinions of difficulty for CP2 based on a 7-point Likert Scale – 7

indicates very easy, 1 indicates very hard. .. 181

Figure 88: Pilot Study’s participants’ estimation of difficulty compared to the number of issues with

their submitted solution in CP1 (top) and CP2 (bottom). .. 182

Figure 89: Clustered Bar charts comparing the number of words spoken by the participants during

the CP1 and CP2 (CP1: range = 182-1356, M = 667.6, SD = 449.88|| CP2: range=401-1470, M = 1169,

SD = 442.31) ... 183

Figure 90: Pie charts showing the percentage of words spoken in the audio recordings were

participants’ words verses those of the observer (right chart) (CP1: range = 75.36%-97.84%, M =

85.21%, SD = 8.15%|| CP2: range = 74.49%-97.48%, M = 85.03%, SD = 9.07%) 184

Figure 91: Diagram that illustrates the novel ‘workspace’ concept for participants to decipher,

classify, discuss, and relate pieces to one another before placing them in the final solution space. . 186

Figure 92: Scatter graph for time taken to complete the puzzle by each participant (CP1: range =

04:50-14:33, M = 08:16, SD = 03:22|| CP2: range=08:06-21:17, M = 15:21, SD = 04:13)) for the

secondary study. Distraction time was labelled as moderate or severe interruptions (CP1:

range=0:00-1:37, M = 0:27, SD = 0:42|| CP2: range=0:00-0:59, M = 0:16, SD = 0:26) 193

Figure 93: Scatter graph for the average time spent on each piece per puzzle (right) (CP1: range =

00:13-00:38, M = 00:22, SD = 00:09|| CP2: range=00:06-00:16, M = 00:12, SD = 00:03) for the

secondary study. .. 194

Figure 94: Bar chart for the pre-CP1 (CP1) questionnaire’s closed questions on task difficulty for the

secondary study. P18 did not submit a pre-CP1 questionnaire. (CP1: M = ‘Slightly easy’) 195

Figure 95: Bar chart for the pre CP2’s (CP2) questionnaire’s closed questions on task difficulty for the

secondary study. P18 did not submit a pre-CP1 questionnaire. (CP2: M = ‘Slightly easy’) 195

Figure 96: Bar chart showing what participants anticipated would be the easiest part of CP1. 196

Figure 97: Bar chart showing what participants anticipated would be the hardest part of CP1. 196

Figure 98: Pie chart showing what participants reasons were for the easiest part of CP1. 197

Figure 99: Pie chart showing what participants reasons were for the hardest part of CP1. 197

Figure 100: Bar chart showing what participants anticipated would be the easiest part of CP2. 198

Figure 101: Bar chart showing what participants anticipated would be the hardest part of CP2. 198

Figure 102: Pie chart showing what participants reasons were for the easiest part of CP2. 199

Figure 103: Pie chart showing what participants reasons were for the hardest part of CP2. 199

Figure 104: Bar chart showing the post-CP1 evaluation of how confident the secondary study

participants were that their solution would work. .. 200

Figure 105: Bar chart showing the post-CP1 evaluation of how confident the secondary study

participants were with the achieving the task. .. 200

Figure 106: Bar chart showing the post-CP2 evaluation of how confident the secondary study

participants were that their solution would work. .. 201

Figure 107: Bar chart showing the post-CP2 evaluation of how confident the secondary study

participants were with the achieving the task. .. 201

Figure 108: How confident are you as a programmer? (M = “Slightly Confident”) 202

Figure 109: How many programming languages are you: fluent, proficient and beginner in? (Fluent:

range = 0-3, M = 1, SD = 1 || Proficient: range = 0-4, M = 1.36, SD = 1.21 || Beginner: range = 0-7, M

= 1.73, SD = 1.85) ... 203

Figure 110: Pie chart for the percentage of participants who answered that they were proficient or

fluent in Java. ... 204

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 14

Figure 111: Three stacked bar charts that illustrate the secondary participants’ answers to three

related questions in the background questionnaire: ‘What qualities does a programmer require (in

your opinion)?’ (top); ‘Which qualities of a programmer do you feel you have?’ (middle); and ‘Which

qualities of a programmer do you feel you need to improve on?’. These were codes created through

applying Straussian Grounded Theory to the open-ended question answers given. 206

Figure 112: Interpreter’s Sensing of the Thematic Relationships for the question “Which qualities of a

programmer do you feel you need to improve on?” ... 208

Figure 113: What is the most important aspect of understanding programming (in your experience)?

 .. 210

Figure 114: Number of movements made by participants in the secondary study for CP1 and CP2 . 214

Figure 115: Types of movements made by participants in the secondary study for CP1 215

Figure 116: Number of add, remove, and swap movements (not decide, back and shifts) recorded in

CP1 of the secondary study.. 216

Figure 117: Number of shift, decide and grouped movements (not add, remove and swap) recorded

in CP1 of the secondary study .. 216

Figure 118: Number of excess movements recorded in CP1 of the secondary study 217

Figure 119: Types of movements made by participants in the secondary study for CP2 218

Figure 120: Percentages of the types of movements made by P6 for CP1 and CP2 218

Figure 121: Percentages of the types of movements made by P7 for CP1 and CP2 219

Figure 122: Percentages of the types of movements made by P8 for CP1 and CP2 219

Figure 123: Percentages of the types of movements made by P9 for CP1 and CP2 219

Figure 124: Percentages of the types of movements made by P10 for CP1 and CP2 220

Figure 125: Percentages of the types of movements made by P11 for CP1 and CP2 220

Figure 126: Percentages of the types of movements made by P12 for CP1 and CP2 220

Figure 127: Percentages of the types of movements made by P13 for CP1 and CP2 221

Figure 128: Percentages of the types of movements made by P14 for CP1 and CP2 221

Figure 129: Percentages of the types of movements made by P15 for CP1 and CP2 221

Figure 130: Percentages of the types of movements made by P16 for CP1 and CP2 222

Figure 131: Percentages of the types of movements made by P17 for CP1 and CP2 222

Figure 132: Percentages of the types of movements made by P18 for CP1 and CP2 222

Figure 133: P6’s final solution for CP1 (left) and CP2 (right) ... 223

Figure 134: P7’s final solution for CP1 (left) and CP2 (right) ... 224

Figure 135: P8’s final solution for CP1 (left) and CP2 (right) ... 225

Figure 136: P9’s final solution for CP1 (left) and CP2 (right) ... 226

Figure 137: P10’s final solution for CP1 (left) and CP2 (right) ... 227

Figure 138: P11’s final solution for CP1 (left) and CP2 (right) ... 228

Figure 139: P12’s final solution for CP1 (left) and CP2 (right) ... 229

Figure 140: P13’s final solution for CP1 (left) and CP2 (right) ... 230

Figure 141: P14’s final solution for CP1 (left) and CP2 (right) ... 231

Figure 142: P15’s final solution for CP1 (left) and CP2 (right) ... 232

Figure 143: P16’s final solution for CP1 (left) and CP2 (right) ... 233

Figure 144: P17’s final solution for CP1 (left) and CP2 (right) ... 234

Figure 145: P18’s final solution for CP1 (left) and CP2 (right) ... 235

Figure 146: Collective answers from participants during the Post-Study Questionnaire: ‘Do you feel

that the study accurately portrayed your approach? Why do you feel this way?’ 236

Figure 147: Collective answers from participants during the Post-Study Questionnaire: ‘Do you think

the analysis did reflect on your understanding or were the findings inaccurate? (Please be honest)’

 .. 237

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 15

Figure 148: Percentage of participants who believed code puzzles would be useful to them. 238

Figure 149: Percentage of participants who believed that code puzzles would be a useful revision

technique ... 239

Figure 150: Tertiary Study interface presented to participants (including the rubber icon and T icon

that caused the issues) ... 242

Figure 151: Scatter graph for time taken to complete the puzzle by each participant (Puzzle 1: range =

20:23-43:57, M = 30:08, SD = 12:18|| Puzzle 2: range=09:37-15:20, M = 12:55, SD = 02:58) for the

tertiary study. ... 246

Figure 152: Scatter graph for the average time spent on each piece per puzzle (Puzzle 1: range =

00:09-01:55, M = 01:19, SD = 00:30|| Puzzle 2: range=00:03-00:12, M = 00:10, SD = 00:04) for the

tertiary study. ... 247

Figure 153: A bar chart of P19’s Grouped Time Intervals – i.e., the sum of the time taken to place

each piece .. 248

Figure 154: A line graph presenting a general overview of P1’s time placement pattern – i.e., the time

for each individual movement – for CP1. .. 249

Figure 155: A bar chart of P20’s Grouped Time Intervals .. 250

Figure 156: A line graph presenting a general overview of P20’s time placement pattern for CP1 ... 250

Figure 157: A bar chart of P21’s Grouped Time Intervals .. 251

Figure 158: A line graph presenting a general overview of P21’s time placement pattern for CP1 ... 252

Figure 159: A line chart which demonstrates the average time each participant spent on each part of

CP1. .. 253

Figure 160: A bar chart of P19’s Grouped Time Intervals .. 254

Figure 161: A line graph presenting a general overview of P19’s time placement pattern for CP2 and a

table documenting the top five pieces that had the longest time intervals. 255

Figure 162: A bar chart of P20’s Grouped Time Intervals .. 256

Figure 163: A line graph presenting a general overview of P20’s time placement pattern for CP2 ... 256

Figure 164: A bar chart of P21’s Grouped Time Intervals .. 257

Figure 165: A line graph of P21’s time placement pattern for CP2 ... 258

Figure 166: A line chart which demonstrates the average time each participant spent on each part of

CP2. .. 258

Figure 167: Clustered bar chart for the number of movements made by participants for Code Puzzle 1

(CP1) and Code Puzzle 2 (CP2). .. 260

Figure 168: Stacked bar chart illustrating the number of movements made per puzzle piece per

participant for CP1. .. 261

Figure 169: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1. 262

Figure 170: Stacked bar chart illustrating the number of movements made to create each line of code

per participant for CP2. .. 263

Figure 171: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1. P1’s 63

unclassifiable movements are omitted. ... 263

Figure 172: The classification of movement type for each participants’ movements in CP1 and CP2.

 .. 264

Figure 173: Representations of P19’s submitted solutions for CP1 (left) and CP2 (right) 266

Figure 174: Representations of P20’s submitted solutions for CP1 (left) and CP2 (right) 267

Figure 175: Representations of P21’s submitted solutions for CP1 (left) and CP2 (right) 268

Figure 176: Participants answers to the background questionnaire question: ‘How confident are you

as a programmer?’ in the tertiary study (M = “Fairly Confident”) ... 269

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 16

Figure 177: Participants answers to the background questionnaire question: ‘How many

programming languages are you: fluent, proficient and beginner in?’ for the tertiary study. ‘Other

Languages’ are for languages selected by only that participant and could compromise their identity.

 .. 270

Figure 178: What programming languages are you fluent or proficient in? ‘Other Languages’ are for

languages selected by only that participant and could compromise their identity. (Java: total = 2

participants || HTML: total = 2 participants) ... 271

Figure 179: Three stacked bar charts that illustrate the tertiary participants’ answers to three related

questions in the background questionnaire: ‘What qualities does a programmer require (in your

opinion)?’ (top); ‘Which qualities of a programmer do you feel you have?’ (middle); and ‘Which

qualities of a programmer do you feel you need to improve on?’. These were codes created through

applying Thematic analysis to the open-ended question answers given. ... 272

Figure 180: What is the most important aspect of understanding programming (in your experience)?

 .. 273

Figure 181: How participants answered ‘Can you describe the steps you take to solve a programming

task?’ for the tertiary study; the process could not be generalised as each participant gave a unique

answer. ... 274

Figure 182: Bar charts for the pre-CP1’s (left) and pre-CP2’s (right) questionnaire’s closed questions

on task difficulty for the tertiary study. (Puzzle 1: M = ‘Slightly easy’ || Puzzle 2: M = ‘Neither easy

nor difficult’) .. 275

Figure 183: Bar charts for the pre-CP1’s questionnaire’s thematic analysis on open-ended questions

on task difficulty for the tertiary study. ... 276

Figure 184: Bar charts for the pre-CP2’s questionnaire’s thematic analysis on open-ended questions

on task difficulty for the tertiary study. ... 277

Figure 185: Pie chart the pre-CP1’s questionnaire’s thematic analysis of why they found the selected

item hard on open-ended questions on task difficulty for the tertiary study. 278

Figure 186: Bar charts of the post-code puzzle question answers for CP1 (left) and CP2 (right). 280

Figure 187: Number and type of participants who were identified as workspace-orientated

participants. ... 287

Figure 188: Our proposed workspace design. ... 288

Figure 189: Hypothetical example of ‘grouping’ of pieces in the workspace and the difficulties

between identifying group boundaries. .. 291

Figure 190: Vocabulary used in the post-CP1 survey (post-CP1) and post-CP2 survey (post-CP2). Only

words mentioned over three times were included and prepositions and conjoining words have been

omitted alongside punctuation. ... 295

Figure 191: Straussian Grounded Theory applied to the verbal transcripts for Puzzles 1 and 2 for the

Pilot, Secondary and Tertiary studies. ... 302

Figure 192: Low difficulty programming concepts linked to parts of a program that participants were

observed to quickly complete .. 303

Figure 193: Proposed cluster-based code puzzle in light of the novel finding of the workspace 310

Figure 194: The structure of the Quantitative Understanding Indicator (QUI) for each programming

concept. .. 319

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 17

List of Equations

Equation 1: The Time Interval calculation used to calculate how long a participant was spending on a

single piece. Key: Tu = Time piece is picked up, Td = Time piece is placed on the table, Ti = time

interval. .. 110

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 18

Nomenclature

• Workspace – The novel, physical space that exists between the randomised puzzle pieces

and the final constructed solution in 2D Parson’s Problems. NPs grouped pieces together,

providing insight into how related NPs feel pieces are to one another based on perceived

similarity of concepts and/or context which the pieces were used in.

Abbreviations

• CP1 – Code Puzzle 1 (2D Parson’s Problems/One line of code per piece)

• CP2 – Code Puzzle 2 (One segment/word/punctuation piece of code per piece)

• CS – Computer Science

• EAS – The School of Engineering and Applied Science at Aston University

• EP – Expert Programmer

• IT – Information Technology

• M – Mean

• NP – Novice Programmer(s)

• SD – Standard Deviation

• SME – Small or Medium-sized Enterprises

• UK – United Kingdom

• QUI – Quantifying Understanding Indicator

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 19

Chapter 1. Why is it important to understand Novice Programmers?

Novice Programmers (NPs) need to be understood and encouraged to succeed to remedy the

growing shortage of programmers in industry and consequently reduce the digital skills gap.

Computer Science (CS) and pedagogical researchers – such as the works of Benda, Bruckman, and

Guzdial (2012), Griffiths (2014), Hu (2015) and Walters (2018) – have clarified that understanding,

communication and effective teaching of NPs is crucial to bridge the digital skills gap and promote

sustainable jobs.

Understanding the perspective and mind of an NP is challenging due to communication barriers that

exist when a learner cannot explain effectively to their tutor what it is that they do not understand.

This barrier likely contributes to the inflated drop-out and failure rates for CS courses. There are

conflicting views on how to best to obtain, identify and represent an NP’s level of understanding and

whether there is a way to obtain this information in a way that can minimise the frustration caused

by the process of learning how to program. This research aims to identify and evaluate whether it is

possible to accurately discern an NP’s understanding and, if so, how can such understanding be

extracted.

This chapter provides an overview of the importance, background, and context of the research and

clearly states the research: problem, question, aims, objectives and outcomes while clarifying the

significance, scope and limitations of the research.

1.1 Why are programmers in demand?

As the significance and widespread usage of technology increases, so does the need for skilled

programmers; businesses require programmers to utilise and effectively maintain an up-to-date

virtual and social presence in order to stay relevant in modern times. Businesses often need to

compete on a global scale, and the conception of the internet was the first stage of the dissolution of

the importance of needing a physical and high-street based presence. According to Griffiths (2014), a

third of UK SMEs had no website presence, and two thirds of UK SMEs did not sell or market their

stock online despite contributing to 99.9% of the UK’s private sector businesses. As a result, the

SMEs’ £1,606,000,000 turnover could have been boosted to £18,800,000,000 had they recruited

programmers to digitise and streamline their front and back-end business processes (Griffiths, 2014).

Programmers are therefore relevant, highly in demand and desirable to modern day employers.

However, companies specialising in recruitment – such as Robert Walters (2018) – reported that the

UK has a Technology Skill Gap. Walters (2018) conducted a survey in collaboration with popular job

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 20

websites – such as Totaljobs and Jobsite – to question over 550 UK-based technology professionals

on their experiences with finding and recruiting programmers. Walters (2018) discovered that: 70%

of employers were anticipating a shortage of programmers in the near future; 24% of employers fear

that a lack of programmers would greatly impact their business policies and financial gain; 11% of the

employers did not believe the UK was prepared to “compete on a global scale in the technology

industry” as a result of this skill gap; and approximately 55% of employers believed that the UK’s

political climate would cause an even greater technology skill gap – particularly in Yorkshire, London

and the North of England where “programmer shortages were already great” (Walters, 2018). While

Walters’ (2018) research is self-published on their own website and cannot be found in an

independently peer-reviewed source, other scholars have supported these claims with older sets of

peer-reviewed data – for example, Golding (2008) expressed concern that recruiting programmers

may not be an immediate problem in 2008, but that a technology skill gap was present and would

become a future issue if not resolved. Sadly, this issue was not resolved as digital inequality and a

digital skill gap are exacerbated according to April 2020 statistics; approximately 1,900,000 UK

households were without internet, with tens of millions reliant on “pay-as-you-go services” to access

benefits online (Pellini, 2020; Guardian 2020). These are people who could, with the right support

and environment, become computer literate and even proficient programmers but are unlikely to

attempt programming without having adequate experience with computers.

According to McDonald (2016), the combination of the UK Technology Skill Gap and UK Digital Skill

Gap costed the UK economy £63,000,000,000 a year, making any effort to close the skill gap

beneficial to UK taxpayers. But why do these costly skill gaps still exist in 2021?

1.2 Why is there a shortage of skilled programmers?

CS courses are attractive as programmers are in-demand, well-paid and can work on projects in a

variety of different disciplines or choose to become aspiring entrepreneurs or inventors (Walters,

2018). Záhorec et al. (2020) highlighted the issues with the increased attraction to CS courses, noting

that students are pressured to apply and excel in CS courses due to the perception that CS graduates

will have plenty of opportunities for a stable, high-paying job to cater for the ever-increasing

demands of the digital age. While Bennedsen and Caspersen (2007) found no notable difference

between the emotional well-being of successful and unsuccessful CS students, Utting et al. (2013)

suggests that the increased pressure to succeed may cause some CS students to misjudge where

their skill level will be at the end of their first year of university. Záhorec et al. (2020) highlighted the

issues with the increased attraction to CS courses, noting that students are pressured to apply and

excel in CS courses due to the perception that CS graduates will have plenty of opportunities for a

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 21

stable, high-paying job to cater for the ever-increasing demands of the digital age; this perception is

supported by the UK Government’s report indicating that the “UKCES Sector Insights report predicts

that by 2022 some 518,000 additional workers will be needed to fill the roles available for the three

highest skilled occupational groups in the digital arena” (Shadbolt, 2016). While Bennedsen and

Caspersen (2007) found no notable difference between the emotional well-being of successful and

unsuccessful CS students, Utting et al. (2013) suggests that the increased pressure to succeed and

obtain such jobs may cause some CS students to misjudge where their skill level will be at the end of

their first year of university. Arguably, when a student’s expectations mismatch their performance,

this can lead to disappointment and discouragement which could negatively affect satisfaction

metrics out of the control of the tutors. Yet, tutors may minimise the impact of this cognitive

dissonance by addressing the realistic skill level that students will be at throughout the course and

can assess whether their students are being realistic through satisfaction rates and surveys (Shee and

Wang, 2008). Additionally, the marketing of such courses needs to ensure that inflated distortions of

how well they will be able to program are not encouraged as this could further exacerbate the

disappointment students feel when their expectations do not meet reality.

Despite the skill shortages, there are still record numbers of people applying to take CS courses

(Záhorec et al., 2020), so there is no shortage in the quantity of candidates interested in pursuing CS.

Yet retaining these candidates has been proven to be difficult; according to the HESA (2020)

university-level CS courses had the worst drop-out rates in 2018 with 10.7% of undergraduates

dropping out of their CS course before the end of their first year – this is 3% higher than the next

course with the highest dropout rate, Advertising (7.7%) – and is therefore a significantly worrying

statistic considering the UK Technology gap. Walters (2018) and Computer Weekly (2019) both cite

growing concerns about the quantity of programmes dropping out of their courses. While NPs

encounter similar issues like any other student from a differing field, the inflated dropout rate

indicates a subject-specific issue alongside the usual reasons for dropping out (i.e., academic

difficulties, personal, mental health, social, technical and/or financial issues as suggested by Luciana-

Floriana et al., 2020), it is likely there is subject-specific issues present for CS specifically. CS can be

considered a difficult discipline due to a “steep learning curve” (Ihantola and Karvita, 2011, and can

be considered not an easy discipline to excel in as some graduating students are not up to employers’

standards (Walters, 2018).

While Vahldick (2015), Hnin (2017) and Bosse and Gerosa (2017) have conducted studies on how

retention rates could be improved in CS courses, collective causes of the high drop-out rates have

not yet been established; this is because a collective study across CS courses to establish a universal

cause for inflated dropout rates is challenging as CS courses vary in terms of programming languages,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 22

entrance requirements, course advertising (i.e., students’ cultures, backgrounds, interests, pre-

conceptions about programming), programming paradigms, teaching styles, content and purpose

making comparisons difficult.

1.2.1 The difficulty of programming

Programming can be difficult for NPs to grasp, and that NPs need to be understood to help reduce

excessive the CS course failure and/or dropout rates courses (Lahtinen et al., 2005; Parson and

Haden, 2006; Correia et al., 2015; Santos and Gorgônio, 2015; Vahldick, 2015; Hnin, 2017; Záhorec et

al., 2020)– yet, to understand why programming is considered difficult we must first explore the

definition. Guzdial et al. (2005) define programming as the process that generates “an executable

segment of code that performs a required task” where the process of programming is language-

dependent, and the generated flow of logic of the solution is language-independent. However,

programming languages often were created with a specific programming paradigm in mind – for

example, Java is traditionally object-orientated (Oracle, 2020) – leading to Thompson (2008)

suggesting that programming paradigms influence the way a solution is constructed, and that the

flow of logic is therefore language-dependent. Conversely, Pitta-Pantazi et al. (2007) note that

mathematical equations are language-independent, as equations can be equated to the flow of logic

of an algorithm. Therefore, the holistic process of programming is important when cross-examining

studies.

Popularity of any given programming language may change over time, making direct course

comparisons an issue if a language has fallen out of favour in syllabuses as it may not be as widely

taught as it once was. The language itself may evolve and cause parts of the language to become

depreciated in favour of new parts of the language. For example, in Java, the java.util.Date has now

been depreciated and almost replaced by java.util.Calendar – which operates in a different way to

Date due to Calendar being an abstract class rather than a concrete class which offers a different

level of difficulty for an NP. Therefore, to achieve the same functionality in older versions of the

language may be more difficult than present day if parts of the library relevant to the problem did

not exist at that point in time, making course comparisons difficult if the years between the courses

are drastically different. However, if researchers chose a more general aspect of the CS course – such

as investigating which programming paradigm is optimal for NPs like Bosse and Gerosa (2017), then

the research may not become so quickly outdated. Nevertheless, the selection of intended

programming paradigm and programming language(s) for CS courses are crucial to an NP’s

experience of programming and perception of programming in general. For example, error messages,

syntax, language documentation, and the development environment are key to influencing the NPs’

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 23

experiences. Hu (2015) noted that “poor[ly] designed computer languages” and IDEs cause additional

barriers for NPs, and that language and IDE selection is therefore crucial to instil confidence in NPs

and avoid cognitive overload. Many programming concepts are abstract, yet the selected

programming language is the tangible learning element for an NP and their tutor. In a novice’s eyes,

writing a program is an authentic task that provides evidence of their capability as a programmer,

and as a tutor, writing a program is evidence that the novice understands programming concepts and

can apply them in relevant contexts. Consequently, if NPs are struggling to write code and debug

effectively, they can view this as a reflection of their own lack of capabilities and potential to be a

programmer and become frustrated and disheartened (Bosse and Gerosa, 2017; Giannakos et al.,

2017). Lahtinen et al. (2005) surveyed 559 undergraduate CS students and 34 teachers across 6

universities in 5 different countries; as part of the survey, they were asked to rate the perceived

difficulty of various aspects of their computing courses on a Likert scale, where 1 was ‘very easy’ and

5 was ‘very difficult’. They discovered that the average student perception (2.8) was lower than that

of their teachers (3.5) across all universities. On average, the students and teachers rated the same

three programming concepts as the most difficult to learn, and they are (in the order of highest rated

difficult concept to lowest rated difficult concept out of the top three). These difficult programming

concepts imply that computer architecture and the way execution of a program works are trouble

areas for NPs, which is interesting, as these are, arguably, tangible elements that work in the

background of a high-level program execution but are integral to the way a program works rather

than the abstract programming concepts proposed to be difficult by Bosse and Gerosa (2017). This

discrepancy likely highlights that the 559 CS courses may have spent more time, on average, teaching

programming concepts/language/paradigms than teaching about the integral process of how a

program runs. These findings also indicate that topics that require a mixture of programming

concepts, knowledge of computer architecture and practical implementation elements were deemed

the most difficult; supporting the idea that programming is a multi-faceted, multi-dimensional and

layered technical skill which contributes to the difficulty of programming. Sleeman (1986), Soloway

and Spohrer (1989), du Boulay (1989), Kölling (1998), and Khazaei and Jackson (2002) support these

findings by arguing that NPs struggle to understand what a program is, and how the compiler works.

In addition, Lahtinen et al. (2005) discovered that students and teachers considered language-specific

libraries and abstract data types to be very challenging thus supporting the claims of Thompson

(2008) and Hu (2015). Finally, Lahtinen et al. (2005) found that students and teachers, on average,

rated the same three programming concepts as the easiest to learn, and they are (in order of lowest

rated easy concept to highest rated easy concept out of the top three): selection, repetition and

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 24

variable. – which suggests that the logic flow of a program is the easiest element to understand for

NPs.

The programming language alone is not enough – there are now multi-paradigm languages (i.e.,

Python) that make direct course comparisons difficult without providing context in the way the

language has been presented and taught, as two CS courses that provide the same language might

not use the same paradigm. Research is inconclusive about the ‘best’ programming paradigm for NPs

to learn first (Ehlert and Schlute, 2009; Bosse and Gerosa, 2017), and therefore there is no universally

agreed upon paradigm or language that is optimal for NPs. Consequently, Kauffmann (2011) and

Giannakos et al. (2017) acknowledged that the way programming is taught is likely “not optimal” and

various pedagogical frameworks – such as Variation Theory proposed by Marton and Tsui (2004) –

have been proposed to try and improve the quality of CS courses.

Even if the hurdles of programming paradigms, concepts and languages are overcome, the process of

programming itself is challenging. NPs need to develop their knowledge alongside their critical

thinking capabilities which can cause cognitive dissonance if they are accustomed to memorising

facts as a form of learning – such as by rote learning – as knowledge recall alone is not sufficient to

become a proficient programmer. Therefore, NPs may have to think in a different way to what they

have been taught in other subjects (Bork, 1972; Desmedt and Valke, 2004). Bosse and Gerosa (2017)

and Giannakos et al. (2017) supports that NPs struggle with the process of programming rather than

the language, as they found that NPs can get frustrated with the process of debugging and with their

inability to write “effective solutions”. According to Lister et al. (2006), programming can be viewed

as a “hierarchy of knowledge and skill”, inferring that NPs likely require a ‘good’ understanding of the

basic building blocks of how to build a program, before they can fully understand higher-level

programming concepts such as software design patterns, which can contribute to the complexity due

to the multi-level nature of the knowledge needed.

NPs need to develop and evolve appropriate strategies to approach programming (Thompson, 2008;

Zarb and Hughes, 2015; Bosse and Gerosa, 2017). Beaubouef and Mason (2005) postulated that a

lack of mathematical and problem-solving skills was a major difficulty for NPs. Spohrer (1989) created

a document amassing older research which dealt with the preliminary issues presented by NPs, and,

in this document, it is suggested that NPs typically have a “surface level” of knowledge regarding

programming which is revealed when they fail to apply the concepts to a practical solution. Lahtinen

et al. (2005) observed “the knowledge of novices tends to be context specific, and they also often fail

to apply the knowledge they have obtained adequately”.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 25

Consequently, there is an emphasis on NPs developing effective problem-solving strategies and

programming intrinsically requires critical thinking as a skill and, as such, a plethora of general

approaches to software development and problem solving are taught in CS courses (Aston University,

2020). Three different approaches have been selected to serve the purpose of illustration the

variations that exist within the field of CS and are commonly taught to NPs (Aston University, 2020);

Polya’s (1945), Vicker’s (2009) and Stepwise/Top-Down process (2020).

There are obvious similarities between Polya’s (1945) and Vicker’s (2009) approaches, and Vicker

(2009) does acknowledge influence from the traditional general-purpose problem-solving process

and confirms its relevance for programmers. Vicker’s (2009) evaluation stage is more formally

documented, in the hopes that NPs will evaluate and reflect upon their own code and process to

correct it for future coding exercises. Stepwise process is quite different and can be equated to a

technique that a programmer may use to divide and conquer their code. Consequently, the Stepwise

approach is designed to alleviate the intrinsic cognitive load by allowing programmers to focus on

individual steps rather than experiencing cognitive overload and becoming unsure where to start

constructing their solution and therefore acts as a framework to help shape an NP’s computational

thinking pattern. The generalness of these approaches garners criticism in the context of

programming, as NPs are unlikely to be self-aware enough to devise a plan that is unchangeable –

and while reflection does take place at the end of the process – it is likely an iterative process and

‘trial-and-error’ aspect is incorporated naturally when they first start programming. Similarly, Vicker’s

(2009) approach is very document-heavy; NPs may become overwhelmed by the sheer volume of

reflective work they need to proactively participate in and become unable to concentrate on what

they can surmise from their work. In contrast, the Stepwise approach is simplistic and does not

indicate how they should divide the problem which can lead to confusion or creating too many sub-

problems from a major problem resulting in the over-complication of a task and making redundant

steps. In essence, NPs may resonate with one problem solving process over another based on their

mental model and computational thinking pattern style at first, and then learn how to apply and use

the appropriate process to the problem when needed once enough practice and experience has

taken place (Kauffmann, 2011).

1.2.2 Student misconceptions about CS courses and programming

Not all CS failure or dropout rates are attributed solely to the CS tutor and/or teaching style – the

way a course is advertised, and consequent preconceptions of a subject and course by the students,

contribute to the dropout and failure rates. This is particularly true for CS, where Beaubouef and

Mason (2005) discovered that some students believed IT was synonymous to CS, and where students

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 26

had unrealistic expectations about their ability to program by the end of their first year, contributing

to cognitive dissonance.

Hu and Kuh (2000) suggested that the perceived relevance of a topic to the CS students’ desired

occupation is important to help retain CS students. Similarly, Hu and Kuh (2002) and Beaubouef and

Mason (2005) argued that CS students joined courses with specific interests in mind – if the CS

course spent little-to-no time on these interests, CS students are likely to lose interest and

motivation to continue with the course. Inspiration and motivation are key – with a CS student’s

personal investment in a course and the importance of the topics being paramount to happy CS

students (Shee and Wang, 2008; Alshammari, 2016). Motivation is important, as Bransford et al.

(2020) contend that practice is essential to learn, it could be, therefore, that effective NPs

automatically perform ‘deliberate practice’ – in other words, in other words, practice which focuses

on areas that a learner is struggling with is required with adequate feedback – as opposed to

ineffective practicing which includes non-focused regurgitation of knowledge, or repetitive focus on

an area which does not need enhancing. Shaffer and Resnick (1999) also argued that the use of

‘authentic tasks’ – tasks that are realistic to the domain – are required to further improve the quality

of the practice. However, an issue with using authentic tasks with NPs is that it runs the risk of

causing cognitive overload if you were to, say, give them a requirements documentation and ask

them to design and implement a program to meet the needs of a client. The idea of authentic tasks

seems to conflict with the suggestions of Ihantola and Karvita (2011) who propose that the task

should be set at the level of the programmer – for example, giving an NP who can barely trace or

explain in plain English what a program does would likely struggle with a realistic task given to a

professional programmer. Similarly, Kauffmann (2011) contends that NPs “bypass self-control” – in

other words, NPs often went and created their own solutions rather than comparing and trying to

match their solution to the sample one – and thus make their lives more difficult for themselves and

the tutor. Perhaps, therefore, there should be certain aspects of a task that remain authentic, and

tutors should ensure the CS students remain focused on the task, but the level of that task would

likely be ineffective if the task is hyper-realistic as it would overwhelm an NP and they may not focus

on the critical aspect of the object of learning. However, a balance needs to be struck – if an NP is too

rigidly confined then inspiration and motivation may wane. Keeping students inspired and motivated

is difficult; as noted by Kauffmann (2011), CS students struggled to get “the bigger picture” due to

the modular-style approach commonly adopted to CS courses, which was found to contribute to CS

students’ struggles as they failed to relate programming concepts to one another, causing issues for

CS staff in identifying the source of their poor understanding. Lister (2004) and de Raadt (2008)

noticed that if students have a “fragile knowledge”, where they cannot apply relevant knowledge to

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 27

achieve an unforeseen task, that this correlates to higher failure rates in practical undergraduate

courses in comparison to theoretical undergraduate courses – this is applicable to NPs in CS courses,

if they cannot identify relevant programming knowledge and apply it, they are likely to fail as CS is a

practical course.

Cultural differences and expectations play a significant role in whether the CS student feels the

quality of teaching is up to standard – a CS student who expects more practical-based application

that is confronted with a traditional authoritarian lecture series is likely to feel dissatisfied and

affects their personal behaviour in willingness to defer to authority if they need assistance as certain

cultures may prefer to shy away from confronting figures of authority to ask queries. In essence, a

disappointed, disheartened CS student is far more likely to drop out and/or fail than a content CS

student – therefore, both CS tutors and CS course advertisements need to be carefully crafted to

mitigate these risks for CS courses. Similarly, the previous subject(s) studied by the CS student are

relevant – Bork (1972) postulated that NPs from science backgrounds may be more inclined to have

fewer issues adapting to programming than those from the arts, as, Bork (1972) argued that the way

in which science approaches subjects is like the “mindset required for programming”.

1.2.3 Communication barriers preventing effective dialogue between CS students and tutors

Good communication skills are highly desirable transferable skills wanted by CS employers (Begel and

Nagappan, 2008; Walters, 2018); therefore, it is important to investigate why poor communication

skills might manifest so that NPs can achieve their potential successfully and harness a skill that is

very valuable in the current climate.

1.2.3.1 Psychology of Communication Barriers and why they occur

From a psychological perspective, learners of any discipline struggle to express what they do not

comprehend – this thesis dubs this issue a ‘communication barrier’ that is formed between tutor and

student and prevents effective communication of programming issues due to a misunderstanding or

mounting frustration that occurs during miscommunications.

Sweller et al. (1988) proposed Cognitive Load Theory (CLT) to “provide guidelines intended to assist

in the presentation of information in a manner that encourages learner activities that optimise

intellectual performance” and, partly, to explain the phenomenon of a learner feeling overwhelmed.

In CLT, it is suggested that humans have a finite capacity to obtain and store information, and that

too much information at any one time can cause information overload which is when a learner feels

so overwhelmed by the information that they cannot process it effectively (Sweller et al, 1998).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 28

Information overload is known as ‘cognitive overload’ and Sweller at al. (1998) advise against

intentionally causing this state of mind as it can cause the learner undue stress and discomfort and

may cause an inability to learn or engage with the content presented to them. Simplistically,

cognitive load can be referred to as ‘light’ or ‘heavy’ – each linking to how strenuous the activity is on

cognition.

Regarding programming, NPs have a heavy cognitive load as they have to focus on several different

aspects of programming simultaneously (e.g., problem analysis, computational thinking, selecting

relevant programming concept knowledge, thinking about the design of their solution, testing their

solution, debugging) and can therefore easily become overwhelmed if the content is not tailored to

their capabilities effectively. Cognitive overload is linked to poor communication or ability to cite the

cause of the discomfort (Sweller et al., 1998) so NPs who are overwhelmed may say, for example,

that they “don’t understand Java” when it is only one aspect of Java that they might not comprehend

– but they are so overwhelmed, that they don’t know what to focus on to identify the issue. Humans

are hard-wired to focus on negative aspects more so than positive aspects, and therefore it is no

surprise that an overwhelmed learner is liable to focus more on what they cannot do as opposed to

what they can do.

1.2.3.2 Reasons for CS Communication Barriers

CS is a terminology-heavy discipline that requires a motivated, inspired learner that is knowledgeable

in abstract programming concepts, versatile in critical thinking, and willing to practice programming –

involving both comprehension and literacy of programming language. CS companies, such as

Microsoft in 2008, have rated “good communication skills” as a highly desirable transferable skill that

they look for in programmers (Begel and Nagappan, 2008). However, Freudenberg (2007) noted that

“the cognitive aspects of [communicative programming techniques such as pair programming] are

seldom investigated and little understood”, possibly because studies into programmers

communicating with one another often use quantitative metrics – such as using the number of

communication transactions per process and comparing it to the quality of an end goal (Zarb and

Hughes, 2015), rather than investigating the form of interaction exhibited or the quality of

communication. The quantitative metrics used for communication are not surprising, considering

that measuring the quality of communication using qualitative metrics is often subjective by nature

and that the form of communication can differ from all kinds of extraneous variables – such as the

participants’ temperament, personality, confidence and/or culture.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 29

Communication barriers occur when there is a misunderstanding in words or phrasing, or when a

learner does not understand the topic enough to know what they don’t understand and are

struggling with – this can result in the learner stating they don’t understand the whole concept when

it is just part of the concept they do not comprehend. Research has shown that NPs are not an

exception here – Ragonis and Ben-Ari (2005) found that programming students answered generally –

so, they could not specify what kind of encapsulation, modularity and data structures they were

referring to in their answers. Similarly, du Boulay (1989) argued that NPs did not know what a

program was, and in essence, did not know what a program was not implying that some NPs may not

even know what they are meant to produce. Likewise, Garner et al. (2005); Benda et al. (2012) and

Hu (2015) discovered that NPs sometimes did not know how to approach programming effectively

and/or where to start with the process of programming – which these types of NPs would not

necessarily know that their process isn’t as effective as it should be or have the expert knowledge to

be able to remedy this issue without assistance but explaining this issue would be difficult if NPs do

not know where to start. Thompson (2008) suggested that NPs may struggle to identify the relevant

domain and past knowledge required in order to accomplish the task; NPs would not be able to

communicate without expert assistance as these types of NPs do not know what is and isn’t relevant.

Thompson (2008) and Kauffmann (2011) suggested that NPs struggle to relate CS concepts together,

as NPs fail to see the bigger picture on how the logic flow can be transferred to another situation,

suggesting NPs may ‘know’ a concept in one instance, but not in another, which can confuse NPs and

their tutors. Bosse and Gerosa (2017) and Bosch and D’Mello (2017) highlighted that some NPs

struggle with debugging which indicates that some NPs struggled with understanding the source of

an error, comprehending the error message, and/or the internal computer’s logic related to the

reason for the error appearing but would likely not be able to express this to their tutors. Bosse and

Gerosa (2017) elaborated on the importance of NPs not transferring programming paradigms too

early, as this is likely to cause confusion, and NPs would not know why cognitive dissonance was

present and may attribute such discomfort to not liking the language as they do not comprehend the

abstract concept of programming paradigms. du Boulay (1989) postulated that NPs can

misunderstand or have a shallow depth of understanding about the purpose of syntax and

indentation, which can cause issues for NPs if their assumptions are challenged by evidence of the

syntax or indentation being used differently to their expectations.

Due to the complexity and practical implications of programming, CS studies that investigate

communication are typically linked to the study of programming or teaching techniques – such as

pair programming – and therefore further analysis will investigate the frequent research areas that

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 30

are linked to the communication barrier than can occur between programmer and tutor, or

programmer and programmer.

1.2.3.3 Frameworks for Analysing Communication

CS researchers in the area of analysing communication of NPs, particularly in the contexts of pair

programming, argue that using a modified form of Straussian Grounded Theory is recommended

(Zarb and Hughes, 2015) but what is ‘Grounded Theory’? Grounded Theory is a sociology-based

‘middle-range theory’ – a framework that involves both theoretical and empirical research – that’s

primary purpose is to produce a theory driven by evidence ‘grounded’ in reality and can be

supported successfully in similar research settings. According to Oktay (2012), Grounded Theory’s

“focus on the development of middle-range theory is the primary way that [it] differs from other

qualitative methods” and, from the perspective of this research focus, is designed to help with” the

‘meanings’ individuals ascribe to aspects of their cultures or their lives (phenomenology)”. While

there are different versions of Grounded Theory, there are four key components that drive the

formation of a sound theorem: theoretical sensitivity (the ability for the researcher to remove their

biases from the situation and correctly identify the key aspects of the phenomenon that they are

observing), constant comparative method (the ability for the researcher to treat participants as

individuals and compare each instance with one another to develop concepts), theoretical sampling

(where a sample is relevant to explore the selected phenomenon) and theoretical saturation (where

no new categories are observed when more data is added). If all these criteria are met, then a theory

(or set of theories) should be generated relating to the selected phenomenon.

Grounded Theory has been used successfully in the past; Bryant (2004) created a framework,

primarily for the use of studying the dialogue between NPs in pair programming originating from

Straussian Grounded Theory that consisted of the following steps to analyse the transcripts

generated by the pair programming sessions: 1) Creating open codes; 2) Using the open codes on the

transcripts; 3) identify patterns in the coding; and 4) interpret the coding. The key aspect here is that

the researcher is immersed in the dialogue of the NPs and obtains the overall sentiment and feeling

between participants’ and the types of dialogue they use. Zarb et al. (2012) found that NPs

frequently experienced several types of dialogue when communicating to other NPs: review –

examining the code to determine if it is sufficiently achieving the intended task; suggestion – offering

advice on the next step; explanation – explaining an aspect of the code or part of their previous

dialogue, code discussion – general discussion about the code; muttering – where the dialogue is

inaudible or nonsensical noises; unfocused – where the NP gets distracted from the task; and silence

– where the NP is not speaking.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 31

1.2.3.4 Pair programming as a technique to reduce communication barriers

Researchers such as Williams et al. (2000), Begel and Nagappan (2008), and Zarb and Hughes (2015)

have conducted studies and discovered that pair programming does reduce communication barriers.

Pair programming is defined as “a software development technique where two programmers work

together side-by-side on the same machine to achieve their goals” and has garnered popularity in

recent years due to the potential benefits of the technique (Zarb and Hughes, 2015).

Pair programming has a vast array of benefits for both NPs and EPs, and has been reported to

contribute to: greater enjoyment levels (Bryant et al., 2006) and time seeming to pass more quickly

(Sanders, 2002), increased “knowledge distribution” (Zarb and Hughes, 2015), improved problem-

solving capabilities (Williams et al., 2000), improved confidence (Williams and Kessler, 2000b),

improved satisfaction of produced code (Kavitha and Ahmed, 2015), improved team effectiveness

(McDowell et al., 2003), improved time management (DeClue, 2003), higher pass rates (Porter et al.,

2013), improved comprehension of “unfamiliar topics” (Zarb and Hughes, 2015), improved bug

detection (Hulkko and Abrahamsson, 2005), improved refactoring (Chaparro et al., 2005), self-

sufficiency (Zarb and Hughes, 2015), and better quality code (Cockburn and Williams, 2001) when

compared to traditional avenues. Hanks (2006) demonstrated that pair programmers still face the

same issues as solo programmers, but that these issues were more likely to be overcome than when

alone.

Yet, pair programming requires active, cooperative communication to succeed (Thomas et al., 2003;

Begel and Nagappan, 2008; Zarb and Hughes, 2015), with Zarb and Hughes (2015) postulating that

pair programming without the communication is merely “reviewing each other’s code”. In ineffective

pairs, programmers were found to feel discomfort (Cockburn et al., 2001), frustrated, guilty, and

feeling like “they had wasted their time” and that EPs benefitted significantly less than NPs (Thomas

et al., 2003) which led to poor productivity and performance in Aiken’s (2004) study. Likewise, Melnik

and Maurer (2002) argued that trust is paramount to a successful pairing and that distrust among

pairs caused significant issues.

The quality of communication is, therefore, an integral part to pair programming – but what

differentiates a successful and a non-successful pair and can this be predicted? The answer lies in

compatibility of communication and temperament. Williams and Kessler (2002) diagnosed that a long

silence was a sign that a pair was not communicating effectively, although the exact length of time of

the silence is debatable. Aiken (2004) agreed and suggested that “no more than a minute should pass

without verbal communication”. Bryan et al. (2006) did suggest that a ratio is more applicable –

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 32

suggesting that the driver, the programmer who is coding, and the navigator, the programmer who is

reading, need to speak roughly 60:40, respectively. The exact length of a silence not being

established as a universal metric is not surprising, considering that the cognitive load of the task and

capability of the student needs to be considering when trying to calculate how long is too long a

silence. Different programming tasks have been shown to require different amounts of cognitive

load, which can naturally cause NPs to become lost in thought. Likewise, measuring the time or ratio

of silence to speech does not consider the difficulty of the task, or the nature temperament or

disposition of the programmer – some people are more naturally inclined to be introverted than

extroverted, or may be hyper focused on the task and forget to communicate their thought

processes to their partners. The form of communication is also considered to be important – Flor and

Hutchins (1991) observed that there needs to be an exchange of ideas coupled with regular feedback

in the form of debating when two programmers collaborate on software maintenance. This thesis

argues that there are some missing components to this analysis – and that the quality of feedback

and reasoning behind decisions must also be important factors that need to be acknowledged – if a

pair are ignoring each other or refusing to question the others’ reasoning behind design decisions,

the discourse is likely to become stilted, and the learning process is likely suboptimal. Therefore, a

mutual sense of respect and open channels of communication must be an integral part of successful

pair programming even if these aspects have not been considered as essential – likely due to the

difficulty in measuring what is and isn’t ‘good quality feedback’ and ‘good reasoning behind design

decisions’.

Begel and Nagappan (2008) considered the required temperament of both programmers and

suggested that NPs in pairs needed to exhibit certain qualities: good listener, good debater,

articulate, logical, verbal, friendly, non-defensive, clear, inquisitive, and honesty. Unfortunately, Zarb

and Hughes (2015) observe that scholars fail to “investigate how communication happens within

pairs and how it is or is not effective” and this is further supported by the work of Sharp and

Robinson (2010) and Stapel (2010). This raises the potential research question of how do

programmers communicate, however, this question itself is too big a scope for a single researcher to

comprehensively answer, and due to limited sample size and time available to the researcher, this

research question was not deemed feasible – that said, it is acknowledged that the work on NPs’

types of communication and the corresponding effectiveness of the communication is an under

researched area and a systematic search revealed that there is no universal measurement for how

effectively NPs communicate nor what causes communication to occurs. As suggested by Zarb and

Hughes (2015) “a better understanding of communication within pair programming could lead to

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 33

improved teaching practices” which is why the study of NP communication is an important area to

encourage research in.

Therefore, this thesis proposes that communication barriers in CS contribute to the frustration of

learning how to program and need to be reduced where possible.

1.2.4 The way programming is taught and assessed is not optimal for NPs

While the way programming is taught and assessed is not a primary focus of the thesis, it is

important to acknowledge that the way in which CS courses are taught and/or assessed may not be

optimal and that the research needs to consider the level of difficulty and presentation/style of the

tasks presented to NPs as this impacts the research design.

Janpla and Piriyasurawong (2018) argue that NPs failing to evolve their computational reasoning is a

symptom of traditional lecture-based learning and that switching to problem-based learning would

help to mitigate the issues. However, Kauffman (2011) observed that, when teaching theoretical

programming concepts such as databases and database structures, students struggle with a notable

“lack of knowledge transfer” if problem-based learning was used. However, Century et al. (2020)

suggest that there needs to be a mixture of both lecturing material and tutorials as both the theory

and application of the theory is required for programming an intended learning, although they did

also support the notion that problem-based learning techniques were more effective than traditional

modularised learning for CS courses.

Although the way the content is taught is important, the structure of the content itself needs to be

considered. Ihantola and Karavirta (2011) argue that there are different difficulties of task: tracing –

where a programmer needs to identify the source of a bug, which, by them, is considered a trivial

task. Yet, Lahtinen et al. (2005) and Bosch and D’Mello (2017) disagree that this type of task is trivial

as in the study conducted by Lahtinen et al. (2005) it was reported that errors were considered one

of the most difficult to understand and resolve. Denny et al. (2008) analysed Java submissions made

by first year undergraduates from the University of Auckland with the aim to catalogue the type and

frequency of syntactical errors in submissions and discovered that syntax was a significant barrier for

completing the submissions; even in the easiest version of the Java task, students made several

incorrect attempts to compile and run the code before managing to successfully complete the task.

Research has reported that the most common difficulties in terms of practicalities are: an inability to

find the source of errors; an inability to create an effective solution for a given task; and modularise

the code using elements such as methods, functions and procedures. Denny et al. (2008) also noted

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 34

that the programming concepts that caused the most difficulty were: functions, procedures, error

handling and arrays which directly goes against the findings of Ihantola and Karavirta (2011).

Conversely, Ihantola and Karavirta (2011) postulate that harder tasks are explaining what a program

does in plain English – considered ‘intermediate’ – and writing a program is considered the hardest

task as they argue it requires both understanding of the language and how the compiler works.

Assessment of students’ programming skills are typically based on criteria that requires the student

to be able to create an executable segment of code, that fulfils the required task, with the

appropriate quality of code (e.g., assessments used by Aston University, 2020). Therefore, the

definition for a ‘good level’ of programming should be the creation of an executable segment of

code, that fulfils the required task, with the appropriate quality of code – the highest level of

difficulty of task, according to Ihantola and Karavirta (2011). That said, how long this takes an NP to

achieve such a task is debatable and the complexity of the task itself needs to be considered,

alongside the authenticity.

1.3 Research Motivation, Problem, Scope and Limitations

Programming can be difficult for NPs to grasp, and that NPs need to be understood to help reduce

excessive the CS course failure and/or dropout rates. While there is a multitude of different ways

that could be investigated – such as research into the reasoning behind CS course failures, the

pedagogical designs of CS courses, and the expectations of NPs – reducing the communication

barrier was selected. Studies into communication between programmers of any level is limited,

which was acknowledge by Zarb and Hughes in 2015, and thus any contributing knowledge to this

field is of importance as the communication barrier has been established to cause frustration for NPs

as evidence in pair programming activities. Zarb and Hughes (2015) suggested that research had

failed to illuminate how to facilitate effective communication between NPs, and that little research

had been conducted into the analysis of NP communication patterns and their meanings.

Consequently, this research focused on furthering the understanding of NP communication and

chose to replace peer-interaction with the NP explaining their reasoning to a rubber duck (the

observer) while using a puzzle-based medium as a talking point to study whether this is an effective

form of communicating understanding. Yet, qualitative studies – which are required to address this

research gap – are subjective in nature, and therefore the research uses a mixed methods approach

to try and balance the limitations of quantitative and qualitative research while also offering a

comparison point.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 35

However, it would be an unrealistic goal for the research to presume it can eliminate dropout and/or

failure rates. Instead, this research hopes to contribute knowledge to the fields of CS, CS psychology

and pedagogy that can bridge the gap between tutors and NPs and allow for effective

communication in the hopes that this can lead to making programming a less frustrating discipline to

learn which may, in turn, have an impact on excessive failure and/or dropout rates in CS courses. In

the scope of one PhD, it would be impossible to explore all possible paths associated to reducing

drop-out rates in great depth for all levels of programmers. Therefore, the research chose to focus

specifically on first-year undergraduate CS students due to the accessibility of this type of participant

to the researcher and acknowledges that not all first year CS students have the same level of

programming expertise – therefore there is an inherent assumption that first year CS students are

NPs. That said, it can be assumed that programmers starting an undergraduate course in CS want to

learn programming and are the target audience for trying to reduce the drop-out rates as the

statistics provided by Shadbolt (2016) relate to first year undergraduate CS students.

There has already been a multitude of studies investigating: why programming is difficult; the issues

surrounding the difficulty; and how practitioners can address the difficulty in their teaching practices

that dates back to the 1980s to the 2020s (e.g., Sleeman, 1986; Soloway and Spohrer, 1989; Eckerdal

and Berglund, 2005; Thompson, 2008; Utting et al., 2013; Alshammari, 2016; Záhorec et al.; 2020)

and that only a sub-selection of relevant research has been documented thus far. With many of the

researchers, like Garner (2005), emphasising the importance of understanding the difficulties of NPs

to develop more effective teaching practices. This volume of research spanning decades indicates

that a universal approach and/or universal starting language/paradigm has not yet been established

or agreed upon, and that there are known issues with the difficulty of CS courses that are not easily

identified and/or resolved. Programming is rapidly evolving area, and it is unlikely that a one-size-fits-

all approach will remedy all issues with CS courses. That said, this research aims to focus on

investigating the difficulties of NPs, rather than the noted programming difficulties explained by

tutors and experts.

This thesis will refer to research publications, business journals and practitioners’ pieces where

relevant; as practitioners have an enriched experience of teaching in an authentic environment and

know what is feasibly achieved in a classroom; while businesses have an insight into the quality of

programmer they require; whereas researchers have a typically impersonal insight and may often

have access to larger, peer reviewed datasets. Therefore, all entities have a valuable insight into the

discussion of understanding NPs, why programming is difficult and what quality standard a

programmer needs to achieve at the end of their course.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 36

This research has obtained ethics approval under the Aston University regulations, and we will

discuss briefly how the University ethics regulations impact on this research. Researchers cannot

create alternative methods of teaching and divide up students to receive different approaches, and

qualities of teaching – a student in one group where the teaching method doesn’t work would be

disadvantaged when compared to students in a group with a more suited teaching approach. CS

students who participate having an advantage and/or disadvantage over their colleagues is forbidden

due to ethical and legal implications; this meant that the research design could not use a control

group as a core part of the research and adopted a more interpretative philosophy to research as it is

difficult to generalise or normalise the differences between student perceptions of programming.

Therefore, this research had to rely solely on undergraduate volunteers from CS disciplines.

Additionally, lecturers cannot be made aware of the participants that have participated in any

research studies as this could influence the lecturer to either give them positive or negative attention

in comparison to their peers. Therefore, the datapoints presented in this thesis are anonymised with

the video and audio recordings available on request through Aston University protocols. This meant

that in comparison to other studies in the related areas, the sample size is relatively small. Moreover,

aside from the issues mentioned being out of the scope of the thesis, the recruitment process did

mean acquiring a very large sample size was difficult to perform.

The justification for using undergraduate students, who were at the end of their first year CS course,

is that this is a form of control – this meant all of the participants were exposed to the same modules

and content for one academic year; this was planned as part of the research methodology as the

researcher could not feasibly control participants’ backgrounds, or access their student records, as

that could compromise their identity protection which would be against ethics guidelines. This is

possibly why many of the published research studies that observed participant interactions with

code puzzles were taken from naturally occurring data as part of university courses (e.g., Helminen et

al., 2012) but this was not possible under the University regulations.

As it was not possible to do a longitudinal study with the cohort or allow them to learn a second

language in order to control the environment more, Java, which is an object-orientated language,

was chosen in order to help form part of the nature control that appears in students at the end of

their first year of undergraduate study (as they have all, at least, participated in learning Java for

approximately 15-20 weeks). The datapoints achieved from the three experiments still are significant

and the level of control did mean that the Code Puzzles could be set at roughly the correct level

based on my ability to access the content that they had learned from.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 37

1.4 Research Purpose and Question

The purpose of this research is to explore a potential avenue for accurately diagnosing the

understanding of NPs in order to reduce the impact of a communication barrier (Zarb and Hughes,

2015). While it would be unlikely that one tool would completely solve the issue of inflated drop-out

rates in CS courses, it would be a good first step if practitioners had a diagnostic tool to help identify

their students’ issues.

Therefore, this thesis proposes to use Code Puzzles as an understanding diagnostic tool to help

reduce the difficulty of programming for NPs.

The researcher chose an exploratory research question rather than a confirmatory research question

as, in order to understand understanding, we need to delve into the areas of ontology – capturing

participants’ versions of realities – and epistemology – understanding a particular phenomenon

which is understanding their perspectives of programming using Code Puzzles as a medium (see

Table 1).

Research Question

Can we accurately discern an NP’s level of understanding through the examination of their
interactions with Code Puzzles?

Table 1: Research Question

1.5 Research Aims

The aim of this thesis is primarily A-1, with several secondary aims (A-2 to A-8) investigated alongside

the primary aim (see Table 2). It should be noted that ‘to understand’ is not a measurement by itself

– for example, someone could say that they understand a topic when they do not. As a result, for all

of the aims (see Table 2), the term of ‘level of understanding’ will be measured by whether the

understanding of the participant reflects that of the expert analysing their data, and, whether the

participant agrees that the representation of their understanding as described by the expert matches

their own perceptions of their understanding or whether this is untrue. Level of understanding is an

ambiguous term, but based on the discussion of why programming is difficult we can conclude that

there is potentially a hierarchy of understanding – where certain programming concepts are required

to be known prior to being able to understand others – and that there needs to be exploration into

what these concepts are that NPs need to encounter in our chosen language – Java – and at what

point they ‘understand’ a concept fully without any lack of understanding or misunderstanding, or

whether this could even be achieved. After all, it is unlikely that NPs have a universally applicable

clean point where everything suddenly clicks in their minds. Marton and Tsui (2004) spoke of

threshold concepts when discussing CS – and how there are certain critical aspects of an object of

learning that if an NP learns can deepen their level of understanding to a degree that the NP cannot

default back to the previous mode of thought after learning about the threshold concept. Even so, it

is unclear whether threshold concepts are down to the individual’s perspective of programming

formed by how they relate programming to their own constructed worlds or whether there are

certain aspects of programming that can substantially shift the viewpoint of all NPs at a certain stage

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 38

of their learning. The main issue with measuring understanding is that, according to phenomenology,

we are observers of the symptoms of understanding as we cannot possibly represent understanding

in its true form (Thompson, 2008), after all, we are not in the minds of the NPs and can only

experience the NPs’ worlds through their interactions within the scope of the observer’s world.

Therefore, when this thesis discusses the aspect of ‘level of understanding’ it means the degree of

understanding demonstrated through the NP interactions (movements and dialogue) of Code

Puzzles. The degree of understanding is assessed based on the metrics of whether the Code Puzzle

pieces are used in the correct context based on the final submitted solution (as, we found, that

measuring the time taken to place paper-based pieces was problematic, and also trying to assess

whether the piece is placed correctly in correlation to the pieces already placed but prior to

submission was also extremely tricky to assess) and based on the dialogue and tone of the NPs when

placing the pieces – for example, using the correct terminology for the piece placed and their action

matching their description of that action.

A-1 focuses on whether understanding can be quantified and measured, or, whether the concept of a

‘level of understanding’ is meaningless or unfeasible to represent, whereas A-2 to A-8 assume that A-

1 has been achieved and consequently aim to analyse the usefulness, effectiveness and accuracy

behind the term.

Aim ID Aim Description

A-1 Discern an approach to identify and represent an NP’s level of understanding of
programming concepts and the computational thinking strategies they used.

A-2 Evaluate the accuracy of the level of understanding of an NP by comparing the
observer’s interpretation of the level of understanding to the perceptions of the NP’s
understanding of their understanding.

A-3 Determine the best practice for representing the level of understanding.

A-4 Compare whether learners of a similar level of understanding share characteristics in
the way they interact with Code Puzzles (learner interactions).

A-5 Discover whether a learner’s conceptions and misconceptions about a programming
concept can be identified purely on their learner interactions.

A-6 Discover whether a learner’s level of understanding about a programming concept can
be identified purely on their learner interactions.

A-7 Determine whether a learner’s perception of their own computational thinking
correlates to their actions and thought processes while interacting with Code Puzzle
pieces.

A-8 Determine if there is any correlation between the types of interactions performed and
the NP’s level of understanding.

Table 2: Research Aims

A-1 is the overarching aim – it aims to discover the best way to obtain, represent and use the level of

understanding identified from NP interactions. The secondary aims (see Table 2) aim to further

dissect this aim and create more of a specific focus.

A-2 focuses on which approaches to data analysis can give us the most accurate representation of

their understanding. It explores whether we can simply assess their understanding accurately by

looking at the breadth and depth of their explanations, or, whether a more hierarchical approach is

more suited to more accurate and effective readings. This objective also aims to explore whether we

can represent the level of understanding by comparing the pre-defined intended aspects of the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 39

object of learning and seeing whether the NP also comments on the same aspects when looking at a

specific piece.

In comparison, A-3 focuses on discerning what is the best way of representing level of understanding

data – whether it is quantitatively, or qualitatively and what type of data is the most useful. For

example, is it better to represent this using discrete or continuous data? It will also explore which

current data structures can be utilised to help represent the level of understanding, should this be

translated to a software system. This objective also explores whether we need a holistic view of all

the interactions, or does it only require detailed analysis of a selection of interactions in order to gain

an accurate representation of understanding.

Furthermore, A-4 explores whether the datapoints collected from each participant are comparable to

one another – for example, it will focus on whether there are common characteristics or movements

across different users when they interact with the puzzles. It also focuses on whether these

interactions can be mapped accurately to the representation of their understanding of a related

programming concept – if the interactions are meaningless, difficult to categorise, or, whether all

movements and comments weigh the same in terms of gaining information about their

understanding. This objective also raises the query of whether we can classify movements as an

overall pattern, and, whether the overall approach that the NP takes reflects on their understanding

of the associated concepts. There is also the other issue of how we identify a characteristic or

commonality between two learners – and whether we can, for example, group learners by

commonalities as no two learners are the same despite us recruiting participants who have similar

exposures to programming. This aim also asks us to explore whether types of movements can be

directly compared to another – are there similar reasons for performing similar movements of pieces

or are the reasons all different?

A-5 relates to the idea that, in theory, if we can identify an NP’s level of understanding we could

identify specific gaps in understanding and/or misconceptions of related programming concepts. This

is separate from A-6 as, if the research cannot identify level of understanding accurately, it might still

be possible to identify various aspects of understanding and concepts related to programming. This

aim explores whether an interaction that reveals a misconception would be the same as one that

reveals an understanding – after all, a misconception could be argued as an incorrect understanding

which differs from a lack of understanding of a programming concept. Additionally, this aim focuses

on whether dialogue is more effective than simple piece placement – or whether both ways

combined are the best approach for communicating misconceptions or lack of understanding of

topics.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 40

A-6 determines whether learner interactions alone are enough to be able to determine the level of

understanding of an NP or whether there needs to be an accompanied explanation from the NP on

the meaning behind their interactions. If, for example, all learners who place Code Puzzle pieces

incorrectly in the final solution area have issues with the related concepts, or, if learners who swap

pieces have issues with mixing up concepts, then, there would not need to be dialogue in order to

determine their understandings or misconceptions. However, if the level of understanding cannot be

purely classified by movements alone then what type of dialogue and what movements best reveal

their understanding needs to be explored

A-7 assesses whether NPs have an accurate perception of their own computational thinking thought

processes; in the secondary and tertiary study, participants were asked to complete a background

questionnaire which asks about the steps they go through to create a program – as the study

observes their interactions with Code Puzzle pieces – their thought processes and computational

reasoning behind the Code Puzzle movements can be compared to their preconceived notions of

how they write programs. While it could be argued that there is a difference between completing a

Code Puzzle and writing a program using a development environment, this aim attempts to explore

whether there are similarities between how the NP interacts with Code Puzzle pieces and how they

program. It should also be the case that if they are generally talking about writing a program, they

should at least follow some of their computational thinking processes that they identify when trying

to write a Java class.

A-8 explores whether the interactions with Code Puzzle pieces can be classified generally or

specifically, and whether these classifications can be directly mapped to either positively or

negatively impacting their representation of their level of understanding – in other words, whether

the movements themselves are unique enough in a pattern that they could be artificially interpreted

with a high level of accuracy.

1.6 Research Objectives

To achieve these aims, and answer the subsequent research question, the following objectives are

defined (see Table 3).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 41

Objective ID Objective Description Aims Covered

O-1 Survey the current literature on knowledge representation,
understanding and the psychology of learning.

A-1 -> A-2

O-2 Document how to represent a level of understanding of an NP. A-1 -> A-3

O-3 Design an experiment to assess whether the level of
understanding of NPs can be identified using Code Puzzles.

A-1 -> A-9

O-4 Recruit and conduct a controlled observation study with at least
20 participants.

A-1 -> A-9

O-5 Record the types of interactions that are performed with Code
Puzzles by the participants.

A-1 -> A-9

O-6 Transcribe and analyse the audible dialogue obtained from the
experiment using Bruner’s functional approach to narrative
analysis and phenomenology-focused thematic analysis to
evaluate whether using Code Puzzles is more effective than
using a traditional approach (questions) to form understanding
representation.

A-1 -> A-9

O-7 Evaluate the usefulness, effectiveness and accuracy of using
Code Puzzles as a way of obtaining information about an NP’s
understanding.

A-1 -> A-9

O-8 Assess the reliability of the algorithms for detecting
understanding in NPs.

A-1 -> A-9

O-9 Design a software architecture and algorithm for how this could
be translated to a piece of software.

A-1, A-3

O-10 Disclose the potential implications and loss of data if there is a
shift from paper-based puzzles to software-based puzzles.

A-1 -> A-3

Table 3: Research Objectives

1.7 Research Outcomes

These objectives form the basis of the of the chosen approach, identified in 1.4 and the consequent

thesis structure, identified in 1.5. O-1 correlates to the Chapters 1 to 3, O-2 to O-6 correlate to

Chapters 4 to 7, and O-7 to O-10 correlate to Chapters 8 and 9.

These objectives led to the research outcomes (see Table 4).

Research Outcome ID Research Outcome Description

RO-1 Design of a diagnostic toolkit that can be used to analyse the
understanding of an NP with a high degree of accuracy (above 60%).
This design includes important modifications to the usual format of Code
Puzzles.

RO-2 A list of recommendations for how to extract the level of understanding
of programming concepts from NP interactions

RO-3 A series of software requirements for how this diagnostic tool could be
transferred to a virtual environment.

Table 4: Research Outcomes

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 42

1.8 Brief Overview of Research Approach and Chosen Methodology

This research implemented an interpretivist mixed-method approach to designing the studies and

collating and analysing the data.

This research recorded scripted, controlled, observations that incorporated a think-aloud protocol

with 21 participants over the course of three studies which monitored their interactions with two 2D

Java Parson’s Problems’ Code Puzzles. The scripted, controlled observations utilised passive

participation from the observer – where the observer is a bystander and only interacts with the

participant when asked a query.

Participants in all three studies answered the same questionnaire, that consisted of two scaling

questions and two open-ended questions, after each Code Puzzle was completed. However, in the

secondary and tertiary studies, participants were asked to complete a background questionnaire that

consisted of open-ended questions on what it is to be a programmer, and a scaling question on

confidence; a questionnaire that consisted of scaling questions before each Code Puzzle on their

perceptions of the task; and a final questionnaire asking dichotomous questions on how accurate

they found the study with the opportunity to write freely at the end of said questionnaire.

Additionally, the secondary and tertiary studies also incorporated an immediate follow-up feedback

session which employed an unscripted, participant observation that embraced active participation

protocols from the observer in order to present real-time feedback on the participant’s difficulties

and query movements that did not make immediate sense to the observer after the puzzle

experiment had taken place.

The researcher transcribed audible feedback and puzzle placement for each of the participant’s

successful recordings (with one video from the pilot study being corrupted due to technical

difficulties). These transcripts were then analysed using phenomenology-focused thematic analysis in

order to organise and categorise the data into recurrent themes, and Bruner’s functional approach to

narrative analysis which aimed to categorise the overall ‘story’ of the participant and attempt to

place context on their speech patterns.

1.9 Thesis Structure

Chapter 1 was an introductory chapter intended to concisely set the scene, and lay out the

motivation, scope, focus, aims, objectives, outcomes, approach and research question clearly before

the literature review chapters (see Figure 1).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 43

Figure 1: Introductory Chapter’s 1 Structure Overview

Chapter 1 identified a research gap involving how programmers communicate and the issues around

detecting an NP’s understanding of programming (see Figure 2).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 44

Figure 2: Literature Review Chapters' Focus

Chapters 2 and 3 are the secondary literature review chapters based on Figure 2, that analyse

relevant scientific literature associated to the research problem and aim to define, examine and

critically evaluate researching into understanding and gamification. Each chapter starts with the

general background followed by a refined focus on NPs – where relevant, research that borders on

the communication of NPs in these aspects is discussed and clarity on how the methodology was

influenced by this past research is specified (see Figure 3).

Figure 3: Literature Review Chapters’ – 2 and 3 – structure overview

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 45

Chapter 4 is the research methodology chapter (see Figure 4) which outlines the general procedures

following in the studies written up in chapters 5, 6 and 7 – this chapter identifies, explains and

defends the choice of research philosophy, methodology, process and ethics.

Figure 4: Research Methodology Chapter 4’s structure overview

Chapter 5, 6 and 7 are the research study chapters (pilot, secondary and tertiary studies respectively,

see Figure 5).

Figure 5: Study Chapters' – 5, 6, and 7 – structure overview

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 46

Chapter 8 is the collective discussion chapter – this chapter collectively analyses the findings of the

three studies (portrayed in Chapters 5, 6 and 7) and draws conclusions from the findings. Chapter 8

primarily focuses on the findings considering the research question and aims, the focus is heavily

based on the explanation of the novel finding – the workspace – alongside the proposal of a list of

requirements for a software-based diagnostic toolkit based on the results of the studies (see Figure

6).

Figure 6: Evaluation and Discussion Chapter 8 Structure Overview

Chapter 9 is the concluding chapter – this chapter reflects on the extent to which the aims and

objectives highlighted in Chapter 1 have been accomplished, alongside the intended outcomes of the

research using supporting evidence from previous chapters. Chapter 9 highlights the contributions of

the studies’ findings to the field of CS, NP psychology, and CS pedagogy and reveals the implications

for both practitioners and scholars. Chapter 9 reflects on the limitations observed in the studies and

propose suggestions for future work based on the analysis of the collective findings and discovery of

the novel workspace in Chapter 8. Finally, chapter 9 answers the research question proposed in

Chapter 1 and concludes the thesis (see Figure 7).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 47

Figure 7: Conclusion Chapter's structure overview

Chapter 10 consists of the bibliography and references, while Chapter 11 consists of the appendices.

1.10 Chapter 1 Summary

This chapter set the foundation for the thesis; it clarified the motivation, scope, question, aims,

objectives, and outcomes for the consequent research and ended with a brief description of the

subsequent thesis structure.

This chapter started by elaborating on the current issues associated to the UK’s technology gap and

the worries that the UK will not be able to compete in a global market. It then went onto to explain

that, while CS courses do have proportionally higher numbers of students applying to them, the

excessively high drop-out rate when we are suffering from such a skill gap must be resolved. While

there is not a one-size-fits-all solution to this conundrum, and there will always be some level of

people dropping out for non-subject related issues, there are specific issues related directly to the

subject of CS that need addressing before this issue can be resolved. We also expand on the natural

difficulties of programming, and define what programming is and how each aspect contributes to the

overall difficulties encountered by NPs. As a result, this thesis hopes to present research conducted

into the specific issue of students being overwhelmed, and consequently frustrated by the prospect

of programming – this causes a natural communication barrier to occur between tutor and NP which

can contribute to students feeling inadequate and dropping out as a result of their experience with

programming and their inability to identify what precisely they do not know.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 48

Using Code Puzzles, which is a common tool that NPs are likely familiar with if they have studied this

subject at high school before, we can determine if we can use a friendly environment to detect the

NP’s understanding and address any lack of understanding or misconceptions present. This medium,

if proven successful, has a great potential to bridge the gap between student and tutor without

adding to frustration which, could overall, decrease students dropping out of courses for that reason.

With the motivation and context of the situation defined, this thesis identifies the objectives we

need to complete in order to make a substantial contribution to this interdisciplinary field of research

before explaining the outcomes and the subsequent remaining thesis structure.

As part of each chapter summary that relates to the literature review or background of the research,

this thesis will have a summarising diagram to help provide a quick reference to the important

aspects portrayed in the chapter overall.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 49

Chapter 2. The Challenges of Identifying the Understanding of NPs

NPs need to be understood to identify and remedy issues that occur from poor understanding. To

understand NPs, we need to explore what ‘understanding’ is and how mental representations of

coding are formulated. Therefore, this chapter will start by exploring what understanding is and how

mental representations are formed in learners in general and – where possible – these theories will

be applied to examples of programming with NPs. The chapter will then discuss the findings of the

studies that have investigated understanding NPs and the produced mental representations from

those studies in order to determine how this research should discover the understanding of NPs. This

chapter ends with the thesis’ interpretation of the definition of understanding in the context of NPs

and what characteristics of mental representations of programming will be focused on during the

investigations.

2.1 The Philosophy of Identifying Understanding and Knowledge

According to Soanes and Stevenson (2005), the term ‘understanding’ can be defined as a noun or

adjective whereby a person has “insight and good judgement” on a given subject, and is also used to

imply “sympathetic awareness or tolerance” in regards to another person’s situation; however the

verb, ‘to understand’, can be defined as the “correct perception of the intended meaning of the

words that the speaker used” or to “interpret or view a subject in a particular way” (Soanes and

Stevenson, 2005). Interestingly, most of these definitions imply that the person who understands a

subject will have the ‘correct’ perception of the subject matter, suggesting that in order to be

classified as understanding a subject, one’s perception of that subject should co-align to the

expectations of the one delivering the subject matter. However, the secondary definition of the verb

form, implies that there are different ways that someone can ‘understand’ a subject and that these

ways also contribute to the term of understanding.

Therefore, it can be determined that the actual meaning behind the word ‘to understand’ is not a

simple task to comprehend in itself; according to Scardamalia and Bereiter (2006), true

understanding is only obtained when a person can think about, and use concepts from that subject,

to deal with relevant or connected situations where knowledge of that subject would be useful.

However, this definition only refers to the outcome of understanding, not the process of creating

understanding itself.

For many centuries, philosophers and educationalists have debated what the essence and structure

of knowledge, thought and understanding is, and these debates have formed the basis of

psychological and sociological research which needs to be briefly explored in order to understand the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 50

origins of how identifying understanding came to be. Aristotle explored the concept of knowledge

and understanding in his works of The Concept of the Mind, The Problem of the Four Universals and

The Four Causes in his book, ‘On the Soul’ (translated by Smith, 2016). In summary, he postulated

that in order to understand the mind, one needed to understand the soul; the soul Is defined as “the

internal principle of motion or change in a living being” and that there are different levels of the soul

which indicate the capabilities of the host.

In Aristotelian philosophy, the concept of understanding originates from the rational part of the soul

– and the part that allegedly differentiates us from animals – in the way that we can form societies

and formulating our own understanding of the world based on our lived experiences. This philosophy

forms the basis of sociology, and the chosen focus for this research where we are attempting to

extract and identify the understanding of NPs. One issue with the concept of the mind is that it does

not consider the age or experience of the human being which does affect their ability to use their

rational soul. For instance, an NP is likely to have more difficulty identifying and understanding

extracts of code than an adept programmer. Therefore, it is important to remember that in the

context of this research we are interested in their first actuality – that is, the specific conditions of

their current state, i.e., being a novice – as opposed to purely their first potentiality – that is, their

type of being, i.e., being a programmer. The concept of the mind also presents an interesting notion:

that for the rational part of the soul to develop, the vegetative and sensitive portions of the soul

require nourishment; when examining the capabilities of an NP – or any learner, for that matter –

their background, health and outlook can reflect on their ability to process information from the

surrounding world. Therefore, it is important to treat NPs and learners as individuals when studying

them as each student is likely to have different experiences and conditions in their souls. Aristotle

also considered aspects of how a person could learn concepts; in his book ‘On the Soul’ he

determined that a learner would need to understand a universal you needed to understand the

origin of the universal. A universal is a characteristic, or aspect, of the subject that should be learned

and is similar in concept to Marton and Tsui’s (2004) Variation Theory regarding identifying the

‘critical aspects of the object of learning’. Variation Theory is a proponent of the idea that for

effective learning to occur the teacher needs to alter the way the learner views the topic – known as

the object of learning – through focusing on ‘critical’ or important aspects of the object of learning

(i.e., the desired parts of the topic that the teacher wants the student to learn about). In essence,

Marton and Tsui (2004) argued that without variation of each of the critical aspects there is “no

discernment”. Aristotle emphasised the importance of also understanding how the universal came

into existence, and argued that there needed to be comprehension of the four causes of a universal

in order to understand the concept itself: Material – the features that make up the object, for

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 51

example, the programming language of code; Formal – the design or form of a concept, for example,

a quick sorting algorithm; Efficient – the implementation of the concept or if the concept was not

immaterial the driving force behind its creation, for example, using a development environment and

relevant programming language documentation to type the code relevant to the sorting algorithm

selected; and the Final State – when it has fulfilled its intended purpose, for example, the code has

been deployed and is being actively used in a wider part of the program. This can be transferable to

programming, as shown, and highlights the value of an NP needing to understand the programming

language, programming paradigm, how to design their code, how to implement their code, how to

test their code and how to check whether it fulfils its intended purpose. The Four Causes argument is

not perfect; Aristotle himself even noted that not all perceivable objects have a final cause – such as

a never-ending event or scenario such as war. In the context of programming, many online systems

undergo maintenance and updating of legacy code, arguing that there is never a true final,

unchangeable, state of a program. However, studies such as Pérez-Álvarez (2017) have utilised

Aristotle’s Four Causes as a way of examining psychology phenomena. Plato argued that only

generalisable, always true, knowledge is valuable – such as facts – and that applying the Four Causes

to specific situations did not yield this type of knowledge as there would only be understanding of

that specific instance of the concept, for instance, in the example of implementing a quick sort

algorithm in programming if the programming language changed – as in the material state – the

programmer would not be able to claim that they understand quick sorting algorithms, according to

Plato. However, this thesis argues that the true essence of understanding is understanding each part

of the example in order to become a proficient programmer – so variations in the way a critical

aspect is perceived is necessary (Marton and Tsui, 2004). Aristotle formed the basis of the term

‘mental representation’ by thinking about the concept of the mind and how it stores information.

2.2 Cognitive Models: How are mental representations formed?

In the field of CS, cognitive models are defined by Lane (2012) as “descriptive account[s] or

computational representation[s] of human thinking about a given concept, skill, or domain” whose

main purpose is to help explain reasoning behind actions and thoughts on subject matter. Bayman et

al. (1983) further defined mental models as “the user’s conception of the ‘invisible’ information

processing that occurs inside the computer between input and output” in other words – mental

representations are how NPs view programming. Mental representations are formulated by experts

identifying characteristics present in their data. Typically, interpretivist research attempts to extract

the ‘true essence’ of a participant’s viewpoints, which are then categorised into characteristics.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 52

However, Cropley (1967) warns that studies focused on ‘cognitive styles’ are concerned with how a

participant thinks (the logic behind their actions) rather than what a person thinks (their perspectives

on the world). Warr et al. (1970) agreed with Cropley (1967) and proposed that studies should

carefully select phenomena to explore so that participants could draw upon their knowledge (what

they think) and demonstrate their actions (how they think) toward the phenomena. While the

distinction between knowledge and actions is appropriate for topics that do not require a practical

application, discerning an NP’s understanding requires identifying their thoughts and actions.

Consequently, an amalgamation of Bayman et al. (1983) and Lane’s (2012) definition of mental

representations will be used in the context of this thesis as it is more broadly applicable to

programming than the other definitions.

Bieri et al. (1966) suggest that it is possible, and even necessary, to separate the content of the

cognition from the underlying structure of the mental representation, and that if this separation is

achieved, the “knowledge of cognitive structure implies that predictions can be made of the way in

which the person copes with his environment”. This suggests that research into mapping the

interactions of learners can be classified as mapping their cognitive styles, and from such data,

perhaps anticipating their approach to other programming problems.

In the fields of sociology and psychology, multiple scholars support the importance of researching

and documenting the differing cognitive models in order to derive understanding. For example, Scott

(1963) suggested that ‘cognitive styles’ were crucial to understanding in order to derive meaning

from the world around us. Therefore, recording characteristics and deviations of mental

representations is crucial for researchers who wish to explore understanding how participants view

phenomena.

2.3 Mental Representations found in Programmers

Wiedenbeck et al. (1993) proposed that there were five characteristics of mental representations

evidenced in the experts they studied, namely: hierarchical structure, explicit mapping of coded

goals, recognising recurring patterns, knowledge, and interpreting the program text. Wiedenbeck et

al. (1999) compared the findings of the mental representations extracted from expert programmers

in the Wiedenbeck et al. study in 1993 to NPs in the Wiedenbeck et al. (1999) study and found that

the experts’ responses showed signs of all given mental representations, whereas NPs generally

lacked some of the characteristics or had poorly developed versions of the characteristics identified.

Bayman et al. (1983) arrived at similar conclusions during their study where they asked programmers

with different levels of experience to construct BASIC statements and noted that NPs “possessed a

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 53

wide range of misconceptions concerning the statements they had [self-]learned” suggesting what

may seem obvious – that NPs are more likely to have poorer mental representations of programming

than more experienced programmers.

Which starting programming language and paradigm best encourages the development of ‘good’

mental representations for NPs is a topic still subject to debate. Wiedenbeck et al. (1999) conducted

two studies on second year undergraduate CS students who had learned languages in procedural and

object-orientated paradigms to compare the quality of comprehension between the two cohorts; in

their study, programmers were given pre-constructed segments of Pascal code and asked to answer

questions on the code. Wiedenbeck et al. (1999) discovered that object-orientated participants’

responses in the short version of the programme showed signs of superior mental representations

for the subject of functions when compared to procedural participants’ responses. However, for

longer programs no notable difference in quality of mental representations was shown and in all

other questions aside from those about methods, procedural knowledge was considered slightly

superior. Wiedenbeck et al. (1999) concluded that their data suggested that the object-orientated

paradigm had a steeper learning curve than procedural.

More recent research has suggested that NPs starting with imperative and procedural programming

paradigms contribute to the formation of ‘good’ program models, but that NPs starting with an

object-orientated programming paradigm may develop better situational models (Alardawi and Agil,

2015). These findings in past works are relevant to note when investigating mental representations,

as the NPs investigated in this thesis’ research had supposedly learned just Java; an object-orientated

language, however, the survey responses from the secondary and tertiary studies suggest that some

participants in this research had learned multiple languages with differing paradigms. The different

impact of programming paradigms on mental representations for NPs can be explained by Alardawi

and Agil’s (2015) observations of how “different programming styles have different effects on the

mental representation constructed by subjects during comprehension process” and in turn, the

mental representations created by the NPs can consequently vary based on the programming

paradigms they have previously had experience with.

Mental representations in programming, therefore, require context; while most of the research

tends to focus on procedural programmers, it is relevant for the researcher to be aware of the

mental representations produced by these studies. Mosemann and Wiedenbeck (2001) suggested in

their research that both the mental representation of a programmer and the way they comprehend

the task is crucial in order to understand the way a programmer views the world – in their study they

explored how procedural programmers navigated through a program to determine which forms of

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 54

representing the program’s internal logic were most crucial for facilitating programmer

comprehension. Mosenmann and Wiedenbeck (2001) found that sequential flow of the order of

which commands are executed in a program was superior to showing a data flow – how data

changed states. This suggests that programmers are more focused on the logic behind the

statements in a program rather than the data itself. In more recent times, Scott (2010) supported the

concept of using flowcharts with NPs as an effective strategy for improving their mental models of a

program. However, no known research has been conducted into the effectiveness of using game-

based puzzles to determine the mental representation of an NP. Another noted issue is that

cognition is based upon perception of the subject matter itself, and this can be explained by the

philosophy behind phenomenology and phenomenographic analysis. The principle that a person can

view the same phenomenon as another person and interpret it in a different way, thus forming

differing mental representations from the same stimuli is widely accepted among practitioners of

phenomenology.

2.4 Pedagogical Frameworks (aimed at influencing and examining mental representations)

Pedagogy is referred to as the field of studying educational practice, and cognition is consequently an

important topic for practitioners in the way that the student’s mental representation of

programming concepts is what educational CS practitioners want to improve the quality for, and

consequently assess.

Pedagogists explain and try to improve how learners create mental representations of the knowledge

from their environment, or space of learning. According to Ihantola and Karavirta (2011), it is

“commonly agreed that students’ active participation in exercises are essential for learning

programming” arguing that the student needs to be a co-creator of constructs and involved in the

process of generating a mental model of the intended object of learning. This links to Aristotle’s idea

of the concept of the mind, in that the student needs to have their needs satisfied and distracted as

little as possible in order to be able to use their rational soul. However, tutors do not have enough

time to be able to provide individual feedback to every NP they encounter, which is why automation

of any part of the learning process is considered desirable (Leong, 2015). The idea of automating the

learning process goes against the concept behind interpretivism – where every person views the

world differently and therefore has a different way of interpreting the environment around them

which affects their cognitions. That said, the whole premise of assessing students based on their

understanding implies that there, realistically, needs to be a way in which understanding can be

amalgamated as practitioners and employers need a way to measure the understanding of

programmers in order to be informed about who has a ‘good’ level of understanding, and who will be

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 55

employed out of a series of candidates. Therefore, while the individual has a potentially unique

perception of reality and differing degrees of understanding of that reality, there has to be a way for

us to be able to assess whether those perceptions are as close to the true meaning of the

phenomenon as much as humanly possible.

In programming, understanding is often viewed from the perspective of having a hierarchy of

knowledge and skill; for example, Lister (2004) explained that tutors and students need to be aware

that programming consists of a “hierarchy of knowledge” which the tutor must be consciously aware

of to overcome threshold concepts – also known as concepts that once learned promote a deeper

level of understanding – in order to teach programming effectively. This hierarchy of knowledge can

be related to the depth or level that a characteristic of the mental representation is recorded at.

Lister (2004) provided a concrete example of the programming knowledge hierarchy in that, before

an NP can write code (i.e., ‘Can you write me a method that calculates the price of the sale?’), they

need to have the ability to trace code (i.e., ‘what value does this method output when the code is

executed?’); and that before they can trace code, they need to be able to read code (i.e., ‘can you

explain, in English, what this method does and why?’); and before they can read code, they need to

understand the relevant syntax (i.e., ‘can you explain why the semi-colon is needed at the end of the

line?’ and so forth). Lopez, Whalley, Robbins and Lister (2008) supported Lister (2004) and argued

that understanding of programming was hierarchical and that practitioners needed to begin from a

starting point of reading the code, then explaining the code, and then writing the code. Lister (2008)

repeated the study five years later and found similar conclusions. Originally, Lister (2004) further

added that more research is required into streamlining the process of learning to program, and

current data on the drop-out and failure rates of programming provided in Chapter 1 suggests this

research is still relevant in modern times.

The purpose of SOLO Taxonomy is to provide a framework for practitioners to assess the quality and

levels of work by learners (Biggs and Tang, 2011). SOLO Taxonomy can also be used to guide

instructors on how to structure their object of learning in a way that allows the learner to understand

the relationships that exist between programming concepts (see Table 5 for an example based on

Biggs and Tang, 2011).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 56

SOLO
Taxonomy
Classification

Example of the type of queries an NP of this classification could say:

Pre-Structural “What is programming? What is a program? I see code, I think… but I’m
not sure what language that’s in”.

Unistructural “This is clearly a program because it is written in Java”.

Multistructural “This is clearly a program written in Java, the program sorts a randomised
array of numbers, outputs them in order of size and then the GUI
updates”.

Relational “So, in order to re-order the IDs of tasks linked to a GUI in the program, I
need to arrange the numbers in order with a sorting algorithm and write
the code in Java, and then, when the output is given update the GUI so
that the user can see them in the order selected. As, from my experience,
reordering of tasks based on priority and order of creation would be useful
and I can see the purpose behind this function”.

Extended
Abstract

Same example as relational, except this is added:
“I wonder what sorting algorithm would be most time efficient? Perhaps I
could create different sorts of functions and analyse the time complexity.
It’s not specified in the task to do this, but I am curious and as a user I
would want the screen to reload quickly”.

Table 5: An interpretation of SOLO Taxonomy (Biggs and Collis, 1982; Biggs, 1995; Biggs and Tang, 2011)
applied to NPs

Ihantola and Karavirta (2011) equate the process of teaching NPs how to program to teaching a

learner how “to see trees that make up a grand forest” – this beautiful imagery can be related to

how understanding has different levels. Lister et al. (2006) supported the idea that programming

concepts can be viewed hierarchically and postulated that SOLO Taxonomy can be equated to the

metaphor of the forest – where unistructural answers may only appreciate seeing part of a tree (i.e.,

the branch or leaves) without seeing the bigger picture, whereas a multi-structural understanding

may see individual trees but not understand the necessity for diversity or their role in the ecosystem,

and relational and extended abstract can truly appreciate the varying depth and roles of individuals

of the trees in the forest. Ergo, it is possible that the understanding of a programming concept for an

NP may be at a deep level, but if their appreciation for the wider context is lacking then their ability

to apply and adapt a programming concept to be relevant in a situation requires a deeper

understanding making SOLO Taxonomy a relevant structure in programming.

Consequently, it can be suggested that programming tasks may have a hierarchy of difficulty

depending on the type of question asked, and the programming concepts themselves can also be

represented hierarchically based on the depth of knowledge. The difficulty of the task in

programming as well as the required knowledge to achieve that task, therefore, is crucial in order to

enhance understanding and not overwhelm or scare the programmer – but what about the reverse –

extracting understanding? As this research aims to identify understanding, effectively reversing the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 57

equation. In theory, assessments aim to measure the understanding of a candidate; if an assessment

was aimed at the correct level for the anticipated learner, then, it should be possible to gain evidence

of that level of understanding based on the learners’ responses. To identify understanding we must

first look at travelling up the hierarchy – so ask tracing, explanatory and writing questions in that

order. However, examining their answer, by itself, would give little understanding of how they

arrived at that answer without the accompanying explanation of how they are tracing the code –

which, arguably, gives more insight into, why, for example, they arrived at the wrong value for the

method-based example question. Imagine, for instance, that an NP is stuck and unable to answer a

simple tracing question or cannot explain why they arrived at the answer they got for the tracing

question – how would the tutor be able to extract misunderstandings or misconceptions from a

learner’s thought processes if they were unable to vocalise what those thought processes were? It is

possible, therefore, that the tracing and explanatory questions could be merged into one; where an

NP traces while explaining their thoughts out loud. On the other hand, this may actually cause their

cognitive load to drastically increase due to the amount of mental effort required in order to both

trace and explain their processes at the same time, with participants focusing on the step-by-step

process rather than considering their reasoning behind why they are approaching such a process in

such a way.

There are numerous differing types of assignments and assignment frameworks which are based on

this theory of hierarchical difficulty – with some tasks, such as fill-in-the-blank worksheets and simple

tracing questions – aimed at the lowest difficulty. Some assignments, particularly assessments that

contribute to an overall mark, usually attempt to use a mixture of low-level, intermediate-level and

advanced-level questions in order to assess whether a programmer can understand, explain and

write in the language that they are being assessed on (Ihantola and Karavirta, 2011). Written

examinations usually contain a mixture of open-ended questions for this reason, and more recently,

tutors have been looking into alternate ways to examine programming – as, for example, examining

the quality of code that a student can write off-hand is at an advanced-level and may not be possible

for an NP that is already having difficulty describing what a standard program does.

Scholars such as Eckerdal and Berglund (2005) and Hsu and Wang (2014) support a framework based

on this interpretation of cognition, known as Variation Theory, arguing that it is a “beneficial”

framework for encouraging the structuring of subject material in a way to enhance the learner’s

potential to experience a given subject matter, known as the enacted object of learning. As observed

by Alardawi and Agil (2015), some of the studies that were conducted specifically into object-

orientated programming were in agreement that it was considered vital for teaching practices to

understand both the origins and formation of NP’s perspectives on learning, and through this

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 58

appreciation, they can begin to understand how and why misconceptions and misunderstandings

arise and use these models to help inform their teaching practice.

2.5 Thesis’ Definition of Understanding

In the context of this thesis, the researcher has determined that the definition of understanding of

NPs shall be defined as: the level of correctness in the way in which an NP perceives, approaches,

comprehends and chooses perceivably relevant programming concepts based on their own mental

models of programming and how they apply these concepts in practice, i.e., to create a program for a

given task.

2.6 Research Gap: Can gamification be used to quicken the process of identifying understanding

accurately?

There is a notable research gap identified in this literature review; as no research was discovered on

whether these cognitive representations could be extracted from NPs using gamification – i.e.,

programming using fun, popular activities such as creating programs from arranging a series of code

blocks such as code puzzles – as the discovered studies asked their participants a series of questions

regarding a concept rather than observing practical implementations. This thesis argues that

programming, as defined in Chapter 1, has a process inherently inbuilt into it and in order to

understand an NPs’ perspective there needs to be some appreciation for how they approach and

solve a program alongside their understanding of programming concepts. This research, therefore,

will explore whether gamification can be used to extract understanding accurately to address this

gap in research knowledge.

An investigation into whether observing the way NPs construct code will reveal their understanding

is warranted to deduce whether NP’s mental representations can be generalisable enough to be

compared to one another. Scholars such as Wiedenbeck et al. (1999) and Alardawi and Agil (2015)

indicate that the NP’s starting programming paradigm may affect their mental representation, and

the definition of what a ‘good’ mental representation is regarding programming is subject to debate

still. This research only had access to participants who were guaranteed to know Java (an object-

orientated language) – not necessarily other programming paradigms – but had no control over what

other languages the participants’ cognitions may be influenced by; whether the mental

representations present in the data were like that of Alardawi and Agil’s (2015) work would help to

support or disagree with the current thoughts about the effect of programming paradigm(s) on an

NP’s psyche.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 59

2.7 Chapter 2 Summary

This brief chapter aims to explain the concept of what understanding is from a relevant psychological

perspective (specifically to programming, as, beyond the topic of programming is outside of the

scope of the thesis). We identified how important mental representation is for understanding NPs,

which is crucial to explore and compare our findings to these mental representations to see which

representations we have supporting evidence for, and which ones we have supporting evidence

against.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 60

Chapter 3. The Potential of Using Gamification to Identify Understanding

Gamification is defined as the practical application of game design features in non-game domains

(Deterding et al., 2011). According to Almadia et al. (2021), the term ‘gamification’ “remains

inconsistently used [,] a general theory of gamification is yet to be developed [and there are] so

many different definitions, discrepancies, distinctions, and discretionary delimitations [in observed

gamification papers]” that it makes the topic difficult to explore. Almujally and Joy (2020) argue that

gamification can be used in the context of Knowledge-based theory to promote sharing of knowledge

in the knowledge management process and that higher education institutions need to enhance their

knowledge sharing in order to provide an effective teaching experience to their students.

There are some recent studies that have focused on how gamification benefits students of all

disciplines, as well as novice to advanced programmers. For example, Ahmad et al. (2020) focused on

whether using group-based gamified activities was an effective strategy for teaching higher level CS

students, with a particular focus on whether students retained long-term understanding and were

satisfied with their learning experience. Ahmad et al. (2020) concluded that gamification was an

effective tool for “tough courses”, but that group size affected the quality of the learning experience.

Zhang et al. (2020) also proposed that gamification can be used to achieve satisfactory results for

teaching “abstract and uninteresting” and yet important concepts in CS. Carmo et al. (2020)

investigated the student’s behaviour and impact on performance through a gamified tool named

‘learning paths’ which are “sequences of learning objects followed by students” they found that

students who interacted more with the course had better grades. Although there is likely a

prevalence between hard-working students and being more engaged with the course, Zhang et al.

(2020) note that “students pay more attention to the fun and ease from the game” implying that

gamification could be a way to motivate interaction with the learning content for students struggling

with traditional text-based content. Chou (2019) further supports the idea that gamification is

designed to be “fun and engaging” with good gamification concentrating on “Human-Focused

Design” to motivate and reward the user. According to Almadia et al. (2021), gamification became

popular when some educational institutions adopted the mantra of “fun at work” in the early 2000s

– but are games meant to be ‘fun’ and should learning be ‘fun’ all the time? Almadia et al. (2021)

highlighted that when an education-based game is done ‘right’ then “applying gamification to

education and learning systems represents a promising means to allow educators to make learning

fun, contextualize learning quickly, speak the language of young people, and directly deal with soft

skills, [and] improv[e] education quality”, however warn that if done incorrectly can cause “harmful

effects”. Interestingly, Almadia et al. (2021) discovered that the most common subject for negative

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 61

effects of gamification to be incorporated was ‘Computer Science’ (with a total of 27 negative

papers) followed by medicine (with a total of 6 papers) however this may be easily explained by

computer science being the most closely related subject. Yet Ivanova et al. (2019) argued that

gamification is “extremely effective with school students and standard subjects, such as STEM, when

applied correctly” which suggests that ‘correctly’ is important and that perhaps delving into the

documented ways on which it has been unsuccessfully applied may shed light onto how we can avoid

replicating the same issues. Almadia et al. (2021) explored papers on the potentially harmful effects

of incorrectly applied education-based gamification and discovered that “the impact of gamified

interventions was found to be positive by 59% of the [77] papers reviewed, with effects including

empowerment, motivation, health monitoring, and more healthy habits taken”. Zhang et al. (2020)

further add that if done right, gamified elements may “inspire [students] to think, discuss and

innovate in the topic taught by the game. However, Almadia et al. (2021) state that “41% – a

significant portion of the studies [from the 77 papers reviewed] – reported mixed or neutral effects”

suggesting that the benefits of gamification were not seen in all contexts – including the aspect of

‘fun at work’. Hammedi et al (2021) even suggested fun should never be “mandatory” unless the

designer wishes for the game to fail by causing users to become disinterested in the game. Almadia

et al (2021) observed that: badges, competitions, leaderboards, points, challenges, achievements,

quizzes, experience points and levels were the top ten named educational game mechanics that

were reported to have negative effects in the papers reviewed, but that a large majority (59

mechanics) were labelled as ‘others’ so it is difficult to tell whether Code Puzzles rank among the

failed instances as they are not recorded on the list. Let us take the example of badges – the most

frequently negatively reported mechanic – the main observation for badges were that they were not

observed to improve motivation, learning quality and were a source of technical difficulties making

them irrelevant and potentially distracting to the user. These findings may implicate that competitive

and process-monitoring gamified elements are not suited to educational contexts – which is

surprising, considering that many educational systems revolve around an assessment-heavy, mark-

orientated approach to learning and perhaps reveals the way in which we teach our subjects

(computer science) included may be detrimental and impede a student’s desire to naturally engage

with the content. Almadia et al (2021) documented the common negative effects were seen across at

least 5 papers (with the first negative effect being most common in the list): lack of discernible effect

or impact in comparison to other tools; lack of observed learning enhancement and lack of a

noticeable increase in understanding from playing the game; irrelevance of the game mechanic to

the topic; users finding a lack of motivation to use the game; users losing motivation to use the game

after a while due to it losing its novelty; loss of performance; users feeling the need to cheat to get,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 62

say, a better score, or learning how to “game the system”. While these effects are negative, the

context where these effects arose would be needed to discuss why these effects were occurring

which the Almadia et al. (2021) paper does not disclose as they chose to focus on the frequency of

the effects, yet these effects are likely linked to the concept that gamification influences human

behaviour and that if, say, a game mechanic was influencing the player to ‘win’ then some players

may be prone to trying to cheat to feel the benefits of the reward without the effort of learning.

The design of gamified tools can be challenging; researchers like Voit et al. (2020) warn that the

“ineffectiveness of many gamification projects [originate from] wrong decisions made during the

conceptual design phase, especially in the selection of game design elements” and have

consequently been using machine learning techniques to extract game design techniques from over

30,000 board games to help game designers design tools more effectively. As such, this thesis will

investigate popular forms of gamification tools used in the domain of CS that most closely correlate

to the perspective of gaining knowledge from the student’s interactions rather than enhancing the

student’s learning experiences.

However, there is limited research on using gamified tools to ‘translate’ understanding directly to a

tutor of any discipline. Studies from a tutor’s perspective tend to focus on whether gamification can

be used to disseminate knowledge to other staff or to students effectively rather than the reverse.

For instance, Almujally and Joy (2020) wanted to see whether a gamified tool could promote

knowledge sharing between staff and discovered that the “quality and amount of knowledge [the 20

CS staff members] shared strongly depended on the feedback they obtained from the gamification

mechanisms which were provided” and concluded that gamification was a way to encourage staff to

interact with others, but this research does not relate to the student experience.

There is also limited research into the effects of removing gamified elements, and there is no

universally agreed methodology for how to optimally decrease gamified elements to readjust the NP

to a more realistic interface. Seaborn (2021) noted that “a small corpus of 8 papers [have been]

published between 2012 and 2020” on such a topic, which raises the question of how tutors can best

ease NPs into authentic tasks from gamified tools. While this thesis agrees that this is an

underdeveloped area that requires research, we argue that programmers will naturally encounter

different development environments and tools that will mean that they have to adapt to interacting

with code in a flexible way and should not devalue the benefits of gamification as a tool for both

learner and tutor. For example, Scratch (2020) and BlueJ (2020) have quite a different interface to

IntelliJ (2020), Eclipse (2020) or Netbeans (2020), which has quite a different interface to Jupyter labs

(2020) but all of them ‘interact’ with code and require an adjustment to a new interface.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 63

Researchers have discovered that using code puzzles, a form of gamification, as a way of assessing

understanding is more time efficient than alternates. For example, Denny et al. (2008) suggested that

they correlate well to traditional exam-style questions with less effort from the marker and are

assessed at a similar difficulty level. This chapter explores potential alternatives that participants

could use as talking points for communicating their understanding of programming to the observer.

Code Puzzles are gaining popularity, particularly among younger programmers, as a fun, engaging,

alternative way to learning programming where a learner utilises active participation in order to

learn programming concepts.

3.1 Parson’s Puzzles

Parson’s puzzles are a type of Code Puzzle where lines of code from a pre-made solution are

translated into moveable code blocks and are presented to the user in a randomised order (Parson

and Haden, 2006). Anecdotally, the name of these puzzles varies from source to source – while the

original author’s surname, Parson, is singular many articles and papers have used Parsons’ instead of

Parson’s when referring to the same form of puzzle. Hybrids of this origin have appeared, including

Parsons’ puzzles, Parson’s puzzles, Parsons problems, and even just ‘Parsons’. As the original paper

cited the name as Parson’s puzzles, this thesis will endeavour to call them this from now on.

There is evidence to indicate that students find such puzzles engaging, and in Parson’s and Haden’s

2006 study, 82% of 17 undergraduate students indicated that Parson’s problems were “useful” or

“very useful” in a post-study survey. Ihantola and Karavirta (2011) argued that such puzzles could

help learners recognise common algorithms, as well as proposing that different varieties of Parson’s

problems may be used to increase the difficulty of the task. This evidence was further supported by

the theory that NPs lack the mental representations necessary for programming and benefit from a

more scaffolded approach (Winslow, 1996). Morrison et al. (2016) argued that Parson’s problems are

suited for NPs as they contain “correct syntactic constructs and impose low cognitive load” on NPs.

Fabic et al. (2019) observed that “Parson’s problems provide scaffolding helpful for novices, unlike in

traditional code writing exercises where the only scaffolding is the problem description”.

While the exact hierarchical place, in terms of programming difficulty, for Parson’s problems has

been widely debated, there is some suggestion that Parson’s problems may be lower-level than

tracing exercises in terms of the difficulty hierarchy (Lopez, 2008; Fabic et al. 2019), whereas other

research has suggested they are similar to advanced-level tasks as it requires the programmer to

arrange pieces as if they were coding it themselves (Denny et al., 2008). Some researchers, such as

Ihantola and Karavirta (2011) are inconclusive about the precise level of Parson’s problems in terms

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 64

of the learning hierarchy and believe that such a hierarchy is affected by the task difficulty rather

than the design of the Code Puzzle itself. Lopez (2008) did suggest, at the time, that the data collated

from their research may be affected due to the differing complexities of the tracing tasks they

administered to the participants. The original design of Parson’s problems was to provide immediate

feedback to the user, which, while good for users who are struggling may be not as beneficial for

those who are merely relying on the computer to tell them if the ordering is incorrect. This can cause

the opposite phenomenon to active participation, where the learner is merely attempting to

complete the puzzle in the quickest time possible without engaging in the core computational

thinking processes required to understand the puzzle itself. This is further supported by the findings

of Helminen et al. (2012) where they found that student’s retention of knowledge over several weeks

was far from optimal, with many failing to remember core concepts associated to the practice

puzzles that they had engaged in.

The original purpose of Parson’s problems were that they were developed in order to provide an

engaging, automated, learning environment with immediate feedback to students and have gained

popularity with interfaces such as Scratch (Scratch, 2020) gaining some inspiration from this style of

puzzle. These types of puzzles are widely used and available, in a variety of different languages with

institutions such as MIT providing example snippets of Code Puzzles and libraries in order to create

your own puzzles. The beauty of Parson’s puzzles is that the code does not need to be executed in

order to check whether the code works, it simply checks whether the code is in the correct order or

slot with many interfaces choosing to give feedback through a change of colour or pop-up

notification.

There are different variations of Parson’s problems. Ihantola and Karavirta (2011) produced an

overview of different styles and features of Parson’s Problems, including: extra lines or distractors

which, as per the original Parson and Haden (2006) paper, are meant to be added to increase the

difficulty of the puzzles; user-created blocks which, if adopted, typically mean users can indent or

insert braces into their code, which, according to Denny et al. (2008) increases the complexity as

well; and context which is provided in order to arrange the code blocks – the difficulty increase or

decrease is inconclusive on this particular aspect. In Parson’s Problems, extra lines (or red herrings)

are called ‘distractors’ as they are segments of code that could potentially fit but on closer inspection

would not fit the context of the solution. If the researcher chooses to use distractors, there are two

common ways they are incorporated: the first way is to initially present the pieces in the incorrect

order but have lines that look similar to one another – with one correct piece surrounded by

distractor piece(s) – placed together in a ‘group’ so that the user can easily compare pieces of a

similar nature; and the second way is to have all pieces initially presented randomly – so distractors

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 65

may be separated from the correct version of the distractor as no groups would be present due to

full randomisation of the pieces. According to Ihantola and Karavirta (2011) the latter approach

reduces the cognitive load of the programmer whereas randomising the distractors in the code

causes more of a mental strain. The number of pieces available to the user likely affects the difficulty

of the puzzle, as if there are more pieces available there is a higher chance of their being too much

choice for the user, which can potentially cause analysis paralysis (where the user cannot decide

what piece to play because there are so many options to choose from) or possibly overwhelm the

user due to there being too much information displayed to them at once which increases the risk of

cognitive overload. If the pieces were semi-randomised instead, the difficulty may be reduced if

pieces of a similar nature were placed next to each other; for example, if there were pieces that were

associated to fields – such as ‘private int numberOfPotatoes;’ and a distractor of ‘private double

numberOfPotatoes;’ – were grouped together this may help the user to focus on a more abstract

level reducing the amount of mental strain as they would not need to re-order the pieces as part of

their process of deducing how to create a solution. Despite extensive searches, there does not

appear to be a usual version of Parson’s problems that incorporate the delimiter to be anything

different to a new line – for example, there is not usually a cluster of lines in one piece, nor is there

one word in one piece – it is always, seemingly, after every new line with very few exceptions.

3.1.1 Parson’s Puzzles Tools

Parson and Haden (2006) originally created a drag-and-drop exercise framework called ‘Hot

Potatoes’ which allows you to export custom exercises to HTML web pages that make use of a

Javascript library called JMix. This interface, while free and useful, does present its own challenges –

it can be difficult to insert a piece between two already existing pieces and would mean you need to

shift existing pieces down to create room for another piece – this would be tedious for longer, more

complicated, tasks that require more pieces by nature. Additionally, there is only one kind of error

message, and it appears to check whether pieces are out of order – for example, if an NP placed a

piece too low down but the general order of the piece was correct in terms of logic, it would still

raise an error. On a positive note, the interface still works well in modern times, and because there is

a manual ‘check’ button, it will allow for students to only gain immediate feedback if they so desire

to – it could be that the pressing of a check-button part way through an exercise could indicate some

uncertainty from the learner if they are wishing to double check their solution at that point in time,

additionally, it will discourage learners from relying purely on visual, instantaneous feedback that

could make them rely on the interface to tell them when they are done. Additionally, distractors are

supported in Hot Potatoes as well as, potentially, grouping units based on small extracts of code.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 66

Kaila et al. (2008) created ViLLE which is a Java applet originally designed to aid program

visualisation, but 2009 versions and beyond allow for the creation of Parson’s Problems due to that

kind of Code Puzzle’s popularity. It is freeware, for non-commercial use. While distractors are not

supported, there are different types of errors that can be generated – so there is a distinction

between an error that would cause the code to not run, an error that generates a bug and an error

that has logical issues.

While these tools are still downloadable today, the source code for either of these products is not

freely available, and while the general premise of Parson’s problems is utilised, there are some

differing aspects between interfaces that suggest that there is not one standard way of presenting

Parson’s problems. Like some researchers before us (e.g., Ihantola and Karavirta, 2011) non-

accessible code did cause issues initially – which is why the research used paper-based solutions for

the pilot study as it was envisioned that from the results of the paper-based product we would be

able to create an interface and test it. As suggested by our research and the consequent discovery of

the workspace, these findings did come about due to the freedom involved with using paper-based

pieces without a restricted virtual environment.

Ihantola and Karavirta (2011) created JSParsons using Javascript widgets that can be embedded into

HTML pages and is based primarily on their experience with both Hot Potatoes and ViLLE and from

advice and feedback from their students’ experiences of using the tools. Their tool is open source

under the MIT license and is still available today as one of the only open-source Parson’s problem

generators currently. JSParsons has two modalities – one for distractors and one for what they call a

‘basic’ mode with simple sorting of pieces. While this tool has a combination of both Hot Potatoes

and ViLLE features, it is primarily focused on portraying Python – a language that Aston University

first years were likely unfamiliar with. The reason this is an issue for us to translate to Java is,

because JSParsons relies on indentation to check whether a coded extract is correct and does not

check for brackets. While it could be said that a separate piece could be made for closing brackets,

or, pieces need to append the closing brackets to the end of the line it is not easily translated as it is

not essential for Java to be indented. Instead of pop-up boxes for feedback, lines are given colours –

green for correct, red for incorrect. If the user has forgotten to indent the line, it highlights this.

3.2.1.2 How effective are Parson’s Puzzles at detecting difficulties or issues with NPs?

Many studies have been conducted on investigating the effectiveness of using Parson’s problems in a

computational way in regards to improving student learning and highlighting issues with student

understanding (Parson and Haden, 2006; Helminen et al., 2012; Harms et al., 2016), and there has

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 67

been indicative evidence from these studies that it is possible to both classify what NPs are stuck on,

and, that the state of their final solution does reflect their understanding. For example, in Ihantola’s

and Karavirta’s (2011) study they found that some struggling students were typically making getting

stuck on some portions of the task, such as recursive coding, and repeatedly submitted the same

incorrect solution. But is this truly the same as understanding their understanding of, say, recursive

coding and how can we check whether the measurements are in any way reliable or accurate?

3.2 Chapter 3 Summary

This chapter introduces the concept that games can be used as an alternative to traditional

programming to help NPs learn. From Chapters 1, 2 and 3 we have concluded that a series of

questions need exploring in order to successfully bridge the research gap of how we can effectively

diagnose an NP’s understanding without them being able to explicitly state the precise part of

programming they are struggling with. Therefore, we conclude that these queries will form the

essence of what this research aims to answer:

• How can we identify NPs’ understanding?

o What is the best way to measure NPs’ understandings of programming concepts?

o What is the best way to measure NPs’ choice of computational thinking pattern?

• How do mental representations vary between NPs?

o Are there finite versions of these mental representations, or are they potentially

infinite?

o Can we quantify understanding?

• Can NPs display symptoms of their understanding?

o How do programmers explain their thoughts?

o Do these thoughts match their actions? (I.e., is it possible to apply meaning to the

actions without the accompanying words?)

o Does the style of puzzle affect the way they explain their actions?

• Are NPs aware of their own issues with programming?

o Do these issues manifest in their actions/words?

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 68

Chapter 4: Research Methodology

Previous chapters have highlighted the complexity of diagnosing NPs’ understandings of

programming concepts and cognitive representations associated to the process of programming.

There is a variety of ways an NP may view programming, and in order to extract information that can

help us derive their point of view, the research methodology needs to mitigate leading the

participant while also not causing a cognitive overload. Extracting programmers’ ‘true’ mental

representations would be inherently difficult, as per the ethos of phenomenology, we are only an

observer and as such can only detect the ‘symptoms’ of understanding. However, this thesis argues

that teachers can only be observers of the symptoms of understanding, and that this statement

reflects the reality of teaching programming, and that an effective tool that accurately diagnoses the

level of understanding would be beneficial in order to minimise the communication barrier between

tutors and NPs.

It therefore becomes apparent that the choice of research paradigm and consequent approach needs

to be analysed carefully, and must consider the following questions in order to address the main

research question which is ’Can we discern the level of understanding of NPs through examination of

their interactions with Code Puzzles?’

In order to minimise observer bias and to reduce the cognitive load of coding the task from scratch,

research was conducted through observation of a think-aloud protocol where participants explained

their movements of different styled Code Puzzle pieces (based on 2D Parson’s Problems) to the

observer. In the pilot study, unstructured observation was performed as it was anticipated that the

observer may need to ask queries to the participant about the meaning behind their movements.

However, it became apparent structured observations were required to avoid the observer

influencing the participant’s vocabulary, movements or perceptions of movements. For example, if

the observer queried a participant with the phrase “Why are you doing that?” the participant could

misconstrue the meaning behind the message to mean ‘I am performing an odd action’ rather than

what the observer intended. Likewise, the participants were noted to show symptoms of authority

bias as they were aware that the researcher was a PhD student in the field of CS and therefore did

attempt to ask queries about the meaning behind pieces. In the structured observations, the

observer was instructed by the script to reply with “It is up to you to decide the meaning, I do not

wish to lead you” which separated the observer from the participant as much as possible. As such,

each study has its own version of the research methodology where the differences have been

highlighted in the relevant chapters.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 69

This chapter will therefore focus on justifying choosing the interpretative research paradigm of

phenomenography for this research problem, and consequently choosing a mixed methods approach

– consisting of collating and analysing qualitative and quantitative data – and analysing these

datapoints using Straussian Grounded Theory from the perspective of phenomenology.

4.1 Philosophy and Choice of Interpretivism

Interpretive research aims to understand social reality. As it is typically sociology-centric, this flexible

research paradigm encourages the use of qualitative data to capture and frame the reality of human

beings. While this does co-align with the goals of the research, which is to frame cognitions of NPs

regarding programming which falls nicely under this definition, it is important to consider more than

one research paradigm before proceeding.

Previous researchers using Parson’s Problems chose to conduct their research from a positivist

perspective, which proposes that observations and reason are the means of understanding human

cognition and actively rejects the usefulness of qualitative data as this is classified as inherently

subjective. The drawback of this approach is that the as the human element of having participants’

explanations of the meaning behind their movements or thoughts on the programming concepts has

been removed and replaced with the researchers’ opinions of why a participant would be moving a

piece in a particular way. During the pilot study, following that approach stopped us categorising and

quantifying the movements of participants to arbitrary categories – such as ‘swap’, ‘move’, ‘remove’,

‘correct placement’, and ‘incorrect placement’. Instead, this thesis proposes that when participants’

movements did not clearly reveal the intentions behind that movement, we would try to identify

those intentions by collecting qualitative data. Therefore, after the pilot study, we diverged from the

positivism approach. Likewise, other previous researchers in the field preferred to use a pragmatist

paradigm – which is focusing on what can be ‘proven’ or what works and has the philosophy of

arguing that a single researcher cannot possibly learn the perfect, universally applicable truth about

reality. Pragmatism, in research design, revolves around the core belief that of finding the answer to

‘what will work best in this situation’ rather than the generalisability of the solution to other

situations in a given research area; for example, this research focuses on NPs in a CS undergraduate

degree at the end of their first year studying Java, if a purely pragmatic approach was adopted, even

if the solution was not applicable, to say, NPs in a different degree course (i.e. business degree

undergraduates who are studying Java on the side) or in a different language (i.e., CS undergraduates

studying Python instead of Java) then from the viewpoint of a pragmatic researcher is that the

original solution would still be considered successful as it works for CS undergraduate degree-

studying Java NPs and was not designed necessarily for other situations. Therefore, pragmatism has

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 70

the advantage of not allowing the researcher to be caught up in philosophical debates about

whether the outcome of the research is a success, as if – say the diagnostic tool that this thesis

proposes – is deemed to be effective for the selected participants and could be replicated in other CS

first year undergraduates studying Java, then it would be deemed to be successful even if the tool is

niche. That said, this thesis is more interested in whether it is possible to quantify or measure the

understanding of NPs by observing the students completing Code Puzzles while trying to get them to

explain their intent. As a result, this research took more of the philosophy of interpretivism than

pragmatism despite the points for both being relevant. It was rare for previous researchers in this

field to use a constructivist approach – which rejects the primary principles of positivism and argues

that there is no objective, universal knowledge that can be retrieved from reality and that the

researchers’ values and disposition affect the knowledge obtained. This is because the whole

principle of constructivism argues against the possibility of being able to extract the understanding of

an NP, and while it is valid to suggest that it is impossible to replicate the exact cognitive frameworks

that an NP has from merely observing their interactions with Code Puzzles, this thesis argues it

should still be possible to gain enough evidence to be able to determine their understanding to the

degree that a tutor would be able to use such information to guide their approach towards the NP. In

that way, constructivism was rejected as a potential approach for this research ideology. Likewise,

while a transformative research paradigm could have been selected – which follows the principle

that knowledge is a social construction and is formulated through the lived experiences of humans –

to properly create a transformative piece of research there would need to be in-depth case studies

into individual participants that would breach ethics through being so specific as to identify the

participant.

The final research paradigm considered was post-positivism – and it is the case that the philosophy

behind post-positivism has influenced the construction of this research methodology and as such is

worthy of note alongside the interpretative paradigm. Post-positivism gives equal value to both

qualitative and quantitative data. In order to gain a full picture of the participants’ understanding of a

programming concept and computational thinking, the data needs to be view holistically rather than

in pieces. It does follow the philosophy of positivism that observations and reason are the means to

human cognition – but post-positivist theorists argue that we can only ever observe imperfectly and

probabilistically. As a result, researchers of the post-positivistic paradigm are encouraged to mitigate

the influence of their perceptions as much as possible, even if the philosophy suggests their influence

can never be ruled out entirely. Post-positivism encourages observers to exert as little influence on

participants as possible to capture the closest approximation to the truth possible, i.e., in the context

of this research framing an NP’s reality.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 71

Interpretivism was chosen over post-positivism after the pilot study as the findings of the pilot study

suggested that the research philosophies of past works – such as Helminen et al. (2012) who chose to

focus on cursor movements and the number of clicks as metrics as opposed to more qualitative

means – were potentially incorrectly chosen if understanding of an NP’s perspective was needed, it

was consequently decided that an interpretative approach would be taken to explore the realm of

Code Puzzle interactions. Interpretivism also has multiple research methodologies and frameworks

orientated around the principle of discovering theories – such as Straussian Grounded Theory,

Classical Grounded Theory and Constructivist Grounded Theory – which would be suited for entering

this novel territory. Interpretivism promotes the idea that a researcher is like a social-actor –

someone who observes and explores the participants interacting and experiencing their

surroundings. In order to generate symptoms for diagnosis of understanding, the NPs need to be

observed from this perspective in order to capture and analyse the data obtained from performing

an authentic task. While the experiment chose to use puzzle pieces in order to lessen the cognitive

load of participants, the task that they were performing – i.e., constructing a program for a task

description which was purposely written in a similar format to what they could experience in a Java

examination – was authentic due to the realistic aspect of the task itself. While the philosophy of

post-positivism does co-align to the research objectives and end goal, interpretivism matches the

goals of the researcher’s perspectives more – and that is that interpretivism believes every

participant’s experience and thought processes are unique and worthy of note. The literature review

conducted in the earlier chapters demonstrated that this was true about programmers; that there

were so many aspects to programming that it is likely that programmers would have differing levels

or degrees of understanding which would mean that the research needed to take the stance that

each individual was potentially unique. Likewise, research methodologies that are grounded in

interpretivism do not exclude the possibility of having quantitative data alongside qualitative data –

as long as the data measures a participant’s natural interactions to phenomena and allows for

contextualisation of data. This field of philosophy explicitly mentions that context is very crucial and

that without it the data can become meaningless as it becomes possible for the data to lose its true

meaning if the correct context behind the data is not included. This strongly links to the notion of an

NP being an individual, and that the previous researchers who took the positivist approach were

using a less than ideal methodology for the context of the research problem.

We conclude that interpretivism is a flexible paradigm that promotes the generation of data around

the genuine behaviours and reactions of participants, while also promoting minimal researcher

impact that can allow for participants to freely explain their perspectives and clarify their own

perceptions of reality. This approach is likely to lead to a large amount of data naturally due to the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 72

promotion of qualitative data collection. That said, this paradigm can be time-consuming, laborious

and requires a lot of effort from the researcher in order to encode and interpret the data accurately.

Participants are required to be willing to be observed – which may deter participants of more shy

dispositions or those who do not feel confident in their ability to program, and therefore the nature

of this type of research could naturally favour more confident, proficient NPs who may be able to

express themselves and under-represent less-confident NPs. During the recruitment process, efforts

were made to tailor advertisements so that there was an emphasis on the benefits of participation –

the possibility of participants gaining feedback on their work – in order to entice non-confident

participants to volunteer. Additionally, interpretivist research is characteristically difficult to replicate

due to participants being naturally different – this can mean the research methodology could be

taken and performed with little-to-no changes and still get a vastly different outcome to the one

produced in this thesis. While the philosophy behind interpretivist research is that every participant’s

natural experience is valid, it is a possibility that not every experience imaginable could be covered in

the sample collated. Another notable issue with interpretivism is that a researcher can easily perform

information bias or intentionality bias if they are not careful – many of the concepts in sociology

imply that participants typically know what they are doing and why, however, this might not be the

case – some movements or actions could be accidental or meaningless and can provide obstacles in

gathering meaning from generalised data sets. This is why context and bracketing in interpretivism

research is important in order to reduce these biases, and also why, large data analysis that attempts

to, say, identify the types of words spoken by a participant may lose its meaning. Interpretivism

naturally doesn’t have hypotheses, so it becomes difficult to assess the full benefit of the data

collated if the wider context and purpose of the research is also not considered; this is why this thesis

presents hypotheses based on the literature review findings and uses them as discussion points

based on the outcome space generated.

With these points in mind, the interpretivism approach was chosen for this research.

4.2 The Philosophy of Phenomenology: Husserl’s Transcendental Phenomenology

Phenomenology is an interpretivism-based, subjective qualitative research philosophy primarily

rooted in the fields of psychology and sociology that has been successfully implemented in some

educational contexts across a range of different disciplines. The main purpose behind

phenomenology is to discover the ‘pure’ meaning of phenomena; that is, how others interpret and

find meaning in the same phenomenon. Consequently, phenomenologists study and document the

conscious experiences of a selected phenomenon. However, the way in which this ‘pure’ meaning of

phenomena is extracted is different depending on the exact branch of phenomenology used; for

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 73

example, phenomenologists, such as Edith Stein, argued that researchers can only extract the ‘pure’

essence of phenomenology through having empathy with those experiencing the phenomenon

(Sawicki, 2012), whereas other phenomenologists, such as Georg Hegel, would argue that logic and

reason are the attributes that must be utilised to keep the purity of the meaning behind the studied

phenomenon (Young, 1996).

Phenomenologists can approach the analysis of how others view phenomena in differing ways

depending on their school of philosophy, for example, in the context of this research we want to

generate a pure description of a lived experience – as in, we want to document and view the NPs’

natural dialogue associated to how they view and interact with the phenomenon of programming.

However, we also wish to understand how these NPs experience programming in general – not just

for our specific task – and whether these datapoints can be interpreted to a kind of experience

relevant to the wider context of programming. So, this research needs to document two types of

experiences – the ‘lived experience’, as in how the NP views programming and views the concepts

behind programming, alongside a ‘kind of experience’, as in how the NP approaches a programming

task and constructs a solution. The ‘form’ of the experience then needs to be analysed, for example

in this research, how the experience differs between NPs. From this data this research can suggest

how this ‘studied’ phenomenon may be viewed by NPs.

Husserl introduced the concept of phenomenological reduction (Zahavi, 2003); whereby the

researcher needs to acknowledge that ‘natural’ knowledge is just an appearance that can be used to

find the pure meaning behind phenomena. It is therefore considered impossible to extract the raw,

pure, meaning from dialogue alone and that the way in which someone – such as an NP – expresses

their thoughts and feelings exhibits a way in which we can understand the essence of the way in

which they interpret the phenomena (Sawicki, 2012). It is therefore paramount for the researcher to

conduct qualitative research and gather dialogue, as the essence behind the philosophy of

phenomenology is that statistical analysis is not necessarily enough to be able to gain an insight into

the true meanings of phenomena. There are two primary deviations in the way that two prominent

branches of phenomenology handle researcher bias – Husserl’s branch of phenomenology believes

the researcher should place their preconceived notions and bias aside during the course of their

research, whereas Heidegger’s Hermeneutic phenomenological approach believes that it is

impossible to truly separate ourselves from reality and suggests that interpretation should be used as

revision of the data analysed – also known as a hermeneutic circle (Sawicki, 2012). For the basis of

this research, it was deemed more appropriate to use Husserl’s Transcendental Phenomenology in

order to be mindful of how the questions for the questionnaire were structured and attempt to

remove the researcher’s influence as much as humanly possible. This thesis will delve further into the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 74

how the research applies Husserl’s Transcendental Phenomenology using sources such as Schutz

(1967) for brief explanation.

In more recent times, Schutz (1967) proposed the notion of phenomenology of the social world

which helped to define Husserl’s concept of phenomenological reduction more clearly; in essence,

Schutz argued that every person in the world takes their perception of the world to be ‘natural’ – as

in, they believe that they view the ‘real’ reality of phenomena rather than consciously believing that

the world around them is nothing but a façade and that the meaning behind everything they

encounter is not the ‘pure’ meaning of the phenomena. This is logical, as if someone did believe that

everything was not ‘real’, or, that their perception of reality wasn’t the ‘real’ version of all the

phenomena they have ever encountered they would likely suffer because of such an ideology.

Therefore, Schutz (1967) proposed that everyone acts as though their own version of the world is

largely the ‘natural’ version of the world, and that for a person to deal with the world they naturally

form stereotypical expectations of conditions which result in the person generating formulae for how

to handle these conditions. For example, in the context of this research, if a programmer – say, called

‘A’ – suggested that they were struggling to programmer ‘B’, a ‘natural’ reaction may be for B to be

sympathetic towards A and supportive or motivating towards them. These social patterns are

formulated when conditions are met, and, as a result – both programmers react in, potentially,

predictable ways. For example, it would be unusual if A told B that they were struggling, and B told

them how happy they were that A was struggling. These predictable formulae associated to patterns

of conditions are called ‘first-order constructs’ in Schutz’ concept of phenomenology of the social

world, which are defined as general members of the public. However, Schutz (1967) argues that

scientists investigating phenomena should go beyond ‘first-order constructs’ and ensure that a

healthy amount of continuous doubt is inserted into the research via the process of bracketing –

whereby the researcher must consider their own background, purpose, beliefs, biases, personal

interests and philosophical paradigm and practice reflexivity to ensure that researcher and

innovations biases are mitigated as much as possible during the conduction of data collection and

analysis. Scientists that practice bracketing and show continuous doubt of their research are referred

to as ‘second-order constructs’, which Schutz (1967) argues phenomenologists should be. Therefore,

before this research commenced, it was important for bracketing to be performed in the form of

dialogue with the supervisors and memoing during the study procedures (see Figure 8).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 75

Figure 8: General process of conducting phenomenological research

Phenomenological research can be conducted and analysed through a variety of different qualitative

methodologies; however, the principles of phenomenography were created for the implementation

of describing the phenomenon in a standardised way and will be defined here. Phenomenography is

where a researcher creates categories of description, which when combined, represent the

phenomenon as experienced by the observer about the data collated (Marton, 2000). The categories

of description can be grouped or related to each other to create an outcome space and can be

distinguished by the identified critical aspects of their descriptions. Marton (2000) argues that the

outcome space is an alternative way of conceptually portraying the definition of the phenomenon

alongside the underlying structure of that phenomenon.

Consequently, phenomenography has been a way to implement phenomenological research and has

been successfully used in previous exploratory research in the field of CS education with goals like

ours (e.g., Marton and Booth, 1997). Primarily in previous research, phenomenography has been

used to identify how programmers of different backgrounds and levels perceive the same

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 76

phenomena differently from one another. While the scope of this research differs from this as the

research focuses purely on NPs from one UK-based university, we also wish to observe how they

understand and view the concepts around programming through their interactions with our planned

experiments.

Therefore, the philosophy of phenomenology of Husserl’s Transcendental Phenomenology – the idea

that phenomenography is based on – was chosen alongside phenomenography.

4.3 Collecting Data Using Observations

Interpretative research has a vast array of different methodologies that recommend differing ways of

collecting data. While conducting interviews with participants is frequently advised in interpretative

research design – either face-to-face, via electronic applications or through a focus group – it was

determined that this would not be ideal for the research question. Previous researchers that used

Code Puzzles elected to obtain minimal qualitative data as participants were already interacting with

the Code Puzzles themselves and could become distracted, so the thought of attempting to ask the

participant questions as well as asking them to complete the puzzle seemed to be ill-advised.

Likewise, the concept of the focus group could easily result in obtaining the most confident

participant’s understanding, or a meshed version of all the group’s understanding, which also went

against the purpose and motivation behind this research. As such, a formal interview of any kind was

not considered beyond the planning stages of the research. In comparison, another frequent

recommendation is to perform participant observations – covert, scripted or unscripted – in order to

view how a participant naturally interacts with their environment. This seemed the most appropriate

way to conduct the research with the purpose in mind – that the research wished to obtain

information about the individual’s level of understanding rather than the observer’s or a group’s

understanding – this was initially unscripted for the pilot study due to us not knowing whether the

observer would need to ask about specific movements during the experiment itself in order to gain a

better insight into the perception of phenomena in comparison to a restricted observer – but, this

was changed to scripted to try and mitigate the observer’s influence as much as possible. Finally,

interpretivism design encourages the use of questionnaires and surveys – using open-ended and/or

close-ended questions of differing styles – as a way of obtaining written data. As it was anticipated

that the researcher would have ample transcribing to perform from the observations, it was

determined that using questionnaires would be an effective way to record quantitative data.

Participants were therefore asked to rank the difficulty of formulating a solution, as well as their level

of confidence as to whether the solution would work or not, on a Likert scale for ease of analysis. The

Likert scale was modified to include text-based descriptions in order to try and promote the potential

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 77

to compare different participant’s experiences to one another based on the participant’s recorded

reaction. To offer further opportunity to gain qualitative data, open-ended further comment boxes

were included after each query.

4.4 Qualitative Data Analysis using Coding and Straussian Grounded Theory

As the thesis proposes an exploratory research question that has aspects of examining the ontology

of participants – i.e., capturing the participants’ realities in view of a phenomenon – and the

epistemology – i.e., understanding the differing ways in which a phenomenon can be interpreted –

this research was deemed fit to utilise a form of Grounded Theory as there were no clearly defined

expectations for the outcomes of the secondary and tertiary studies after the pilot study revealed

unexpected results. This was an ideal situation for Grounded Theory, where the data drives theory

creation. However, in order to mitigate potential observer bias, the researcher needed to become

aware of, and consequently bracket, their influence when examining the data. There are multiple

factors that can influence the way an observer or researcher views their own data which is why

bracketing is also important for conducting this type of analysis. For most forms of Grounded Theory,

it is encouraged to produce memos – documents that reveal the thoughts and reflections of the

observer during or immediately after the experiments have been conducted. During the experiment,

the researcher needs to ask themselves about what they are observing, their interactions with their

participants and their experience of the process as a whole – for example, what could be improved or

what worked well for that participant. During the data analysis phase, it is also important for the

transcriber to make notes – such as about the whole data analysis process – what codes have been

selected for what parts of the transcripts and their respective meanings, and the identified

relationships among codes, categories and themes that are produced as a result of the selected

Grounded Theory process. This has the disadvantage of requiring a lot of time and effort, as well as

producing a lot of documentation associated to a data set, so, arguably, smaller data sets work better

with using Grounded Theory. While unknown at the time of procedure selection precisely how many

participants would volunteer for the studies, the sample size selected – 21 participants – was

considered fairly large for this form of methodology, especially as manual coding was chosen

overusing a Computer-Aided Qualitative Data Analysis Software primarily due to license issues.

In most forms of Grounded Theory, coding the data to make it comparable is an important

processing step. Coding is the process where the researcher ‘makes sense’ of the data collated by

classifying extracts of transcripts. For example, if an NP said, “I find constructors hard” this sentence

could be coded by classifying it as “difficulty – hard” and “class constructs – constructors”. There are

many different types of coding, the example illustrates a form of coding known as descriptive coding

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 78

– where topics are assigned to aspects of the data. Table 6 documents the relevant types of coding

used in this research for the first cycle of coding which takes placed after the transcripts have been

generated in order to understand a phenomenon and compare data with each other as participants

talk about elements in a unique way.

Code Name Where it is used in this research

Attribute Coding Background Questionnaire (participants level of knowledge and
confidence – secondary and tertiary studies), pre-code puzzle
questionnaires and post-code puzzle questionnaires (participant’s
confidence).

Emotion Coding Anonymised Transcripts of CP1 and CP2 for each participant.

Descriptive Coding Background Questionnaire, Pre-Code Puzzle Questionnaire, Post-Code
Puzzle Questionnaire, Post-Study Questionnaire, Anonymised
Transcripts for CP1 and 2.

Evaluation Coding Linked with Narrative Coding – the evaluation part of the individual
participant summaries uses + and – to indicate what programming
concepts participants audibly make incorrect or correct comments
about.

In Vivo Coding During the memos.

Narrative Coding In individual participant summaries linked to evaluating both CP1 and
CP2 transcripts.

Process Coding In the movement data transcripts and sometimes in the anonymised
transcripts for Puzzles 1 and 2.

Table 6: How this research utilised the different types of coding (based on advice given in the works of
Elbardan and Kholeif, 2017)

After the first cycle of coding is performed, sorting needs to occur – this is where the generated

codes are categorised in order to produce themes. Themes can be established by identifying similar

relationships between codes – in other words, can the codes be classified under one larger code? The

relationships can be determined by similarity, but also conceptual similarity even if the inherent

meaning is different. In our example with difficulty, another NP may have commented “I find

constructors easy” which, while the emotional coding behind the phrases is different, there is an

underlying theme of difficulty meaning that two participants in our example commented on

difficulty. The occurrence of the code is also of interest; if the majority of participants use a code

then it may be worthy of a theme by itself. The chronological ordering of codes is also important, if

applicable, and in the context of this research process coding was used to help document the

movements but was also used with grouping how participants audibly approached solving the puzzle.

After codes are grouped into themes, the themes need to be clearly defined and judged for the

underlying essence of the theme – for example, are all the codes portraying the same underlying

meaning, or different meanings? And from this, the findings are presented in the form of categories

or themes with evidence from the data.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 79

However, this description of coding has been generic when the main way that the three forms of

Grounded Theories differ is on the aspect of how to approach coding as well as what is the necessary

format of data to be in before coding can begin.

All forms of Grounded Theory aim for the same goal – the production of a theory, that is driven from

data and are primarily useful for when no adequate theory in relation to the question can be

established. Grounded Theories aim to define a social construct or process and uses an inductive

approach to garner meaning through qualitative data. However, there are several versions of

Grounded Theory, each with their own perceptions of what is necessary in order to reach a theory

and with differing levels of detail documented in the differing Grounded Theory approaches.

Straussian Grounded Theory was considered first for this research; originating from the original

works of Glaser and Strauss (1967) which documented a full procedure for how to formulate a theory

from data obtained. In Straussian Grounded Theory it is argued that the researcher should have

limited access to previous research conducted in the area so as not to influence their perceptions of

the data – for this research, bracketing was used in order to mitigate these issues as the researcher

had read previous works in order to develop a research question for this thesis. That said, the

purpose of Grounded Theory appealed regarding data analysis as previous works had failed to

identify how understanding could be obtained from NPs’ interactions with code puzzles so a way of

performing data analysis that allowed the data to lead to the theory was desirable for us to answer

the research question. Straussian Grounded Theory is well documented, explaining step-by-step how

to perform Grounded Theory, which was attractive to the researcher as they had not previously had

background in qualitative research and had been previously unfamiliar with Grounded Theories.

Straussian Grounded Theory has the criticism of having unnecessary detail and steps that make that

version of the theory tedious; even the original co-author of Grounded Theory stated that “Strauss’

method of labelling and then grouping is totally unnecessary, laborious and is a waste of time. Using

constant comparison method gets the analyst to the desired conceptual power quickly [and] with

ease and joy. Categories emerge upon comparison and properties emerge upon more comparison.

That’s all there is to it” (Glaser, 1992). Glaser further argues that a variety of methods is possible and

that the process of axial coding is only one of multiple comparison methods that would allow the

researcher to arrive at an appropriate theory. Glaser (1992) focused on a concept, known as

theoretical sensitivity, and suggested that all collated evidence is data and possibly relevant to

generating a theory. However, Glaser’s (1992) methodology is vaguely outlined as it has a far more

flexible approach in comparison, and this is primarily why the researcher chose Straussian Grounded

Theory as it felt more structured for a novice researcher. Constructivist Grounded Theory was

considered, as it offers a mixture of Straussian and Classical Grounded Theories – it has more

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 80

structure than Classical Grounded Theory, and more flexibility than Straussian Grounded Theory.

According to Thornberg and Charmaz (2012), Constructivist Grounded Theory supports the idea from

sociology that the researcher is a co-constructer of meaning as they are the interpreter of the data

and the developer of the theory. The focus of the theory, however, is quite general – it tends to focus

on the context, description and complexity of the data and accounts for the possibility of multiple

theorems being developed from a single source of data which Straussian Grounded Theory

emphasises only one theory should be identified from selective coding. While Constructivist

Grounded Theory could have been used, the guidance for implementing it was less clear than

Straussian Grounded Theory, therefore, this research chose Straussian Grounded Theory.

4.5 Sampling: Purposeful and Convenience Sampling

Purposeful and convenience sampling was selected for this research, the reason for this is that

purposeful sampling is a common sampling for phenomenological research – and as we are

attempting to study a specific phenomenon (how NPs portray their understanding of programming)

that is experienced by a particular group of people (i.e., NPs who are more specifically enrolled on a

first year undergraduate CS course, who have taken and completed at least one iteration of the same

core module in Java) - purposeful sampling needed to be used. Convenience sampling, where a

participant is selected based on their availability, was enacted due to the restrictions of the ethical

procedures not allowing for the study to be integrated into university degree courses or modules.

The ethical procedures outline that research needs to be kept separate from modules to ensure that

students do not feel coerced to participate in research, and to minimise the possibility of complaints

from other cohorts as, say, the tool was proven to be useful to the 2018-2019 cohort but was later

removed from the 2019-2020 version of the module due to ethics permissions only being granted for

the duration of the PhD, then the 2019 cohort may complain about unfair disadvantage of not having

access. Similarly, if the tool was shown to increase the average marks of the 2018-2019 cohort, then

it was possible for the 2017-2018 cohort to complain also about having an unfair disadvantage. The

reverse would also have been an issue – say the tool had been a distraction for students and resulted

in lower-than-average grades when compared to other cohorts, it would run the risk of the

researcher getting into trouble for giving unfair advantages. This meant that all volunteers needed to

be treated as equally as possible and ensure that advertisement was sent to all students at the same

time with specific instructions to say that it was not related to the Java module that the

announcement was sent from.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 81

4.6 Recruitment, Conduction and General Procedure of Studies

Before considering the research design, the purpose and anticipated outcomes of each of the three

studies needed to be identified; the pilot study explored the feasibility of categorising ‘levels’ of

understanding based on the movements of the learner with Java code segments and aimed to mimic

previous studies in the area by classifying the movements using ‘swap, add, remove’ actions in order

to form a baseline reading for future automation. It was anticipated that a series of numerical scores

based on the likelihood of the NP having that depth and breadth of understanding about particular

programming concepts would be produced in a similar manner to previous research (e.g., Helminen,

Ihantola, Karavirta, and Malmi, 2012).

In short, participants were asked to re-arrange two types of paper-based and Java-based Code

Puzzles into runnable solutions. CP1 was in the style of a 2D Parson’s Problem – with one piece being

one line of code – while CP2 was in the style of individual segments of code – with one piece being

one word or piece of syntax.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 82

1. public class PotatoShop {
2. private int totalPotatoesRemainingInStore;
3. private double priceOfPotatoes;
4. private int numberOfPotatoesSold;
5. public PotatoShop(double price, int totalPotatoesInStore) {
6. priceOfPotatoes = price;
7. numberOfPotatoesSold = 0;
8. totalPotatoesRemainingInStore = totalPotatoesInStore;
9. }
10. public double sellPotatoes(int numOfPotatoes) {
11. if(numOfPotatoes <= totalPotatoesRemainingInStore){
12. numberOfPotatoesSold += numOfPotatoes;
13. totalPotatoesRemainingInStore -= numOfPotatoes;
14. return calculateSale(numOfPotatoes);
15. }
 16. else {
 17. return null;
 18. }
 19. }
 20. public double calculateSale(int numOfPotatoesSold){
 21. return priceOfPotatoes*numOfPotatoesSold;
 22. }
23. }

Table 7: CP1's Model Answer

Numbered pieces are separated by the regex pattern of: [num].[piece]
1.|import| 2.|java| 3.|.| 4.|util| 5.|.| 6.|Date| 4.|;|
5.|public| 6.|class| 7.|Potato| 8.|{|
 9.|private| 10.|double| 11.|weight| 12.|;|
 13.|private| 14.|Date| 15.|expiryDate| 16.|;|
 17.|public| 18.|Potato| 19.|(| 20.|double| 21.|weight| 22.|,| 23.|Date| 24.|expiryDate| 25.|)
| 26.|{|
 27.|this| 28.|.| 29.|weight| 30.|=| 31.|weight| 32.|;|
 33.|this| 34.|.| 35.|expiryDate| 36.|=| 37.|expiryDate| 38.|;|
 39.|}|
 40.|public| 41.|Boolean| 42.|isFresh| 43.|(| 44.|Date| 45.|currentDay| 46.|)| 47|{|
 48.|if| 49.|(| 50.|expiryDate| 51.|.| 52.|after| 53.|(| 54.|currentDay| 55.|)| 56.|)| 57.|{|
 58.|return| 59.|true| 60.|;|
 61.|}|
 62.|else| 63.|{|
 64.|return| 65.|false| 66.|;|
 67.|}|
 68.|}|
 69.|public| 70.|double| 71.|getWeight| 72.|(| 73.|)| 74.|{|
 75.|return| 76.|weight| 77.|;|
 78.|}|
79.|}|

Table 8: CP2's Model Answer

While this research aimed to mimic previous research, this research focuses on whether Code

Puzzles can effectively be used to discern understanding of NPs.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 83

While rare for previous research to use paper-based prototypes, Denny et al. (2008) did do so to

investigate using 2D Parson’s Problems instead of traditional exam questions to make marking

turnover easier for staff members and concluded that they were more efficient than traditional

means. Helminen et al. (2012) wanted to use software to see if using 2D Parson’s Problems could

help NPs self-learn and help lecturers automate feedback; they focus on the quantitative data

collected in these studies – such as the quality of code produced, length of time taken to create the

solution, mistakes made, cursor mapping and the classifications of individual movements that a user

made. These two previous research studies formed the main basis of the procedure for the studies

presented in this thesis.

The subsequent studies’ methodologies aimed to minimise the potential research bias present in

previous research; for example, Helminen et al. (2012) used experts to interpret the reasoning

behind cursor movements, whereas this thesis’ studies collected qualitative data on what the NPs’

explanations for their own movements were. An observer can only ever observe the symptoms of

understanding, and while an expert is likely to determine the intended meaning behind movements,

it is closer to the philosophy of interpretivism for the researcher to allow the participants the ability

to explain their own intentions.

For each participant recruited, the studies followed the same stages of the process – they were

through study design, ethical procedures, advertisement, recruitment, getting informed consent

from the participant, arranging a mutually available meeting in a secure location, re-clarifying

consent by walking through the participant information sheet, setting up the experiment equipment,

completing the puzzles and a follow up session whose purpose was to provide individual feedback to

the participant as per the advertisement (see Figure 9).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 84

Figure 9: The study timeline from the participants’ perspective; a general overview of the difference

in procedures between pilot and the secondary and tertiary studies

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 85

4.6.1 Advertising and Recruitment Process

The recruitment process involved advertising through posters placed around the main building and

via first year CS module announcements (see Appendix). All studies required participants to have

completed, or be at the final stages of, a Java foundations module and be enrolled in either a

combined honours or honours degree that had a CS component to it. The reasoning behind this was,

in part, to ensure that each participant had been exposed to the same material in regards to Java and

allow the research to create a baseline for the knowledge used in the puzzle pieces. In the pilot

study, no incentive was offered other than the notion of gaining feedback from a follow-up meeting;

in the secondary study, a £10 Amazon voucher was offered to participants who attended their

scheduled session – regardless of whether their solutions worked or not and regardless of whether

they completed all the tasks; in the tertiary study, no incentive was given as due to COVID-19

restrictions it was not safe or efficient to handout or post vouchers. Participants who were interested

in participating in the study contacted the researcher directly to ask for more information, to which

the researcher replied with a participant consent form – which they needed to sign prior to meeting

– and a participant information sheet which explained the research purpose, procedures, time,

incentive, appropriate contact details to relevant governing bodies, risks involved and a reminder of

participant’s rights (including the right to withdraw data from future publishing).

Participants needed to provide informed consent, therefore, the observer and participant read

through the consent form and participant information sheet prior to the study commencing to

ensure the participant fully understood the contents of both documents – this occurred even if the

participant pre-signed the consent form prior to attending the study. Participants were reassured

that they could withdraw from the study up to six weeks after the experiment took place, but none

of the participants withdrew from any of the studies. Participants were also informed that they could

ask any questions during the investigation, with the purpose behind this procedure being that

participants could reveal their knowledge and understanding through the questions asked to the

observer. In all studies, participants were told that they could stop the experiment whenever they

wished to – and the observer encouraged them to stop if they felt too frustrated to continue or could

not see any more changes to their puzzle that they could make. All participants were required to

have engaged in a first-year undergraduate module which focused on the foundations of basic

Object-Orientated programming concepts (e.g., objects, fields, methods, inheritance) using Java; this

module assumed that the students were new to programming and taught them the required Java

needed to create classes.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 86

Participants were informed that they would be recorded by two different mediums – via a

microphone, located on the desk connected to a laptop and via a handheld camera. For the tertiary

study alone, participants were told that Blackboard Collaborate Ultra was recording both their

movements and sound simultaneously. While numerous technical issues were present throughout all

three studies, the primary issue was linked to the quality of video recording captured by the

handheld camera – in the pilot study, the school’s camera provided to researchers would frequently

fail, resulting in the researcher using their own camera which was not high definition. This made the

transcription of pieces and movements challenging, and audio and visual as well as observer notes

were needed in order to create adequate translations of the movement data. All participants were

told that an algorithm would be used to analyse the data to produce a representation of their

understanding; in the pilot study this was performed after transcription, in the secondary and

tertiary studies, the observer acted as a medium for this and in the immediate follow-up feedback

sessions produced feedback based on the real-time observed data without pre-processing analysis.

However, this recorded feedback was compared to the generated results produced by the same

method as the pilot study to see analyse similarities or differences in the information given.

4.6.2 Observation Room Set Up and Procedure

In the pilot and secondary studies, the observation room was set up with two, conjoined desks with

the original perception of the participant using the left desk for the final solution, and the right desk

for randomised pieces. Participants would need to wait for both the camera and microphone to be

set up and were warned of this – in the secondary and tertiary studies the phrase “Alright, begin!”

was used to indicate participants could proceed.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 87

Figure 10: Diagram of the study set up.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 88

The observer in all studies was tasked to ensure, primarily, that the microphone was in working

order, followed by the camera being in focus, followed by attempting to listen and note down any

observations recorded. This was difficult for the observer to handle; the ideal experiment would have

had at least two observers, but this was not possible to do.

Participants were told to speak their thoughts using a think-aloud protocol, which was explained

during the participant information sheet phase. While, ideally, participants would be ‘trained’ to

speak aloud, as this is an unusual skill to master, it was deemed more realistic if participants were

told more generally what to focus on so that the explanations could reveal what they viewed as

important rather than the researcher’s expectations guiding their explanation. In the secondary and

tertiary study, for participants who fell silent, the phrase “Remember to explain your movements”

was vocalised by the observer after either: a) the participant had not spoken a word for over 20

consecutive seconds but had been interacting with pieces or b) the participant was performing an

action that had not been previously, or clearly, explained prior to the action. This thesis supports the

view that think-aloud protocols do cause heavier cognitive load as participants were found to

become quiet and it became difficult to comprehend when they were thinking over when they had

forgotten to vocalise their thoughts in the pilot study when no set phrase had been allocated to be

used in these situations.

In all studies, CP1 was a traditional Line-By-Line 2D Parson’s Problem that involved the same

PotatoShop task, and CP2 was a Piece-By-Piece Code Puzzle that used spaces, punctuation and new

lines as delimiters for the same Potato task. In the pilot study, participants only needed to complete

two post-puzzle questionnaires; in the secondary and tertiary studies they completed background,

two pre-puzzle, two post-puzzle and post study questionnaires. The tertiary study had to display the

pieces in a static format as Blackboard Collaborate Ultra did not allow for the movement of pieces

(see Figure 10, Figure 11, Figure 12, Figure 13 for what each experiment looked like).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 89

Figure 11: Photo of the CP1’s pieces in the pilot study.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 90

Figure 12: Photo of the setup of the secondary study; example of the camera and microphone set up.

Figure 13: Tertiary Study: How pieces were displayed to participants.

After a participant had completed their puzzle, either by vocally announcing in the pilot and tertiary

studies or via showing a red card in the secondary study, they were given time to complete a post-

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 91

puzzle questionnaire while the observer set up the next puzzle on a different desk (where possible).

After participants had completed their final puzzle, they were thanked for their time in all studies.

4.6.3 Follow-up Procedure

In the pilot study, participants were not given immediate feedback as it was intended that the data

would need to be judged retroactively before a conclusion on their understanding could be made.

However, in the secondary and tertiary study, an immediate feedback session followed so that

participants could remember their movements and give a more informed perspective on whether

the observer had analysed their understanding accurately or effectively.

4.7 Pre-Processing Procedures and Consequent Data Analysis

After each experiment, audio and video transcripts were produced. The audio recordings were

sound-boosted and cleaned before being manually transcribed into ‘raw’ time-stamped, voice-to-text

transcriptions with transcriber notes (where relevant) and corresponding video identifiers and

timestamps (where appropriate). The video recordings were used to transcribe the movements of

the participants into anonymised time-stamped movement patterns where a card would be allocated

to an ’order number’ (i.e., the order in which the participant placed the pieces) and the time it was

placed down by the participant. A piece would only be considered ‘placed down’ when the

participant had removed all their fingers from the piece. The ‘raw’ audio transcripts were cleaned to

change words that were deemed sensitive (i.e., may identify the participant) or inappropriate (i.e.,

vulgar) to ‘[REDACTED]’ to create anonymised audio transcripts.

4.7.1 Qualitative Data Analysis Procedures: Using IPA and Straussian Grounded Theory

 The anonymised versions of the transcripts were then coded using Straussian Grounded Theory;

open coding was performed to generate a series of codes, which were then grouped via axial coding

in order to generate categories of description which provided an outcome space and the formulation

of new theorems. The anonymised transcriptions also were examined using interpretative

phenomenological analysis (IPA) in order to generate a different form of coding which “aims to

capture and explore the meanings that participants assign to their experiences” (Reid et al., 2005).

The vocal data was also analysed for signs of frustration present in the participant – e.g., sighing –

and other body movements and noises were also documented and studied for potential meanings –

e.g., the participant tapping their finger on the desk while thinking, ‘hm’, ‘um’, ‘uh’, ‘er’, and

‘dududu’. Similarly, a ratio of words spoken by the participant verses the observer was also

generated, alongside information relating to the types and content of questions that were asked

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 92

among participants. The questionnaire data collected from all studies was examined from the same

perspective as the audio for the open-ended questions.

4.7.2 Quantitative Data Analysis Procedures: Time Analysis and Movement Classification

The quantitative data collated consisted of numerical counts based on the audio and all the

questionnaire questions. Numerical data focused on counting the types of movements performed as

it was anticipated, based on previous research, that the participants’ movements that could be

translated directly to action statements – such as ‘swap’, ‘remove’, and ‘add’ – and that these

movements would correlate to a specific formula that would affect the level of understanding of

concepts associated to that puzzle piece (see Table 9)

Action Title Description Indicator

Remove A pre-placed piece was taken by participant from the final
solution area without replacing it with another piece within 10
seconds of the removal.

Participant is
unsure

Add A piece was moved into the final solution area and did not
equate to swap.

Participant is
sure

Swap A pre-placed piece was taken by participant from the final
solution area and replaced with another piece within 10 seconds
of removal; both pieces would have the ‘swap’ movement added
to them instead of add/remove.

Participant
has confused
pieces

Table 9: Anticipated Movement Types and Indicator

The movement logs would record the order of the pieces, the time the piece went onto the final

solution space and how many movements there were – these would then be analysed for the time

taken, number of movements for each piece and how long was spent on each part of the class.

4.8 Protocol Amendments and Ethical Considerations

The pilot study attempted to simulate as much as possible with the equipment available at Aston

University to previous studies with the intention of forming a baseline, that said, the major

difference was that the software used in previous studies was not available to the researcher, so

paper-based cards were used. Similarly, due to the ethical procedures present at Aston University, it

was not permitted to run this alongside the Java Foundations module as a mandatory component as

this would breach the ethical protections for students – therefore, they had to volunteer and be

ensured of their rights prior to participating in the study. Participation bias and participant selection

biases are likely present in the sampling as the sample may not represent the entire cohort –

participants were noted in the secondary and tertiary studies to be “fairly confident”, on average,

with their coding capabilities meaning that less confident programmers were not involved in the

research. That said, due to the restrictions, it was not possibly to mitigate this other than in the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 93

careful construction and wording of the advertisements. However, the outcome showed participants

performing different movements and it was determined that what they explained did not always

correlate to the anticipated reasoning behind the type of movement performed and revealed a form

of anchoring bias presented in previous studies due to the restrictions of interface design being

loosened due to the natural nature of a paper-based study.

As the secondary study yielded similar results to the pilot study but had not yet achieved data

saturation, a tertiary study was performed with similar sentiments. But, due to the restrictions of

COVID-19, a paper-based study was no longer feasible and therefore the procedure was moved onto

a virtual learning environment – Blackboard Collaborate Ultra. That said, Blackboard Collaborate

Ultra did suit the style of experiment due to the restrictions of the interface design not allowing for

pieces to be moved manually, and consequently there was a poor uptake of participants.

Originally, three tasks were envisioned to be performed in an hour session – however, the pilot study

revealed that this was not possible unless the participant was unusually quick at completing the

puzzles. As part of our pilot study, three different types of paper-based 2D Parson’s problems were

created – varied by splitting the solution code using one of the following templates: splitting the code

after each line (known as Line-By-Line), splitting the code after each space (known as Piece-By-Piece)

and after each space but also including alternative pieces, some of which are incorrect (known as Red

Herring Piece-By-Piece). In the pilot study itself, students were spending almost an hour on the first

two puzzles and therefore the third puzzle – with the red-herrings – was omitted. However, NPs

were determining how to complete classes using the remaining pieces of the Code Puzzle. As noted

in feedback by participants in the pilot study, such as “read through the spec, it defined all I needed”

and “the instructions explained in a lot of detail that some parts of it a could have been assumed”, it

was decided that the instructions did need to be modified in a way that participants who explicitly

followed them instead of using the pieces as a guide would be highlighted with more contrast than

they were in the pilot study. Likewise, participants were noted to be using the pieces remaining as a

guide for what to do next, and therefore a red herring that could be comparable to the pilot study

without adding complexity to the solution was therefore used in the secondary and tertiary studies

alongside a modification of the observer explaining to the participants that “not all of the pieces

need to be used and user piece creation can be done if there are pieces you feel are missing and

need are not present”. Therefore, in the secondary and tertiary studies, participants were given red

herrings in both puzzles and told that they can create their own pieces. Participants in all studies

were informed that they would need to construct, to the best of their ability, a working Java class

using the paper-based Java code puzzle pieces available.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 94

Therefore, only two tasks were given to all participants as no one managed to complete the third

task in the pilot study, so it was combined with the second in the secondary study – the first task was

to arrange paper-based 2D Parson’s Code Puzzle pieces into a working version of a ‘PotatoShop’ Java

class, and the second task was to arrange paper-based individual segments (where the delimiters

were: a space, new line or end of a variable name) in order to construct a working version of a

‘Potato’ Java class. The reasoning for choosing Potato shop and Potato for the two tasks was to

establish a concept of the program they were attempting to build, and for them to link and draw

upon the two classes. Likewise, participants were given two separate task descriptions that purposely

omitted technical terms, such as ‘constructor’, ‘accessor method’, ‘parameters’ and ‘fields’, in order

to try and not influence the participant. Aside from this exception, the task description was written in

a way that was similar to their Java Foundations module examination question style – this was due to

the research wishing to establish a baseline by not surprising participants with a new style of query

as we intended to draw upon their understanding which inherently relates to their previous

experiences of programming. That said, this surprisingly caused issues as participants were used to

seeing the technical terms used and some were quoted to be deciphering what the meaning of the

task descriptions were, likewise, multiple participants claimed they were not familiar with

java.util.Date which they had explicitly learned in their Java Foundation module. Furthermore, it was

discovered that most participants tended to struggle with reading extracts from official Oracle

documentation despite this also being covered in the module. Therefore, despite the research

design’s intention of creating tasks that would be in line with what participants experienced, this was

not the case for all participants – this meant that we could analyse the effectiveness of extracting

information from both NPs who were familiar with parts of the task, and, for NPs who were

struggling with parts of the task. While all participants were seen to complete Task 1 – even if their

solutions were flawed – one participant was noted to ‘quit’ for Task 2 and knowingly hand in an

incomplete solution for Task 2; this participant is key for analysis, as before they submitted their

solution there is ample text transcribed for that excerpt that helped to reveal the issues that caused

frustration with alleged 100% accuracy for that participant.

As noted previously, this research incorporated an interpretivism approach to research design – and

therefore a think-aloud protocol was adopted in order to make participants voice their thoughts and

feelings about their movements to the observer. While the think-aloud protocol is difficult to

perform, particularly while performing a task, it was deemed important for this study to be distinctly

different from previous research in the area by purposefully obtaining the present thoughts and

feelings of the participant rather than, purely, the observer’s observations. This was to reduce:

choice-supportive, outcome and hindsight biases as the participants were commenting on their lived

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 95

experiences during the present time of performing their action; courtesy bias as the participants

were likely already focused on attempting to complete the task and due to the nature of the think-

aloud protocol, more likely to have a relatively high cognitive load so would not be as likely to try to

alter their words during the experiment to please the researcher; intentionality bias as participants

were audibly communicating to the observer what their intentions were about an action or piece;

self-serving bias as participants would be naturally commenting on both successes and failures

during the course of the experiment and researcher bias as the observer was instructed to ensure

that they remain as unintrusive as possible.

That said, there was the provable presence of shared information bias present in the transcripts as a

result of the think-aloud approach – as participants often commented on their actions for both tasks

as reading the piece and saying that they were going to place it in a specific position. That said, this

thesis argues that this is also a necessary part of understanding how participants view phenomena

and how they rank the importance of the experience of constructing coding – it may seem obvious,

but the participant commenting on the placement of a piece in a given scenario indicates to the

observer that they were concentrating on the process and positioning of the piece, and, due to the

nature of paper-based studies it is important to understand the intended location and purpose of the

piece with many participants demonstrating natural indentation of the pieces. While not always the

case, participants often commented on placement and movements before explaining their actions or

revealing their perception of the concept behind the piece. Therefore, in this instance, this thesis

argues that such a bias being inherently present is necessary for the observer to gain an insight into a

participant’s understanding and reasoning.

In the pilot study, participants were asked to attend a 40-minute session – however, for the

secondary and tertiary studies this was increased to a 1-hour session. On average, participants took

around 10 minutes (for the pilot and secondary studies) and 45 minutes (for the tertiary study) to

complete Task 1; and around 15 minutes (for the pilot and secondary studies) and 33 minutes (for

the tertiary study) to complete Task 2. For this reason, this thesis will group ‘pilot and secondary

studies’ and ‘tertiary study’ in separate sections when discussing the data holistically as the pilot and

secondary studies were paper-based and performed as intended by the research design, but the

environment used for the tertiary study was less than ideal and did not work well for the intended

purpose meaning that the data for the final three participants is only comparable in terms of the

solutions produced and the commentary rather than for the timings.

For the pilot and secondary studies, it was specified that an office space needed to be booked far

enough away from CS staff so as not to accidentally breach the confidentiality clause for the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 96

participant. That said, as audible on the recordings and during the transcripts, the available rooms

were less than ideal, and disruptions were frequent during experimentation which were noted to

break the participant’s immersion and train of thought. These distractions ranged from small – where

it was simply corridor noise or the next classroom being audible – to moderate – where the provided

camera failed to work as intended – to severe – where the participant and observer is forcibly

removed from the room during experimentation due to a misunderstanding about booking rights. As

a result, the research methodology incorporated, as part of the analysis, a distraction penalty to the

time it took to complete a given solution depending on the noticeable length, effect and severity of

the distraction on the participant’s words. For the tertiary study, this was not an issue, however,

Blackboard Collaborate Ultra did cause similar distractions – including causing the loss of a

participant’s entire solution due to the rubber icon being mistaken for a rubber rather than a ‘wipe

all screen’ function. Similarly, moving or dragging pieces in the environment was cumbersome and,

instead, text typing was used which took longer. Distractions weren’t recorded in the same way for

the tertiary study, but a note was made for the affected participant who screen wiped their solution

before completing it.

While the pilot study anticipated it would be easy for the observer to answer queries and understand

when the participant had finished, this was not found to be the case. Therefore, the secondary study

made use of a red card (a submission button. or for when the participant wants to stop the

experiment) and yellow card (a question button for when the participant wants to directly ask a

query to the observer) – this was to avoid the observer imposing more so on the experiment itself

and to give a clear indication of when the participant was happy with their solution as asking them if

they were content with their final product could lead them to doubt their solution. Despite ‘testing’

phase of program development not being anticipated to be revealed, many participants displayed a

need to check their code prior to submission and this yellow-red card dynamic helped to flag what

participants needed, albeit some naturally forgot about the cards. The observer was also given a

stricter observation script as it was found that in the pilot study participants were asking themselves

rhetorical queries during the think-aloud protocol. While the observer script did encapsulate a lot of

scenarios, participants still found differing ways of forgetting previously discussed information and

this is evidenced when the observer goes off script during the observations. In the tertiary study, the

script needed to be altered and participants were primarily asking queries associated to the

operation of Blackboard Collaborate Ultra itself which detracted from the task at hand. Tertiary study

participants were encouraged to type in the chat, but few did and most naturally chose to vocalise

their query.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 97

Finally, questionnaires differed between studies – in the pilot study, it was intended that enough

information would be garnered from the movements alone that more than two questionnaires – the

same questionnaire asking about the difficulty and perceived confidence in the solution working

after Task 1 and Task 2 – would be sufficient. However, the pilot study revealed that this was less

than ideal as the movements themselves were not the greatest indicator of the participant’s

understanding. Equally, assuming that all participants had the same baseline due to them sharing the

same module and degree programme for one academic year was not enough to establish a true

baseline – as a result, the secondary and tertiary studies incorporated a background questionnaire

which was completed prior to attempting or seeing the puzzles where the participant would clarify:

their level of confidence in programming in Java; what languages they were familiar with (in order to

obtain their experienced programming paradigms); what they found difficult; what they found easy;

and how they believed they approached programming and a documentation of their processes. This

was performed also to reduce the social desirability bias as the pilot study received, off-recording,

unusually positive feedback about the accuracy of the findings and this thesis wished to establish

whether these participants were viewing their results in the same way as one could view a

horoscope. Having a documented and established way of them approaching an authentic task meant

that their word alone could be supported by a questionnaire conducted prior to the study itself, and,

to see whether the NPs did have an approach to these tasks that could be equated to their perceived

approach to programming tasks on a computer. Likewise, the perceptions of the task itself were not

easily identified during the think aloud protocol of the pilot study, and therefore a two-question pre-

puzzle questionnaire was completed based on the perceived difficulty of the task itself to separate

the difficulty of the puzzle from the difficulty of the task.

Additionally, a final questionnaire was completed at the end of the follow-up feedback recording for

the secondary and tertiary studies – unlike the pilot study – these follow-ups were done immediately

after the second task’s post puzzle questionnaire was completed and was not an optional add-on

that happened a fortnight after the event occurred. The reasoning for this change was that

participants’ uptake on the non-recorded feedback sessions that occurred a fortnight afterwards was

poor as the time commitment of meeting for a separate session after a first was deemed a lot of

effort. From the participant who did take up the follow-up meeting, they had forgotten about their

movements due to the gap and therefore could not properly assess their opinion on the feedback

presented by the researcher. While the immediate follow-up sessions meant that the observer

needed to insert themselves into the equation and eyeball the data, they had collated to assess

whether they could identify the understanding of the NP, this was deemed to be appropriate given

the drawbacks of the follow-up meetings conducted in the pilot study. Furthermore, the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 98

methodology was altered so that these feedback sessions were recorded as a major issue with the

pilot study was that these feedback sessions were not allowed to be recorded according to ethics,

whereas, on the secondary application of ethics this was universally granted presuming that the

participant wished for immediate, but possibly imperfect feedback – which all participants agreed to.

This thesis also argues that the observer using the data that they had noticed in the session was also

a realistic metric in its own right – for example if this diagnostic tool was used it would be unlikely

that the observer would have noticed all of nuances of the participant’s symptoms of their lived

experiences in real time. This also meant that the observer’s responses were analysed in comparison

to the answers given in the post-study questionnaires as the post-study questionnaires were likely

influenced by the feedback session.

There were two ethical applications to the EAS ethical board, and one amendment of a previous

application related to this research. The pilot study was conducted in 2017-2018, the secondary

study conducted in the April-May 2018, and the tertiary study was conducted in July-September

2020. Ethics was originally granted in 2017 for a study that researched whether a decision tree

algorithm could be used to determine the level of understanding of an NP based on interactions with

Code Puzzles. However, it became apparent from the unexpected results that the purpose changed,

alongside the aforementioned protocols, and therefore a new ethical application was created and

approved in early 2018. Due to issues with ill health prolonging the research, a change of Ethics

Board members and COVID-19, the 2018 was further amended to accommodate for the current

issues.

4.9 Bracketing (for Pilot, Secondary and Tertiary Studies)

Bracketing is a crucial stage of Husserl’s Transcendental Phenomenology and is the first step towards

analysing the epistemology of the study procedure. For example, it is important for the researcher to

identify their own thoughts and feelings towards programming, how they construct programs, how

they view the phenomenon of a program and what their expectations are of the study. It is also

important to determine exactly what subjectivity is in the context of these studies and consequently

analyse the subjectivity of the researcher. To clarify, the researcher, the observer, the transcriber

and the data analyst for all three studies was the same person.

In order to achieve bracketing, the researcher needed to practice reflexivity – a form of reflection

which analyses how the researcher views the world of research and perceives the examined

phenomena – which in the case of this research, is how NPs interact with code puzzles and whether

this reflects on their understanding. There are multiple parts to the phenomena, so the researcher

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 99

needed to identify each individual part that comprised the network of phenomena being observed,

as only through separation of the components can true reflexivity be achieved. The researcher

deduced that it was necessary to perform reflexivity on: their perceptions of a program; their pre-

conceptions of how to create a program; their perceptions of the underlying concepts of the

program; their perceptions of what each piece translated to; their perceptions on what data would

be collected from the phenomena which formed the basis of hypotheses as many of these

perceptions were based on reading about previous research; how difficult the tasks would be; and on

how participants would audibly describe their interactions.

Bracketing was practiced before each study commenced, and during each study memos for each of

the participants were attached to the anonymised transcripts in order to capture the perceptions of

the observer at the time of data transcription. While, ideally, memos should be creating during live

observation the researcher needed to hold the handheld camera and had their mind busy with the

process and being ‘present’. The observer then transcribed their thoughts after the meeting with

each participant to capture their reactions.

Bracketing requires the researcher to perform necessary forms of reflexivity. There are three main

types of reflexivity: personal (reflexivity as a confession, Van Maanen, 1988) – about the researcher’s

own background, interests and motivations in the research; methodological – about the researcher’s

planned procedures and the research philosophy; and theoretical – about the theories or thoughts

they had on potential outcomes of the research. Each of which was categorised in the memos

associated to each participant post study.

Van Maanen (1988) showed that there was a difference between confessional tales and realist tales;

realist tales identified the objective interpretation of the natural world; however, confessional tales

were identified as the researcher discussing about how they perceive the world and documenting

their lived experiences of the world and typically involve details such as their background overall as a

researcher and their perspectives on why the topic they are researching is important to them

personally. The reason that confessional tales are important is because they demonstrate how the

researcher could influence their researcher by their own unconscious bias and allow for the

researcher to check whether there is innovation bias present in the way they have collected or

analysed the data. It can also be used to determine where the researcher’s strengths and

weaknesses are, and from this, determine what parts of the research procedures are likely to change

depending on their experience level. Van Maanen (1988) argued that confessional tales served two

primary purposes – downgrading authority or upgrading authority. Authority is the concept of how

the researcher perceives themselves and how that perception can influence the way they conduct,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 100

analyse and/or interpret the output of their research; to ‘downgrade’ authority the researcher needs

to place their research in a more critical, negative light to see the limitations of their findings and

‘upgrade’ authority has the researcher place their research in a more positive light choosing to focus

on what the data contributes to their knowledge or what they have learned from downgrading their

authority. For example, a researcher downgrading their authority may say “as a non-expert in the

field of phenomenology, this influenced the way I approached x” whereas a researcher with an

upgrading authority may say “for someone with little background in phenomenology, this was the

only perceivable way x could be accomplished”. However, this thesis argues that it isn’t surprising

that researchers tend to claim authority more so than downgrade their authority; that said, it is a

useful warning that a lived experience can be portrayed in different ways and that the tone of the

researcher during the personal form of reflexivity influences the way they could interpret that data

or objectively assess the procedures implemented (see Table 10).

Study (Summarised) Personal Reflexivity Value of Personal Reflexivity

All Researcher acknowledges that there is a
personal investment in producing something
that is useful, as, they came from a background
where they studied programming at
undergraduate level without any previous
exposure to programming and know of the
personal difficulties encountered by NPs. As part
of their teaching, seeing how NPs were deterred
from programming made them feel as if the
research mattered and that they wanted to find
a way to potentially help struggling NPs
communicate more openly with their lecturers.

The researcher needs to use that
passion to keep determined
during the course of the research,
however, they need to step back
and not project their investment
or expectations based on their
own past experiences onto
participants actions. Therefore,
the participants need to be focus
of the data and the more
structured Straussian Grounded
Theory is the way to analyse the
dataset.

Pilot Researcher had limited experience of the
interpretivism philosophy and conducting a
study as they had come from a background with
little previous experience. Researcher felt
anxious about recruiting enough participants
with no given incentive, and also felt anxious
about whether they would be able to conduct a
neutral observation even with using dialogue
from supervisory meetings to try and frame and
mitigate researcher bias. The researcher was
anxious about being able to convert the
quantitative data into meaningful analysis as
they had limited experience with that form of
research as well. Researcher was also nervous
about influencing participants and how to
conduct proper unstructured interviews as they
possess social anxiety.

Researcher needs to improve
their capabilities as a researcher
by ensuring they have read
enough literature on how to
conduct observations and avoid
leading questions. The researcher
ensured collection of quantitative
data and qualitative data to allow
them to be able to change
research philosophies should
there be an issue with the
quantitative data alone. The
qualitative datapoints are also
useful to cross-check whether the
data indicates similar inferring of
understanding.

Secondary Researcher felt slightly more confident after
conducting the pilot study and using their

Researcher needs to keep their
positivity and ensure that they

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 101

previous reflections on the methodology and
theory to generate structured procedures.
Researcher felt they still did not fully
comprehend the reality of the philosophy of
phenomenology, and the more they read, the
less certain they felt about their understanding.
Researcher was hopeful and enthusiastic,
especially with the prospect of potentially
gaining more participants and seeing whether
their theory of the previous study was
supported.

interact with participants as little
as humanly possible. The
reflexive methodologies
amalgamated from the memo
data allowed for the procedures
to be altered to accommodate
the change from post-positivism
to interpretivism philosophies.

Tertiary Researcher felt roughly the same as pilot study
in terms of confidence as confidence had
dwindled due to needing to transfer the
procedures to Blackboard Collaborate Ultra
because of the pandemic. Likewise, the
researcher was affected by their illness and felt
as if their passion to do research wasn’t as good
as previous studies. Researcher felt mentally
low; their perceptions of how well the
experiment would work were poor but did not
have more time to go through ethical
procedures again to change them to something
more suited or have enough time to build and
deploy an online Code Puzzle software piece.

Researcher needs to find value in
all data collated; this is an
opportunity to grow as a
researcher and view the data
from a different perspective. Just
because it was collated in a
different way does not mean that
is not useful, in fact, its use will
be to compare the puzzle data to
ordinary typing of code to see
which one generates more useful
dialogue for identifying
understanding.

Table 10: Summarised Personal Reflexivity: what potential researcher biases could be present? These
datapoints originate from short, written pieces before the beginning of each study.

Methodological reflexivity is primarily used a reminder of the focus of the research and any aspects

associated to it – such as hypotheses, procedures and general philosophy – alongside any notable

abductions and interpretations of individual participants. For example, perhaps a participant has

deviated from the norm, and this is worthy of note in methodological reflexivity. The way

methodological reflexivity is recorded is through memos, or methodological field notes that take

place during the investigation itself. The researcher asks themselves what procedures are working

well, for example, or notes anomalies and what those anomalies suggest about the effectiveness of

the procedures, and whether the research question benefits from the selected research approach

and philosophy. During these studies, memos were assigned to each participant’s puzzle attempt

which, on reflection, led to alterations of suggestions for future work. Methodological reflexivity is

important as transparency as a researcher is key, and that the researcher needs to be accountable

for explaining their actions and reactions to various methodological procedures. Table 11

summarises the methodology reflexivity that took place across the three studies – the participants

the memos were associated to have been removed from the table (see Table 11).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 102

Study/Studies Methodology Reflexivity Methodology Adjustment

Pilot Movements are difficult to categorise;
the difference between swap and add is
very difficult to discern with paper-
based Code Puzzles. It is difficult to tell
when a piece has been picked up and
put down – does sliding count? What
about touching but never moving? It is
difficult to tell, in terms of co-ordinates,
where the piece is being placed or
whether that data even affects the
ability to discern understanding.

Movement data for future studies will
be purely the order pieces were placed
in rather than time stamps which
became problematic as it was difficult
to keep track of due to the differences
in movement. The chronological
ordering of pieces and number of times
a piece moved was deemed useful
data, so this affects how movement
datapoints are collated.

Pilot As an observer the researcher is
consciously worried about their impact
on the NPs that they are observing.
What if the observer’s wording of
questions influences the participants’
responses?

While not entirely avoidable, a
structured observation is more suitable
to try design neutral phrases that have
as little impact as possible on the
observed.

Pilot The researcher feels as if the research
philosophy is incorrect for what they
are trying to discover, it seems as if past
research used post-positivism but they
feel interpretivism and qualitative data
yields more accurate results as the
movement themselves without context
seems meaningless.

Then the researcher will use the pilot
study result as a guidance for changing
the research philosophy – this might
even be why previous research has
failed to identify the understanding of
NPs as they are treating them as a
statistic rather than as an individual
human being. Interpretivism seems
more appropriate and what future
studies will use instead.

Pilot The researcher is having trouble
distinguishing rhetorical and aimed
questions when participants are using
the think aloud protocol.

Then the researcher will create a
procedure for asking questions – raise
a yellow card if the participant wants
to talk to the researcher, otherwise,
the researcher does not need to
respond.

Pilot The researcher is having trouble
calculating the exact time stamp that
the participant has finished their
solution; most participants tested their
code in their head before submitting.
When are they ‘finished’?

Then the researcher will create a
procedure for submitting the solution –
raise a red card if the participant has
completed the solution.

Pilot The researcher is finding that
participants are spending over the
anticipated 40 minutes for a session.

Then the researcher will amend the
protocol to factor in the more realistic
time frame.

Pilot The researcher is cautious that
participants are just using the pieces
remaining at the end to ‘fill in the
blanks’

While this is a realistic method that
participants may use to complete the
puzzle, we could incorporate red
herrings.

Pilot The researcher found participants
interacting with puzzles in an
unexpected way; grouping pieces
together based on perceived similarity.

The researcher should repeat the
experiment without drawing focus to
the workspace; if it is a natural way
that some participants interact with

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 103

There is not enough time for a
dedicated study on the workspace
exclusively, what should the researcher
do?

the phenomenon and reveals a
different perspective on the
phenomenon, we can evaluate
whether this is worthy of note.

Secondary The new philosophy and procedures
worked well, although movement data
was still an issue to record.

Then the researcher will just record the
order of pieces put down and if any
pieces are held for longer than 4
seconds, the time stamp.

Secondary The minority used a workspace; does
this mean it isn’t valid?

Some still did group pieces, especially
in the secondary puzzle. It is still a valid
approach, and the researcher has
obtained more data on the type of
discussion generated which
consistently differs from the usual
discussion of the expected interactions
with the puzzle.

Tertiary This environment isn’t suitable as the
pieces are unmovable and static.
Participants are having difficulty
operating it, typing on it and indenting
like they normally would do easily in
the pilot and secondary studies.

Then in future work the environment
should just remove the puzzle pieces
and only display the task description.

Tertiary Movement data is impossible.
Participants are also naturally muting
their microphones when typing and not
speaking as clearly as in pilot and
secondary studies.

This was the best that could be done
during a pandemic; the researcher
cannot record movement data so let us
just view what participants type and
choose to say to the observer and see
if that is as effective as the previous
studies.

Table 11: Summarised Methodological Reflexivity: what potential changes are needed in order to improve the
methodology? These datapoints originate from short pieces made from the memos of each participant
observation.

The final form of reflexivity covered in this research was theoretical reflexivity; this is where a

researcher needs to reflect upon their own assumptions and prejudices about interpreting the data

so that all assumptions are accounted for so that the data analysis process is consistently applied

with acknowledgements of potential limitations of the way the data has been analysed. Table 12

produced for the three studies associated to the assumptions made by the researcher during

analysis. As these assumptions were consistent through the three studies, the studies column has

been omitted (see Table 12).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 104

Theoretical Reflexivity Affected Process/ Processes

The researcher has assumed that when a piece is touched that
the participant was indicating that their focus was on that piece
rather than the participant intending to move that piece.

During the experiment, data
analysis, theory construction.

The researcher has assumed that when a participant asks the
observer about the meaning behind a piece that the participant’s
understanding of at least one of the programming concepts
associated to the piece is minimal.

During the experiment, data
analysis, theory construction.

The researcher has assumed that participants who do not
vocalise their reasoning for their movements after two prompts
to do so are not naturally inclined to think their reasoning is
worthy of note.

During the experiment, data
collection.

The researcher has assumed that a participant who picks up a
piece for longer than or equal to 5 seconds is having some
difficulty interpreting the meaning behind a piece.

During the experiment, data
analysis, theory construction.

The researcher has assumed that participants had their own
motivations for attending the experiments and that the majority
wanted to gain feedback in order to improve their learning
and/or help with their revision as their examinations were
drawing nearer at the time of each experiment. The researcher
has also assumed this has no real effect on the participants’
behaviours.

Follow up meeting; tone of
the observer and the amount
of time talking to the
participant after the
experiment was over was due
to this assumption.

The researcher has assumed that unless the participant asks a
specific question associated to the task, that any issues the
participants have are not due to the task itself but more of their
interpretation of what the task means or what they think is
relevant to solving the task.

During the experiment, data
analysis, theory construction

Table 12: Theoretical Reflexivity – the summarised assumptions: what has the researcher assumed to be true
when analysing the data or conducting the study? This is based on transcriber notes of the anonymised
transcripts.

4.10 Chapter 4 Summary

This chapter provides justification for the chosen research philosophy, approach, techniques,

methodology, data analysis, coding, general protocol, protocol changes and ethics processes that the

three studies went through. It also provides the bracketing that was completed for each study and

discusses the importance of using bracketing. Due to these protocols, a total of 21 participants (5 in

the pilot study, 13 in the secondary study, and 3 in the tertiary study) volunteered near the end of

their second semester.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 105

Chapter 5. Pilot Study: Identifying Understanding

This study assessed the feasibility of using novice programmer (NP) interactions with Code Puzzles to

categorise their understanding of programming in Java.

This study aimed to describe and classify the observable characteristics of NP understanding through

their interactions with Code Puzzles and determine whether classified movements of Code Puzzle

pieces could be directly correlated to an NP’s intention. This study collected quantitative data

relating to time and movement of Code Puzzles (e.g., what Code Puzzle piece was moved where) and

qualitative data relating to the NP’s reasoning for their movement of the piece and their confidence

in the produced solution.

While the study’s design aimed to mimic previous works – e.g., that of Ihantola and Karavirta (2011)

and Helminen et al. (2012) – to form a baseline reading for future work, there were differences. For

example, no 2D Parson’s Problems software was available to the investigator, nor were the study’s

materials integrated as part of a module for the undergraduate degree on the grounds of ethical

constraints. The study’s data is primary data, i.e., collected by the investigator, and obtained from

the movements and dialogue used in video recordings of NPs interacting with two types of paper-

based Code Puzzles alongside two questionnaires taken after each Code Puzzle had been completed.

5.1 Hypotheses

ID Hypothesis

H-1 NPs of a similar level of understanding will share similar characteristics in their interactions with
a particular code puzzle.

H-2 NP interactions can be classified and categorised

H-3 Classified NP interactions can be mapped to a level of understanding

H-4 NPs will make moves that correlate to swap, remove, and add with no other possibilities of
movement.

H-5 There are a finite number of ways in which a code puzzle can be experienced and understood.

H-6 The reasoning behind a classification of NP interactions will be the same among all participants
of that category of interaction.

Table 13: Pilot Study Hypotheses

5.2 Methodology

5 CS undergraduate students at the end of their first year at Aston University volunteered to take

part in the pilot study in 2017, with the criteria that they must have completed a Java Foundations

module to participate in the study to establish a baseline ability among participants.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 106

5.2.1 Advertising and Recruitment Process

Students were recruited through a Blackboard announcement from a shared second term module

that all CS and combined honours CS students had access to, and posters were displayed around the

university’s main building in the summer term. No financial incentives were offered; however, the

study was promoted as a revision opportunity to students.

5.2.2 Procedure and Data Collection

The pilot study consisted of 40-to-60-minute observation sessions where participants were asked to

create working Java class in two, separate paper-based Code Puzzles in the presence of an observer.

Participants were asked to complete two Code Puzzles – the first Code Puzzle (CP1) presented 23

pieces in the style of a paper-based 2D Parson’s Problem (where each piece correlated to one line of

code) and related to creating a Potato Shop Java class, whereas the second Code Puzzle (CP2)

presented 78 pieces in the style of a difficult 2D Parson’s Problem (where each piece correlated to

one word or piece of punctuation relating to the code) and related to creating a Potato Java class

(see Appendix, sections 11.1.1, 11.1.2, and 11.1.3).

CP1 was always completed before CP2, as randomising the order was not possible with the sample

size. For both puzzles, participants were asked to create a “working” class using the puzzle pieces

that fit the requirements of the task description while adopting a think-aloud protocol. After each

Code Puzzle, participants completed a post-puzzle questionnaire which asked them to rate their

confidence on how well the solution would work on a 5-point Likert scale and rate how difficult they

found the puzzle on a 7-point Likert scale. P1, P2 and P3 experienced feedback after each puzzle, but

P4 and P5 only experienced feedback at the end; this was determined to be a change of protocol

after the observer could influence the way in which P1, P2 and P3 answered post-puzzle

questionnaires.

For P3, CP1’s video recording was not included due to technical corruption however the audio file

remains intact, therefore, the following datapoints are used in the analysis: 4 CP1 and 5 CP2

movement datasets; 5 CP1 and 5 CP2 think-aloud datasets, and 5 CP1 and 5 CP2 post-puzzle

questionnaire answers.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 107

Figure 14: Overview of the type of Pilot Study data collected – referred to as Novice Programmer

(NP) interactions.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 108

5.2.3 Data Analysis

The pilot study chose to analyse the: types of movements, number of movements, number of

mistakes, types of movements, order of movements and the post-puzzle questionnaires to gauge

how difficult participants found each puzzle.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 109

Figure 15: Overview of the way movement data was analysed, and what questions the analysis

needed to address.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 110

There was a methodological issue in how to calculate the time taken between moves to further

narrow down the pieces that the participants were spending the most time on. Unlike cursor paths

used in previous works, the hand movements were tricky – sometimes participants slid the pieces

across the desk to place them, others picked them up and held them before placing them. It was

therefore determined that the time taken between pieces – known as ‘time intervals’ – would be

calculated from the moment the piece had started to move towards the final solution space rather

than when the participant placed their hand on a piece.

𝑇𝑖 = 𝑇𝑑 − 𝑇𝑢

Equation 1: The Time Interval calculation used to calculate how long a participant was spending on a single
piece. Key: Tu = Time piece is picked up, Td = Time piece is placed on the table, Ti = time interval.

The types of movements needed to be classified in order to clarify what types of movements were

present – in contrast to previous works, it became apparent that the flexibility of using paper-based

pieces meant that additional movements began to arise (see Table 14).

Type of
Movement

Description Seen in previous
research?

Add Where the participant picks up a piece from the RS or WS
and places the piece in the FS.

Yes

Swap Where the participant picks up two pieces that they
already placed in the FS and switches their positions – this
is why the number of swaps occurred should be divided by
two as both pieces in the movement data have ‘swap’
label and the swap itself involves two pieces.

Yes

Remove Where the participant picks up a piece that they already
placed in the FS and places it back in the RS or WS.

Yes

Decide Where the participant picks up a piece from RS and places
it in the WS to focus on where to put the piece in the FS.

No

Back Where the participant picks up a piece from RS, hovers for
at least two seconds, before placing it back in the RS.

No

Group Where the participant picks up a piece from RS and places
it next to another piece in the WS to organise before
placing them in the FS.

No

Unclassifiable Where the participant performs actions that cannot be
analysed or are unclear movements.

Yes

Table 14: Classification of movements seen in the pilot study

The classification of ‘unclassifiable’ was generally assigned to closing brackets – as, unless the

brackets or punctuation are given context, it is unclear what participants truly intend the piece to do

or what they think of the piece.

The technical difficulty was also how to create a movement log that was readable by a third-party

researcher as the research data needed to be sanitised to fit the requirements of the ethical

agreement forged between researcher and participants. After several designs, it was determined

that there needed to be a grid placed on the participant’s recordings of the final solution space that

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 111

allowed the researcher reading the file to understand the placement (see Figure 16). This grid was

not visible to the participants during the study itself, and the grid was used purely as part of the data

analysis after the study had concluded; participants were presented with a blank space to place their

final solution on.

Figure 16: How line placement was determined in the movement logs.

Another technical difficulty encountered that was not highlighted in previous studies was the fact

that participants often did overlap or place pieces ambiguously before rectifying them (see Figure

17).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 112

Figure 17: Diagram of an observed paper-based Code Puzzle experiment issue regarding the judgement of
‘correct’ or ‘incorrect’ piece placement and explanation for ‘approximate line order’.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 113

The placement of the pieces was important to establish the order of the class and the class’ structure

for further analysis, so it was determined that the intended positioning of the pieces was the final

state of that piece for that movement rather than the shifting movements between the pieces where

the participants hands were in the way in the recording. This structured process meant that pieces

that were classified as ‘missing’ were pieces that were expected to be in that position when a full

method was closed off for CP1 (see Figure 18), and a full line of code was completed for CP2 (see

Figure 19).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 114

Figure 18: How missing pieces for CP1 were determined during the analysis of movement logs.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 115

Figure 19: How missing pieces for CP2 were determined during the analysis of movement logs.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 116

Other mistakes were if a piece was placed in an area of code where the code would run into bugs, or,

for CP2, the piece was in a place that meant the class would not compile.

5.3 Results

5.3.1 Time Observations

60% of participants were undisturbed by interruptions, however one participant experienced 1

minute and 57 seconds of interruptions (P2) which likely further contributed to the frustration

documented in their tone during CP2. Despite this, they produced a flawless solution for both tasks.

All participants exceeded the expected time frame for the pilot study sessions, and therefore the

sessions were expanded to 60 minutes in future studies.

Figure 20: Line chart for time taken to complete the puzzle by each participant (CP1: range = 04:09-07:08, M =
06:00, SD = 01:13|| CP2: range=09:18-19:43, M = 13:36, SD = 04:23). Distraction time was labelled as moderate
or severe interruptions (CP1: range=0:00-1:37, M = 0:27, SD = 0:42|| CP2: range=0:00-0:59, M = 0:16, SD =
0:26).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 117

Figure 21: Scatter graph for the average time spent on each piece per puzzle (bottom chart) (CP1: range =
00:11-00:19, M = 00:16, SD = 00:03|| CP2: range=00:07-00:15, M = 00:10, SD = 00:03) for the pilot study.

All participants completed CP1 quicker than CP2, however, the time spent on each piece (on average)

is lower for CP2 than CP1.

5.3.1.1 Code Puzzle 1 Time Intervals

Time intervals were calculated by Equation 1, and indicated the time spent between puzzle piece

placements.

P1 demonstrated a strange grouping mechanism that later was classified as a workspace even in CP1

where few pieces are displayed. The participant spent the first half of their movement log grouping

these pieces, before placing them in the correct order on the final solution. When asked to explain

their movements, they suggested that they needed to determine the reasoning behind why the piece

exists and to group it with similar pieces so that they can interpret the pieces more easily than if they

were randomised. The dialogue changed subtly with the way the participant grouped, rather than

the usual process-orientated movements seen by other participants the explanations of the grouping

mechanism shed a light onto how the participant diagnoses the meaning behind a piece and how

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 118

they relate that meaning to other pieces that they perceived as similar. While this was useful to

determine their understanding, the use of 2D Parson’s problems meant that the participant’s

construction of the piece in the context of the task could be identified. Therefore, both aspects

seemed useful – although the workspace was a completely unexpected outcome of this research (see

Figure 22 and Figure 23).

Figure 22: A bar chart of P1’s Grouped Time Intervals – i.e., the sum of the time taken to place each piece - for
CP1

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 119

Figure 23: A line graph presenting a general overview of P1’s time placement pattern – i.e., the time for each
individual movement – for CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 120

P2 spent the most time on the sellPotatoes method and also in the field initialisation aspects of the

class, they did not use any grouping movements, but did use a remove and a new movement –

‘decide’ – which was also unexpected. Decide movements occur when the participant is holding the

piece for a prolonged period of time, and, in some cases, where the participant places the piece in

front of them as the one to concentrate on before placing it in the final solution space (see Figure 24

and Figure 25).

Figure 24: A bar chart of P2’s Grouped Time Intervals

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 121

Figure 25: A line graph presenting a general overview of P2’s time placement pattern for CP1

P3’s movements were unfortunately lost due to video corruption, although the audio file did remain

intact, their movements were quite different from those recorded here based on the audio file. The

audio implicated that P3 would not have successfully finished the puzzle without the explicit

guidance of their mental processes through the puzzle. This, in effect, did suggest that the think

aloud protocol could be used in isolation with the 2D Parson’s problems acting as a medium in which

to inspire discussion with the observer. The participant struggled to finish the task as they failed to

understand the logic behind some of the prewritten pieces.

P4 swapped ‘numOfPotatoesSold += numOfPotatoes;’ with ‘return calculateSale(numOfPotatoes);’

after realising that Java return statements are the last line executed in a method as they originally

had placed the incremental counter after the return statement which would not be reachable. The

statement returns for calculateSale and sellPotatoes were confused by P4 initially, but this could be

explained by calculateSale only having the one return statement and the only clue that it does not

belong in sellPotatoes is the name of the variable name matching the parameter for calculateSale but

not sellPotatoes. A critique of this is that the variable names of numOfPotatoes and

numOfPotatoesSold are very similar but the idea behind this is to see whether the NPs could notice

this issue in their code. P2 and P4 struggled with the incremental counter and distinguishing which

return statement belonged to what function, which may implicate that more thought needs to be put

into the reasoning behind the return statements and incremental counter in comparison to the other

pieces available to the participants (see Figure 26 and Figure 27).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 122

Figure 26: A bar chart of P4’s Grouped Time Intervals for CP1

Figure 27: A line graph presenting a general overview of P4’s time placement pattern for CP1.

P5 did not notably show any points of interest during their movements, but their pattern placement

shows that the spent they had very little difference between peaks implying that did not find the

puzzle very difficult to complete as they did not spend a long time considering certain pieces in

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 123

comparison to the other participants. P5 did become confused between returning the calculation of

the sale in comparison to returning the method calculate sale (see Figure 28 and Figure 29).

Figure 28: A bar chart of P5’s Grouped Time Intervals for CP1.

Figure 29: A line graph presenting a general overview of P5’s time placement pattern for CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 124

The average time indicates that the pieces participants tended to struggle with were the latter parts

of the class for CP1 – this is potentially due to confusing calculate sale method’s return statement

with the sell potatoes method’s return statement. Participants barely spent any time on the earlier

parts of the class associated to field declarations and the constructor (see Figure 30).

Figure 30: A line chart which demonstrates the average time each participant spent on each part of

CP1.

5.3.1.2 Code Puzzle 2 Time Intervals

P1’s CP2 placement pattern was greater in length than other participants’ patterns in the pilot study

(see Figure 34), and thus deserves closer inspection as to how and why this participant differed from

others. P1 grouped their pieces together initially, and according to the placement pattern and audio

transcript, spent little time on each piece or explaining the meaning behind each piece. Once the

solution creation for CP2 began, the ‘if’ piece had a considerable pause prior to placement where,

according to the audio log, the participant was carefully considering the outcome of the if condition

and order of consequent pieces. From these datapoints, it is suggested that the number of characters

on a code puzzle piece does not necessarily dictate how long they will spend on the piece, and that it

is important to consider the context that the piece is being placed in and whether this contributes to

the mental load as better indicators for time taken to place the piece. As all participants’ spikes

relate to the condition of expiry date being after the current date, it is also recognisable that the

number of decisions and branching that the code in the puzzle has contributes to the overall

difficulty and time required to complete the puzzle. Straightforward context behind pieces, such as

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 125

the declaration of the class and fields, took less time on average to place than those with contexts

such as decisions implying that context complexity contributes to the level of mental load. No

participants recognised that the ‘if’ was not required, and that they could return just the Boolean

generated from Java’s Date’s after method.

Figure 31: A bar chart of P1’s Grouped Time Intervals

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 126

Figure 32: A line graph presenting a general overview of P1’s time placement pattern for CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 127

.

P2 similarly struggled with the condition of isFresh, but also spent a while detecting the missing semi-

colon in a field initialisation line of code. The missing semi-colon does not indicate a lack of

understanding of the participant, however, and was likely a genuine error in which they had forgot to

include it until they checked the constructor’s initialised fields – this can be deduced because the

participant used the semi-colon correctly in all other instances of the class, including the other field

initialisation, which indicates the difference between not knowing about a concept and making a

mistake. It is important for any algorithm to differentiate between the two – as a repeated error

generated consistently throughout the class is more likely to show a poor understanding of where a

piece should be placed in comparison to a one-off error. This suggests that the code puzzles need to

include multiple instances of aspects in order to truly test the participants’ understanding.

Figure 33: A bar chart of P2’s Grouped Time Intervals

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 128

Figure 34: A line graph presenting a general overview of P2’s time placement pattern for CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 129

P3 showed the most errors in their solution when compared to others and decided to create a

custom piece despite the pilot study not specifying that this was possible to do. They chose to create

current day as a class, rather than as a parameter for the isFresh method and their pattern shows a

series of quick movements in comparison to others who had spikes in their movement patterns. The

necessity of the custom piece illustrates that the participant did not understand the aspect of

parameters and did seem more used to creating fields for the class.

Figure 35: A bar chart of P3’s Grouped Time Intervals for CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 130

Figure 36: A line graph presenting a general overview of P3’s time placement pattern for CP2 and a table
documenting the top five pieces that had the longest time intervals.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 131

P4 did not tend to struggle with CP2 and did not have any overly long peaks in their movement

pattern, this again suggests that P4 found the puzzle somewhat easy to complete as the aspect they

tended to focus the most on was whether the condition would return true or false.

Figure 37: A bar chart of P4’s Grouped Time Intervals for CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 132

Figure 38: A line graph presenting a general overview of P4’s time placement pattern for CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 133

P5 tended to spend the most time on the pieces associated to the isFresh method’s condition but did

not show any other points of interest in their movement pattern.

Figure 39: A bar chart of P5’s Grouped Time Intervals for CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 134

Figure 40: A line graph presenting a general overview of P5’s time placement pattern for CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 135

In comparison to CP1, it is clear that there is a shift in concentration from the return statements

towards the conditional statement. This is not surprising, considering the conditional statement

requires thought if used – the returns also were considered carefully but the return of true did not

require as much thought as it was typically the else return, while the if statement’s return of false

required more thought as it was the initial Boolean return.

Figure 41: A line chart which demonstrates the average time each participant spent on each part of

CP2.

To analyse whether there is a template for the placement pattern, the chronological pattern of

participants was calculated using their chronological ordering of movements and averaged based on

chronological step to produce Figure 42. While there is a spike at the end, this is likely artificial as the

average of the steps were taken for at least two participants and by the beginning of the spike two

participants’ movement logs had ended. Overall, there does not appear to be any logical pattern –

and the beginning of the movement time appeared to be like the end movement time showing that

pieces that required the most thought were not always left until the end.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 136

Figure 42: Series of line charts showing the average time taken chronologically for CP1 and CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 137

5.3.2 Movement Observations

5.3.2.1 Frequency of Movements

All participants made less movements for CP1 in comparison to CP2 (see Figure 43).

Figure 43: Clustered bar chart for the number of movements made by participants for Code Puzzle 1 (CP1) and
Code Puzzle 2 (CP2).

The number of movements indicated how many participants struggled with each part of the puzzle –

for CP1, it is expected that the participants should only need one add movement to complete the

final solution for each piece, except for ‘unclassifiable’ pieces, however this was rarely seen as the

case for P1 due to their grouping mechanism which involved most of the pieces. The number of times

a piece was moved did indicate that there was an issue understanding the piece if more than P1 was

performing excessive movements. The piece ‘totalPotatoesRemainingInStore -= numOfPotatoes;’

caused the most confusion and many participants were trying to determine the intended logic

behind the piece and why it should or shouldn’t be included in the puzzle. In retrospect, this is likely

because the participants were confused by the names – while the researcher did wish to be as

specific with the names as possible to avoid confusion, and the intended reasoning behind the piece

was to decrease the number of potatoes in store upon a successful sale, participants did seem to not

understand this intuitively.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 138

Figure 44: Stacked bar chart illustrating the number of movements made per puzzle piece per

participant for CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 139

Figure 45: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 140

Figure 46: Stacked bar chart illustrating the number of movements made to create each line of code

per participant for CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 141

Figure 47: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1. P1’s 63

unclassifiable movements are omitted.

In Figure 45 and Figure 47, excess movements were calculated based on the assumption that one

add move is required per piece in CP1, and the number of individual pieces required to create a line

of code is required for each line of CP2. A positive number indicates that piece took more

movements than anticipated, whereas the negative indicates that the piece took fewer movements

than required to complete. Fewer movements did not indicate that the piece was missing – in

actuality, participants began to group the pieces and add them at the same time to the final solution

space for the getter method in CP2 and for parts of the constructor as well. Grouping, in this

instance, indicated that the participant was very confident with the ability to construct the line and

that it required little thought based on the audio transcripts related to the participants’ feelings

associated to the method construction. Grouping was not seen in previous studies and was therefore

not anticipated. Previous studies focused on the number of movements performed on pieces,

however, this research noted that even participants who had a negative number of excess

movements could achieve a correct final solution and that the number of movements or excess

movements was not indicative of whether they are struggling to complete the puzzle. Yet these

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 142

findings suggest that the number of certain types of movements (such as removing pieces from the

final solution space) may be a better indicator – therefore it is not the quantity of movements

observed that we should study, but the number of types of movements observed and the reasoning

behind them.

5.3.2.2 Order of Movements

The order of movements suggested that the participants tend to work from top of the class to the

bottom of the class, with a few deviations. Yet, their dialogue and reasoning implicated that there

were subtle differences in approaches that did resonate with the movement order. While

participants did tend to forget the import at the start of the class, the constructor or the class

definition were always the starting point for participants engaging with the puzzles that were not

using the workspace. P4’s approach was particularly interesting – as they did not establish the data

type of the weight variable until they had investigated whether weight should be an integer or a

double. The confusion as to whether a variable should be of a certain type suggests that the way the

line order is constructed does indicate the type of reasoning that the participants use to create the

class – and that a missing piece on a line may not immediately indicate that the participant does not

understand the concept. It was assumed that participants would finish one line of code before

proceeding onto the next, but participants tended to complete a section of the class before moving

onto the next thus there is often a switch between completing field declarations rather than

completing a full line. The lack of completion of full lines suggests that participants do struggle to find

pieces when there are a lot in the randomised solution space and that participants place key words

that look relevant to the section they are working on before moving onto the next. Participants

exhibited signs from the audio transcripts that they were using the task itself to scaffold the class, to

the degree that participants did tend to follow the task description and read it aloud at the beginning

of each section.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 143

Figure 48: P1’s movement order for each puzzle (each piece is represented in this format: [order

number]|piece|).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 144

Figure 49: P2’s movement order for each puzzle (each piece is represented in this format: [order

number]|piece|).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 145

Figure 50: P3’s order of movements – the number to the left of each |piece| is associated to the numerical
step in their movement log. Underlined without a number means missing piece and underlined with numbers
means custom piece or custom placement of piece.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 146

Figure 51: P4’s order of movements – the number to the left of each |piece| is associated to the numerical
step in their movement log. Underlined without a number means missing piece and underlined with numbers
means custom placement of piece.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 147

Figure 52: P5’s order of movements – the number to the left of each |piece| is associated to the numerical
step in their movement log. Underlined without a number means missing piece and underlined with numbers
means custom placement of piece.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 148

The order of movements did not show any clear indicators of understanding, but when accompanied

with the reasoning behind the movements, it becomes clearer as to what participants name various

parts of the class and the reasoning behind missing pieces.

Figure 53 was generated by examining the movement transcripts in line with the audio transcripts for

each participant in the pilot study and labelling each piece with an associated context. For CP1, this

was relatively easy to achieve as the lines of code had been pre-written with an intended purpose

that the participants generally adhered to (e.g., all participants knew ‘public class PotatoShop {‘

meant the class definition and/or establishing the class), however, the braces needed context (e.g.,

whether a closed brace was used with the intent to close the class or a method, or something

incorrect like closing a field). All pieces for CP2 needed to be carefully examined as the intent of the

piece was required to understand what the participant wanted to do with it. Each movement was

labelled with a contextual purpose, and P1’s grouping of pieces was omitted – instead their pattern,

for the purpose of the approach flowchart, only started from when they vocally established that they

were creating their class, and P3’s movements for CP1 were unfortunately lost due to a technical

glitch, but all other movements were included. The participants’ movements were placed in

chronological order next to each other alongside the labels, and the modal average was then taken

from the pieces. The participant with the shortest movement pattern would simply not contribute to

later parts of the flow chart, and the flow chart would stop generation when only one participant’s

data was left to be used for further movements. This process is far from perfect as it is not taking into

account that some participants may spend longer on a certain phase than other participants, and in

retrospect it may have been better to then abstract the pieces further to classify them as a general

‘part’ of the class, but this procedure did reveal a general process that participants typically followed

(see Figure 53).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 149

Figure 53: The generalised construction process that participants go through when construction solutions for
Puzzles 1 and 2; it should be noted there was very little deviation seen in the approach.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 150

5.3.2.3 Types of Movements Observed

The types of movements observed were very similar between the majority of participants (see Figure

54). P1’s movement pattern was a stark contrast to the anticipated movements that were seen to

the degree that roughly 50% of their movements were of grouping. While the grouping took place at

the beginning of the process, it is still technically a valid movement despite being out of the range of

expectations based on the works of previous researchers. While add moves were expected for all

participants, as they did need to ‘add’ to the final solution to complete the puzzle, decide

movements were not where the participant placed the piece in front of them and compared it to

other pieces in the final solution space.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 151

Figure 54: The classification of movement type for each participants’ movements in CP1 and CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 152

A series of diagrams (see Figure 55, Figure 56, Figure 57, Figure 58, Figure 59, Figure 60, Figure 60,

Figure 61, and Figure 62) have been produced to demonstrate how the new types of movements

manifested in the contexts of CP1 and CP2 and also to demonstrate points of interest.

Figure 55: Diagram demonstrating P2’s 19 to 23 movements involving the same piece used with different types
of movements in close proximity of one another.

In Figure 55, it is apparent that P2’s movements show unease at using the

totalPotatoesRemainingInStore piece and of some uncertainty as to where it should be placed.

Therefore, a series of movements of the same piece – particularly if they are consecutive or almost

consecutive – suggests that the NP is struggling to determine the context of the piece and needs to

‘decicde’ where to place that piece. The exact issue with the piece requires audio transcript reading,

though, as the movements could indicate there is a problem with the understanding of the

underpinning programming concepts or the participant fails to understand the purpose behind the

piece. Figure 56 demonstrates the way P2 decided to move the piece. This thesis argues that ‘decide’

and ‘group’ are novel movements for 2D Parson’s problems that have manifested due to the amount

of freedom of paper-based puzzles, and are related to one another. Deciding and grouping

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 153

manifested when the participant needed to determine the contextual relevance of the piece, and

both movements are part of the workspace as a result.

Figure 56: Diagram to represent P2’s usage of ‘Decide’ movement with ‘totalPotatoesRemainingInStore -=
numOfPotatoes;’ piece in CP1 – they held the piece in mid-air for approximately 10 seconds (5:13-5:24 on
video footage).

P3 exhibited small amounts of grouping movements, but unlike P1, they often used grouping

movements to order pieces that require thought before being placed into the final solution space.

The grouping mechanism showed that the participant knew the pieces were related contextually (see

Figure 57).

Figure 57: Diagram demonstrating P3’s 72 to 74 movements involving grouping the pieces prior to placing them
in the final solution.

P3 also demonstrated grouping of variable names related to a condition and kept these pieces to one

side while creating the method (see Figure 58). Figure 58 also demonstrates the issues with

identifying at what point the participant may be struggling with the class’ structure – as shown, P3

forgot the parameter brackets for the isFresh method and had long ‘completed’ that line, likewise,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 154

they had created a return statement and placed an if in a strange location – seemingly at the end of a

close bracket of the method.

Figure 58: Diagram demonstrating P3’s 39 to 44 movements involving grouping of two pieces, and perhaps a
linked ‘add’ piece that was placed out of line but also separated from the group.

Sometimes additions were ambiguous due to the lack of physical barrier between the final solution

space and workspace, but the if statement was later added to the correct position and the return

was also completed – but at what point does a mistake remain a mistake and when does it transfer

to being a sign of an underlying issue with programming? The answer remains undetermined as to

the best way to distinguish mistakes from issues in understanding, however, if the mistake is still

apparent in the final solution or the mistake had passed the participant checking their work a few

times, it became increasingly likely that there was an underling issue present. Therefore, it is not

enough to determine understanding based solely on the movements to the final solution space and

that considerations about the workspace element and the need for audio transcripts needs to be

considered to diagnose the understanding of a CS student.

P3 also demonstrated another movement that is of a similar ilk to ‘remove’, however, the piece was

never placed in the final solution area and instead lingered in the workspace. The ‘back’ move is

where the piece transfers from the workspace back to the randomised solution space when not

deemed relevant by the participant. Remove and back movements have different connotations – the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 155

final solution space rarely had pieces moving back to the randomised solution space or workspace

and remove did show that the participant was unsure about the piece’s position, however in the

workspace the only positioning appears to be in groups – and sometimes pieces in the ‘decide’

category were separated and focused upon by the participant. Thus, the back movement

connotation is that the participant has decided the piece is no longer relevant to their focus in the

workspace – so their own context, rather than the final solution’s context.

Figure 59: Diagram demonstrating P3’s 51 to 52 movements involving adding ‘after’ to a pre-existing group
defined 9 moves prior.

As exhibited in Figure 60, group movements were sometimes seen when removing elements from

the final solution space. This indicates that participants did sometimes group based on similar

context rather than just on their own interpretation of the pieces.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 156

Figure 60: Diagram demonstrating P3’s 57 to 59 movements involving decide and back movements.

Figure 61 and Figure 62 demonstrates that swapping movements did occur, when the participant had

noticed an incorrect placement, but they were rarer than reported in previous works.

Figure 61: Diagram demonstrating P3’s 60 to 61 movements involving swapping ‘return’ and ‘}’ pieces.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 157

Figure 62: Diagram demonstrating P3’s 78 to 79 movements involving swapping ‘true’ and ‘false’ pieces.

Ultimately, there were three new types of movements – decide, group and back that were not

anticipated to be seen and there were no found records of previous works observing these

movements from their participants.

5.3.2.4 Correct versus Incorrect Placements

The debate about what constitutes a correct versus an incorrect placement is debatable – for

example, if a participant places a constructor prior to defining field declarations when the task asks

for field declarations, is that really an incorrect placement? It could be that the participant is like P4,

who needed to deduce what the constructor required and then define the data types for those field

declarations prior to starting the rest of the class. While incorrect placements are easy to analyse in

the final, submitted solution they are not easy to analyse during the process of creating new

movements. The audio transcripts tend to reveal the reasoning behind movements, and the thought

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 158

processes accompanying them, but without the transcripts the intention behind the movement is

lost. For the sake of discussion, the number of mistakes were quantified using the premise that a

coder often completes full lines of code before moving onto the next line for CP2, and for CP1, it is

assumed that the participant would complete a full method before moving onto the next part of the

code.

The number of mistakes is shown in Figure 63 – a mistake differs from an ‘issue’ in that the mistake is

remedied prior to the final solution submission. Figure 63 indicates that CP2 did encounter more

mistakes than CP1 due to this analysis. While one might argue that CP2 should be assessed in the

same way as CP1, it was often the case that participants would move between methods and fields

and the class structure, and it would have been more difficult to judge what ‘mistakes’ occurred from

incomplete methods due to the amount of moving between aspects that was detected in the

approach. While the overall approach for both CP1 and CP2 is from top of the class to the bottom,

when individual words are used the puzzles become more difficult to analyse for what is a ‘mistake’.

Figure 63: Bar chart illustrating the total number of missing pieces labelled as mistakes made by participants in
CP1 compared to CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 159

Figure 64 demonstrates that very few incorrect placements – placements that were placed in the

wrong place in the solution, were detected in either puzzle. This shows that ‘mistakes’ in Parson’s 2D

puzzles were more likely to be from missing out a piece rather than placing it in an incorrect context.

Figure 64: Bar chart illustrating the total number of incorrect placements made by participants in CP1
compared to CP2.

The analysis of mistakes made by participants show that they were all related to the punctuation of

the class in CP1 – the closing off of various sections of the class – rather than the pieces associated to

the class’ logic (see Figure 65).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 160

Figure 65: Stacked bar chart illustrating the types of mistakes made by participants in CP1.

The type of incorrect placements corrected are shown in Table 15.

Table 15: Number and type of incorrect placements that were corrected prior to the final submission by
participants in CP1

CP2 generated far more data on the types of mistakes encountered, with an artificial inflation of the

field declaration where participants tended to switch between weight and expiry date without

completing the lines fully first (see Figure 66 and Figure 67). The variable names seemed to cause

difficulty – expiry date and current day are very similar in nature, and participants felt uneasy about

the Date class according to their post-CP2 responses in the questionnaire (see Table 16).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 161

Figure 66: Stacked bar chart illustrating the types of mistakes made by participants in CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 162

Figure 67: Pie chart that presents the locations the mistakes occurred in for CP2.

Table 16: Number and type of incorrect placements that were corrected prior to the final submission by
participants in CP2

5.3.2.5 Participants’ Approaches and Analysis of the Workspace

While the generalised process, once the participant had moved to the final solution space, did

implicate that participants generally work from top to bottom of a class, P1 exhibited an addition

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 163

process prior to the established process that requires further investigation. The pilot study expected

to see movements from the randomised solution space to the final solution space, and did not

anticipate an intermediate area, dubbed the ‘workspace’, where participants use decide and

grouping movements to determine what they think about the piece and how it relates to other

pieces in the randomised solution.

Figure 68: Pilot Study’s observations on the interface design of 2D Parson’s Problems.

The exact cause of the grouping mechanism was suggested by the audio transcripts of P1 to make

the pieces more ‘readable’ to them, implying that the grouping mechanism, at its core, is about

trying to interpret the meanings behind pieces prior to placing them into the final solution space and

to make the participant aware of what pieces are available to them. However, the useful finding of

this workspace is that the observer could also see more clearly what the participant’s thoughts and

intentions were about the piece. While it is difficult to get a clear still of the P1’s CP1’s grouping (due

to the size of the pieces and the size of the physical table not allowing for much room to separate the

groups), CP2’s groups were taken from a still shot of the video recording and analysed to see

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 164

whether the groups are distinct enough for a clustering algorithm to anticipate the correct number of

clusters based on the participant’s intention in the audio file.

Figure 69: Photo still of P1’s workspace for CP2 (left) with a generated diagram of the groupings of

the workspace indicated by P1’s audio transcript (right)

The still of the photo was used to generate co-ordinates via analysing the photo in Adobe Fireworks

and transferring those co-ordinates to a Python program to generate a scatter graph to simulate the

co-ordinates of the photo. Figure 69 highlights the intended groups that the participant generated as

a consequence of incorporating the workspace, and as established, there were 23 groups with one

group over-lapping each other (false, true). However, from looking at the groups as an observer

there seems to be a pattern or a selection of groups that could indicate the candidate was also

grouping groups together based on similarity – for example, the punctuation could be determined to

be clustered together, alongside the variables which have been put next to the ‘this’ implying that

the participant knows that these aspects are related. The conditions have also been placed together,

and the access modifiers and return types of the methods have been placed at the top together. The

analysis of a workspace, therefore, yields interesting implications for observing the participant’s

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 165

sphere of learning – from the workspace, we can see how their mind maps the pieces to concepts

and how the pieces relate to one another.

Figure 70: Co-ordinates generated from the photo still of the workspace for P1 assuming top left is

(0, 0) (left) and the scatter graph generated from the co-ordinates (right).

There were some technical difficulties with translating the image to a co-ordinates based image, as

Adobe Fireworks assumes the (0,0) co-ordinate is the top left rather than the bottom left, therefore

the chart had to be inverted but the consequent silhouette diagrams would not invert correctly so

there is a small discrepancy in the produced chart images on the right hand side of Figure 74, Figure

75, Figure 76, Figure 77 and Figure 78.

To determine if a machine learning algorithm could correctly identify the number of groups that the

participants described in their audio transcripts, K-means and GMM clustering algorithms were used

using Python’s sklearn package, alongside their silhouette scores.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 166

Figure 71: P1’s workspace for CP2’s inertia using the elbow method.

The elbow method, which is a standard determination algorithm for unsupervised machine learning

algorithms, was used to calculate the optimum number. While open to interpretation, Figure 71

suggests that the optimum number is between 5 and 8 when using K-Means with n clusters.

The EM algorithm was used to calculate a log score for an alternate form of clustering, GM, however

despite the algorithm running for 30 clusters, it did not seem to produce a low enough log score to

suggest that this would be an accurate algorithm (see Figure 72).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 167

Figure 72: P1’s workspace for CP2’s optimal number of clusters calculated using Python’s EM

algorithm using a Gaussian Mixture (GM) to generate a log score.

A silhouette score was produced to calculate the optimum number of clusters using K-means as a

result of GM not showing suitability for the diagram. Not surprisingly, the silhouette score shown in

Figure 73 was far more accurate than the elbow or EM algorithm as the silhouette score calculates

how well each cluster has points residing within that cluster. The accuracy of silhouette score is an

indicator that it would be possible, on a user interface, to determine the way in which a person is

utilising the workspace to a degree of accuracy although it could be argued that the formation of

groups and sub-groups may be difficult to classify automatically unless the participant somehow

labels those groups explicitly.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 168

Figure 73: P1’s workspace for CP2’s optimal number of clusters calculated using K-Means’ Silhouette

score.

To visualise the elbow method’s and silhouette score’s suggested clusters, a series of silhouette

diagrams (see Figure 74, Figure 75, Figure 76 and Figure 77) were produced – in this case, ‘optimum’

number is used in the context of trying to find a close match to the participant’s identified number of

groups.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 169

Figure 74: Silhouette diagram of one of the ‘optimum’ number of KMeans clusters (n=5) determined

by the elbow method (generated using Python’s sklearn package)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 170

Figure 75: Silhouette diagram of one of the ‘optimum’ number of KMeans clusters (n=6) determined

by the elbow method (generated using Python’s sklearn package)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 171

Figure 76: Silhouette diagram of one of the ‘optimum’ numbers of KMeans clusters (n=7) determined

by the elbow method (generated using Python’s sklearn package)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 172

Figure 77: Silhouette diagram of one of the ‘optimum’ numbers of KMeans clusters (n=8) determined

by the elbow method (generated using Python’s sklearn package)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 173

Figure 78: Silhouette diagram of the ‘optimum’ numbers of KMeans clusters (n=21) determined by

the silhouette score (generated using Python’s sklearn package)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 174

As suggested, 21 is the closest to the actual intentions of the participant, but the elbow method did

produce results that could be classified as implicit sub-groups based on the photo.

5.3.3 Analysis of the Submitted Solutions

All participants produced fairly robust solutions that would work, implying that the level of NP in the

pilot study was advanced as these results were not emulated in the secondary or tertiary study final

solutions. P1 demonstrated that the brackets were forgotten for the isFresh method, but they were

used correctly for the getter method and constructor implying it was a genuine mistake. As noted,

many participants chose to indent their solutions – the indentation shows that the participants

believed this to be important, despite the struggles of having to individually indent each piece.

Indentation in the case of P5 suggested what the erroneous class closing bracket was intended for

and helps both the constructor of the code and the observer to read the intentions of the NP without

them necessarily explaining the indentation pattern (see Figure 83).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 175

Figure 79: Representations of P1’s submitted solutions for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 176

Figure 80: Representations of P2’s submitted solutions for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 177

Figure 81: Representation of P3’s submitted solution for CP2, CP1 was unobtainable due to video footage
corruption.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 178

Figure 82: Representations of P4’s submitted solutions for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 179

Figure 83: Representations of P5’s submitted solutions for CP1 (left) and CP2 (right)

5.3.4 Post-Puzzle Questionnaires

P3 found CP1 difficult and based on the audio recordings it is likely they would not have completed

the solution adequately without assistance, however P3 was more confident in their CP2 solution

than their CP1 solution, despite the numerous errors made in the class’ construction. In contrast, all

other participants became less confident that their solution would work apart from P5.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 180

Figure 84: Pilot Study’s participants’ confidence in their submitted solution for CP1 based on a 5-point Likert
Scale – 5 indicates they believed their solution worked without any errors, 1 indicates they would not know if
the solution worked.

Figure 85: Pilot Study’s participants’ opinions of difficulty for CP1 based on a 7-point Likert Scale – 7 indicates
very easy, 1 indicates very hard.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 181

Figure 86: Pilot Study’s participants’ confidence in their submitted solution for CP2 based on a 5-point Likert
Scale – 5 indicates they believed their solution worked without any errors, 1 indicates they would not know if
the solution worked.

Figure 87: Pilot Study’s participants’ opinions of difficulty for CP2 based on a 7-point Likert Scale – 7 indicates
very easy, 1 indicates very hard.

There was no significant correlation between the answers of the post-puzzle questionnaires and the

number of movements, or the solution confidence. However, there was a small correlation between

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 182

the difficulty and the number of issues encountered. This correlation is weak, and due to the small

sample size is likely not of any significance, but it could suggest that participants did realise that

issues had transpired and that this had reduced the level of confidence they had in their solution.

Figure 88: Pilot Study’s participants’ estimation of difficulty compared to the number of issues with

their submitted solution in CP1 (top) and CP2 (bottom).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 183

5.3.5 Analysis of Participants’ Speech

Figure 89: Clustered Bar charts comparing the number of words spoken by the participants during

the CP1 and CP2 (CP1: range = 182-1356, M = 667.6, SD = 449.88|| CP2: range=401-1470, M = 1169,

SD = 442.31)

Participants tended to speak more in CP2 than in CP1, implying that the audio transcripts did detect

more information behind their thought processes. This is hardly surprising, as Parson’s 2D problems

help to clarify the line order, whereas CP2 required the participants to construct the code segment

from scratch.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 184

Figure 90: Pie charts showing the percentage of words spoken in the audio recordings were

participants’ words verses those of the observer (right chart) (CP1: range = 75.36%-97.84%, M =

85.21%, SD = 8.15%|| CP2: range = 74.49%-97.48%, M = 85.03%, SD = 9.07%)

The average participant spoke for 85% of the time during CP1 and CP2’s experiment, with all

participants speaking more during CP2 than CP1. While P2’s feedback session at the end of CP2 gives

feedback on the overall experience of the puzzle for P2, the participant only spoke for 35.33% during

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 185

the feedback session after CP2. For these informal feedback sessions after each puzzle for P1, P2 and

P3, participants only spoke between 17.61% and 56.51% of the time, however, participants tended to

reveal their experience, perspective on puzzles and ask for explanations on aspects they did not

understand to the observer after the puzzle had concluded.

5.4 Discussion

The pieces for CP2 are shorter in comparison to CP1, and CP2’s pieces possess more flexibility in the

way they can be used or interpreted; this flexibility apparently made them easier to place. The

reason could be that CP1’s pieces require more processing and thought about the meaning, or that

the participant needed more time to read the piece in CP1 than in CP2.

The way in which participants interacted with paper-based Parson’s Problems was novel; previous

researchers had explored whether the quantitative data analysis could lead to automating the

identification of understanding using puzzle-based tasks, however, the findings of this pilot study

demonstrate that it is possible to detect the understanding of NPs using puzzles, and while there was

not enough recruitment potential to vary more puzzle types to see the effect it had on the learners’

explanations, there is evidence to suggest that a more holistic approach of analysing both their

explanations and construction process would lead to identifying their understanding.

Likewise, a novel concept has emerged from these datapoints which has been dubbed the

‘workspace’; this idea that the NP could reveal a clearer insight into their understanding through

grouping and relating pieces together in order to decipher their meaning before placing them in the

final solution space.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 186

Figure 91: Diagram that illustrates the novel ‘workspace’ concept for participants to decipher, classify, discuss,
and relate pieces to one another before placing them in the final solution space.

There were differing reasons given for why grouping was occurring, namely: Identification: whether

they were the same i.e., to lessen time spent looking for pieces; Classification: perceived similarities,

i.e.: variables, method visibility, class names; and Line Structure: perceived logic, i.e., arranging the

line order before putting the pieces into the final solution.

However, more participants are required to document how widespread this workspace phenomenon

is and whether the current interface designs allow for there to be this level of movement or

interaction. Therefore, the focus of the secondary study is to repeat this experiment and gather

further data on what other interactions participants could have with a flexible working area and to

assess whether the information provided from participants who do group pieces together is effective

for revealing their level of understanding. A clustering algorithm could be used to identify the

proximity of pieces and infer the context behind why they are being clustered. That is rather difficult

to implement for a paper-based study, but we will use the video footage to see how distinctly they

group pieces and why. With this in mind, it is also important for the secondary study to not be guilty

of innovation bias – therefore, no changes were made to the procedure regarding ‘forcing’ a

workspace – instead, it was agreed that participants who were naturally inclined to group should be

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 187

studied separately from those who did not in regards to how they grouped pieces and why to see if

the findings of the pilot study were based on anomalies.

ID Hypothesis Did the pilot study support this?

H-1 NPs of a similar level of understanding will
share similar characteristics in their
interactions with a particular code puzzle.

Supported; based on the data, those of a
similar understanding did generate
similar solutions and name and explain
pieces in a similar manner. H-5 There are a finite number of ways in which a

code puzzle can be experienced and
understood.

H-2 NP interactions can be classified and
categorised

Supported; based on the data,
interactions were determinable if a
holistic approach was taken – meaning
the qualitative data was used to make
sense of the movement data and time
data. In isolation, movements without
the accompanying data were often
unclassifiable and potentially
meaningless as it would be difficult to
know the intention behind a movement
without the accompanying audio
information.

H-3 Classified NP interactions can be mapped to a
level of understanding

H-4 NPs will make moves that correlate to swap,
remove, and add with no other possibilities of
movement.

Not supported; based on the data,
movements themselves were often
unclassifiable except for inserting and
removing a piece. Even with the
categorisation of insert/add, more
information such as the location the
piece is being placed in, how many times
the piece has been moved and the area it
is being transferred to is far easier to
classify and assign meaning to. Time,
itself, was found not to be a good
indicator of understanding or solution
quality.

H-6 The reasoning behind a classification of NP
interactions will be the same among all
participants of that category of interaction.

Supported; participants did
insert/remove pieces from the final
solution space for similar reasons to one
another, that said, participants had
different reasons for unclassifiable
movements making this metric not as
effective as examining their audible
reasoning behind movements.

Table 17: How/Whether the pilot study findings supported the original hypotheses

As shown in Table 17, the results of the pilot study were unexpected; consequently, new hypotheses

were generated for the secondary study based on these findings. H-1, H-2, H-3, H-5 and H-6 were

carried forward to the secondary study, and H-4 was altered for the second study to suggest whether

movements could be classifiable if relevant contextual information was present – for example, the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 188

space the piece was being put into, the pieces that had been placed prior, whether it had been

grouped etc. – likewise, the data obtained about the novel workspace needed to be examined

further so hypotheses were generated around this notion.

These findings conclude that it is not possible to translate purely movement data into a format that

could be read and evaluated by a decision tree algorithm (the original intention of this pilot study),

instead, we aimed to discover whether these puzzles could be used to diagnose understanding in

NPs. This would be of great value as previous research has been inconclusive on such matters; and

this would be a necessary step to explore prior to it being possible to automate detection.

5.5 Limitations and Evaluation

The pilot study aimed to replicate past work, however, the software that previous researchers had

access to in the field of Parson’s Problems were not suitable or available to the researcher due to

financial limitations. Yet, because the researcher had to use paper-based Parson’s Problems, new

observations were recorded which suggests that while the researcher did not manage to successfully

mimic the previous work’s procedures perfectly, they did manage to discover results that could be

potentially useful. One of the major limitations of this study is the limited number of participants that

volunteered – five participants is not a number that any statistical significance can be gained from

and is too low a number to perform effective Straussian Grounded Theory on. However, the dataset

was enough to be able to get feedback on what parts of the study’s methodology worked and what

parts needed changing. Only one participant attended the optional feedback session, and as the

research was to change to interpretivism, there needed to be some way to garner feedback from the

sessions as there was no way to tell whether these participants agreed with the observer’s

observations; as a result, the secondary and tertiary studies offered immediate feedback that was

recorded but this still does not account for the missing information here. What would have been

useful would be if the researcher had had access to the participants’ test scores that related to Java

to see if there was any indication from the way they moved their pieces as to how proficient a

programmer they were, however, this was not allowed on the grounds of ethical considerations. As

there was no access to their grades or ability to do a test in Java prior to the experiment due to time

restrictions, it felt difficult to truly assess their ability in Java or languages.

The pilot study is designed to help address issues for future work, and the researcher decided to

implement an observer script for future studies as it became apparent that the observer needed to

be careful about how they worded their responses to questions asked by the participant in case they

influenced the participant’s perspective on what they were doing. Participants did tend to ask

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 189

questions such as “does this look right?” and this made it difficult for the observer to know if the

participant was asking the observer for reassurance, or whether they were asking a rhetorical

question. Another issue that contributed to the creation of an observer script was that participants

would sometimes go quiet, and the observer did say slightly different things to them – it was better

to unify the prompt into a standard statement rather than informally asking them to speak. The final

issue that contributed to the creation of an observer script was that if a participant was using a

movement that the observer wanted to know more about, it was difficult to think of how to phrase

the question without affecting the confidence of the participant in their movement – if that observer

had asked a question phrased informally of the ilk of “why are you doing that?” this would cause

issues and highlight to the participant that they might be doing something unexpected, therefore,

formalising the question to a standard prompt helped to distance the observer. Additionally, the

introduction of a yellow card to indicate that the participant wants to ask the observer a question

may help participants to feel more comfortable with communicating to the observer. The

introduction of a red card to signal that the participant was ready for submission also helps to give

the participant the ability to stop the experiment at any time – it also avoids the issue of the observer

needing to ask if the participant has finished and can allow participants to fall silent if they need to.

P2 particularly showed signs of feeling rushed despite the observer holding back and the introduction

of cards may remedy this.

Regarding the questionnaires, the pilot study only asked for the participants’ perspectives after they

had completed the puzzle rather than on the perspective of the task itself – this meant that it was

difficult for the researcher to gauge whether CP2’s puzzle solution was harder to create than CP1’s

puzzle solution or whether the task description was more difficult to interpret – this led to the

creation of a pre-task questionnaire. There was also the question of whether the participants knew

other languages and paradigms other than Java and, if so, what affect knowing these languages had

on the approach to creating a solution (if any).

5.6 Conclusion

Ultimately, the pilot study could be deemed a success; some of the results were not as anticipated

for the pilot study had aimed to mimic previous work in the area as closely as possible and such

observations had not been recorded before, but the experiment revealed a potentially new avenue

for exploring based on the data obtained from P1’s movements. The study helped to refine the study

procedure further, and the ideas generated from the findings helped to form plans on how to

mitigate certain issues (such as not knowing when the participant has submitted their solution, and

issues regarding participant uptake being so low). The study’s findings also shaped future studies’

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 190

foci, as the original research philosophy of post-positivism was no longer appropriate, and an

interpretivist approach was taken instead. The study allowed the researcher to explore the issues

behind using paper-based tools and helped to lay the groundwork for how to analyse the movement

data from the footage. This study showed promise for future work, and it was decided that a

secondary study would be produced with the identified issues of the pilot study ironed out.

5.7 Chapter 5 Summary

This chapter presented, explored and evaluated the findings of the pilot study.

This study assessed the feasibility of using NP interactions with Code Puzzles to categorise their

understanding of programming, with the conclusion that it is feasible to obtain some form of insight

into the NP’s understanding of programming, but that further investigation was required to

determine the prominence of the workspace phenomenon, and also to evaluate whether the analysis

of the understanding obtained from participants’ interactions by the observer is accurate in

accordance to the NP’s perspective of their own capabilities and understanding of programming.

Limitations in the study’s design became apparent, and further changes were incorporated for the

secondary study to minimise the risk of leading participants and to set a more realistic time frame for

the experiments. Similarly, changes were incorporated to expand what data is obtained to help

evaluate the accuracy of the representation of understanding obtained from analysing participants’

movements.

In conclusion, the pilot study revealed that having a post-positivism focus on the examination of

Code Puzzle interactions does not allow for the full picture to be obtained, and that future work

required a change to an interpretivism research philosophy with less focus on full automation of

movement analysis as the movement type and approach did not reveal understanding as clearly as

the participants’ speech or frequency of interactions with a piece.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 191

Chapter 6. Secondary Study: Understanding NPs and Workspace Influence

This study aimed to address the following question (see Table 18):

Secondary Study’s Research Question

How does the workspace influence the quality of the data collated regarding an NP’s
understanding?

Table 18: Secondary Study's Research Question

Three first year CS undergraduate students from one university volunteered to participate in the

tertiary study; they had all completed the foundations in Java module and allegedly knew the basics

of Java and Object-Orientated design. The uptake for this study was low, likely due to the study

taking place in 2020 (when the COVID-19 pandemic occurred) which impacted the ability for the

researcher to offer a financial incentive to participate in the study. Similarly, the university was

closed to most students which affected the ability to advertise the study effectively. The study also

was conducted over the summer period during Covid, where lockdowns were commonplace in the

UK and many students were deferring their examinations – as such, the uptake was very poor, but

the three cases documented each give an individual insight into the issues of being able to utilise

code puzzles in pre-existing environments.

6.1 Hypotheses

Based on the pilot study findings and previous research (i.e., Ihantola and Karavirta, 2011; Helminen,

Ihantola, Karavirta, and Malmi, 2012), hypotheses were developed and formed the basis of the

investigation (see Table 19).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 192

ID Hypothesis Did the pilot study support this?

H-1 NPs of a similar level of understanding will
share similar characteristics in their
interactions with a particular code puzzle.

Supported by the pilot study.

H-5 There are a finite number of ways in which a
code puzzle can be experienced and
understood.

Supported by the pilot study.

H-2 NP interactions can be classified and
categorised

Supported by the pilot study.

H-3 Classified NP interactions can be mapped to
a level of understanding

Supported by the pilot study.

H-4 NPs will make moves that correlate to swap,
remove, and add with no other possibilities
of movement.

Not supported by the pilot study.

H-6 The reasoning behind a classification of NP
interactions will be the same among all
participants of that category of interaction.

Supported by the pilot study.

The hypotheses below this threshold were based on the findings and observations recorded in
Chapter 5, and not on previous research and had not yet been explored prior to this study but
were supported by the pilot study’s evidence.

H-7 The more incorrect placements of Code Puzzle pieces that NPs make, the easier it will be
to indicate misconceptions.

H-8 NPs of a similar approach to coding will share characteristics in their understanding.

H-9 NPs will leave pieces that they are least confident about until last.

H-10 NPs will prefer the Line-By-Line Code Puzzles over the Piece-by-Piece Code Puzzles.

H-11 NPs will find Code Puzzles useful; this will be determined by whether the majority of
participants (over 50%) find the Code Puzzle useful in the post-study questionnaire.

H-12 NPs will find Code Puzzles as a viable alternative to traditional revision methods; this will
be determined by whether the majority of participants (over 50%) find the Code Puzzle
useful in the post-study questionnaire.

H-13 NPs will find the Code Puzzle analysis accurate in regards to their approach; this will be
determined by whether the majority of participants (over 50%) find the Code Puzzle
useful in the post-study questionnaire.

H-14 NPs will find the Code Puzzle analysis accurate in regards to their understanding of the
underlying concepts; this will be determined by whether the majority of participants
(over 50%) find the Code Puzzle useful in the post-study questionnaire.

Table 19: Original hypotheses specifically for the secondary study

6.2 Secondary Study Procedure, Results and Discussion

The secondary study produced 40 audio recordings and 54 video recordings; no participants’ data

suffered loss, but one participant (P11) had two audio recordings as there needed to be a pause and

emergency room change during their attempt of CP2. However, most participants had more than one

video for CP2 due to requesting additional, custom pieces.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 193

6.2.1 Time, Solution Confidence, Perceived Task Difficulty, and Movement Results

Mirroring the pilot study’s results, CP1 took less time to complete in comparison to CP2, but more

time was spent on individual pieces on average than CP2. Therefore, in terms of time efficiency, 2D

Parson’s Problems are better as NPs spend less time completing them (see Figure 92).

Figure 92: Scatter graph for time taken to complete the puzzle by each participant (CP1: range =

04:50-14:33, M = 08:16, SD = 03:22|| CP2: range=08:06-21:17, M = 15:21, SD = 04:13)) for the

secondary study. Distraction time was labelled as moderate or severe interruptions (CP1:

range=0:00-1:37, M = 0:27, SD = 0:42|| CP2: range=0:00-0:59, M = 0:16, SD = 0:26)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 194

Figure 93: Scatter graph for the average time spent on each piece per puzzle (right) (CP1: range =

00:13-00:38, M = 00:22, SD = 00:09|| CP2: range=00:06-00:16, M = 00:12, SD = 00:03) for the

secondary study.

Participants were given the task information sheet and asked to complete a pre-puzzle questionnaire

on the perceived task difficulty (based on how difficult they felt it would be to create a solution on

their own computer) before they were allowed to view the associated code puzzle pieces for the task

(see Figure 94 and Figure 95).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 195

Figure 94: Bar chart for the pre-CP1 (CP1) questionnaire’s closed questions on task difficulty for the

secondary study. P18 did not submit a pre-CP1 questionnaire. (CP1: M = ‘Slightly easy’)

Figure 95: Bar chart for the pre CP2’s (CP2) questionnaire’s closed questions on task difficulty for the

secondary study. P18 did not submit a pre-CP1 questionnaire. (CP2: M = ‘Slightly easy’)

The average participant believed that CP2’s task was naturally more difficult than CP1’s task;

however, if the mean response was taken from each puzzle, the average participant would choose

‘Slightly easy’ for both puzzles. That said, the chart comparison shows that there is an inclination

towards CP1 being easier than CP2 – even if there are extremes skewing the mean option chosen.

This was primarily due to the inclusion of the Date library; like the pilot study, the participants

insisted that they had not covered the necessary materials in the Java module to be able to interpret

and use text from Java documentation. P13 had the most drastic difference in opinion; they believed

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 196

that CP2 would be very difficult as they had not encountered Java documentation before. This,

however, is an intriguing point in itself – as highlighted in the background questionnaire, 9% of

participants felt that experience was key to being a sound programmer – as though, they imagine, an

adept programmer to know all there is to know about a language and therefore never encountering

unknowns. Perhaps this is a source of frustration – programming, by nature, includes creating

programs that have not been created before and languages typically do advance and change over the

years. For example, Oracle (2020) show that they have depreciated libraries, so content taught to

previous programmers is not necessarily the same in a decade or so’s time. Languages also grow and

fall in popularity, and perhaps change is a reason that NPs are fearful and become deterred from

completing a task. It is also unlikely for a programmer to write the exact same program twice – each

task is always a new experience in terms of the domain.

Figure 96: Bar chart showing what participants anticipated would be the easiest part of CP1.

Figure 97: Bar chart showing what participants anticipated would be the hardest part of CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 197

Figure 98: Pie chart showing what participants reasons were for the easiest part of CP1.

Figure 99: Pie chart showing what participants reasons were for the hardest part of CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 198

Figure 100: Bar chart showing what participants anticipated would be the easiest part of CP2.

Figure 101: Bar chart showing what participants anticipated would be the hardest part of CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 199

Figure 102: Pie chart showing what participants reasons were for the easiest part of CP2.

Figure 103: Pie chart showing what participants reasons were for the hardest part of CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 200

Participants generally felt that CP2 was more difficult than CP1, likely due to them focusing on the

unfamiliarity of the date class as shown in the pre-CP2 questionnaire. The number of pieces also

contributed to the difficulty.

Figure 104: Bar chart showing the post-CP1 evaluation of how confident the secondary study

participants were that their solution would work.

Figure 105: Bar chart showing the post-CP1 evaluation of how confident the secondary study

participants were with the achieving the task.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 201

Figure 106: Bar chart showing the post-CP2 evaluation of how confident the secondary study

participants were that their solution would work.

Figure 107: Bar chart showing the post-CP2 evaluation of how confident the secondary study

participants were with the achieving the task.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 202

6.2.2 Background Questionnaire Results

11 out of 13 participants completed the background questionnaire, with 2 participants opting out of

completion. 1 participant did not specify any languages in their background questionnaire. Therefore,

this section will equate 100% of participants as 11 participants.

Figure 108: How confident are you as a programmer? (M = “Slightly Confident”)

The average participant was slightly confident (see Figure 108). This may indicate a sample bias of a

similar nature as the pilot study where only the confident programmers volunteered; that said, while

there were two participants who were confident or very confident, there were three who were

‘slightly unconfident’ which means the sample is a little more balanced that the pilot study.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 203

Figure 109: How many programming languages are you: fluent, proficient and beginner in? (Fluent: range = 0-3,
M = 1, SD = 1 || Proficient: range = 0-4, M = 1.36, SD = 1.21 || Beginner: range = 0-7, M = 1.73, SD = 1.85)

The average participant had 1 language they were fluent in, 1 language they were proficient in, and 2

languages they were a beginner in (see Figure 109). This may indicate a sample bias to the degree

that there are only two participants who are experienced in three or less languages. That said, due to

the nature of the undergraduate degree at Aston this was unavoidable as, alongside the compulsory

Java module, students do learn other languages in differing modules. As a result, participants were

asked to clarify which languages they were familiar with (see Figure 110).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 204

What programming languages are you fluent or proficient in? ‘Other Languages’ are for languages

selected by only that participant and could compromise their identity, so if they put at least one

language that isn’t explicitly stated on the graph it is counted once. (Java: total = 8 participants ||

Python: total = 4 participants || HTML: total = 3 participants || C# = 2 participants)

Figure 110: Pie chart for the percentage of participants who answered that they were proficient or fluent in
Java.

82% of participants felt proficient or fluent in Java, which further clarifies that the sample collated is

likely to have a sample bias towards more confident Java programmers. However, such data is still

useful to collect and analyse to see if understanding of different levels of NPs can be identified from

the puzzle interactions. An ’Other languages’ label was used to mark languages that only one

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 205

participant selected to avoid ethical issues associated to revealing the participant’s identity. Some

participants in the secondary study chose multiple ‘Other’ languages and this has been accounted for

in Figure 109 and Figure 110, for example, P11 was a beginner in 7 ‘Other’ languages. Originally, the

researcher wished to separate the ‘Other’ languages into programming paradigms, but this proved to

need too many assumptions as certain ‘Other’ languages were potentially multi-paradigm

While as much data was obtained as possible, it should be noted that data saturation for these

questionnaires has not been achieved in accordance with the IPA as there are no common phrases or

specific words shared between participants. That said, these questions aimed to provide a more

informed baseline for the investigation than the pilot study assumed that the participants sharing a

Java module on their degree course would be adequate for accounting for differences in

understanding. Therefore, it is sufficient for the sake of this investigation that enough data has been

collated to analyse similarities, albeit more qualities or themes could transpire if this study was

repeated.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 206

Figure 111: Three stacked bar charts that illustrate the secondary participants’ answers to three related
questions in the background questionnaire: ‘What qualities does a programmer require (in your opinion)?’

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 207

(top); ‘Which qualities of a programmer do you feel you have?’ (middle); and ‘Which qualities of a programmer
do you feel you need to improve on?’. These were codes created through applying Straussian Grounded Theory
to the open-ended question answers given.

100% of participants believed problem solving to be a mandatory skill for a programmer, with

18.18% believing that problem analysis was worthy of particular note regarding the problem-solving

process. While this could be a side effect of advertising the study as a way to evaluate and detect the

understanding and process that a programmer goes through – ergo, attracting volunteers who

believe the purpose of this experiment is important – it should be noted that the advertisement

never used the terminology ‘problem solving’ itself. 36.37% of participants felt that knowledge recall

and memorisation of the language’s syntax, structure and basic functionality was required, and

36.37% believed creativity was a skill needed by programmers. 27.27% believed that a programmer

needed the right personality and temperament in order to excel, with participants commenting on

patience and persistence as being signs of a good programmer. While participants tended to relate

personality traits to their own experiences, for example – creativity comments tended to talk about

designing programs and finding solutions to bugs, whereas patience related to persevering with

programming. Creativity and right personality were separated due to how many participants

specified creativity as a specific characteristic without alluding to other personality traits.

Interestingly, 9% of participants felt that programming needed to be discovered at a young age in

order to excel at it, and 9% of participants also felt that skills such as teamwork and communication

abilities were paramount to being an adept programmer.

90.91% of participants believed they possessed problem solving capabilities, which suggests that

they have personally found the skill important when they are programming. Similarly, 36.36% of

participants commented that they had the right temperament and 27.27% of participants believed

they were creative enough to become a proficient programmer, even if they lacked the experience or

adequate knowledge recall. Conversely, 9% of participants felt they had the knowledge but needed

to improve their problem-solving capabilities.

Developing the thematic relationships for the questions related to the qualities required for being a

programmer; what qualities they believe they possess and what they wish to improve on were

difficult to determine as only 27.27% of participants wrote about more than one theme per question

(see Figure 112).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 208

Figure 112: Interpreter’s Sensing of the Thematic Relationships for the question “Which qualities of a
programmer do you feel you need to improve on?”

This shows that NPs value the overall problem-solving process alongside believing that personality

and temperament are contributing factors to success. This is insightful; as participants who did have

issues with creating a working solution were recorded to be struggling with knowledge as well as

selection of a relevant problem-solving strategy. This reveals that participants can identify the

general source of their issue (i.e., problem solving), but struggle to identify the specific part of that

general concept that they struggle with (i.e., selecting relevant information, dividing and conquering

etc.). This information further suggests that NPs do struggle with communication barriers about

explaining the parts they wish to improve on. For example, 27.27% of participants used the exact

same phrase – “thinking outside the box” – which is vague, but also suggestive that they have

encountered previous programming issues or ways of solving programming that have been beyond

their expectations of what programming should be.

The themes for the improvement question are defined in full (see Table 20).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 209

Theme Title Theme Description

Temperament Two participants identified that the right mindset, or personality
traits, could help them improve as a programmer – notably,
these were related to the characteristic of creativity, but this
theme could be expanded to include other temperamental
features, such as patience.

Evaluation Three participants described issues associated to the solution
development and testing itself, implying there is a strong
inclination towards programmers evaluating their quality of their
programming as a result of their experience with developing past
solutions. While there are five unique phrases associated to this
category, one participant chose three different phrases from this
category in their answer to this question which shows how much
emphasis they place on testing, and the processes defined in
testing. These participants believe that good programmers
identify and resolve mistakes quickly and easily, and can detect
bugs without too much issue which likely relates to the issues
they have encountered that have impacted their self-confidence
the most.

Computational Thinking Our participants described various steps of problem-solving
processes that relate to computational thinking, with a related
theme of evaluation and testing. Participants generally used the
phrase ‘problem solving’, but some focused on differing aspects
of problem solving in a way that would indicate a different
emphasis on what they perceive as an integral part to
programming. Participants focused on the task analysis, solution
analysis and testing, self-evaluation and their overall approach to
the task when discussing this theme.

Communicating with peers Communication was only used by one participant, who also used
Teamworking. This suggests that their focus of the term
communication is on communicating to like-minded individuals
about programming concepts.

Programming knowledge Two participants wished to focus on experience of programming
and being able to recall programming knowledge as important
parts that they needed to improve on. While it is interesting that
there is an inclination towards believing that experience will
make you a better programming, it may also be implicitly linked
to computational thinking and evaluation theme in that patterns
in computational thinking can suggest that drawing upon
experience and knowledge is a good start when attempting to
solve a computational issue. That said, these participants
seemed to distinguish between programming knowledge and
computational thinking and evaluation, hence, a new theme has
been created from these datapoints.

Table 20: Thematic Definitions for the background questions related to quality: ‘What qualities does a
programmer require (in your opinion)?’; ‘Which qualities of a programmer do you feel you have?’; and ‘Which
qualities of a programmer do you feel you need to improve on?’

Participants were asked to name what the most important aspect of being a programmer was after

they had reflected upon their own qualities and experiences. The following figure illustrates that,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 210

despite 100% of participants earlier mentioning the problem solving was important, only 45.45% of

participants suggested it was the most important aspect (see Figure 113).

Figure 113: What is the most important aspect of understanding programming (in your experience)?

It is interesting to note that participants rarely identified an aspect that belonged only to one

classification; for example, ‘creativity’ also included the phrase ‘abstract thinking’ which belongs to

‘problem solving’. Knowledge recall encompassed a variety of different aspects – ranging from

remembering aspects about how to structure a class and knowing when certain syntax should be

used for methods, to how to develop, test and refactor code and make “something useful”.

Interestingly, the parts of the software development lifecycle highlighted by the participants were

requirements gathering, development, testing and maintenance – design was missing. This could be

indictive of the perspective of an NP – that, as a programmer, your primary goal is to write code and

not consider the bigger picture. This was supported by Kauffmann’s (2011) findings as they found

that NPs were focusing on the intricacies of code rather than the design aspect. Temperament was

the ambiguous classification – the participant suggested ‘motivation’ was the most important part,

implying that there also needed to be innate desire to be a programmer as well as having the correct

temperament for programming.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 211

Participants were also asked to document their own steps to solving programming tasks; this was

intended to identify their process, so that their recorded process could be compared to their

perceived one. Participants all had unique ways of wording their steps, and therefore they were

coded and grouped into themes based on the essence of the step (see Table 21).

 1 2 3 4 5 6 7 8 9 10 11 12 13

Read the task 1

Read the requirements 1

Understand the
scenario

 1 2

Understand the task 1

Try to understand what
is being asked

 2

Identify unknowns in
the scenario

 3

Identify classes and
attributes from the task

 1

Highlight key points 2

Highlight requirements 2

Visualise the problem 1

Visualise the end
product

 3

Understand what
caused the problem

 2

Understand the
problem

 1 1

Reword the part of the
task I am not confident
in

 4

Define most important
elements

 1

Identify associations
between code elements

 4

Create skeleton code 2

Identify what needs to
be done

- 1 - - - -

Understand how the
solution would work

 3

Figure out a general
solution

- - - 2 - -

Write a prototype 2 -

Start to fill out code 3

Create a plan - - 2 - - -

Split into small parts 1 2 - 3 - 2 4

Start at the beginning of
the class

 3

Create instance
variables

 4

Create the constructor 5

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 212

Assess what classes are
required

- 3 - - - -

Perfect the methods 6

Consider the format of
the code

 3 -

Create pseudocode - - 3 - - -

Plan the rest of the
code

 4 -

Do the quick easy parts 2 - - - - -

Do parts of the task I
am most confident with

 3

Try multiple times 5

Solve each part one by
one

- - - 4 - -

Build the classes - 4 - - - -

Build the constructors - 4 - - - -

Think of alternate ways
to represent solutions in
the code

 5

Write the code 5 - 6 4

Implement code - - 4 - - -

Plan how to do the
harder parts

3 - - - - -

Assess what parts need
to communicate with
each other

- 5 - - - - 4

Identify what the
components are doing

 5

Hand-written notes 3 - - - - -

Analyse what the
objects did to solve the
problem

 6

Diagrams 3 - - - - -

Build Accessor Methods - 6 - - - -

Build Mutator Methods - 7 - - - -

Write as much as I can 4 - - - - -

Reflect on the written
code

 6

Improve it - - 5 - - - 7

Test it 5 8 - 5 - - 5

Run it - 8 - - - -

Adjust code 6 9 - - - -

Modify code 6

Simplify code 6 -

Refactor code 5

Repeat ->5 ->1 - - - -

Get frustrated 7

Ask for help 8 6
Table 21: How participants answered the question of "Can you describe the steps you take to solve a
programming task? " The number represents the step order for how they would approach an issue

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 213

6.2.3 Movement Frequency and Types of Movements Made

All participants made more movements in CP2 than CP1, which is to be expected considering the

number of pieces. However, the types of movements did vary between participants – due to the

difference in camera angle on the video recordings, the researcher could clearly see that participants

did make micro-movements towards pieces – known as a ‘shifting’ movement – which usually

signified that participants were considering removing or putting back a piece, but decided not to. In

the context of participants repeatedly shifting pieces upward, it was noted that the audio recordings

indicated that this is the action participants took when they were ‘testing’ the pieces – as in, they

wanted to check that all of the pieces made personal sense to them and were checking each line

carefully. The shifting movements were also catalogued, but unfortunately, due to the angle of the

camera, the workspace and grouping movements could not be analysed to investigate whether a

machine learning algorithm could correctly identify the number of groups made.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 214

Figure 114: Number of movements made by participants in the secondary study for CP1 and CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 215

Figure 115: Types of movements made by participants in the secondary study for CP1

The types of movements indicate that participants typically did one movement per piece in CP1, but

not in CP2, except for P14 who chose to group the pieces and then add them in sections to the final

solution space. The workspace was again not prominent in all participants – but still did occur in 4

participants quite clearly. The reasonings behind groupings varied, some participants wanted to

rearrange the pieces in a way that made sense to them before they added the pieces to the final

solution space, others wanted to group the pieces that did not know what to do with together, and

others wanted to just group the end brackets to make it easier to close off the various elements of

the class.

For CP1 only due to time constraints, the total number of movements were split and the excess

movements recorded for each piece (see Figure 116, Figure 117 and Figure 118).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 216

Figure 116: Number of add, remove, and swap movements (not decide, back and shifts) recorded in

CP1 of the secondary study

Figure 117: Number of shift, decide and grouped movements (not add, remove and swap) recorded

in CP1 of the secondary study

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 217

Figure 118: Number of excess movements recorded in CP1 of the secondary study

The CP2 movements showed a stark contrast in terms of shifting movements; when compared to

CP1, participants demonstrated either shifting aspects or limited shifting whereas CP2 did not show

such a clear-cut difference. The participants that used shifting did so often to indent, or realign, their

code and did also do so for testing purposes. Another reason shifting occurred was when participants

did not think their method looked right and that they wanted to check each piece. Another notable

difference is that the remove movement was more prominently seen – this could be because there

are more pieces for the participant to move in comparison to CP1, but it commonly meant that the

participant was uncertain about the piece’s context or the concept behind the piece. P15

prematurely discontinued due to frustration and becoming overwhelmed by the number of pieces

presented to them – interestingly, they chose to group the pieces as their main movement but then

failed to be able to find the pieces. Not being able to find grouped pieces may insinuate that

grouping is a mechanism that occurs when the participant’s experiencing cognitive overload and the

grouping attempts to reduce the amount of cognitive load by assigning pieces to groups prior to

moving them and allowing them to locate the pieces. In P15’s case, it is possible that they were

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 218

overwhelmed as they struggled to complete a coherent solution for CP1, and for CP2 were unsure of

how to start a class.

Figure 119: Types of movements made by participants in the secondary study for CP2

There were noticeably a higher variety of movements in CP1 than in CP2 when examining Figure 120

to Figure 132, with participants generally performing a higher percentage of more add movements in

CP2 than CP1 – however, there are more pieces in CP2 than CP1.

Figure 120: Percentages of the types of movements made by P6 for CP1 and CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 219

Figure 121: Percentages of the types of movements made by P7 for CP1 and CP2

Figure 122: Percentages of the types of movements made by P8 for CP1 and CP2

Figure 123: Percentages of the types of movements made by P9 for CP1 and CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 220

Figure 124: Percentages of the types of movements made by P10 for CP1 and CP2

Figure 125: Percentages of the types of movements made by P11 for CP1 and CP2

Figure 126: Percentages of the types of movements made by P12 for CP1 and CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 221

Figure 127: Percentages of the types of movements made by P13 for CP1 and CP2

Figure 128: Percentages of the types of movements made by P14 for CP1 and CP2

Figure 129: Percentages of the types of movements made by P15 for CP1 and CP2

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 222

Figure 130: Percentages of the types of movements made by P16 for CP1 and CP2

Figure 131: Percentages of the types of movements made by P17 for CP1 and CP2

Figure 132: Percentages of the types of movements made by P18 for CP1 and CP2

‘6.2.4 Final Solutions

The figures below illustrate the final, submitted solutions for each of the participants the frequency

of mistakes in the final solutions were greater than that of the pilot study.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 223

Figure 133: P6’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 224

Figure 134: P7’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 225

Figure 135: P8’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 226

Figure 136: P9’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 227

Figure 137: P10’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 228

Figure 138: P11’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 229

Figure 139: P12’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 230

Figure 140: P13’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 231

Figure 141: P14’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 232

Figure 142: P15’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 233

Figure 143: P16’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 234

Figure 144: P17’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 235

Figure 145: P18’s final solution for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 236

As shown, participants created a variety of solutions with the allowed customised pieces – but

generally, due to the effort of creating a piece and thinking that the piece must not be necessary to

complete the puzzle if it does not already exist, participants did not choose to do this.

6.2.5 Post-Study Questionnaire Results

Surprisingly, 84% of participants found that the observer had accurately identified their approach to

programming, and 69% agreed that their understanding of programming had been correctly

identified by the observer. 23% of participants believed that the understanding did not reflect their

entire understanding of programming as some felt that the challenges of the puzzles were too easy

to pick up on the issues they struggled with. 8% of participants did not respond and can be assumed

to believe that the study was not accurate in their understanding but that they did not wish to upset

the observer. For the 8% of participants who claimed the approach was partially inaccurate, this was

due to them not being able to look at the full Oracle documentation on the Date library or had the

chance to revise Java documentation prior to the session.

Figure 146: Collective answers from participants during the Post-Study Questionnaire: ‘Do you feel that the
study accurately portrayed your approach? Why do you feel this way?’

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 237

Figure 147: Collective answers from participants during the Post-Study Questionnaire: ‘Do you think the
analysis did reflect on your understanding or were the findings inaccurate? (Please be honest)’

These are fair criticisms, as in a realistic environment, participants would be able to search through

documentation – that said, the provided after method documentation and explanation of the Date

class was given to participants which raises the question of what the participant would exactly do

differently with the documentation if they had full access to the Oracle website. Perhaps, though this

is just speculation, the participant wanted to try out coding associated with the Date object and that

is part of their approach which they would not be able to simulate.

The main issue here is how high the perceived accuracy was regarding the tool being used by the

observer straight after the end of CP2 to identify the understanding and approach in real time,

without the pre-processing of data. This goes against the expectations of the pilot study, as it was

deemed improbable for the observer to be able to process so much data within minutes and arrive at

an accurate conclusion. That said, even though the observer was busy recording the participant and

conducting the study, from watching the participants’ movements and listening to their reasoning for

those movements, the data suggests that this, alone, is sufficient to diagnosing NP understanding.

That said, there are drawbacks to this process – even if the data obtained from the observer is

accurate, the session per participant lasts approximately 40-60 minutes – which, is an unrealistic

amount of time for a practitioner to spend per CS student on an average degree course. Perhaps

enough information could be obtained from using one puzzle instead of two – which would make the

total time required to typically less than 20 minutes and slightly more feasible for a practitioner to be

able to achieve in an office appointment with a student. On the other hand, a diagnostic tool for one

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 238

or two NPs who are genuinely struggling, and in need of programming support services, seems like a

more feasible application of this tool as identifying their understanding can lead to tailored support.

Figure 148: Percentage of participants who believed code puzzles would be useful to them.

When asked ‘Do you believe the Code Puzzles would be of use to you?’, 92% of participants agreed

that code puzzles would be useful to them personally if the program could identify their

understanding or approach. 69%% of participants believed that code puzzles would be beneficial to

use in conjunction other revision tools, whereas 54% of participants believed that code puzzles could

be a useful revision tool by itself. From this generally positive feedback, participants enjoyed using

code puzzles and found the experiment useful for understanding their own understanding – 2

participants even commented that they knew what to focus on in order to improve themselves as

programmers in the open-ended questions from the post-study questionnaire. This, in itself, implies

there is great potential for code puzzles to be used as discussion points to allow programmers to

explain their difficulties to tutors without the communication barrier being present.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 239

Figure 149: Percentage of participants who believed that code puzzles would be a useful revision

technique

In light of the research performed by Denny et al., it seemed prudent to ask whether the participants

felt that tools such as Code Puzzles could be used as a revision technique – it is clear that the code

puzzles were not a popular concept as a revision technique, and therefore the 92% that claim code

puzzles would be ‘useful’ to them did not implicate that it would help them learn programming

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 240

concepts effectively. The definition of ‘useful’ was not defined by most participants, perhaps alluding

to social desirability bias in the data – however, it seemed from the comments that participants did

feel that it was an enjoyable exercise that allowed them to reflect on their own approaches and

improve what to revise.

6.3 Chapter 6 Summary

This chapter presented and evaluated the findings for a secondary study that aimed to replicate the

pilot study with a larger sample size and refined study protocols (i.e., observer having an observer

script, yellow card for the participant wanting to ask a question to the observer, red card for

participant ending the study).

The secondary study results suggest that using paper-based Code Puzzles as a diagnostic tool is a

potentially effective way of learning more about the understanding of the NP using the tool. This

study examined NP preconceptions to tasks prior to commencing the puzzles, and what qualities they

believed an ‘expert’ programmer would have. This study also investigated how NPs would describe

their approach to programming and compared this to how they completed the puzzles to see

whether there is any similarity and found that most participants felt their approaches and

understanding of the programming concepts found in the puzzle were accurately identified.

The secondary study also documented more instances of participants using the grouping type of

movement.

Overall, this chapter concludes that paper-based Code Puzzles show promise for diagnosing

understanding in NPs, however, there are concerns about how this tool would effectively translate to

an electronic device and the premise for the tertiary study is to see whether this translation can be

incorporated in a pre-existing learning environment.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 241

Chapter 7. Tertiary Study: Observing Coding on a Realistic Learning Environment

This study investigated whether the secondary study methodology could be transferred effectively to

a realistic educational tool commonly used to teach in a university setting (Blackboard Collaborate

Ultra). This study offered the opportunity to compare the results of the pilot and secondary study to

whether the same degree of analysis could be obtained from observing the student typing on a

computer or IDE as only their submitted lines of code and the audible dialogue were obtained – not

their movements. Therefore, the tertiary study establishes a comparable baseline to the previous

studies (see Table 22).

Tertiary Study’s Research Question

How effectively can we identify the novice programmers’ understanding by observing the way
they code via an online educational environment?

Table 22: Tertiary Study's Research Question

Originally, it was intended that the tertiary study should mimic the secondary study as much as

possible and wanted to observe students interacting with an IDE. However, this study was impacted

by the COVID-19 policies; therefore, it had to be conducted over Blackboard Collaborate Ultra – a

learning and teaching tool commonly used by UK-based universities at the time of investigation.

While this tested whether the study could be repeated using a realistic online teaching tool,

movement data was impossible to record in the previous format as it was unclear when a participant

would ‘pick up’ a piece and pieces could not be moved due to the interface restricting the puzzle

pieces to appear statically (see Figure 150).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 242

Figure 150: Tertiary Study interface presented to participants (including the rubber icon and T icon

that caused the issues)

As a result, this study aims to provide a comparison point for the data collected from previous

studies as it allows for the observer to observe the participants interacting in a different way with the

puzzle tasks. That said, only three participants were recruited for this study – however, this is still

worthy of note as these three participants were of a similar confidence to previous participants, but

they produced solutions that had far more mistakes than previous participants, despite the ability to

type their own code.

A total of three first year undergraduate Computer Science students from one university volunteered

for the pilot study; they had all completed the foundations in Java module and knew the basics of

Java.

This study chose to carry forward the hypotheses from previous studies (see Table 23).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 243

ID Hypothesis Did the pilot study support this?

H-1 Novice programmers of a similar level of
understanding will share similar
characteristics in their interactions with a
particular line of code.

Supported by the pilot and secondary
studies.

H-2 Novice Programmer interactions can be
classified and categorised

Supported by the pilot and secondary
studies.

H-3 Classified Novice Programmer interactions
can be mapped to a level of understanding

Supported by the pilot and secondary
studies.

H-7 The more incorrect placements of Code
Puzzle pieces that novice programmers
make, the easier it will be to indicate
misconceptions.

Supported by the secondary study.

H-8 Novice programmers of a similar approach
to coding will share characteristics in their
understanding.

Supported by the secondary study.

H-9 Novice programmers will leave pieces that
they are least confident about until last.

Supported by the secondary study.

H-10 Novice Programmers will prefer the Line-
By-Line Code Puzzles over the Piece-by-
Piece Code Puzzles.

Not supported by the secondary study.

H-11 Novice programmers will find Code Puzzles
useful; this will be determined by whether
the majority of participants (over 50%) find
the Code Puzzle useful in the post-study
questionnaire.

Supported by the secondary study.

H-12 Novice programmers will find Code Puzzles
as a viable alternative to traditional
revision methods; this will be determined
by whether the majority of participants
(over 50%) find the Code Puzzle useful in
the post-study questionnaire.

Supported by the secondary study.

H-13 Novice programmers will find the Code
Puzzle analysis accurate in regards to their
approach; this will be determined by
whether the majority of participants (over
50%) find the Code Puzzle useful in the
post-study questionnaire.

Supported by the secondary study.

H-14 Novice programmers will find the Code
Puzzle analysis accurate in regards to their
understanding of the underlying concepts;
this will be determined by whether the
majority of participants (over 50%) find the
Code Puzzle useful in the post-study
questionnaire.

Supported by the secondary study.

Table 23: Tertiary Study's Hypotheses

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 244

It was determined from these hypotheses that the study would compare the results obtained from

this study to previous studies, in which the accuracy of analysis and reasoning behind the typed code

was crucial for comparison purposes. However, it was unknown prior to the study commencing as to

whether the accuracy would be different or the same for this metric.

7.1 Methodology

3 CS undergraduate students at the end of their first year at Aston University volunteered to take

part in the tertiary study in 2020, with the criteria that they must be an enrolled Aston University CS

student that had attended at least one term’s worth of Java Foundations module content.

7.1.1 Advertising and Recruitment Process

Students were recruited through a Blackboard announcement from a shared second term module

that all CS and combined honours CS students had access to. No financial incentives were offered;

however, the study was promoted as a revision opportunity to students.

7.1.2 Procedure and Data Collection

The tertiary study consisted of 60-minute to 90-minute observation sessions where participants were

asked to create working Java class in two, separate paper-based Code Puzzles via Blackboard

Collaborate Ultra in the presence of an observer. Participants were given the background

questionnaire prior to the observation session but were given the tasks during the session to analyse

before proceeding. Participants were asked to write their opinions of Task 1 and Task 2 prior to

commencing the respective puzzles and asked to complete a post-puzzle questionnaire after each

puzzle. Due to interface restrictions, Code Puzzle (CP1) presented 29 unmovable pieces in the style of

a 2D Parson’s Problem (where each piece correlated to one line of code) and Code Puzzle 2 (CP2)

presented 59 one-word unmovable suggestion pieces on the left-hand side – including distractors –

and participants were asked to type their answers on the right-hand side of the screen using the text

tool. Participants were asked to complete two Code Puzzles related to creating a Potato Shop Java

class (CP1) and a Potato Java class (CP2) (see Appendix 11.1.1, Appendix 11.1.2, and Appendix 11.1.3

to view what the interface looked like).

CP1 was always completed before CP2, as randomising the order was not possible with the sample

size. For both puzzles, participants were asked to create a “working” class using the puzzle pieces

that fit the requirements of the task description while adopting a think-aloud protocol. After each

Code Puzzle, participants completed a post-puzzle questionnaire which asked them to rate their

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 245

confidence on how well the solution would work on a 5-point Likert scale and rate how difficult they

found the puzzle on a 7-point Likert scale. P19, P20 and P21 experienced feedback after each puzzle

due to the limitations of recording Blackboard Collaborate sessions.

All participants’ video recordings were successful, and every questionnaire was completed aside from

P21’s post-study questionnaire which was never returned.

7.1.3 Data Analysis

In comparison to previous studies, there was no split between the audio and video recording and

customised pieces did not require the observer to stop the recording to go and make the requested

pieces for the participant as the participant was typing text that would eventually appear on-screen

to the observer once the participant had pressed enter. Unfortunately, the restrictions of the

interface meant that the process of typing – or their keystrokes – was not a collectable set of data,

and that only the text they believed was correct, and not their process to making the line of code,

was viewed by the observer. The concept of analysing the time difference between pieces also

required a different metric as there is no ‘pick up’ or ‘hold’ aspect to the pieces and therefore the

calculated time intervals used the time between edits that appeared on screen. The video clearly

showed where participants placed pieces, meaning that the audio transcripts do contain anonymised

print screens from the Blackboard Collaborate sessions which was useful when memoing and

encoding the transcripts.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 246

7.2 Results

7.2.1 Time Observations

Figure 151: Scatter graph for time taken to complete the puzzle by each participant (Puzzle 1: range =

20:23-43:57, M = 30:08, SD = 12:18|| Puzzle 2: range=09:37-15:20, M = 12:55, SD = 02:58) for the

tertiary study.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 247

Figure 152: Scatter graph for the average time spent on each piece per puzzle (Puzzle 1: range =

00:09-01:55, M = 01:19, SD = 00:30|| Puzzle 2: range=00:03-00:12, M = 00:10, SD = 00:04) for the

tertiary study.

Participants, on average, took longer to complete Puzzle 1 and Puzzle 2 than the average participant

in the pilot or secondary studies. This was likely due to the aforementioned interface issues,

alongside participants needing to type out the code instead of simply moving a pre-written piece of

code across. This suggests that puzzles would be a more time efficient way of observing a novice

programmer than watching them code in real time and therefore a more feasible way of studying a

novice programmer.

As shown, participants completed CP2 quicker than CP1 and spent less time on each piece of CP2

than CP1.

7.2.1.1 Code Puzzle 1 Time Intervals

The time intervals were calculated by the time taken for the pieces to appear on screen. P19 spent

the most time on creating the calculateSale method; they struggled to identify which parameter to

use for the method and initially wrote ‘potatoStock’. Likewise, there was a confusion between the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 248

two methods – sellPotatoes and calculateSale. It is possible that the participant would naturally

combine the two and having the task specify the two methods separately contributed to the issues

(see Figure 153 and Figure 154).

Figure 153: A bar chart of P19’s Grouped Time Intervals – i.e., the sum of the time taken to place

each piece

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 249

Figure 154: A line graph presenting a general overview of P1’s time placement pattern – i.e., the time for each
individual movement – for CP1.

P20 suffered a power outage during their puzzle construction, which caused a spike at the beginning

of their placement pattern and was the cause of the 8:24 time for the field declarations. The

constructor also took a long time to create as the participant needed to reacquaint themselves with

the environment. The participant chose to use numerical identifiers instead of typing the piece in full

(see Figure 155 and Figure 156).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 250

Figure 155: A bar chart of P20’s Grouped Time Intervals

Figure 156: A line graph presenting a general overview of P20’s time placement pattern for CP1

P21 seemed to struggle with closing brackets – despite them only being a one-character piece – as

the closing if and constructor were forgotten but added later during their pattern placement (see

Figure 157 and Figure 158). P21 showed commentary that indicated they were looking through each

suggested piece – including the red herrings – and chose the correct version of line 6 but this took

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 251

them 2:17. For the sellPotatoes method, P21 struggled to identify an appropriate return statement

and seemed to suggest that the number of Potatoes would indicate the consequent price of the sale

– they did not link the calculateSale method to sellPotatoes.

Figure 157: A bar chart of P21’s Grouped Time Intervals

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 252

Figure 158: A line graph presenting a general overview of P21’s time placement pattern for CP1

The average time spent on each piece is starkly different from previous studies – the methods and if

statements for CP1 had some of the lowest time allocations in comparison to the return statements.

None of the participants produced perfect solutions; P19, P20 and P22 chose to create custom

solutions for CP1 and CP2 and this was likely because the pieces displayed to the users onscreen

were not movable meaning that the participants needed to type out the pieces themselves. P20

attempted to map the pieces in CP1 to the ID number on the side of the pieces displayed onscreen

but soon became confused by the numbering system that they chose to abandon this approach in

CP2. Due to the technical difficulties experienced, the average time spent on CP1 was greater than

that of CP2 which was the opposite finding to the pilot and secondary studies – this implies that the

way the information is displayed is a key issue to consider as participants more easily understood the

CP2 layout over the CP1 layout due to the amount of whitespace available. All participants chose to

complete the puzzle in chronological order – from top to bottom – and the times at the beginning of

the sample solution reflect that the largest portion of time was spent at the start of the class (see

Figure 159).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 253

Figure 159: A line chart which demonstrates the average time each participant spent on each part of

CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 254

Ultimately, the participants seemed to struggle with the pieces and often chose to create their own

pieces to achieve similar goals – the pieces at the end of the chart after the unclassifiable point are

customised pieces. P21 wished to create getter and setter methods and later divulged that such

methods were important to them and to the accessibility of the class – this does indicate that the

participant was thinking of the overall practicality of the class even if the asked for methods were not

completed satisfactorily.

7.2.1.2 Code Puzzle 2 Time Intervals

P19 struggled to create the isFresh method and spent a long time thinking about how the return of a

boolean could work – to the extent of creating a custom boolean field named ‘expired’ and using that

as a return. This suggests there was an issue with returning values, as the participant only created a

class that would assign a true or false factor to the expired boolean which was never returned (see

Figure 160 and Figure 161).

Figure 160: A bar chart of P19’s Grouped Time Intervals

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 255

Figure 161: A line graph presenting a general overview of P19’s time placement pattern for CP2 and a table
documenting the top five pieces that had the longest time intervals.

P20 struggled to create the if condition for the isFresh method, and created a condition that would

work to some degree but is not as good quality as the previous studies’ answers (see Figure 162 and

Figure 163).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 256

Figure 162: A bar chart of P20’s Grouped Time Intervals

Figure 163: A line graph presenting a general overview of P20’s time placement pattern for CP2

P21 struggled to work out the format of how a date object would work as an integer, and assumed

the object would need to have a string-like format (e.g., dd/mm/yyyy) to be processed by the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 257

compiler. They needed to spent time thinking about how to split the String into a readable

comparable format so that it could be used in their condition. There was a clear issue with their

naming of variables, and during the audio transcripts the participant even acknowledges that the

names were bad and that they had confused themselves during the feedback session. The names

‘one’, ‘two’, ‘date’, ‘currentDate’, and ‘expiryDate’ meant they did not realise that a logical error

would occur when they ran their code due to date and currentDate representing the same idea (see

Figure 164 and Figure 165).

Figure 164: A bar chart of P21’s Grouped Time Intervals

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 258

Figure 165: A line graph of P21’s time placement pattern for CP2

All participants had a spike in the center of their pattern placement where they were considering the

isFresh method, which matches the findings of the pilot study (see Figure 166).

Figure 166: A line chart which demonstrates the average time each participant spent on each part of

CP2.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 259

7.2.2 Movement Observations

7.2.2.1 Frequency of Movements

The movement observations for the tertiary study were limited by the allowances of the Blackboard

collaborate interface – movements were notably less in CP2 than in CP1 (see Figure 167).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 260

Figure 167: Clustered bar chart for the number of movements made by participants for Code Puzzle 1 (CP1) and
Code Puzzle 2 (CP2).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 261

The number of movements per piece reflects the participants getting acquainted with how the

Blackboard Collaborate Ultra interface works – therefore the pieces at the beginning of CP1 (the

fields and constructor) were moved the most as the length of the constructor meant that that line of

code went off screen and needed to be shifted onto the screen. However, there was some confusion

which matched the pilot study findings regarding the return statements for sale and sellPotatoes

method – there was a participant who used the same piece multiple times due to confusion about

the difference between the two methods (see Figure 168, Figure 169, Figure 170 and Figure 171).

Indentation was also seen with all participants, who were particular about where they placed the

pieces.

Figure 168: Stacked bar chart illustrating the number of movements made per puzzle piece per

participant for CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 262

Figure 169: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 263

Figure 170: Stacked bar chart illustrating the number of movements made to create each line of code

per participant for CP2.

Figure 171: Stacked bar chart that illustrates the number of ‘excess’ movements –movements that

exceed the anticipated number required to construct a line of – recorded for CP1. P1’s 63

unclassifiable movements are omitted.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 264

7.2.2.2 Types of Movements Observed

The types of movements observed were limited – not only were there few movements, but these

movements were virtually ‘add’ and ‘shift’ types only, with one swap type (see Figure 172). This

suggests that the workspace is a hidden area and is influenced by the interface design – this would

likely be different if pieces were movable.

Figure 172: The classification of movement type for each participants’ movements in CP1 and CP2.

7.2.3 Analysis of the Submitted Solutions

In comparison to pilot and secondary studies, participants submitted more solutions that had

customised pieces inside of them. This is not surprising, as participants needed to type the pieces

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 265

from scratch into the text box and naturally shows the names, they would choose for aspects of the

class that differ from the standard pieces. All the solutions submitted were of poorer quality than the

previous two studies’ solutions – this is likely because the extra freedom of choosing how to type

each piece meant that participants needed to determine the underpinning logic of the class and were

not guided by the number of pieces remaining as such a factor did not exist on the Blackboard

Collaborate Ultra interface. The solutions produced can be viewed in: Figure 173, Figure 174 and

Figure 175.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 266

Figure 173: Representations of P19’s submitted solutions for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 267

Figure 174: Representations of P20’s submitted solutions for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 268

Figure 175: Representations of P21’s submitted solutions for CP1 (left) and CP2 (right)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 269

7.2.4 Questionnaires

Participants were asked to complete: one background, one CP1 pre-puzzle, one CP1 post-puzzle, one

CP2 pre-puzzle, one CP2 post-puzzle and one-post study questionnaire.

 7.2.4.1 Background Questionnaire

On average, participants were ‘fairly confident’ in their capabilities as a programmer (see Figure 176)

in comparison to the ‘slightly confident’ participants in the secondary study.

Figure 176: Participants answers to the background questionnaire question: ‘How confident are you as a
programmer?’ in the tertiary study (M = “Fairly Confident”)

Participants knew multiple languages, with P20 and P21 classifying themselves as fluent in one. If

Figure 176 and Figure 177 are compared, there is the possibility of a link to the level of confident and

the number of languages an NP is considered fluent or proficient in.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 270

Figure 177: Participants answers to the background questionnaire question: ‘How many programming
languages are you: fluent, proficient and beginner in?’ for the tertiary study. ‘Other Languages’ are for
languages selected by only that participant and could compromise their identity.

Despite the number of languages, most participants did not have any language in common that they

noted down for the next question aside from HTML and Java (see Figure 177).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 271

Figure 178: What programming languages are you fluent or proficient in? ‘Other Languages’ are for languages
selected by only that participant and could compromise their identity. (Java: total = 2 participants || HTML:
total = 2 participants)

Tertiary participants felt that problem solving was a core requirement for a programmer, which

coincides with the findings of the secondary study. Knowledge recall (such as knowing the language),

the right personality traits (such as patience and perseverance) were also documented in answers. All

participants felt that they needed to improve their problem-solving skills, and this matches the

poorly developed approaches highlighted in Figure 181.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 272

Figure 179: Three stacked bar charts that illustrate the tertiary participants’ answers to three related

questions in the background questionnaire: ‘What qualities does a programmer require (in your

opinion)?’ (top); ‘Which qualities of a programmer do you feel you have?’ (middle); and ‘Which

qualities of a programmer do you feel you need to improve on?’. These were codes created through

applying Thematic analysis to the open-ended question answers given.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 273

Figure 180: What is the most important aspect of understanding programming (in your experience)?

Each of the participants exhibited a different approach to programming; P20 had the closest

approach to the secondary study participants but P19’s process was new. This suggests that P19 was

correct in their post-study analysis, because their approach could not be identified from looking at

the movements of Code Puzzle pieces alone – as their process entirely revolves around copying other

people’s code and tweaking it. P21 showed little development in terms of their approach to

programming – they had a very vague step of ‘working out how to do the task’ which suggests they

do not have a standard logical process for working out how to do that task (see Figure 181).

Participants did not seem to anticipate the tasks themselves as being drastically more difficult than

each other and tended to judge the difficulty in the same way with the exception of P19 who was

greatly disheartened by the use of a date object and the Java documentation which added to the

complexity of the task (see Figure 182).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 274

Figure 181: How participants answered ‘Can you describe the steps you take to solve a programming

task?’ for the tertiary study; the process could not be generalised as each participant gave a unique

answer.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 275

Figure 182: Bar charts for the pre-CP1’s (left) and pre-CP2’s (right) questionnaire’s closed questions

on task difficulty for the tertiary study. (Puzzle 1: M = ‘Slightly easy’ || Puzzle 2: M = ‘Neither easy

nor difficult’)

Participants tended to find different aspects easier and harder – but these do co-align with the

aspects found in the secondary study. Participants in the tertiary study tended to be vaguer in terms

of the exact part of the task they would find difficult – for example figuring out how things work is

not a specific part of the task, but of the process in identifying what to do in the task and would

implicate that the process of knowing what is required for the task is a daunting aspect. Secondary

study participants were far more focused on the task itself, rather than the whole process which

does indicate that despite the levels of confidence exhibited in the background questionnaire

answers for the tertiary study, that the participants were of a lower novice level than in the previous

two studies. Making a class and declaring fields and methods were all considered easy, which shows

that participants were thinking quite broadly in terms of the tasks.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 276

Figure 183: Bar charts for the pre-CP1’s questionnaire’s thematic analysis on open-ended questions

on task difficulty for the tertiary study.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 277

Figure 184: Bar charts for the pre-CP2’s questionnaire’s thematic analysis on open-ended questions

on task difficulty for the tertiary study.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 278

Participants did give reasons for the hardest part – primarily that they had concerns about the

complexity of using the puzzles’ interface rather than the task itself. This was only proven to be

different in CP2 when the focus shifted from the puzzle’s interface to the concentration on the Date

object and lack of familiarity with such objects.

Figure 185: Pie chart the pre-CP1’s questionnaire’s thematic analysis of why they found the selected

item hard on open-ended questions on task difficulty for the tertiary study.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 279

Participants tended to not give reasons for why the part selected from pre-CP1 and pre-CP2 was the

easiest part – only one suggested that familiarity with the part of that exercise caused them to

believe it was easiest.

Why was it the easiest part? Pre-CP1 reasoning Pre-CP2 reasoning

Familiarity with type of task 1 1

No reason given 2 2

Table 24: Reasoning for why the participant considered the tasks easy.

Unlike the pilot and secondary studies, the tertiary study participants found CP2 easier than CP1 –

this can likely be explained by the use of mental load. The way that the interface needed to be

displayed on Blackboard gave very little whitespace between pieces in CP1 in comparison to CP2, and

despite there being more CP1 pieces, there was less information on each one.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 280

Figure 186: Bar charts of the post-code puzzle question answers for CP1 (left) and CP2 (right).

participants who believed Code Puzzles would be useful to them.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 281

One participant did not return their post-study survey, and therefore only two participants

completed the post-study questionnaire. Both participants who answered the post-study survey felt

that code puzzles could be used a ‘secondary’ revision technique, but 1 participant believed it was

not suitable as a primary revision tool for the reasoning that they needed to be able to experiment

with how the contents of the task would work in a true IDE setting and that they had a hard time

visualising the outcome of various pieces in CP1 and CP2. Both participants felt that Code Puzzles

would be useful to them, and one believed their approach and understanding of programming had

been identified correctly by the observer. One participant felt that their current understanding of

the programming concepts was seen, but that the observer failed to fully understand their approach

to solving a programming problem because they did not see the way the participant naturally

interacted with an IDE – for example, the participant explained that a core part of their approach was

in the ability to use the internet to find documentation and tutorials online on how to utilise the code

needed, they also explained that they needed to then take that code from the internet and

experiment with it before they could fully be confident in their ability to use the code. The observer

also believes that part of the issue was that participants relied on running the code as a form of

testing, and the ability to ‘predict’ what would happen when the code was run can be an issue for

NPs. However, detecting that an NP needs to do this in order to create a solution can help inform the

practitioner on how this NP learns so this tool could still be argued as useful despite it presenting an

artificial environment to the NP.

7.3 Discussion

Interestingly, CP1 took longer to complete than CP2 – contradictory to the findings of pilot and

secondary studies; this can be explained, in part, by the participants becoming accustomed to the

Blackboard Collaborate interface which is evidenced by two participants accidentally wiping their

solutions by mistaking the eraser icon to be a tool to remove a single text box rather than an entire

board wipe. Participants also were confused about whether the observer could see what they were

doing – and sometimes, due to internet connection, this became a problem as their dialogue did not

always match to the timestamp the line of code they typed would appear. Similarly, one participant

experienced a power cut during CP1 which contributed to the increased time taken to complete the

puzzle as they needed to reacquaint themselves with their progress prior to disconnecting. The CP1

experienced, therefore, teething problems that were not equitable to the pilot or secondary study

but shed light on the fact that with online environments there are inherent issues with technology

whereas in-person observation with paper-based pieces mitigate this issue. Realistically it is not

feasible for a lecturer to sit with over 100 CS students and individually perform paper-based puzzles

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 282

while observing their every movement, however, for a one-to-one session with a struggling CS

student a paper-based option is still feasible. Arguably, if paper-based puzzles were used in lecture

halls the participant the observer would be so overwhelmed by trying to keep track of everyone’s

movements that they would likely gain more information from transferring to an online system such

as this.

Participants tended to explain more narrative (reasoning) behind their movements rather than just

describing their process like identified in pilot and secondary studies. This shift in type of dialogue

may indicate that participants are experiencing less mental load, as they are not needing to perform

a major physical gesture to complete the puzzle, they are instead typing – an action they are likely

more accustomed to. One participant suggested that the thought of using the puzzle interface was

off-putting in their pre-CP1 questionnaire and considered it the hardest part, and another anticipated

that it would be easier to code it themselves rather than use the interface. This could be explained by

multiple participants – in secondary and tertiary studies – suggesting that the hardest part of solving

a programming problem was the process of creating a solution, and that the lack of testing tools (e.g.

IDEs) made it difficult implying that NPs do rely heavily on their development environment to point

out issues to them. All participants in the tertiary study performed ‘mental’ testing – where they

finally read through their code and tested it in their minds before submitting – and one participant

suggested that the lack of compiler was an issue as they would not feel confident in running their

code. One participant, similar to the secondary study, also criticised that the puzzles do not

demonstrate a realistic mental process for creating a program by suggesting that, as part of their

process, they would need to research the materials and libraries connected to the task and test them

on an IDE to deduce how the libraries work. By eliminating the use of online tools completely, the

puzzles create an isolated environment that is testing their memory of their programming

knowledge, rather than their full approach to programming – this is an important limitation to

consider, both for the implications of written closed-book examinations in programming and for the

use of offline Code Puzzles.

CP2 times were shorter, and participants found CP2 easier than CP1 – and this can also be explained

by the way the interface was designed; CP2 incorporated more whitespace between pieces, which

participants may or may not have chosen to look at. Participants also created solutions that were not

of the same quality of the secondary study for CP1 and CP2 – implying that previous works that have

found that NPs can become distracted, go on a tangent, become confused and have not refined their

process to design programming are supported by these findings. While in the secondary study

participants could create custom pieces, they were often reluctant as a new piece indicated that they

were doing something ‘wrong’ – in the tertiary study, due to the lack of movement of pieces,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 283

participants were creating unique pieces to the degree that the solutions barely resembled the

anticipated standard solution. The creation of so many custom pieces indicates that the standard

solution, written by an experienced programmer, is not the way NPs view the solution to the

problems – in the secondary study, it was implicated by two participants that the way the pieces

were written would be alien to them and that if they were writing the class from scratch the

participants would have coded the class in a different way. The fact that all the participants used very

customised pieces suggests that a wider variety of pieces needs to be presented to the NPs to get a

more authentic version of what they would really produce if given an IDE, and could even implicate

that the findings of the secondary study, where participants were in large agreement that the study

accurately detected their approach and understanding, was influenced by biases such as outcome

bias, observational selection bias and social desirability bias. Participants using so many customised

pieces, in retrospect, indicates that a study prior to the pilot study, where the participants are asked

to complete a task on an IDE and the answers of those tasks formulate the way in which the pieces

are written for the future studies, would be, in hindsight, better. However, the secondary and

tertiary study findings showed that participants can become overwhelmed by the number of pieces

they see and that minimising the selection of these pieces is paramount to gauging the correct level

of difficulty – in reality, programmers often have to work with code they have not personally written

and these Code Puzzles, therefore, evaluate how an NP can deduce the meaning behind someone

else’s code rather than their own. The risk of creating a truly authentic task – where a programmer

has access to the internet – is also whether the code they produce would be of their own or whether

they would copy and paste without understanding the meaning behind every part of the code.

Consequently, while Code Puzzles cannot claim to be truly authentic tasks, they are useful tools in

deducing how well participants understand the meaning behind code extracts.

Similar to the pilot and secondary studies, participants audibly spent time deducing the meaning

behind CP1’s puzzle pieces, whereas CP2 did allow participants to apply their own meaning to the

piece thus suggesting that the context in which CP1 and CP2 are used is important.

In CP1, the findings highlighted that NPs like to produce methods and lines of code that they think

are important, or perhaps when combined with the questionnaire data, suggests that the lines of

code produced correlate to what NPs find familiar. Familiarity was a strong theme in the tertiary

study results, which indicated that NPs that are not familiar – or have not yet encountered an exact

line of code before – are anxious towards that segment and prefer to deviate back to what they

already know, even if it was not asked for in the task. Creating print statements and getter methods

gave an insight into how NPs program more naturally and offer ideas for how to create pieces that

resonate more with NPs than the pieces created by the experienced programmer.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 284

7.4 Limitations and Evaluation

Unfortunately, the study did not attract many participants which resulted in a small sample size.

There is also the issue present that the NPs may believe that the experienced observer must be right,

even if they secretly disagree with the observer but do not wish to discredit their research. The Date

object in Java is not obsolete and is considered a difficult class with multiple methods that the

students were not familiar with – despite reassurances that the Foundations module covered the

ability to read Java documentation, this research found that the students preferred to write code

with basic operators rather than attempt to use the after method – no students in this study chose to

use the Date object, and instead, chose to use integers.

Unlike the secondary study, the tertiary study needed to incorporate the feedback after each puzzle

in a similar fashion to the pilot study, only recorded. However, this feedback consequently influenced

CP2 – for example, P20 was curious about the way in which ‘this’ worked, and as the observer had

picked up on their silence when the word ‘this’ had been written and asked if they knew what it was,

they responded that they “did not know” it was something that they had learned a while ago and

had always just been “there”. When the participants asked the observer to explain this, they did

technically admit that the puzzle had highlighted an issue that they were unaware of – but this did

also mean they used ‘this’ in the correct way during CP2 whereas if CP1 had occurred prior to CP2

this may not have been the case. Therefore, there is likely a follow on bias where the previous

answers influence CP2.

The results of the accuracy of the study are generally inconclusive – one participant did not submit

their post-study results, and as there are only two participants, it seems unclear on whether the

findings were truly accurate or not. There is some evidence to suggest that the participants found the

session useful, as all who returned their questionnaire suggested so, but there is not enough data to

show the conclusiveness of this finding.

Participants did highlight what could possibly be the issue with using Code Puzzles as a learning tool

through their commentary – for example, the participant who suggested their approach was not

captured fully as they were not allowed to look at online resources or test the code prior suggests

through this feedback that if students are tasked with solving a puzzle they will not ‘see’ the outcome

of their code and learn from it in the way that writing code in an IDE would achieve. Instead, Code

Puzzles only capture how participants think the compiler works – and how they perceive the

standards of Java naming conventions and what those implicitly indicate the purpose of pieces

should be. Therefore, Code Puzzles are useful to assess the way some NPs view code, but not as a

learning tool.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 285

7.5 Conclusion

Ultimately, the tertiary study demonstrated the technical difficulties of using an online interface

during observations and explored the realistic feasibility of incorporating Code Puzzles into a pre-

existing learning environment such as Blackboard Collaborate Ultra. The study did appear to highlight

the mistakes and issues that participants had, but as suggested by the feedback, participants feel

that offline Code Puzzles do not encapsulate their natural approach to programming. Participants

that are not allowed to look at online sources, or ‘test’ how the code works prior to using the puzzle,

argue that this is a vital step that is missing and needs to be addressed.

7.6 Chapter 7 Summary

This chapter documents the data produced by the tertiary study and compares it to the data

collected from previous studies to see whether observing a participant’s typing is as effective as

observing their interactions with specific puzzle pieces. It was concluded that Code Puzzles were

more effective for determining understanding, however, it is acknowledged that having only three

participants for this tertiary study is a substantial limitation. That said, this thesis defends the

usefulness of this study in the way that it showed how confident novice programmers struggled with

creating an effective solution. It also highlights the realistic practical implications of transferring the

study to an online learning and teaching tool and therefore allows this thesis to present a series of

recommendations were this to be incorporated into a virtually delivered computer science module.

This chapter presented, explored and evaluated the findings of the tertiary study.

This study assessed the feasibility of using Code Puzzles as a diagnostic tool kit via an authentic

online learning environment (Blackboard Collaborate Ultra), with the conclusion that it is feasible to

obtain some form of insight into the NP’s understanding of programming, but that the restrictions

that an explicit set of Code Puzzle pieces have contribute to not clouding the interpretation with NP’s

own custom pieces. The workspace phenomenon was not observed during the study, which suggests

that the workspace only naturally occurs in paper-based studies or interfaces that would allow for

free movement of puzzle pieces.

Limitations in the study’s design became apparent, but were required due to COVID-19 restrictions

and at least presented a baseline reading for how well an expert could obtain data from just viewing

the way a student types code.

The tertiary study highlighted the importance of online tool’s interface design and the current

limitations of transferring code puzzles to a current educational tool such as Blackboard Collaborate.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 286

This study offers a point of comparison between the use of code puzzles verses the use of a text-

based editors and weighs up the pros and cons of using both.

In conclusion, the tertiary study revealed that a certain amount of understanding can be obtained

from the listening to NPs as they type on screen, but that even a full automation of this aspect would

be difficult without a large sample investigation into the types of customised pieces that NPs would

create based on task descriptions. Therefore, automating analysis is far more realistically done with

Code Puzzle pieces but the limitations of current interface designs for 2D Parson’s Problems need to

be addressed to observe the movements necessary to extract the approach and understanding of

NPs.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 287

Chapter 8: Collective Discussion: Workspace and Think Aloud Protocols

8.1 Conception and Implications of the Workspace

A novel discovery showed that 7 participants (33.3% of all participants) naturally chose to organise

Code Puzzle pieces into groups prior to placing them in the final solution space we have named this

area the ‘workspace’ and it is a physical space that either replaces the randomised solution space or

exists between the randomised puzzle space and the final solution space (see Figure 187).

Figure 187: Number and type of participants who were identified as workspace-orientated participants.

The workspace is created when participants group non-identical pieces together (see Figure 188).

Both non-workspace-driven and workspace-driven participants grouped identical CP2 pieces

together, but this was done to manage the large number of pieces on the table. The reasons for

establishing groups with non-identical pieces were based on: perceived similarity between the

concepts behind the pieces (the most common reasons); and perceived similarity of context in which

the pieces would be used based on the problem description. Figure 188 shows how the design of 2D

Parson’s Problems might be modified to include a workspace for participants to use to organise their

pieces.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 288

Figure 188: Our proposed workspace design.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 289

We propose the incorporation of the workspace because we found its use to be common and that

the participants gave similar reasons for using it. Workspace-driven participants’ reasons for utilising

the workspace were given as: promoting readability of the pieces; making “sense” of the pieces;

making pieces easier to find; and/or reorganising the pieces in a way that they can understand.

Despite similar reasons, participants laid out the groups in different ways holistically – although some

groups consisted of similar pieces for similar reasons. Therefore, we believe that the workspace is an

important area to include in the puzzle design if the expert wishes to understand how the participant

relates concepts to one another, and how and why the participants interpret the pieces in the way

they do. Workspace-driven participants felt the need to explain their actions as they felt that were

performing a weird, unexpected action that the observer would scold them for – with one participant

feeling that they felt like they were “wasting time” in grouping the pieces despite it not being a timed

exercise. While the observer did sometimes query the reasoning behind participants’ movements,

participants felt more naturally inclined to explain the reasoning behind grouping pieces together

rather than repeatedly explaining the grouping movement itself. The change in tone and style of the

dialogue meant that the participant revealed how they viewed the piece more holistically than just

the context in which the piece would be incorporated into the class and therefore gave an insight

into: a) what the NP believed the piece represented, b) what the NP was noticing in the structure or

way that the piece was written, and c) how the NP views and relates programming concepts to one

another. In comparison with a computer-based drag-and-drop implementation, information on how

the participants view pieces cannot easily be inferred by monitoring a cursor click or drag and drop

movements, because such movements do not give any direct information about how a participant

perceives the meaning of a particular piece.

While the traditional 2D Parson’s problem design expects participants to organise elements inside

the final solution space, for some participants, it is clear that there is a missing step that can be

explicitly introduced by using a workspace. This is crucial for studies aiming to use Code Puzzles to

gain insight into participants levels of understanding, as such studies need to understand the overall

process of constructing a piece of program code as well as how the participants view the pieces

placed in the code. Our studies demonstrated that participants who did not use the final solution

space to organise pieces as they did not tend to move pieces once they had placed them there.

Therefore, participants either chose to organise their pieces prior to the final solution space (in the

workspace), or chose to place the pieces from top-to-bottom in the final solution space. It was rare

for participants to use a workspace for CP1 where pieces contained full lines of code, because there

were too few pieces and those pieces contained more contextual information. A participant noted

that the CP1 felt like someone else had written the code, and consequently, they did not feel it

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 290

resembled their own approach to solving the task – in CP2 where the pieces were smaller and

contained less contextual information, participants were more able to claim ownership over their

solution and the task in CP2 required participants to extract and apply meaning to each of the pieces

to determine how to construct a solution and we believe this is why participants found a workspace

to be useful.

Ultimately, it is crucial to amalgamate the results from across the studies and determine the

usefulness, impact and effectiveness of the workspace in comparison to traditional 2D Parson’s

Problems. This led us to propose a new form of Code Puzzle that explicitly asks programmers to

group code extracts based on perceived similarity and/or problem context because we believe that

process would give us an insight into their understanding of programming constructs.

8.1.1 Analysis of the use of the workspace

Asking participants to explicitly use the workspace to group pieces may provide a way to make it

easier to distinguish groups and their members, and also to understand the meaning behind the

groupings that participants choose.

To analyse the benefits and issues of using the workspace, we need to consider: how we identify a

grouping, identify which pieces tend to be grouped or not, and how participants explain the

grouping. The boundaries between groups were often fuzzy due to the nature of paper-based pieces

so it is sometimes difficult to infer whether the distance between groups – or even clusters of groups

– had intrinsic or accidental meaning. Two participants stated that the relative position of each group

had meaning, although most did not audibly acknowledge that the relative position of each group

had a meaning behind it. Participants were surprised if the observer asked them to explain their

groupings, which indicates that the participants may have assumed that their layout made sense to

the observer innately – this phenomenon is explained by Schutz (1967) as the participants assumed

their own portrayal of how they link concepts would make sense to an expert. In reality, classifying

what a group is or where a group ends and another begins is difficult without the participant’s

explanation – groups may appear the same between participants, but the reasoning or vocabulary

used to explain the programming concepts behind the pieces can be different. This is why it is

important to obtain a participant’s individual labelling of groups and elements, as it provides insight

into how they identify, understand and approach programming constructs.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 291

Figure 189: Hypothetical example of ‘grouping’ of pieces in the workspace and the difficulties between
identifying group boundaries.

Figure 189 demonstrates the issue with identifying groups with a software implementation

we could identify groupings based on clustering algorithms (such as using K-means with Euclidean

distance) which provide a basis on which to establish groupings, although this does not completely

remove the decisions of whether a group of pieces represents one group or more than one.

The centre of a group was difficult to determine – participants used column-based grouping and

cluster-based grouping which would require different centres to determine the group boundaries.

Whether the centre originates from the centre of a piece, or a centre of a cluster of pieces, is

important so that a machine learning algorithm can more accurately determine which group pieces

belong to. Therefore, the variation in the ways the pieces were grouped suggests that the user

themselves is the expert in determining what is grouped and why, and any interface that

incorporates a workspace needs to ensure that the user determines and labels the groups. User-

based classification can be achieved through an intuitive user interface, that allows the user to see

that placing a piece next to another assimilates the border/shape/colour of the adjacent piece in the

same group and allows the user to adjust the clusters to better match their grouping preferences

without causing cognitive overload as labelling each piece and assigning it to a group manually would

become tedious.

The proximity between groups was also of interest to a subsection of workspace participants – close

proximity of groups suggested that the participant viewed the elements as being linked in some way

(e.g., similarity of concepts or similarity of context that the concepts are commonly conjoined in),

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 292

whereas more distinctly separated groups commonly showed that the concepts were not so closely

related to one another. There is also the possibility of groups within groups, but not enough data was

obtained to clarify how the boundaries would differ, be detected or frequently at which subgroups

were used. Arguably, the number of subgroups identified relates to the number of interlinking

concepts available in the puzzle itself and the puzzle content in CP1 and CP2, respectively, was not

altered to incorporate a different number of concepts inside the puzzle. One participant explicitly

addressed this by suggesting that elements of a similar nature would be easier to find if placed close

to one another – but there was no noted, consistent ‘group stopping’ rule whereby a group would be

distinctly separate from another.

Understanding the participants’ reasoning behind their actions in the workspace is important to

capture their mental models of the underpinning program concepts of the pieces they are grouping,

as workspace-driven participants often referred to groups as program concepts – e.g., ‘public’

meaning ‘visibility’. A communication barrier occurs between tutors and NPs when terminology is

used – NPs may perceive terminology as ‘jargon’ and tutors may misunderstand the meaning behind

the terminology used by NPs in return. Our proposed workspace acts as a medium whereby the tutor

and the NP focus on the groupings without initially worrying about the terminology used to describe

the grouping. Using groupings therefore reduces the communication barrier by providing a platform

to observe concepts and grouping pieces in the workspace also has the benefit of reducing the

cognitive load on the participants.

Understanding the participants’ reasoning is key to gaining an insight into their terminology and

understanding of the purpose and meaning behind programming concepts. Holistically, NP

understanding is comprised of both correct and incorrect interpretations of programming, therefore

symptoms of both understanding and misunderstandings are crucial to understanding NPs. There is

understanding exhibited in the movements of Code Puzzle pieces and also in the interpretation of

the task description for the code puzzles – although little interpretation of the task description was

observed in the studies, aside from the tertiary study where P20 chose to highlight key words and

values in different colours to symbolise their interpretation of what is relevant, and important, to the

task.

.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 293

Figure 52: Examples of the different forms of workspace organisation – S1-P1-CP1, P6-CP2 and P11-

CP2 show columnized grouping, whereas P10-CP2 shows spaced grouping.

Participants that used workspaces were observed to lay out the pieces in individual ways – as noted

by Figure 191, there was a popular columnized form of grouping which meant that related concepts

were placed either in a vertical column or horizontal row depending on the room provided on the

desk. Columns and/or rows were typically separated by padding (room allowing), and the participant

would audibly speak of the pieces as a set group. Individual columns were typically labelled as being

able to see how many of the same piece existed for the puzzle so that, presumably, the participant

could plan ahead as to how many times the piece needed to be used, or by perceived similarity of

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 294

concepts – where the pieces all related to an audible concept, say, the visibility in Java where public

and private pieces were placed together or side-by-side. Individual columns varied in length and

order, and no one participant placed the exact same pieces in the exact same space on the desk

implying that the pieces were ordered in a way that the participant saw fit. That said, certain pieces

that related to similar concepts – such as the visibility or data type group – were placed next to other

related concepts – such as variable name group. The placement of groups itself is an issue to

distinguish mechanically, as the distance between individual pieces is small. If a program was created

to incorporate a design that allowed participants to label different groups and ask them to group

pieces together, this would be a way in which to clearly differentiate groups with the participant’s

reasoning made clear. However, automating this in a free-ranged space would be challenging due to

the group proximities. Therefore, it is difficult to define the exact distance that a cluster ends and

starts without the participant’s audible or written words explaining the groups. This thesis argues

that the concept of grouping puzzle pieces does give ample information to an expert without causing

cognitive overload as the participants feel they are organising the concepts in a way that is

meaningful to them inherently implying that if an expert physically sees the participants grouping the

pieces that they would gain some insight into the way the participant views programming concepts

and the way they understand the standards of the language the code puzzle is written in.

8.1.2 Analysis of how workspace and non-workspace participants spoke about Code Puzzles

For the post-code puzzle questionnaires, the data was combined to indicate whether participants

inherently found differences between the two styles of code puzzle (see Figure 190).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 295

Figure 190: Vocabulary used in the post-CP1 survey (post-CP1) and post-CP2 survey (post-CP2). Only words
mentioned over three times were included and prepositions and conjoining words have been omitted
alongside punctuation.

As suggested by the diagram, participants spoke in the first person for both puzzles, and referred to

pieces and methods when discussing the quality of, and confidence in, their solution. It can be

assumed that the intersection of words, common throughout, are not of particular relevance. CP1

was generally considered ‘easier’ than CP2 which was more ‘difficult’. Participants found that they

felt they had ‘forgotten’ and were ‘missing’ pieces from CP2, whereas this phenomenon was not

common in CP1. Forgetting pieces is not unusual for CP2 – there were over 70 pieces for that puzzle

in comparison to 24 pieces for CP1, and they were smaller in size. That said, this indicates that CP2

contains more data as more participants were focusing on technical aspects – such as ‘bracket’,

‘parameter’, ‘data’, and ‘logic’ – which is likely to reveal more than participants who were focusing

on the entire ‘solution’. One participant (S2-P10) from the secondary study quit CP2 early due to

being overwhelmed, though, so this suggests that there needs to be a careful gauge – or incremental

policy – towards testing puzzles in the toolkit as if the toolkit is set at too high a level the participant

will become overwhelmed and limited data will be obtained other than that the participant failed to

comprehend the concepts or is unconfident about applying those concepts. S2-P10 completed CP1

without too much difficulty but constructing the solution from scratch was a problem. This is likely

why the common words in CP2 are more focused on small bits of programming logic that caused

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 296

issues for individuals and participants are noted to be more hesitant than in CP1 – ‘may’, ‘assumed’

and ‘wrong’.

While the participants who took part in the background questionnaire did highlight other aspects,

such as: creativity, testing and debugging, having the right temperament (patience, perseverance

etc.), and learning programming from a young age, participants only reflected on the knowledge

recall and problem-solving characteristics when assessing how confident they were with the solution.

This is expected, considering participants cannot test paper-based puzzle pieces to see if their

solution is correct. Most participants who cited personality and temperament traits as important

qualities believe that they already possess those characteristics, but that they needed more

experience to improve on those characteristics and gain more confidence to enhance those

personality and temperament traits. Additionally, the aspect of creativity, is difficult to reflect on and

participants that mention they should have done things differently are likely relating to this aspect

while also relating, primarily, to their approach to the task.

NPs in the secondary and tertiary studies who explained their answers to the background

questionnaires provided the richest insight into their lived experiences of programming in

conjunction with their interactions with the code puzzles themselves. Participants often clarified

terminology that was shared between candidates, for example, the term ‘patience’ was used by 2

participants in the secondary study and also mentioned by 1 participant in the tertiary study – it was

explained fully by 1 participant that “programming requires a lot of patience due to the amount of

code you have to have to go through. As code becomes bigger, it becomes more complex, and you

need to work a lot harder to fix errors”. Phrases such as these provided a rich insight into the lived

experience of the participant regarding programming, it revealed the reasoning behind why the

participant perceived such an aspect as important and gives the observer a brief insight into the

typical challenges the NP faces when programming. For example, from this participant it is evident

that the participant expects to have errors in their code and that, with more code, more errors arise.

This can be taken one of two ways – the participant may be struggling to code, and as a result,

creates errors that the participant struggles to find the root of, or, that the participant is practicing a

test-first approach where they create a series of unit tests that initially runs with errors, and creates

the minimum amount of code to fix these errors and make the program work as intended. That said,

with this participant, it becomes apparent that the first issue is likely the cause of needing to fix

errors as they then explain that their approach to generating code is to “use StackOverflow or open

up another project” and attempt to transfer the logic from an unknown user to their own work. This

offered a great case-by-case insight into the way participants coded, and what they struggled with,

and could be compared as a form of baseline value to the way they interacted with the Code Puzzles

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 297

themselves. That said, a criticism of this is that way participants coded on a development

environment could not be directly transferred, and thus directly compared, to the way they arrange

Code Puzzle pieces as – like multiple participants commented on the post-study and post-puzzle

questionnaires – they did not have the ability to “research” or use a “development environment” and

it is now common place for programmers to have access to a vast array of online resources meaning

that coding in an isolated environment was unrealistic in that regard. On the other hand, it should be

argued that if an NP truly understands programming in Java, they should be able to code without the

guidance or reminders of internet sources.

The task was purposely designed so that participants drew upon concepts they learned during the

course of their Java foundation modules in their CS undergraduate degree, however with CP2 there

was a controversial section where the Java object, Java.util.Date, was used and multiple participants

reported that this was an issue because they had never encountered a Date object before and did

not how to use, or did not feel comfortable using, the Java libraries. In the tertiary study participants

were allowed to use an alternative approach, instead only needing to compare two integer values to

see whether a potato had expired rather than using the Date object, and all participants chose to use

integer or String values rather than use the Date object when given the choice. This, however, does

reveal quite a bit of rich data – after all, the task description did provide an extract from the Java

libraries that had been taught during the Java foundation module in the undergraduate year, and

that extract did include information about the comparative method that was intended to be used,

i.e. “date.after(Date otherDate);”. Using the after method in the Date class was not foreseen to cause

such issues as the participants should have been familiar with the concept of comparing objects (i.e.,

they were familiar with comparing integers, floats and doubles using the ‘==’, ‘>’ and ‘<’ operators,

and familiar with comparing Strings using ‘equals’) and the idea that these conditions produce a

Boolean that can be used in an if statement. Participants were also allegedly taught how to interpret

Java documentation and were seemingly familiar with the concept of what a date is in terms of food

being fresh or not (i.e., if the use by date of the potato was 7th July 2020, and the current date was 9th

July 2020, then the potato would be ‘off’). However, multiple participants felt uneasy about utilising

any documentation from the Java Oracle Libraries with the tertiary study participants choosing to use

their own creations instead due to a lack of confidence in the underpinning concepts and the ‘skill’ to

read Java documentation, which, arguably, is an important skill for an NP to have if they are to use

programming approaches where they utilise the information available in programming forums to

create their own solutions. While teaching the basics of Data types had been achieved well, the

principles of using external libraries or sources that utilised the knowledge of the basic Data types

was not achieved and that even a simple comparable function caused difficulty. This may indicate

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 298

that there is hierarchy of pre-requisite knowledge and a need to consciously identify, associate and

interlink relevant concepts to new, unforeseen concepts that had not been achieved when the

participants contributed in the study.

Participants, when interacting with the Code Puzzles, typically voiced action commands when asked

to speak their thoughts indicating to the observer that they viewed programming and building a

program as a physical activity rather than as purely a mental activity. While it could be argued that

Code Puzzles are an activity where actions are required in order to complete a puzzle, the same could

be said for the activity of typing code into a development environment as well. It was rare for

participants to explain meaning behind the phrases, as, the think-aloud protocol tended to be

interpreted as explaining the movements themselves rather than the meaning behind those

movements. This suggests it is not natural for the participant to explain the meaning behind pieces,

or to identify the concepts of individual pieces, without prompting. Instead, participants typically

named or labelled the pieces and said where they should be placed, e.g. “Next we are going to create

the constructor” – the dialogue suggests that there is a name for the type of method being created

and the participant recognises what it is, but, they have not formally defined the term ‘constructor’

and do so by placing code that they believe is the constructor. This worked as intended, as,

participants quite clearly demonstrated whether they knew how to, say, construct a constructor

method and typically then went on to “initialise the variables” while placing these within the

constructor. Though implicit, and not a burden on the NP’s cognitive load, the puzzles acted as a

medium by which the observer could view the way they experience and approach the world of

programming without directly interfering with their space of learning. The observer could tell, for

example, that participants who declared a constructor and then went on to initialise the variables

within that constructor, understood the premise of what a constructor was and what it needed to do

in order to be a constructor without the participant physically having to explain this out loud and

artificially burden their flow of thought.

A critique of this is that the observer did need to interpret what the participant was doing without

interfering or impeding their thought processes, which meant that the observer needed to follow the

participant’s movements and reasoning while not querying their movements. In the pilot study, a

mistake was made by the observer where they queried the reasoning behind the participant’s

movements to try and gain an insight into their lived experience of programming, however, this

made the participant feel as if the movement they performed or their reasoning for that movement

was unexpected in some way and they became conscious of trying to adhere to the expectations of

the observer as a result. Therefore, it was discovered in the secondary and tertiary studies, when the

observer was given an observer script (see Appendix) that participants did not realise if they were

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 299

performing unusual actions, but it did mean that the observer, during the follow-up after the study,

had to remember these actions and ask about the meaning behind them after the puzzles had taken

place instead of during. As specified by Marton (2000), it is usual for phenomenography studies to

use interviews in order to obtain a realistic interpretation of the lived experience of the participant,

these studies collectively used scripted observation of a controlled series of puzzles with unscripted

interview elements in the follow up to the study.

The majority of participants believed the observer’s analysis of their approach to programming

and/or their understanding of programming was accurately identified by the observer after the

experiment. However, participants were told in the advertisement that the observer was a ‘Java

expert’ and this may have led to the participants agreeing with the expert to: not invalidate their

research as the participants knew the research was conducted partly for a PhD (sponsor bias); not

challenge authority by disagreeing with the expert as the participant may want to appear

knowledgeable and friendly (social desirability bias); and/or that the analysis was general enough for

the participants to feel like they could relate to the observer’s analysis despite it perhaps being

applicable to other programmers and not specifically them (the Barnum-Forer effect). The Barnum-

Forer effect is particularly troubling, as some of the observations that the observer stated could be

widely applicable (e.g., “you started with declaring the class, followed by establishing your fields” –

which the data from all three studies suggests this is not a unique phenomenon). In retrospect, it

may have been better research design to have: not specify that the observer was an expert; ensured

there were two interpreters at least to be able to see if the same analysis would have been achieved;

and send the observations by e-mail for the participant to have time to reflect on them. Although

such design considerations may have caused a poorer uptake of participants and more participants

choosing to not submit the final questionnaire as observed in the tertiary study. In this research, the

intention was to attract participants by offering them a chance to practice their programming skills in

front of a perceived expert in order to obtain tailored feedback which was not promised to be

accurate but might be enlightening. Therefore, the intention of the observer was to give tailored

feedback, particularly on any noticed problem areas of the participants, so that participants felt they

had gained something of value out of the research as well. While a minority of participants did not

find the puzzles difficult, and therefore had little feedback from the study which is shown in 2 of the

participants’ post-study survey data, some participants did require ample feedback. The way the

feedback was given at the end of the secondary and tertiary studies, participants were grouped into

a set of out-dated categories – such as modular, nested, and linear – which tried to be then

individually tailored to how the participant created their solution. Linear participants were very

closely related to the Linear Programming Process where they followed the specification to the word,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 300

to the degree that they were never misled by any red herrings, modular participants were very

closely related to nested and consequently Structural Programming Process where they typically

focused on filling out the methods and may not always start with declaring the variables first, and

finally nested participants were closely related to the Structural Programming Process where they

viewed methods as being inside a class and typically started by defining the class followed by

declaring the variables, the constructor and then filling out the internals of the methods. Due to the

simplicity of the sample Code Puzzle solutions, which typically only used one or two methods and

had a task description that was closely in line with the type of tasks they had seen in their Java

programming modules where the information was laid out in a linear fashion, it became difficult to

identify clear-cut categories of description and critical aspects for these elements in retrospect.

Despite participants largely agreeing the observer’s feedback and the accuracy of identifying their

approach, it is possible that there is an element of the Barnum-Forer effect at play with the

extremely high accuracy readings. That said, when listening to the audio recordings of the follow-up

meetings the participants are getting very specific feedback based on, not only their process, but also

the programming concepts that are dealt with in the puzzle. If the puzzle had been excessively long,

then, it likely would have deterred participants while also not necessarily yielding extra information

about the exact way that they approach programming. It therefore suggests that while the Barnum-

Forer effect may be present, it is only attached to the modular, nested and linear classification of

participants rather than their reasoning behind the assigned classification or the accuracy of their

understanding (and misunderstandings) of the underlying programming concept principles

highlighted in the Code Puzzles.

Another reason for why there is an extremely high accuracy reading for detecting their

understanding is that participants were aware from the announcement (see Appendix), it is possible

that they also perceived the observer to be a form of authority on the matter and trusted their

judgement more than their own. In other words, they did not want to disagree with the researcher

or observer and make their thesis out to be pointless – there can be factors of social desirability and

social acceptance that come into effect in this situation. As there was only one observer present,

who was the same as the researcher themselves, this further complicates the issue and may be partly

to blame for the high accuracy reading. It was difficult to check or recruit another observer due to

the limitations and restrictions associated to the degree.

Unfortunately, when datapoints were collated and analysed a clear theorem was not generated from

Straussian Grounded Theory – participants were very vocal about their process of constructing the

solution, and the way in which the solution was formed tended to be similar between participants;

for example, participants typically started with declaring the class, followed by declaring the fields,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 301

followed by the constructor, followed by initialising the fields and then constructing any methods

that were asked to be constructed during the task. This meant that the vocal data given only tended

to give insight to the participants’ understanding when they vocally wished to make it known.

Participants who were unsure of concepts, such as P19, tended to keep quiet and not talk about a

specific piece or aspect when explaining their movements to the observer. Therefore, there are

several different open codes, and while the datapoints are saturated, the codes do not easily form a

coherent theory (see Figure 191).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 302

Figure 191: Straussian Grounded Theory applied to the verbal transcripts for Puzzles 1 and 2 for the

Pilot, Secondary and Tertiary studies.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 303

8.2 Research Output

Based on the findings of our research, the research proposes the output of a list of requirements and

designs for future work in the investigation of Code Puzzle interactions and their insight into the

understanding of NPs.

8.2.1 Proposal of a Diagnostic Tool Kit

This research has demonstrated that the use of code puzzles yields reportedly high readings of

accuracy, indicating that if a tutor were to use a series of paper-based code puzzles with a CS

student, they will likely be able to obtain a useful set of information that can diagnose the CS

student’s understanding of the underpinning programming concepts of the task in the puzzle. A tutor

will discuss groupings with participants and use that as a way to detect misunderstandings, or to

highlight that a grouping is related to a sensible programming concept.

In light of this, it is important to firstly consider the difficulty of the topic(s) incorporated and

examined in the code puzzle as not all lines of code bear the same level of difficulty. For example, in

the tertiary study participants were shown to spend less time on pieces that were associated to

either field initialisation, return statements and punctuation and structure of the program in

comparison to method signatures and branching pieces. While CP1 and CP2 did not use pieces that

relate to all forms of topics in Java, they did yield an insight into the potential difficulty slope in terms

of code. First, the tutor needs to consider the amount of information and resources that are available

to the NP prior to using the diagnostic tool kit – while it may be useful to use pieces associated to

concepts that the NP has yet to interact with, the use of such code puzzles will likely not be as useful

as a code puzzle that is gauged more at their level of understanding (see Figure 192).

Figure 192: Low difficulty programming concepts linked to parts of a program that participants were observed
to quickly complete

The quantity of Code Puzzle pieces needs to also be considered; too many puzzle pieces and options

overwhelms the NP – as seen in the secondary study, where one participant was so overwhelmed by

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 304

the number of pieces available in front of them that they didn’t know how to organise those pieces

and did not complete CP2 due to this. Similarly, too little pieces would focus on a small amount of

concepts out of context of a realistic problem – that said, if an NP is struggling to pinpoint precisely

what part of, say, Java they fail to comprehend then the results of the studies infer that starting with

fewer code puzzle pieces orientated around topics they are likely familiar with can help to show

precisely which concepts in a smaller puzzle they are struggling with in less time than it would take to

complete a puzzle with more pieces. The time taken to complete each puzzle, aside from the tertiary

study, showed that the number of pieces available positively correlates to the number of pieces

available to the participant. We believe the reason that the tertiary study went against these findings

of the previous studies is because the screen was more overwhelmed by longer pieces than shorter

pieces and therefore participants found it easy to engage with the smaller pieces. Traditional 2D

Parson’s problems, in full lines of code, were inferred to be easily to construct by the time taken, and

also, by the theory of cognitive load – the participants did not need to think about how to correctly

structure a line of code, as the code was already complete, whereas the smaller pieces in CP2 meant

that one participant asked to look at their solution for CP1 in order to replicate the structure of the

pre-constructed pieces for CP1. Therefore, longer code extracts in puzzle pieces – i.e., CP1 – may be

easier for NPs that can trace and read programming, a level that is found to be easier than writing

according to Ihantola and Karvita (2011). However, some participants in our study reported that the

CP1 style of code puzzle was too impersonal and that they spent more time trying to work out the

author’s original intention for the pieces than actually the placement of them – if NPs exhibit this

trait, it may indicate that they are more confident in their ability to write code and can see faults in

the pre-written code or naming of variables used in the puzzle pieces.

8.2.1.1 Factor of Difficulty

The discrepancy in reported difficulty between the pilot and tertiary studies suggests that the

difficulty is related to the cognition and experience of individual NPs. However, there is a pattern in

what makes a puzzle more difficult than another for NPs – for example, all NPs that commented on

the Java library’s Date object suggested that this would be the hardest part of the task of CP2 as this

is an unknown factor to them. The exact reasoning for an unknown factor differs between

participants, for some it was that they were not confident with Java documentation but for others it

was that they had not specifically used the Date object before so did not feel confident in working

out from the Java documentation alone as to how the Java library works. This suggests that the

puzzle’s task is paramount to the perception of difficulty and should be carefully crafted based on the

experience of the NPs – while the NPs had learned Java documentation in the Java Foundations

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 305

module and should have been able to interpret the method’s text, it is clear that NPs thrive on being

able to see how the object works and experience it for themselves. Therefore, an IDE is an integral

part of the NP’s formulation of the mental representations of programming constructs, and unless

the NP is confident in the way that the compiler (and Java library text) works, they cannot formulate

or predict with complete confident how the object will react to situations. The detection of the fact

that NPs were hesitant about the Java Date library suggests that the task itself could pick this up, if

the observer asked them about how confident they felt about the task. Interestingly, participants in

the tertiary studies often did not explain why they felt that the part of the task would be difficult, and

one participant even suggested that the whole process of “making it work” suggests that the criteria

they use to assess the task difficulty is based on how confident they feel about the concepts or

classes used in the task. Ultimately, familiarity with the objects used is paramount to creating an

easier puzzle. Surprisingly, most participants were not put off by the way that either task was worded

– despite the researcher purposely avoiding using the words ‘constructor’ and instead describing the

purpose behind the method. Unfortunately, due to lack of time and willing participants, there was no

possibility to create a control and experimental group where the task was worded differently. The

reason the task was worded differently was due to the researcher not wishing to lead the

participants by influencing the language that they used to describe the pieces – however the

purposeful lack of technical terminology implicitly tested whether the participants could decode the

concepts that they had learned in Java with the description of what those concepts are. Arguably, for

some participants, the wording did seem to confuse them – and thus they were often highlighting

the words This investigation found evidence to suggest that some NPs use the task description as a

form of scaffolding to guide their approach with a couple of NPs following the task description like a

step-by-step set of instructions, which is in-line with some of the findings purported by Fabic et al.

(2019). Therefore, the task description could increase the difficulty of the puzzles by becoming less

explicit about what the class requires – some NPs were observed to follow the task description word-

for-word, referred to as a ‘linear’ approach in early research, and others were using the class to

scaffold how they interpret the task – for example, thinking about the overall design of the class and

often working in a ‘nested’ approach where they worked on the requires of each individual method.

However, the linear vs nested argument was weak in hindsight as the way the task description was

worded was too obvious to allow for design decisions to become clearer. After all, most participants

did start from the top of the class and work their way down to the bottom of the class with a few

step deviations in between. Therefore, difficulty may be increased by only suggesting what the end

goal of the class is, without explaining variables, or what methods are required, and seeing whether

the NPs do manage to design a coherent class. In the tertiary study it was shown that this advice

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 306

should be used with caution as the NPs often derailed and did not have solid understandings of the

underpinning logic of the class – however, if the NPs are struggling with designing the class rather

than creating the syntactical structure of a class, the ease of use of custom pieces and a vaguer task

description would allow for the assessment of how well they can design a class based on the

principle of allowing them more freedom. Yet, if the analysis of the NPs movements is to be

automatised, this would not be as easy to automate as if the participants had less freedom to choose

customisable pieces unless there is a smart compiler built into the design.

Regarding Parson’s Problems themselves, evidence from the pilot and secondary studies shows that

the extra scaffolding of the pieces allows for participants who do not necessarily know the structure

of a line of code to place pieces in the correct area. However, in CP2, it was shown that some of the

participants who had an almost perfect CP1 answer did not manage to get a perfect CP2 answer –

with the data types of parameters often missing. If we take this example, we can analyse what the

potential meanings behind an absence of the data types of the parameters means. In Python, data

types do not need to be stated explicitly in parameters – therefore, questioning of the NP needs to

take place in order to determine whether data types of parameters are a syntactical issue, or an issue

with the concept. After all, the absence of data types in the entire class would be a stronger indicator

of poor or no understanding of data types – but if the data types are only missing in certain sections,

or the NP forgets the odd one but manages to correctly place them in other similar contexts, then

the chances of them misunderstanding the concept of data types significantly lowers. The repetition

of mistakes in every instance of a programming concept is a strong indicator of no or poor

understanding, the repetition of mistakes in a specific context suggests that there is a poorer

understanding with syntactical structure.

The greater number of concepts in a task, the more likelihood that the task is consequently more

difficult – however, based on the research findings, this cannot be concluded conclusively because

there was no deviation in the type of task presented to the participants. However, there is some

anecdotal evidence that would implicate this to be true from the findings of the tertiary study as one

participant, who chose to split strings for the data object, did seem to become overwhelmed and

needed a significant amount of time to think about how to split the date object whereas other

participants who chose to use a simply greater than operator to compare two integers did not

struggle as much. The aspect of time – how long it takes to complete a puzzle – does not correlate

strongly to the quality of the produced final solution. Sometimes, the participants who took longer to

place each puzzle did produce better solutions than those who took a shorter time, but sometimes,

this was reversed. Therefore, there is likely a subtle differentiation between participants who took

longer because they were carefully contemplating each movement, and participants who took longer

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 307

because they performed more moves. In the secondary study, for CP2, participants who performed

less shifting and grouping movements did produce better quality solutions than those who were

continually shifting their pieces. Shifting is also a sign that a participant is finding a particular part of

the puzzle difficult – this could be because the participant feels that the puzzle is ‘off’ and shifting

upwards of pieces indicates that participants were needing to check each piece to see if it makes

sense to them. The number of movements taken per piece for the pilot study was a strong indicator

of which pieces were causing issues for participants, and this is a more reliable metric than the length

of time the participant takes to complete the puzzle. Grouping appeared more commonly when

there were more pieces – which indicates that grouping movements should be seen as a sign of the

way the participant organises the meaning behind pieces based on the groups, they place the pieces

in. Grouping was not strongly correlated to better or worse final solutions, but it did show what

participants felt the meaning behind the pieces were prior to placing them into the solution (see

Table 25).

Strength of Indicator Potential indicator(s) observed over the three studies

Strong indicator of poor

understanding: ‘there is

a strong likelihood that

this NP has an issue

with this programming

concept’

- High number of mistakes performed on each piece relating to

same concept or part of the program (e.g., multiple ‘remove’

actions, multiple ‘back’ actions)

Weak indicator of poor

understanding: ‘there is

a weak likelihood that

this NP has an issue

with this programming

concept’

- High number of missing pieces in final solution relating to the

same concept (e.g., if all data types of were missing in the

entire class, then the student may have forgotten that data

types are needed OR may not understand them, especially if a

specific data type – say integer – is missing but other data types

are used)

- High number of ‘remove’ and/or ‘decide’ actions performed

regardless of if they are done to pieces related to the same

concept.

- NP falls silent when placing a piece of a different concept to

previous pieces where they were talkative (caution: this may

indicate a lack of confidence in explaining the piece, or, it may

be that the piece is so obvious to the NP that they do not feel

the need to explain it)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 308

- NP identifies incorrect concept(s) related to the piece using the

think-aloud procedure

- NP uses the incorrect technical terminology related to the piece

using the think-aloud procedure.

Neutral Indicator: ‘there

are instances where this

may or may not indicate

issues in the NP’

- NP takes a long time to complete the puzzle (e.g., if they are

making multiple back-and-forth decisions then there is a

chance that they are taking longer than someone who is finding

it easier to construct a solution, however some NPs who

produced good solutions ‘tested’ and took their time when

creating a solution so length of time to submit is not a strong

indicator either way).

- An NP’s level of confidence in their ability as a programmer (the

studies seemed to have fairly confident programmers, all of

whom produced drastically different solutions to the same

issue)

- Order the pieces have been placed

- Number of times the NP pauses or falls silent (the NP could be

thinking carefully, or they may be overwhelmed – it is difficult

for an observer to tell without context)

- An NP’s type of movement performed (except for ‘remove’,

‘back’ – ‘swap’ was arguably not observed enough to decide

upon, but in instances observed in pilot and secondary study

‘swap’ may just indicate that the NP has found a piece more

suited to the context of the task that they had not seen before,

however, multiple swapping of the same pieces back and forth

may indicate issues between the concepts behind the two

pieces – particularly if they are not related conceptually or

contextually for there to be confusion)

- Speed at which individual pieces are placed in the final solution

area related to the same concept (e.g., field-related pieces

were placed quickly, on average, across all three studies –

however decision-based pieces such as ‘if’ were placed slowly

and this was not seemingly due to a lack of understanding but

because more thought is required to place the piece)

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 309

Weak Indicator of

sound understanding:

‘there is a weak

likelihood that this NP

has no observable

issues with this

programming concept’

- NP identifies correct concept(s) related to the piece using the

think-aloud procedure

- NP uses the correct technical terminology using the think-aloud

procedure.

- NP uses little to no ‘remove’ or ‘back’ actions.

Strong indicator of

sound understanding:

‘there is a strong

likelihood that this NP

has no observable

issues with this

programming concept’

- The pieces related to a concept, when submitted in the final

solution, are in the correct place (bar one or two ‘mistakes’ that

could be easily forgotten such as braces)

Table 25: Indicators demonstrated in the results of the pilot, secondary and tertiary studies which imply lack of
understanding or show understanding compared to understanding of their approach to programming.

8.1.3 Proposal of a Cluster-based Puzzle

In light of the novel concept of the workspace discovered during the pilot and secondary studies, a

cluster-based puzzle where NPs are asked to group pieces together based on a programming concept

could be a potential avenue for future work. Cluster-based Code Puzzles could identify how

participants ‘identify’, or understand, the concepts behind puzzles by demonstrating to the observer

what pieces fit into what categories and how the NP relates those categories together. For example,

an NP would need to know about Java naming conventions to correctly distinguish between variable

names and object names in Java and could demonstrate this knowledge by placing the relevant

pieces into two separate groups. To enhance difficulty, there could also be variable names such as

‘double’ to see whether participants realise that naming a variable after an object is not good Java

naming conventions.

Cluster-based puzzles would also be easier to analyse using K-Means or another clustering algorithm

(e.g., GMM) than Parson’s Problems as the way a student groups pieces on the screen can be

analysed by proximity of pieces – or can include the recommendation of allowing the NPs to ‘label’

components either by putting them into area labelled the programming concept’s name, or by

allowing them to label individual pieces. On the basis of simplicity and reducing the mental load the

NPs have while interacting with cluster-based puzzles, it would be recommended to test them

placing the pieces under the ‘correct’ programming concept name. The factor of difficulty could be

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 310

increased by allowing them to generate the programming concept names themselves, or by allowing

programming concepts that are typically confused (e.g., primitive data types and data types) or

pieces that do not belong to either group to make the NP consciously evaluate which piece belongs

to what group and not allow the pieces to guide them as shown in the pilot and secondary studies.

Cluster-based puzzles in research regarding NPs has been limited based on the findings of a

systematic search – Hammoudeh (2016) proposed a fully automated solver for multiple square

jigsaw puzzles, which indicates that machine learnings are adapted to the coding equivalent of a

jigsaw puzzle. However, cluster-based puzzles will ask the NPs to put the puzzle pieces in the correct

area rather than in the order of the way they would be put into a class. The difficulty factor would

also be increased by the number of pieces available to the NP, and the number of groups available

on-screen. In support of the findings by Fabic et al. (2019) which demonstrated that Parson’s 2D

problems would work well on a mobile device using their tool PyKinetic if there is one area rather

than the final solution and randomised solution spaces, the cluster-based puzzle would also use a

single area but have the groups divided up (see Figure 193).

Figure 193: Proposed cluster-based code puzzle in light of the novel finding of the workspace

8.3 Chapter 8 Summary

This chapter presents and discusses the collective findings of the three research studies, alongside

highlighting the novel outputs that have been generated as a result of the research undertaken.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 311

Chapter 9: Limitations, Future Work and Concluding Thoughts

This research aimed to discern whether the level of understanding of NPs can be determined through

examination of their interactions with Code Puzzles. This thesis has presented the findings of three

interpretivist mixed-methods studies that indicate the use of Code Puzzles can reveal the NP’s

understanding of programming and, from the analysis of the quantitative and qualitative data

obtained from these studies, made proposals towards the design of a diagnostic toolkit, based on

Code Puzzles that can be used by teachers to gain insight into the levels of understanding of their

students.

The results indicate that Code Puzzles are an accurate way of determining understanding of NPs. The

symptoms of understanding (i.e., correct terminology used for the selected puzzle piece, confident

tone when speaking about the concept, quick labelling of the selected puzzle piece, and correct

identification of the place the piece would fit) are detectable in NP interactions with Code Puzzles.

Similarly, the symptoms of misunderstanding (i.e., incorrect terminology for the piece, incorrect

placement of the piece, and incorrect labelling of the selected puzzle piece) are detectable in NP

interactions with Code Puzzles. However, the time taken to complete the puzzle and the length of

time NPs spoke does not clearly correlate to their level of understanding. Nonetheless, participants

agreed that the accuracy of the expert’s analysis of their understanding was high – with a couple of

participants even going so far as to suggest that they had learned more about themselves from

completing the Code Puzzles. This account of high accuracy of diagnosis of understanding from the

participants of the second and tertiary studies could be attributed to authority bias as participants

may view the ‘expert’ as superior in nature to a novice, and therefore attribute more weight to their

analysis than is the actuality – however, prior to the studies, the NPs completed background

questionnaires which logged their approach and thoughts about programming which correlated to

their movements during the Code Puzzles themselves, and, NPs also suggested that the weaknesses

highlighted by the expert were genuine weaknesses in their dialogue with the expert during the

feedback sessions in the tertiary study. One participant suggested that the puzzles were not difficult

enough to capture their perceived issues, and this suggests that for more able students, a graded

level of difficulty and style of Code Puzzles is required.

The effectiveness of using Code Puzzles in a realistic classroom-based environment was not possible

to conduct, however, based on the 40-to-60-minute length of time required to allow participants

sufficient time to complete the puzzles, it is likely that paper-based Code Puzzles are not scalable to

large numbers of students in the format that we have used them. One way to resolve the issue of

scalability is to propose a software design that can be used by NPs in the classroom to help automate

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 312

the process of collecting the data obtained from Code Puzzles; this has proven to be a possibility, as

multiple researchers have used software versions of 2D Parson’s Problems to investigate cursor clicks

(e.g., Helminen et al., 2012) and Code Puzzles have become a popular education tool for teaching

programming in recent years (Ito et al., 2020). While unrealistic to obtain the requirements, design,

implement, test and deploy a system in the scope of one thesis, this thesis proposes an investigation

into how the findings can implicate best practice guidelines (i.e., incorporation of the workspace,

ways for students to record their thinking/thought processes about pieces – probably through text,

but if natural language processing could be used this may help to partially automate the process and

see whether students were referring to the correct terminology when discussing a piece). In our

findings, Code Puzzles were found to be an effective medium, or discussion point, to demonstrate

understanding of NPs and, consequently, future work could be conducted into using paper-based

Code Puzzles to examine the interactions between pair programmers and/or in a collaborative

learning environment to investigate whether NP understanding can be more efficiently obtained.

The NP’s dialogue accompanying the Code Puzzle movements was found to be important for

determining understanding, thus implying that positivist studies investigating Code Puzzles that use

pure quantitative data – such as, examining the number of cursor clicks, time taken to place pieces or

location of piece placements – may not obtain a full picture of an NP’s reasoning behind their

movements. NPs’ approaches were found to be similar – with participants typically starting from Line

0 and completing the class in chronological line order, thus examining the order in which pieces are

placed for 2D Parson’s Problems was rated low in terms of understanding the NP’s understanding.

Likewise, it is difficult from cursor clicks alone, to make inferences about the reasoning behind the

NP’s movements. We therefore hope to have convinced the reader to realise that it is important to

get the NP to verbalise or communicate their thinking for us to fully understand their reasoning or

conceptions about the puzzle pieces. For that reason, full automation is a non-trivial project but

given the advances in machine learning and text processing, may well be possible. In the meantime,

our toolkit design could be used with individual students to diagnose their level of understanding.

This thesis further argues that NPs are demonstrated to be a diverse group as there were a variety of

final solutions submitted despite the relatively small sample size. Future work could determine

whether similar findings are obtained while varying the type of NP recruited, for example, perhaps

specify that participants share the same: starting programming language, set of programming

languages, programming paradigm, age, gender, personality, and/or years of experience and vary the

Code Puzzles to be in a series of languages that were not necessarily their starting language. These

studies could also be repeated using EPs instead of NPs, to see whether the type, form and frequency

of communication differs and whether the level of accuracy is also as reportedly high as NPs. Ideally,

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 313

these studies would have exerted more control over the sample by incorporating Code Puzzles as an

optional part of the syllabus of a module for first-year undergraduate students, however, this was

not deemed ethical and therefore the baseline of the studies presumed that all first year CS

undergraduates at the same university would have been exposed to the same level of Java. That said,

even if the researcher had been allowed to integrate Code Puzzles as optional material it is difficult

to control the level of experience or programming exposure that NPs have prior to university.

Likewise, studies that could allow for the usage of examination results and data to help compare

Code Puzzle performance with written examination performance could be insightful.

Our evidence shows that with modification to their design, Code Puzzles are a useful diagnostic tool

for identifying the understanding, misunderstanding and lack of understanding in NPs and that

observing NP interactions and listening to NP reasoning illuminates NP’s perceptions and

assumptions regarding programming. The findings were in line with the study conducted by Ito et al.

(2020) and support the notion that code puzzles were a useful tool for diagnosing understanding and

rejects the notion suggested by Helminen et al. (2012) that the analysis of movements of 2D Parson’s

Problems are not sufficient to determine the understanding of the NPs.

9.1 Reflection on Research Aims

To analyse the success of the research, we must consider the aims (see Table 26).

Aim ID Aim Description

A-1 Discern an approach to identify and represent an NP’s level of understanding of
programming concepts and the computational thinking strategies they used.

A-2 Evaluate the accuracy of the level of understanding of an NP by comparing the
observer’s interpretation of the level of understanding to the perceptions of the NP’s
understanding of their understanding.

A-3 Determine the best practice for representing the level of understanding.

A-4 Compare whether learners of a similar level of understanding share characteristics in
the way they interact with Code Puzzles (learner interactions).

A-5 Discover whether a learner’s conceptions and misconceptions about a programming
concept can be identified purely on their learner interactions.

A-6 Discover whether a learner’s level of understanding about a programming concept can
be identified purely on their learner interactions.

A-7 Determine whether a learner’s perception of their own computational thinking
correlates to their actions and thought processes while interacting with Code Puzzle
pieces.

A-8 Determine if there is any correlation between the types of interactions performed and
the NPs’ level of understanding.

Table 26: Evaluating the Research Aims

“Discern[ing] an approach to identify and represent an NP’s level of understanding of programming

concepts and the computational thinking strategies they used (A-1)” was partially achieved through

identifying the characteristics in the NP’s interactions to solving the Code Puzzles – although the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 314

representation aspect of the level of understanding has been translated to the difficulties

encountered by NPs through the proposal of the advice in the diagnostic tool kit. Quantifying

understanding was shown to be problematic, partly due to the nature of paper-based Code Puzzles

but also because ‘incorrect’ submissions or movements did not correlate directly to a lack of

understanding, therefore, translating the movements of Code Puzzle pieces to increase or decrease

an arbitrary scale was not deemed to be an appropriate representation of the level of understanding

exhibited. Instead, listening to the NP’s dialogue on how they interpret a piece and whether that

type of piece has been used correctly elsewhere in the puzzle (or whether it is a repeated issue) are

greater indicators of the level of understanding of the NP. NP dialogue has not been obtained in past

research investigating whether understanding can be diagnosed from the cursor movements of 2D

Parson’s Problems (e.g., Helminen et al., 2012; and Ito et. al, 2020) and this approach of garnering

primarily quantitative data associated to the Code Puzzle piece’s movements is not enough to

accurately gauge the level of understanding of NPs. Likewise, the focus on past research to

determine whether pieces were swapped, removed, or added was also shown to be not a perfect

indicator as to their understanding from our findings – swapping pieces did not indicate that there

was an issue in the underpinning concepts of those pieces, more so, it indicated that the participant

either confused the pieces or that the pieces were interchangeable based on their perceived context

that the piece should be used in. Removing pieces did show that there is a likelihood that at least one

of the underpinning concepts behind the piece may have been misunderstood, but there were other

factors such as misunderstanding the problem context and using, say, the wrong variable name for a

specific method. The issue discovered with using 2D Parson’s Problems to identify and represent

understanding is that there is also the understanding of the problem’s context – as the process of 2D

Parson’s problems is linked to the construction of a working piece of code. While problem context

makes 2D Parson’s problems an authentic task, it means that getting the raw understanding of the

participant’s applied knowledge of programming constructs is lost to the noise of the participant’s

understanding of what the problem is asking them to do. We discovered that it is important that the

task description does not lead the participant into mimicking the terminology in the text, and that it

is also not so vaguely written that the task description becomes unclear. Therefore, the

representation of understanding obtained from participants using Code Puzzles is not inherently

perfect but does indicate whether the participants can construct a solution and talk through their

process and interpretation of individual segments of code to a tutor – which, if the expert listens out

for inconsistencies and looks for wrongly applied pieces of code, is a better indicator as to the NP’s

understanding than if the observer was entirely removed or fully automated. Realistically, tutors do

not have the student to tutor ratio to be able to sit with NPs individually and diagnose their

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 315

understanding, however, if this tool was used by a programming support officer to diagnose a CS

student who was struggling to explain what their issues were with programming it can be indicative

of their understanding and troubles to a relatively high degree of accuracy.

“Evaluat[ing] the accuracy of the level of understanding of an NP by comparing the observer’s

interpretation of the level of understanding to the perceptions of the NP’s understanding of their

understanding (A-2)” was achieved through methodology change of the secondary and tertiary

studies – where the observer gave recorded feedback to the participants either at the end of the

study (for secondary studies) or after the end of each puzzle (for tertiary studies) which, in turn, the

participants acknowledged whether they felt that the analysis was accurate or not. While it is true

that participants may have exhibited authority bias, as the observer was advertised as an expert in

the field of CS, these accuracy readings were taken from the post-study questionnaire where it was

emphasised that the participant should be honest about the dialogue they had with the observer and

whether they did believe it was a correct analysis. Participants did not artificially agree that using

Code Puzzles would be a good replacement for revision aids, likewise, some participants did ask for

the expert to explain concepts to them that they clarified they did not understand suggesting that

watching how NPs interact and discuss Code Puzzle pieces are effective ways to gaining an insight

into the NP’s understanding of programming and the problem context. The accuracy readings were in

line with the findings of Ito et. al (2020), who used surveys alongside the Code Puzzle cursor clicks to

clarify whether the findings of Random Forest Tree Selector analysis of cursor clicks match

participants’ understanding of programming constructs.

“Determin[ing] the best practice for representing the level of understanding (A-3)” was achieved

through the recommendation of a series of guidelines for the diagnostic toolkit and the proposal of

using a cluster-based puzzle template to better determine how participants relate programming

concepts together, as, the 2D Parson’s Problems focused the participants’ dialogue more so on the

approach to creating a solution rather than the participants’ thoughts about individual Code Puzzle

pieces.

The aim of “compar[ing] whether learners of a similar level of understanding share characteristics in

the way they interact with Code Puzzles (learner interactions). (A-4)” was achieved using Straussian

Grounded Theory to generate open codes for the participant’s dialogue, as, by grouping the dialogue

into axial codes we were able to discover the general themes that were being produced between

participants. This aim was also achieved through comparing the types of movements between

participants in the movement transcripts to notice similarities, and this research did observe that the

general process of constructing a class was similar between participants. The terminology that

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 316

participants used when talking about the pieces demonstrated similarities, and participants that

struggled with the same type of piece showed this through their movements and words.

A-1 was achieved through identifying characteristics in the NPs’ approaches to solving the Code

Puzzles, and through an appreciation of all of their characteristics combined, a representation of

their understanding of program concepts and computational thinking patterns could be achieved. A-

2 and A-5 was also achieved, as the accuracy of the level of understanding was purportedly high. A-3,

however, was ambiguous in retrospect – due to the limitations of the number of participants we

collected for each study we could not feasibly alter the study’s methodology to include variations

such as: programming language, puzzle type, puzzle task or puzzle content. Therefore the ‘best’

practice cannot be proven either way, this thesis only present data obtained from using paper-based

2D Parson’s problems in Java and only recruited participants from in their first year undergraduate CS

degree course. A-4 was also difficult to evaluate, as, it is true that participants did share

commonalities and characteristics – such as, for example, approaching the problem domain from a

structural programming perspective but unless we could perform a baseline examination on them it

is difficult to tell if, truly, they have the same perceptions and understandings of program concepts.

For A-4, with this in mind, if we take the idea that the majority of participants felt that the analysis of

their understanding was correct, we can determine that, based from the participants’ self-evaluation,

they at least support that A-4 is achieved as we did note participants making similar movements with

purportedly similar answers in their questionnaires after the puzzles. But, with a critical eye,

participants may have the same perceptions of the task but not necessarily the same perceptions of

the programming concepts themselves. A-6 is debatable; it is deemed that the ideal method of

extracting the level of understanding is through a mixture of both verbal and visual feedback to the

observer – therefore, this research argues that while you can get some form of representation about

obvious movements, such as grouping pieces together, it is unlikely you would receive as accurate a

representation as if you spoke to the NP. A-7 was somewhat supported by the data received from

the Code Puzzle studies – participants did document in the post-study survey that they felt the

approach had been accurately determined, that said, when comparing the approaches, they took to

the information they provided in the background questionnaire it became apparent that the

approaches did differ – primarily because Code Puzzle pieces are different to writing a program from

scratch. Aspects such as testing, or, writing their own variable names were reported by participants

as differing from the way they would construct a program if given the task naturally, therefore, it is

deemed by the researcher that participants felt it was accurate to the way they approach problems

but is not realistic to the way they code on a development environment. A-8 is the aim that was

proven untrue by the research; essentially the studies did determine that there could be general

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 317

correlations to specific movements – for example, an NP removing a piece from the Code Puzzle’s

final solution space usually indicates that they have made a mistake and may be a little less sure

about related program concepts – but, that these movements without context that the piece was

placed in were meaningless with the exception of grouping where the movements were distinct

enough that pieces that were closely clustered together could be artificially claimed to have

similarity. Overall, the aims of the research seem to have been met, apart from A-8.

9.2 Future Research

Code Puzzles are growing in popularity according to Harms et al. (2015) and education-based

gamification is a growing field of research according to Almadia et al. (2021) so there are plenty of

potential avenues for future research. To achieve data saturation when using Straussian Grounded

Theory with just 21 participants in total is difficult, so a simple future avenue is to repeat the

experiment with more participants to see if the results can be replicated or whether new information

can be gathered.

9.2.1 Task Description Modifications

 In the context of this research, both tasks were written in an almost step-by-step guide – stating

what the class was, what the fields were, what the constructor was in that order – and it would be

interesting to see how jumbling the order of the task information may affect NPs. There is also a

possibility of changing the way the task is presented to an NP – for example, NPs could be given a

higher-level task description, describing what the class needs to achieve inside a system, or maybe

even a UML diagram and told to implement the functionality. Some participants throughout the

course of the three studies suggested the way that the variables or methods were named was not

intuitive to them, so giving participants more flexibility to construct custom pieces could be a

potential route to take and to see whether just examining the custom pieces alone is enough to

determine their understanding of programming or whether more information is needed from them.

A participant in the tertiary study also suggested that the task was not authentic, and that they

would need access to the internet and their own development environment to properly construct a

solution – it would be ideal to conduct a study to provide a more solid baseline on how NPs would

construct a solution on a computer to the given tasks as the ‘model solution’ was written by an

‘expert’ so may not be what an NP would intuitively write.

If there were enough participants, the wording of the tasks could be altered so that there are

different versions of the same task to see which type of structure enables participants to complete

the puzzle more quickly. For example, the tasks in this research purposefully avoided using the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 318

technical terminology such as ‘constructor’, but this was suggested to confuse certain participants

who did not understand that a constructor was ‘a method that created an object’ – it would

therefore be interesting to see how the wording affects the participants but also the quality of the

observer’s assumptions of what the NP understands. It was unclear, for example, whether the

observer would have obtained the same information if the participants had not audibly read and

deduced what the task description meant.

If the task description was modified in such a way that it asked participants to initially choose the

variable, class and method names that they think related to the task based on the task description

this would allow for the observer to see how participants determine which pieces are relevant and

which ones are irrelevant to the task based on their interpretation of the task’s description. If pieces

that were alternatives for method names and variable names were arranged then participants could

choose the names they prefer before the observer removes the surplus names as it was found,

particularly with paper-based, that distractors meant that participants were spending more time

trying to find a specific piece because there were so many pieces laid out on the table – which wasn’t

an indicator for them not understanding something, it was simply because they were unable to find

the piece they were looking for.

Another alternative for modified the task description would be to give a very basic sentence of what

the class needs to do (i.e., “a potato shop class needs to have the functionality to sell potatoes for

£1.00”) and see if the NP can write a specification for what they think the class should have as

components. This modification, though, would need to be accompanied by either software that

allows them to generate custom code segments, or small whiteboard-based cards that the NP can

write on when they need to create a card, it would also take longer – it took approximately 50-60

minutes per participant with two tasks with pre-written cards.

9.2.2 Using Cluster-based Puzzles and the Potential for QUI

As suggested by this research, there appears to be value in examining how NPs group code segments

as it demonstrates how they relate pieces to programming concepts with more clarity than simply

observing how they place the pieces into functioning lines of code. Instead of using 2D Parson’s

Problems, it would be interesting to see how participants would engage with cluster-based puzzles

where the task is modified to specify that the participant needs to group the pieces into two or more

groups. The task could be modified so that there may be groups within groups allowed; for example,

maybe the task initially says to separate data types from names, but there might be two different

types of names – normal and final variable names – and different types of data types – such as

numerical and alphabetical and/or primitive data types. The task could also be modified to

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 319

intentionally make groups that can overlap; for example, if the task asked participants to place which

return statements would be potentially valid to use for two different method signatures into groups

there might be a return statement that could be potentially applicable to both methods that could go

between the groups.

One of the issues with cluster-based analysis is determining when a group ends and starts, and

whether this process could be automated. It would be interesting to see whether observers analysing

the same set of groups created by participants would get the same results and interpretations, and

this would be necessary for a more formalise procedure on how to interpret grouping of puzzle

pieces to be generated. Similarly, attempting to use K-means and GMM clustering algorithms on

clearer photo samples of grouping can help to clarify if automation of cluster-based puzzle analysis is

possible as the sample size from this research is too small to analyse in that way.

 It may be possible that the QUI metric could be refined and more easily incorporated with the

cluster-based versions of the puzzles. The QUI metric was a work in progress at the time of thesis

submission – it essentially wanted to extrapolate the information obtained from the movement log

and quantify the likelihood that a participant had an issue with a particular concept. QUI was

designed to use a sliding scale for each programming concept, and each relevant piece to that

programming concept would tip the scale based on user interactions. For every decide, remove,

back, incorrect missing piece in the final solution and incorrect add placement the scale would

decrease to show likelihood of an issue with the concepts related to the piece increasing. For every

correct add, the scale would shift upwards to indicate that there is a positive likelihood that the

student does understand the concepts related to the piece (see Figure 194).

Figure 194: The structure of the Quantitative Understanding Indicator (QUI) for each programming

concept.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 320

The scale would operate on a novel concept of ‘degree of certainty’ as the system could never rule

out, as per the findings of all studies, the intention of the movement even if it is incorrect. The length

of time to correct a mistake would help to attribute a weighting to the mistake – as, if there are

repeated mistakes that are rectified prior to solution submission, it could indicate that the

participant forgets such issues and may want to become aware of this. Consequently, from the

findings of the research the QUI metric was produced but unfortunately not tested.

There are disadvantages to the QUI even if it had been successfully implemented in time, and these

issues may arise within the future work potential of cluster-based puzzle analysis so are worth

discussing here. The problem with QUI is that it assumes a lot based purely on movements which, as

Helminen et al. (2012) and the findings of this study suggest, is a weakness. QUI does not consider

the context of how the piece is placed – for example, if a participant did not understand what a field

name represented or what a method was supposed to do it is possible that they could construct

something completely incorrect that QUI would assume is down to lack of understanding of the

associated programming concepts. As a result, the reasoning and context behind why a piece is

placed in the position is crucial to understanding what issues the participant may have. While QUI

was designed to consider that participants may make mistakes, and that the penalty for applying

multiple pieces related to the same concept incorrectly would scale to try to reduce the damage of

mistakes, this is not enough to be able to say with certainty that a quantitative metric can be applied

to assess understanding effectively. It is possible that QUI could work if contextual information was

considered, but how do you potentially account for all of the variations in interpretations of each

element of the task? Perhaps this is feasible for very small sections of code, but not for something as

big as a Java class. One of the issues with determining context, especially for CP2, was at what point

would a section start and end – for example, when a participant declares fields in a class, they may

jump to initialising the fields despite note creating the constructor’s signature yet – in this instance,

at what point does the automated metric know that the participant does understand the difference

between initialising and declaring a field? The answer is when the constructor’s signature is put in

the right place, but how can the metric tell the difference between a participant that has forgotten

what the constructor signature is (or forgotten that it is required) and a participant that has just

found pieces related to a field and wants to place all those pieces in the final solution so that they

know what to write in the constructor’s parameters? The answer to this could be that the metric

considers the amount of spacing between lines, but without the participants having a grid it may be

difficult to achieve this. Even in the studies shown in this thesis, participants had different

indentation and spacing styles – it would be interesting, though, to see whether QUI could be

incorporated with any degree of success if participants were given line numbers separated by lines

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 321

and that a short task was produced which had both programming concept weightings to pieces and

contextual-based information.

The formulae for QUI were envisioned to be influenced by the type of movements discovered in the

three studies: as remove, decide and back were stronger indicators than add and swap that there

may be uncertainties about the piece from the NP’s perspective.

Overall, there is a potential to explore the automation avenue, but this thesis argues that what the

NP is saying is more important than the specific moves.

9.2.3 Using Other Languages, Levels of Programmer and/or Parson’s Problem GUI Implications

The suggestion that more information may be obtained from a less restrictive version of the Parson’s

Problems GUI needs to be investigated to substantiate that claim; having a Parson’s problems

software interface with just one area rather than the traditional two areas may allow us to see

whether this is helpful for the electronic versions of Parson’s problems or whether this only occurs in

paper-based versions of the puzzle.

There is also a future avenue for investigating whether the grouping movement type is observed in

more experienced programmers, or whether using a higher-level language than Java (like Python,

which has more linguistical brevity than Java) would yield similar results.

9.3 Conclusion and Final Thoughts

This research hopes to contribute valuable ideas to researchers and practitioners in the field of CS

Education on the aspect of NP phenomenology. It is hoped that practitioners can find use in the

diagnostic toolkit and cluster-based puzzle design to obtain an accurate analysis of the understanding

of NP views and experiences, and that the concept of the workspace can shape future research into

the way NPs relate and link programming concepts and ideas together.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 322

Chapter 10: Bibliography and References

10.1 List of Bibliography

Allen, I.E., and Seaman, J. (2013). Changing course: ten years of tracking online education in the
United States. Sloan consortium. [Available from: http://eric.ed.gov/?id=ED541571] [Last Accessed:
2nd July 2020]

Almedia, C.; Kalinowski, M.; and Bruno, F. (2021). A Systematic Mapping of Negative Effects of
Gamification in Education/Learning Systems. Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). pp.17-24

Bandiera, O., Larcinese, V., and Rasul, I. (2010). Heterogeneous Class Size Effects: New Evidence from
a Panel of University Students. Economic Journal. 120, 549, pp.1365-1398

Bettinger, E. P., and Long, B. T. (2016). Mass Instruction or Higher Learning? The Impact of College
Class Size on Student Retention and Graduation. MIT Press Journals. Education Finance and Policy. 1-
36.

Brown, E., Brailsford, T., Fischer, T., Moore, A., and Ashman, H. (2006). Reappraising cognitive styles
in adaptive web applications. In Proceedings of the 15th international conference on World Wide
Web.

Burley, H. (2011). Cases of Institutional Research Systems. Information Science Reference.

Chaudhary, Vi., Agrawal, V., and Sureka, A. (2016). An Experimental Study on the Learning Outcome
of Teaching Elementary Level Children using Lego Mindstorms EV3 Robotics Education Kit. [online]
Available from: < http://arxiv.org/abs/1610.09610>

Chen, P. Y., and Popovich, P. M. (2002). Correlation: Parametric and Nonparametric Measures. Sage
University Papers Series on Quantitative Applications.

Chou, Y. (2019) Actionable Gamification: Beyond Points. Badges and Leaderboards

Flowers, T., Carver, C.A., and Jackson, J. (2004). Empowering students and building confidence in NPs
through Gauntlet. 34th Annual Frontiers in Education, 2004. Piscataway, NJ, USA. 13(1).

Guzdial, M. (2009). How we teach introductory CS is wrong. Blog at Communications of the ACM.
Trusted Insights for Computing’s Leading Professionals, URL http://cacm.acm.org/blogs/blog-
cacm/45725-how-we-teach-introductory-computer-science-is-wrong/fulltext.

Guzdial, M., and Robertson, J. (2010). Too much programming too soon?. Communications of the
ACM, 53(3), pp.10-11.

Ivanova, G., Kozov, V. and Zlatarov, P. (2019). Gamification in Software Engineering Education. 2nd
International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO).

Kinnunen, P., and Simon, B. (2012). Phenomenography and grounded theory as research methods in
computing education research field. CS Education. Elsevier B.V. 22, 2, 199-218.

Kinnunen, P. (2006) Why students drop out CS1 course?. Proceedings of the second international
workshop on Computer education research. ACM Digital Library.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development.
Englewood Cliffs, N.J.: Prentice-Hall.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 323

Kölling, M. (1999b). The problem of teaching object-oriented programming, Part 2: Environments.
Journal of Object-Oriented Programming, 11(9), 6-12.

Kölling, M., and Henriksen, P. (2005). Game programming in introductory courses with direct state
manipulation. ACM SIGCSE Bulletin. 37(3). Pp.59-63.

Lam, H. (2017). Using phenomenography to investigate the enacted object of learning in teaching
activities: the case of teaching Chinese characters in Hong Kong preschools. Scandinavian journal of
educational research. 61(2).

Marton, F. (1981). Phenomenography: Describing conceptions of the world around us. Instructional
Science. 10(1)., pp.177-200.

Marton F. (1986). Phenomenography: A research approach to investigating different understandings
of reality. Journal of Thought. 21(3). Pp.28-49.

Marton F. (1988). Phenomenography: Exploring different conceptions of reality. In D. M. Fetterman,
Qualitative approaches to evaluation in education: The silent science. Pp.176-205.

Nardelli, E. (2019). Do we really need computational thinking? Communications of the ACM.

Ortin, F.; Redondo, J. M.; and Quiroga, J. (2017). Design and evaluation of an alternative
programming paradigms course.

Winslow, L. E. (1996). Programming pedagogy – a psychological overview. SIGCSE Bulletin, 28(3).

10.2 List of References

Ahmed, A., Zeshan, F., Khan, M. S., Marrian, R., Ali, Amjad, and Samreen, A. (2020). The Impact of
Gamification on Learning Outcomes of CS Majors. ACM Transactions on Computing Education. 20(2).
pp.25.

Aiken, J. (2004). Technical and human perspective on pair programming. ACM SIGSOFT Software
Engineering Notes. 29(5). pp.1-14.

Alardawi, A. S. and Agil, A. M. (2015). Novice Comprehension of Object-Oriented OO Programs: An
Empirical Study.

Allinson, C. and Hayes, J. (1996). The cognitive styles index: A measure of intuition analysis for
organisational research. Journal of Management Studies. 33(1). pp.119-135.

Almujally, N., and Joy, M. (2020). Applying a Gamification Approach to Knowledge Management in
Higher Education Institutions. IEEE 44th Annual Computers, Software and Applications Conference
(COMPSAC). pp.455-459.

Alshammari, M. (2016). Adaption Based Learning Style and Knowledge Level in E-Learning Systems.
School of Computing Science. University of Birmingham. [Online] Available From:
<http://etheses.bham.ac.uk/6702/11/Alshammari16PhD.pdf> [Last Accessed: 2nd October 2016].

Aston University. (2020). BSc CS. [ONLINE] [Available from:
https://www.aston.ac.uk/study/courses/computer-science-bsc] [Last Accessed: 31st August 2020]

AQA. (2020). A-Level Problem Solving: Top-down design with stepwise design refinement. [online]
Available from: <https://en.wikibooks.org/wiki/A-
level_Computing/AQA/Problem_Solving,_Programming,_Data_Representation_and_Practical_Exerci
se/Problem_Solving/Top-down_design_and_Step-wise_refinement)>

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 324

Bayman, P.; Mayer, R. E.; andSchwartz, M. H. (1983). A Diagnosis of Beginning Programmers’
Misconceptions of BASIC Programming Statements. Communications of the ACM, September 1983)
26(9). pp.677-679.

Beaubouef, T. and Mason, J. (2005). Why the high attrition rate for CS students. ACM SIGCSE Bulletin.
37(2). pp. 103.

Becerra, C., Munoz, R., Noel, R., and Barria, M. (2016). Learning objects recommendation platform
based on learning styles for programming fundamentals. XI Latin American Conference on Learning
Objects and Technology (LACLO). Pp.1-6

Begel, A., and Nagappan, N. (2008). Pair programming: What’s in it for me?. In Proceedings of the
2nd ACM-IEEE international symposium on Empirical software engineering and measurement,
Madrid, Spain.

Benda, K., Bruckman, A., and Guzdial, M. (2012). When Life and Learning Do Not Fit: Challenges of
Workload and Communication in Introductory. CS Online. 12 (4), 1-38.

Bennedsen, J. and Caspersen, M. E. (2007). Failure Rates in introductory programming. ACM Digital
Library.

Bennedsen, J., and Caspersen, M. E. (2008). Optimists Have More Fun, but Do They Learn Better? On
the Influence of Emotional and Social Factors on Learning Introductory CS. CS Education: Routledge,
Taylor and Francis, Philadelphia, PA.

Bieri, J., Atkins, A. L., Briar, S., Leaman, R. B., Miller, H., and Tripodi, T. (1966). Clinical and Social
Judgement: The Discrimination of Behavioral Information. New York: Wiley.

Biggs, J. (1995). Assessing for learning: Some dimensions underlying new approaches to educational
assessment. The Alberta Journal of Educational Research. 41(1). pp1-17.

Biggs, J. B. and Collis, K. F.(1982). Evaluating the Quality of Learning. The SOLO Taxonomy. New York:
Academic Press.

Biggs, J. B. and Tang, C. (2011). Teaching for Quality Learning at University. (4th ed). Maidenhead:
McGraw Hill Education and Open University Press. [Adapted sample from CLEAR, CUHK]

Bork, A. M. (1972). Learning to Program for the Science Student. [online] Available from: <
https://eric.ed.gov/?id=ED060627>

Bosch, N., and D’Mello, D. (2017). The affective experience of novice computer programmers.
International journal of artificial intelligence in computing.

Bosse, Y, and Gerosa, M.A., (2017). Difficulties of Programming Learning from the Point of View of
Students and Instructors. IEEE Latin America Transactions IEEE Latin Am. Trans. 15(11). pp.2191-2199.

Bransford, J.D., Brown, A.L., and Cocking, R.R. (2000). How People Learn. National Academy Press,
Washington D.C.

Bryant, S. (2004). Double trouble: Mixing qualitative and quantitative methods in the study of
extreme programmers. In IEEE symposium on visual languages and human centric computing. Rome.

Bryant, S., Romero, P., and du Boulay, B. (2006). The collaborative nature of pair programming.

Carelli, O. M., M.; Serey, D. and Figueiredo, J. (2017). Learning styles in programming education: A
systematic mapping study. 017 IEEE Frontiers in Education Conference (FIE). Pp.1-7.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 325

Carmo, E. P. D., Klock, A. C. T., de Oliveira, E. H. T. and Gasparini, I. (2020). A study on the impact of
gamification on students’ behavior and performance through learning paths. IEEE 20th International
Conference of Advanced Learning Technologies (ICALT). pp.84-86.

Century, J., Ferris, K. A., and Zuo, H. (2020). Finding time for CS in the elementary school day: a quasi-
experimental study of a transdisciplinary problem-based learning approach. International Journal of
STEM Education. 7(1).

Channel 4 News. (2017). Which Universities Have the Highest first year dropout rates? [ONLINE]
Available from: <https://www.channel4.com/news/factcheck/which-universities-have-the-highest-
first-year-dropout-rates> [Last accessed: 22/05/2021]

Chaparro, E., A., Yuksel, A., Romero, P., and Bryant, S. (2005). Factors affecting the perceived
effectiveness of pair programming in higher education. In Proceedings of the 17th workshop of the
psychology of programming interest group.

Cockburn, A., and Williams, L., (2001). The costs and benefits of pair programming. Extreme
programming examined. pp.223-243.

Coffield, R., Moseley, D. Hall, E., Ecclestone, K. (2004). Learning styles and pedagogy in post-16
learning: A systematic and critical review.

Computer Weekly (2019). CS undergraduates most likely to drop out. [online] Available from:
<https://www.computerweekly.com/>

Cropley, A. J. (1967). Creativity: A New Kind of Intellect?. SAGE Journals. London.

Correia, A.L., da Costa, D., Barbosa, A. and Costa, E. (2015). Uso de avaliação por pares em disciplinas
introdutórias de programação. Workshop sobre Educação em Computação. pp.1–10.

DeClue, T. H. (2003). Pair programming and pair trading: Effects on learning and motivation in a CS2
course. Journal of Computing Sciences in Colleges. 49-56.

de Raadt, M. (2008). Teaching programming strategies explicitly to NPs. (Doctoral dissertation),
University of Southern Queensland.

Denny, P., Luxton-Reilly A., and Simon B. (2008). Evaluating a new exam question: Parsons Problems.
University of Auckland: New Zealand.

Desmedt, E. and Valke, M. (2004). Mapping the learning styles “jungle”: An overview of the literature
based on citation analysis. Educational psychology: Taylor and Francis. 24(4)

Deterding, S.; Dixon, D.; Khaled, R. and Nacke, L. (2011). From game design elements to gamefulness:
Defining “gamification”. Proceedings of the 15th International Academic MindTrek Conference. pp.9-
15.

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing
Research, 2(1), pp.57-73.

Eckerdal, A., and Berglund, A. (2005). What does it take to learn ‘programming thinking’?. ICER 2005.
ACM Press. pp.135-142.

Ehlert, A. and Schlute, C. (2009). Empirical Comparison of Objects-First and Objects-Later.
Proceedings of the 5th International Workshop ICER 2009.

Elbardan, H. and Kholeif, A. O. R. (2017). An Interpretive Approach for Data Collection and Analysis.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 326

Fabic, G. V. F.; Mitrovic, A.; and Neshatian, K. (2019). Evaluation of Parsons Problems with Menu-
Based Self-Explanation Prompts in a Mobile Python Tutor. International Journal of Artificial
Intelligence in Education. Springer.

Felder, R. M. (1993). Reaching the Second Tier: Learning and Teaching Styles in College Science
Education. Journal of College Science Teaching. 23(5). pp.286-290

Felder, R. M., and Silverman, L. K. (1988). Learning and teaching styles in engineering education.
Engineering education. 78(1). pp. 674-681.

Felder, R. M., and Spurlin, J. (2005). Reliability and Validity of the Index of Learning Styles: A Meta-
Analysis. International Journal of Engineering Education. 21(1). pp.103-112.

Flor, N., V. and Hutchins, E., L., (1991). A Case Study of Team Programming During Perfective
Software Maintenance. In Proceedings of the fourth annual workshop on empirical studies of
programmers. Norwood, NJ.

Garner, S., Haden, P., and Robins, A. (2005). My program is correct but it doesn’t run: A preliminary
investigation of NPs’ problems. Conferences in Research and Practice in Information Technology
Series. 42(1), pp.173–180.

Giannakos, M. N., Pappas, I. O., Jaccheri, L., and Sampson, D. G. (2017). Understanding student
retention in CS education: The role of environment, gains, barriers and usefulness. Education and
Information Technologies. 22(5). Pp.2365-2382.

Glaser, B. (1992) Basics of grounded theory analysis. Mill Valley, CA: Sociology Press.

Glaser, B. and Strauss, A. (1967). The discovery of grounded theory: Strategies for Qualitative
Research. Chicago.

Grasha, A. F. (1972). Observations on relating teaching goals to student response styles and
classroom methods. American Psychological Journal.

Griffiths, M. (2014). The guilty secret of the digital skills gap in UK. New Statesman: Salford Business
School. 143(5227). p.20.

Guardian. (2020). Digital Divide ‘isolates and endangers’ millions of the UK’s poorest in the world. The
Guardian Newspaper: UK. [online] <Available from:
https://www.theguardian.com/world/2020/apr/28/digital-divide-isolates-and-endangers-millions-of-
uk-poorest > [Last accessed: 19th July 2020]

Guzdial, M., Ericson, B. and Biggers, M. (2005). A model for improving secondary CS education.
SIGCSE.

Hammedi, W., Leclercq, T., Poncin, I., and Alkire, L. (2021). Uncovering the dark side of gamification
at work: Impacts on engagement and well-being. Journal of Business Research. 1(12). pp. 256-269.

Hanks, B. (2006). Student attitudes toward pair programming. In Proceedings of the 11th annual
conference on innovation and technology in CS education. ACM.

Harms, K. J., Balzuweit, E., Chen, J., and Kelleher, C. (2016). Learning programming from tutorials and
code puzzles: Children's perceptions of value. Visual Languages and Human-Centric Computing
(VL/HCC), 2016 IEEE Symposium. pp.59-67.

Harms, K. J., Rowlett, N. and Kelleher, C. (2015). Enabling independent learning of programming
concepts through programming completion puzzles. in Visual Languages and Human-Centric
Computing (VL/HCC), 2015 IEEE Symposium on. 271–279.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 327

HESA. (2020). Non-continuation: UK Performance Indicators 2018/19. HESA website. [online]
Available from: <https://www.hesa.ac.uk/data-and-analysis/performance-indicators/non-
continuation-1819>

Helminen, J., Ihantola, P., Karavirta, V., and Malmi, L., (2012). How Do Students Solve Parsons
Programming Problems? – An Analysis of Ineraction Traces. In Proceedings of the International
Computing Education Research Conference (Aukland, New Zealand2012), ACM. pp.119-126.

Hour of Code. (2020). Hour of Code. [Online]. Available: https://code.org/

Hnin, W. Y. (2017). Personalized learning pathways using code puzzles for NPs. 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC). pp. 327-328.

Hu, S. and Kuh, G. D. (2000). A multilevel analysis on student learning in colleges and universities.
Association of Study for Higher Education. ERIC.

Hu, S. and Kuh, G. D. (2002). Being (Dis)Engaged in Educational Purposefully Activities: The Influences
of Student and Institutional Characteristics. Research in Higher Education. 43(5).

Hu, M. (2015). Teaching Novices Programming: A Programming Process Using Goals and Plans with a
Visual Programming Environment. University of Otago, Dunedin, New Zealand.

Hulkko, H.; and Abrahamsson, P., (2005). A multiple case study on the impact of pair programming on
product quality. In Proceedings of the 27th international conference on software engineering. ACM.

Hsu, C., and Wang, T. (2014). Enhancing concept comprehension in a web-based course using a
framework integrating the learning cycle with variation theory. Asia Pacific Education Review.
Netherlands: Springer. 15, 2, 211-222.

Ihantola, P. and Karavirta, V. (2011). Two-Dimensional Parson’s Puzzles: The Concept, Tools, and First
Observations. Journal of Information Technology Education 10, pp.1-14.

Ito, H., Shimakawa, H., and Harada, F. (2020). Comprehension analysis considering programming
thinking ability using code puzzles. 15th Conference on Computer Science and Information Systems
(FedCSIS). pp609-618.

Janpla, S. and Piriyasurawong, P. (2018). The Development of Problem-Based Learning and Concept
Mapping Using a Block-Based Programming Model to Enhance the Programming Competency of
Undergraduate Students in CS.. TEM Journal. 7(4), pp.708-716.

Kaila, E., Rajala, T., Laakso, M.J. and Salakoski, T. (2008). Automatic Assessment of Program
Visualization Exercises. Appeared in the 8th Koli Calling International Conference Proceedings.

Kauffmann, C.; Mense, A.; Wahl, H.; and Pucher, R. (2011). Reducing the drop-out rate of a technical
orientated course by introducing Problem based learning – a first concept.

Kavitha, R., and Ahmed, M. I. (2015). Knowledge sharing through pair programming in learning
environments: An empirical study. Education and Information Technologies. pp.319-333.

Khazaei, B. and Jackson, M. (2002). Is there any difference in novice comprehension of a small
program written in the event-driven and object-orientated styles?. Proceedings IEEE 2002: Symposia
on Human Centric Computing Languages and Environments. CA:USA. pp.19-26

Kölling, M. (1999a). The problem of teaching object-oriented programming, Part 1: Languages.
Journal of Object-Oriented Programming, 11(8), 8-15.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The BlueJ system and its pedagogy. CS
Education. 13(4). pp.249-268.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 328

Lahtinen, E.; Ala-Mutka, K.; and Järvinen, E. (2005). A study of the difficulties of NPs. ITiCSE '05:
Proceedings of the 10th annual SIGCSE conference on Innovation and technology in CS education.
37(3). pp.14–18.

Lane, C. H. (2012). Cognitive Models of Learning. Encyclopaedia of the Sciences of Learning. Springer
Link.

Leong, F. H. (2015). Automatic detection of frustration of NPs from contextual and keystroke logs.
10th International Conference on CS.

Lister, R. (2004). A multi-national study of reading and tracing skills in NPs. ACM SIGCSE.

Lister, R.; Simon, B.; Thompson, E.; Whalley J. L.; and Prasad, C. (2006). Not seeing the forest of trees:
NPs and SOLO Taxonomy. SIGCSE. ACM Digital Libraries. 38(2). pp.118-122.

Looking Glass. (2020). Looking Glass. [Online]. Available from: <http://lookingglass.wustl.edu/>

Luciana-Floriana, H., Madalina-Ionela, I., Madalina-Lavinia, T., Illeana, V., and Georgiana-Geanina, B.
(2020). Students’ Difficulties Into Understanding First-Year Subjects: A Premise For University Drop-
Out. Case Study: The Bucharest University of Economic Studies, The Faculty of Business and Tourism.
Editura ASE Bucuresti. 2(2). pp.14-27.

McDowell, C., Hanks, B., and Werner, L., (2003). Experimenting with pair programming in the
classroom. ACM SIGCSE Bulletin. pp.60-64.

Marton, F., and Tsui, A. B. M. (2004). Classroom Discourse and the Space of Learning. Mahwah, New
Jersey: Lawrence Erlbaum Associates.

McDonald, C. (2016). Digital skills gap costs UK economy £63bn a year. Computer Weekly [online]
<Available from: https://www.computerweekly.com/news/450298249/Digital-skills-gap-costs-UK-
economy-63bn-a-year > [Last accessed: 17th July 2020]

Mosemann, R. and Wiedenbeck, S. (2001). Navigation and comprehension of programs by NPs.
Proceedings 9th International Workshop on Program Comprehension. IEEE Conference. CA: USA.
pp.79-88.

Oktay, J. S. (2012). Grounded Theory. Oxford University Press: Oxford.

Parson, D. and Haden, P. (2006). Parsons programming puzzles: a fun and effective learning tool for
first programming courses. In Proceedings of the 8th Australasian Conference on Computing
Education. pp.157-163.

Pellini, A. (2020). Education during the COVID-19 Crisis: Low Income Countries. EdTechHub. [online]
Available from: < https://edtechhub.org/coronavirus/edtech-low-income-countries/>

Pérez-Álvarez, M. (2017). The Four Causes of ADHD: Aristotle in the Classroom. Frontiers in
Psychology. 1(8).

Pitta-Pantazi, D., Christou, C., and Zachariades, T. (2007). Secondary school students’ levels of
understanding in computing exponents. Journal of Mathematical Behavior. 26. pp. 301-311.

Porter, L., Guzdial, M., McDowell, C., and Simon, B. (2013). Success in introductory programming.
Communications of the ACM. pp.34-36.

Ragonis, N., and Ben-Ari, M. (2005). On understanding the statics and dynamics of object-oriented
programs. ACM SIGCSE Bulletin, 37, 226-230.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 329

Sanders, D. (2002). Student perceptions of the suitability of extreme and pair programming. Extreme
programming perspectives. pp.168-174.

Santos, A. and Gorgônio, A. (2015). A Importância do Fator Motivacional no Processo Ensino-
Aprendizagem de Algoritmos e Lógica de Programação para Alunos Repetentes. WEI – Workshop
sobre Educação em Computação. pp.1–10.

Sawicki, M. (2013). Body, Text and Science: The Literacy of Investigative Practices and the
Phenomenology of Edith Stein. Springer. ISBN 978-9401139793

Scardamalia, M. and Bereiter, C. (2006). Knowledge Building Theory, Pedagogy, and Technology.
Cambridge Handbook of Learning Sciences. pp. 97-118.

Schutz, A. (1967). The Phenomenology of the social world. Evanston: North-western University Press.

Scott, W. G. (1963). Communication and Centralisation of Organisation. Journal of Communication.
Wiley Online Library.

Scott, A. (2010). Using Flowcharts, Code and Animation for Improved Comprehension and Ability in
Novice Programming. University of South Wales: UK.

Scratch. (2020). Scratch. [Online]. Available from: <https://scratch.mit.edu/>

Seaborn, K. (2021). Removing Gamification: A Research Agenda. CHI EA 2021.

Shadbolt, N. (2016). Shadbolt Review of CSs Degree Accreditation and Graduate Employability. UK
Government. [Online]. Available from: <
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file
/518575/ind-16-5-shadbolt-review-computer-science-graduate-employability.pdf >

Shaffer, D.W., and Resnick, M. (1999). "Thick" Authenticity: New Media and Authentic Learning.
Journal of Interactive Learning Research. 10(2). Pp.195-215.

Sharp, H., and Robinson, H. (2010). Three ‘C’s of agile practice: Collaboration, co-ordination and
communication. Agile Software Development. Berlin: Springer.

Shee, D. Y. and Wang, Y. S. (2008). Multi-criteria evaluation of the web-based e-learning system: A
methodology based on learner satisfaction and its application. ACM Digital Libraries.

Sleeman, D. (1986). The challenges of teaching computer programming. Communications of the
ACM, New York, USA. 29(9), 840-841.

Smith, J. (2016). On the Soul, by Aristotle written circa 350BCE. The Internet Classics Archive. MIT.

Soanes, C. and Stevenson, A. (2005). Oxford Dictionary of English (Revised Edition). Oxford University
Press. England: Oxford. ISBN 0-19-861057-2.

Soloway, E. and Spohrer, J. (1989) Studying the NP. Lawrence Erlbaum Associates, Hillsdale, New
Jersey.

Sprenger, M. (2003). Differentiation through learning style and memory. SAGE Publications.

Stapel, K., Knauss, E., Schneider, K., and Becker, M. (2010). Towards understanding communication
structure in pair programming. Agile processes in software engineering and extreme programming.
pp.117-131.

Strauss, A. and Corbin, J. (1994). Grounded Theory Methodology: An Overview. (1st ed) Handbook of
Qualitative Research. pp.273-284

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 330

Sweller, J., van Merriënboer, J. J., and Paas, F. G. (1998). Cognitive architecture and instructional
design. Educational Psychology Review. 10(3), 251-296.

Thompson, E. (2008). How do they understand? Practitioner perceptions of an object-oriented
program. Massey University, Palmerston North, New Zealand.

Thompson, E., Luxton-Reilly, A., Whalley, J. L., Hu, M., and Robbins, P. (2008). Bloom's taxonomy for
CS assessment. Proceedings of the Tenth Conference on Australasian Computing Education. pp.155-
161.

Thornberg, R. and Charmaz, K. (2012). Grounded Theory. John Wiley: San Francisco, CA. pp.41-67

Utting, I. Tew, A. E., McCracken, M., Thomas, L. Bouvier, D., Fry, R., Paterson, J., Casperen, M.
Kolikant, Y. B.D., Sorva, J. and Wilusz, T. (2013). A fresh look at NPs’ performance and their Teachers’
Expectations. University of Kent.

Vahldick, A., Mendes, A. Marcelino, M. J., Hogenn, M. J., and Schoeffel, P. (2015). Testando a
Diversão em um Jogo Sério para o Aprendizado. Introdutório de Programação. XXIII Workshop sobre
Educação em Computação.

Van Maanen, J. (1988). Tales of the Field: On Writing Ethnography. (2nd ed). Chicago: University of
Chicago Press.

Voit, T., Schneider, A., and Kriegbaum, M. (2020). Towards an Empirically Based Gamification Pattern
Language using Machine Learning Techniques. IEEE 32nd Conference on Software Engineering
Education and Training (CSEEandT). pp.1-4.

Walters, R. (2018). Solving the United Kingdom technology skill gap. Available online: <
https://www.robertwalters.co.uk/solving-the-uk-skills-shortage/technology-research.html>

Warr, P. B., Bird, M. W. and Rackham, N. (1970). Evaluation of Management Training: A Practical
Framework, with Cases, for Evaluation Training Needs and Results. Gower Press: London.

Wiedenbeck, S.; Fix, V.; and Schlotz, J. (1993). Characteristics of the mental representations of novice
and expert programmers: an empirical study. International Journal of Man-Machine Studies. 39(5).
pp.793-812

Wiedenbeck, S.; Ramalingam, V.; Sarasama, S. and Corritore, C. (1999). A comparison of the
comprehension of object orientated and procedural programs by NPs. University of Nebraska: USA.
Elsevier.

Williams, L., Kessler, R., Cunningham, W., and Jeffries, R. (2000). Strengthening the case for pair
programming. IEEE Software, 17, 19–25. doi:10.1109/52.854064

Williams, L., and Kessler, R., (2000). All I really need to know about pair programming I learned in
kindergarten. Communications of the ACM. pp.108-114.

Williams, L. and Kessler, R. (2002). Pair programming illuminated. MA: Addison-Wesley.

Young, J. (1996). The Coherence Theory of Truth. Stanford University.

Zahavi, D. (2003). Husserl’s Phenomenology. Stanford: Stanford University Press.

Záhorec, J., Hašková, A., and Munk, M. (2020). Results of a Research Evaluating Quality of CS
Education. Informatics in Education. 11(2). pp.283-300. [Online: Available from:
https://eric.ed.gov/contentdelivery/servlet/ERICServlet?accno=EJ1064274]

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 331

Zhang, Y., Dou, Y., Meng, X., Lai, Y., Lu, Y. and Wang, X. (2020). Gamification of LR Algorithm:
Engaging Students by Playing in Compiler Principle Course. 15th International Conference on CS and
Education (ICCSE). pp.396-400.

Zarb, M. and Hughes, J. (2015). Breaking the communication barrier: guidelines to aid communication
within pair programming. CS education. Taylor and Francis. 25(2). pp.120-151.

Chapter 11. Appendices

The appendices contain relevant documents associated to the thesis, but not the raw data itself.
Permission to access all the individual coded transcripts and data can be granted upon request.

11.1 Study Supplements

This section contains the supplements provided for all three studies.

11.1.1 CP1: Task Description

“Task 1:

Although this may seem a little strange, imagine that a shop that sells potatoes has contacted you as
a developer and has requested you to set up a Java program that can simulate and effectively record
the sales on their potato stock. For the first task, you should arrange the necessary puzzle pieces
below to create a PotatoShop class!

A PotatoShop object needs to keep track of its: price for the potatoes, number of potatoes sold over
the lifetime of the program, and the number of potatoes remaining in store that can be sold (you
can’t sell potatoes to customers if you don’t have them!); the number of potatoes remaining in the
store and the price of a potato are provided to the potato shop object when it is created.

This version of the PotatoShop class should have:

• A method that creates a potato object, setting up the corresponding number of potatoes
sold, price of a potato and remaining potato values when called (in other words, initialises
the instance of potato)

• A ‘sellPotatoes’ method which should check whether there are enough potatoes in the store
to sell prior to selling the potatoes – if there are not enough potatoes to sell a null pointer
exception should be triggered. If there are enough potatoes to sell then the calculated price
of the sale should be returned.

• A ‘calculateSale’ method which should use the number of potatoes and calculate what the
corresponding cost would be for that particular sale.

Remember to explain your movements to the observer as you do them”.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 332

11.1.2 CP1 and 2 Displays for Tertiary Study Only

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 333

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 334

11.1.3 CP2: Task Description

“Task 2:

Create a Potato class using the necessary puzzle pieces below! Remember to explain your
movements to the observer as you do them.

A Potato object needs to keep track of its own weight and expiry date; these values are provided to
the potato object when it is created.

This version of the Potato class should have a method that creates a potato object, setting up the
corresponding weight and expiry date values when called (in other words, initialises the instance of
potato), and an ‘isFresh’ method which should check whether the potato is spoiled using the current
date (provided externally for the method) and expiry date provided by the potato object itself. The
‘isFresh’ method should return a true or false value depending on whether the potato is in date
(fresh) or out of date (spoiled).

As reference, the Java.util.Date library is being used to create Date-typed variable(s). The following
library method, described by Oracle (2017), has been used in the solution to this puzzle:

after
public boolean after(Date when)

Tests if this date is after the specified date.

Parameters:
when – a date.

Returns:
true if and only if the instant represented by this Date object is strictly later than the instant
represented by when; false otherwise.

Throws:
NullPointerException – if when is null.

Oracle. (2017). Class Date. [online] Available From: <
https://docs.oracle.com/javase/8/docs/api/java/util/Date.html#after-java.util.Date-> [Last
Accessed: 4th April 2017]

”

11.1.4 Blackboard Announcements

These were used to advertise the study to potential students.

11.1.4.1 Pilot and Secondary Study Announcement

"[Announcement Title:] Wanted – First Year Computing Students to Participate in Code Puzzle
Research"

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 335

"[Announcement Body:]

Dear all,

A pilot investigation is being conducted over the coming year into the effectiveness of a prototype
research algorithm that is being used to try to estimate your level of understanding about
Computing-related concepts based on how you move puzzle pieces that are related to Java code. It
would be extremely helpful if there were volunteers who would not mind offering their time for: a 10
minute signing of consent form, and a 30 minute recorded and observed experiment based on
arrange puzzle pieces with Java coding on them to form a solution.

Prior to the experiment, you would need to be willing to meet me for a minimum of 10 minutes to
sign a consent form in regards to data protection and your rights to the information produced from
the study as well as being allocated an anonymous ID number (AIN). Your lecturers will not be
informed about whether or not you participate in the study, nor will they be informed about the
results of specific students, nor will this experiment impact your grade in any way. I will clarify, your
name will not be kept next to your data (only you will have access to the mapping between your
name and AIN). If you choose to provide your e-mail, you may also be invited to a follow-up session
where the results of the experiment are discussed with you. This follow-up session will vary in terms
of length, and will depend largely on the results yielded from the system as well as any discussion on
the accuracy of these results. You must bring your AIN to the follow-up session as I will not hold
mapping to your name.

This experiment would be particularly beneficial for students as the goal of the system is to try to
highlight areas of understanding in regards to Object-orientated design. I would like to emphasize
that this can be advantageous for a whole range of abilities, and would encourage all students to
consider participating.

Feel free to contact me ([REDACTED]) if you would are potentially interested in participating in the
study, or, if you have any questions or require further information about the study.

Kind regards,

Katrina Jones

(Aston University Computing Education PhD Student)"

11.1.4.2 Tertiary Study Announcement

[Announcement Title:] “Wanted – First Year Computing Students to Participate in Code Puzzle
Research”

[Announcement Body:] “Hi,

Do you fancy a revision opportunity where you will get to interact with Java in a novel way? Do you
like solving puzzles and want to brush up on basic Java concepts? Or do you simply not know where
you would start if someone asked you to complete a Java class and feel that having an experienced
Java programmer talk to you about your understanding would be greatly appreciated?

My name is Katrina Jones and I am a PhD student here at Aston University. As part of my PhD studies,
I am conducting an investigation into the effectiveness of a decision tree algorithm that I would like
to use to try to estimate students’ level of understanding about computing-related concepts so that
we can find more effective ways to teach programming to students such as yourself.

In order to collect data for my investigation, I like to invite you to complete a series of online Java
code puzzles. I will record how you move the puzzle pieces and your reasoning for moving them the

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 336

way you do in order to arrive at a working Java class. From this, I hope to identify your understanding
of the code, syntax, and computational concepts. Due to the current COVID-19 restrictions, this study
is being conducted via Blackboard Collaborate Ultra accessed via your Java Programming
Foundations module. Participation would take approximately 1 hour of your time. Following the
study session itself, I will provide you with some feedback on your coding approaches/strategy that I
hope will be helpful for you as you revise for your assessments.

Your lecturers will not be informed about whether or not you participate in the study, nor will they
be informed about the performance of specific students. Recorded data will be coded and thus
anonymised so that you will not be identifiable from the retained data.

If you are potentially interested in participating, please contact me ([REDACTED]). I will send you
further details regarding your potential participation and be able to answer any questions you might
have. I will e-mail you a consent form and participant information sheet so that you can make an
informed decision as to whether you’d ultimately like to participate: your participation should be
entirely voluntary.

Kind regards,

Katrina Jones

Aston University Computing Education PhD Student”

11.1.5 Questionnaires

11.1.5.1 Pre-Puzzle Questionnaire (Secondary and Tertiary Study Only)

Pre-CP2 Questionnaire

Puzzle ID: [Enter here]

Participant: [Enter here]

YOUR EXPERIENCE

Please indicate with a tick which statement(s) you agree with the most in regards to the puzzle you
have just done:

 Statement Puzzle (tick)

1. How difficult do
you think this task
will be?

Very easy

Fairly easy

Slightly easy

Neither easy nor difficult

Slightly difficult

Fairly difficult

Very difficult

What do you think will be the easiest part of this task (and why do you think this)?

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 337

What do you think will be the hardest part of this task (and why do you think this)?

11.1.5.2 Post-Puzzle Questionnaire

Puzzle ID: [Enter here]

Participant: [Enter here]

YOUR EXPERIENCE (after the task was performed)

Please indicate with a tick which statement(s) you agree with the most in regards to the puzzle you
have just done:

 Statement Puzzle (tick)

2. Do you think your
solution would run
without errors?

Yes, I think I have a fully working, correct solution.

Maybe, I think I have most of it correct. Maybe I have
some details wrong, though?

No, I think some of the code is in the right order but
some of it is not.

No, I think I have the majority of the solution wrong and
I imagine it’d create errors at run time.

I’m not sure, it might compile or it might not.

Any further comments on your solution?

 Statement Puzzle (tick)

3. How challenging
was the puzzle for
you?

Very easy; I didn’t struggle at all.

Fairly easy; I almost saw the solution straight away.

Slightly easy; I could see how to solve it with some
thought.

Neither easy nor difficult; I think it was just right for me.

Slightly difficult; It took me a while to figure out a
solution.

Fairly difficult; it took a long time for me to see any kind
of solution.

Very difficult; I really struggled to find a solution.

Any further comments on the level of difficulty of this puzzle?

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 338

11.1.5.3 Post Study Questionnaire (Secondary and Tertiary Study Only)

Post-Experiment Questionnaire

Participant: [Enter here]

YOUR EXPERIENCE

Please indicate which statement(s) you agree with in regards to the study you have just partaken in:

Do you believe the Code Puzzles would be of use to you? Yes/No

Do you prefer Code Puzzles over other revision techniques? Yes/No

Would you use Code Puzzles in conjunction with other revision
techniques?

Yes/No

Do you feel that the study accurately portrayed your approach? Why do you feel this way?

Do you think the analysis did reflect on your understanding or were the findings inaccurate?
(Please be honest).

11.1.5.4 Background Questionnaire (Secondary and Tertiary Study Only)

Participant ID: [Enter here]

YOUR EXPERIENCE

Please indicate with a tick which statement(s) you agree with the most in regards to your past
experience with programming:

 Statement Mark with an
‘X’

1. How confident are
you in your ability as
a programmer?

Very confident

Fairly confident

Slightly confident

Neutral

Slightly unconfident

Fairly unconfident

Very unconfident

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 339

How many programming languages would you
say you are fluent in?

How many programming languages would you
say you are proficient in?

How many programming languages would you
say you are a beginner in?

Please list the languages you are proficient or fluent in:

What qualities does a programmer require (in your opinion)?

Which qualities of a programmer do you feel you have?

Which qualities of a programmer do you feel you need to improve on?

What is the most important aspect of understanding programming (in your experience)?

Can you describe the steps you take to solve a programming task?

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 340

11.1.6 Consent Forms and Participant Information Sheet

11.1.6.1 Pilot Study Consent Form and Participant Information Sheet

INFORMED CONSENT STATEMENT

You are formally invited to participate in study which aims to assess the accuracy and effectiveness
of analysing puzzle-based interactions for estimating a learner’s level of understanding about a
puzzle’s core topic.

EXPERIMENT INFORMATION

To help us we will ask you to participate in a 15 to 30 minute test session where we will ask you to
arrange Java code puzzle pieces into a working solution while explaining your movements and
reasoning to the observer as you do so. If you complete a puzzle, you will be asked if you would like
to complete another if there is enough time remaining and another puzzle is available to be
completed during the session. Your speech, movement time, and type of interaction will be recorded
both using a recorder and by the observer themselves. The information retrieved from your session
will be then analysed using a custom algorithm and we will use your speech in an attempt to
estimate the accuracy of the algorithm result. Your information will be grouped with information
from other participants to help us assess the accuracy and effectiveness of the algorithm created by
us.

FOLLOW-UP FEEDBACK INFORMATION

If you choose to provide an e-mail address, once the information gathered from the research has
been processed, we will contact you to try and arrange a final meeting that is convenient for you
where we will provide feedback based on our algorithm. This will be very beneficial for us as we may
gain a better idea of the accuracy of our algorithm’s result based on your feedback, and it may be
beneficial to yourself for a reflection on your strengths and weaknesses when dealing with object-
orientated programming. Please note that our study is aiming to assess the accuracy of this
algorithm, so, do not be afraid to say that our algorithm is correct or incorrect. We ask you to be
honest!

YOUR RIGHTS

This section reminds you of your rights as a participant, please read through this carefully as we
regard your signature as an agreement and acknowledgement of these rights.

RISKS

We do not perceived any foreseeable risks associated with this particular study.

CONFIDENTIALITY AND WITHDRAWING

The data obtained through this study will be treated as confidential information; it will be stored
securely on the Aston University system.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 341

After signing this consent form you will be assigned an Anonymised Identification Number (AIN), your
AIN will be associated to the data only, and a mapping between your name and your AIN will not be
kept. It is your responsibility to keep your AIN if you wish to withdraw your data. Your name will
never be used in reports or publications. The lecturers at Aston University will not be able to map
your AIN with your name, and as such, you will not be treated differently whether you choose to
participate or not.

Your participation in this study is voluntary; you can decline to participate without any penalty or
loss of benefits to which you are otherwise entitled to. If you decide to participate you may
discontinue the participation at any time without penalty or loss of benefits to which you are
otherwise entitled to. If you discontinue prior to your study ending and have your AIN, we will
guarantee that any data related to you will be destroyed. If you wish to withdraw after the study has
ended and you have your AIN, we will do our best to ensure that local copies of your data are
destroyed. This is primarily due to Aston University having an open policy in regards to data in
publications, which means that if you do not withdraw prior to the submission of a research paper it
will be impossible to ensure that your data is destroyed.

COMPENSATION

Unfortunately, we cannot offer any other incentive other than contributing to computing education
research.

CONTACT INFORMATION

If you have any queries at any time about the study, you may contact the principal investigator,
Katrina Jones, at [REDACTED].

If you wish to register a complaint as you have not been treated in the way that this form suggests,
or you feel as if your rights have been violated, please contact the Ethics Committee at Aston
University using the following URL: https://www.ethics.aston.ac.uk/contact

CONSENT

I have read and understood the above information. I have received a copy of this form, and a
personalised AIN which I will keep safe and bring to the experiment study. I agree to participate in
this study and have my data contribute to publications.

Participant’s Signature: ______________________________________ Date: ______________

Investigator’s Signature: ______________________________________ Date: ______________

I wish to be contacted by the Principal Investigator for a Follow-Up Feedback Session, and agree to

give them my e-mail in order to contact me for this reason: ☐

Participant’s E-mail: ____________________________

11.1.6.2 Secondary Study Consent Form and Participant Information Sheet

INFORMED CONSENT STATEMENT

You are formally invited to participate in study which aims to explore the ways in which students
build their programs, and how this may reflect a student’s level of understanding about their code
and related computational concepts to that code.

EXPERIMENT INFORMATION

https://www.ethics.aston.ac.uk/contact

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 342

To help us we will ask you to participate in an hour test session where we will ask you to arrange
Java-based Code Puzzle pieces into a working solution while explaining your movements to the
observer. The observer will hand you two pieces of coloured card:

• Red card: raise this card when you wish to stop the puzzle (this [is] the equivalent to
submitting a solution or stopping the experiment);

• Yellow card: raise this card if you wish to ask a question to the observer (this is the
equivalent to pausing the puzzle).

There will be two Code Puzzles; not all of the pieces necessarily need to be used in order to complete
the puzzle. There will be six mini questionnaires that we will ask you to complete; one prior to
starting the experiment (based on your experiences with coding), one before each puzzle (asking you
about your perceptions of the task based on the specification), one after each puzzle (to assess the
difficulty of the task in retrospect and your confidence in the solution working), and one at the end
(assessing the accuracy of your results). Your speech and movement will be recorded both using a
recorder and by the observer themselves. The information will then be discussed at the end o the
session for roughly 10 minutes where any issues that are noticed will be talked about. Your
information will be grouped with the information from other participants to help us assess whether
the way a student builds their programs does reflect on their understanding of the code.

YOUR RIGHTS

This section reminds you of your rights as a participant, please read through this carefully as we
regard your signature as an agreement and acknowledgement of these rights.

RISKS

We do not perceived any foreseeable risks associated with this particular study.

CONFIDENTIALITY AND WITHDRAWING

The data obtained through this study will be treated as confidential information; it will be stored
securely on the Aston University system.

After signing this consent form you will be assigned an Anonymised Identification Number (AIN), your
AIN will be associated to the data only, and a mapping between your name and your AIN will not be
kept. It is your responsibility to keep your AIN if you wish to withdraw your data. Your name will
never be used in reports or publications. The lecturers at Aston University will not be able to map
your AIN with your name, and as such, you will not be treated differently whether you choose to
participate or not.

Your participation in this study is voluntary; you can decline to participate without any penalty or
loss of benefits to which you are otherwise entitled to. If you decide to participate you may
discontinue the participation at any time without penalty or loss of benefits to which you are
otherwise entitled to. If you discontinue prior to your study ending and have your AIN, we will
guarantee that any data related to you will be destroyed. If you wish to withdraw after the study has
ended and you have your AIN, we will do our best to ensure that local copies of your data are
destroyed. This is primarily due to Aston University having an open policy in regards to data in
publications, which means that if you do not withdraw prior to the submission of a research paper it
will be impossible to ensure that your data is destroyed.

COMPENSATION

You will receive two £5 Amazon vouchers at the end of the study, regardless of whether or not you
complete working solutions.

CONTACT INFORMATION

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 343

If you have any queries at any time about the study, you may contact the principal investigator,
Katrina Jones, at [REDACTED].

If you wish to register a complaint as you have not been treated in the way that this form suggests,
or you feel as if your rights have been violated, please contact the Ethics Committee at Aston
University using the following URL: https://www.ethics.aston.ac.uk/contact

CONSENT

I have read and understood the above information. I have received a copy of this form, and a
personalised AIN which I will keep safe and bring to the experiment study. I agree to participate in
this study and have my data contribute to publications.

Participant’s Signature: ______________________________________ Date: ______________

Investigator’s Signature: ______________________________________ Date: ______________

I wish to be contacted by the Principal Investigator for a Follow-Up Feedback Session, and agree to

give them my e-mail in order to contact me for this reason: ☐

Participant’s E-mail: ____________________________

11.1.6.3 Tertiary Study Consent Form

Investigation into the effectiveness of categorising the interactions that students have with
Computing-related puzzle pieces to identify their level of understanding.

Consent Form

Name of Chief Investigator: Katrina Jones

Please initial boxes

1. I confirm that I have read and understand the Participant Information Sheet 3.0
20/04/2020 for the above study. I have had the opportunity to consider the
information, ask questions and have had these answered satisfactorily.

2. I understand that my participation is voluntary and that I am free to withdraw
at any time, without giving any reason and without my legal rights being
affected.

3. I agree to my personal data and data relating to me collected during the study
being processed as described in the Participant Information Sheet.

4. I agree to my session being audio/video recorded and to anonymised direct
quotes from me being used in publications resulting from the study.

5. I agree to my anonymised data being used by research teams for future
research.

6. I agree to take part in this study.

_________________________ ________________ ___________________

https://www.ethics.aston.ac.uk/contact

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 344

Name of participant Date Signature

_________________________ ________________ ___________________
Name of Person receiving Date Signature
consent.

11.1.6.4 Tertiary Study Participant Information Sheet

How useful are Code Puzzles for determining learner understanding?

Participant Information Sheet

Invitation

We would like to invite you to take part in a research study.

Before you decide if you would like to participate, take time to read the following information
carefully and, if you wish, discuss it with others such as your family, friends or colleagues.

Please ask a member of the research team, whose contact details can be found at the end of this
information sheet, if there is anything that is not clear or if you would like more information before
you make your decision.

What is the purpose of the study?

The aim of this study is to investigate the usefulness, effectiveness, reliability, accuracy and feasibility
of using code puzzles to inform students’ understanding of programming concepts and paradigms.

Why have I been chosen?

You are being invited to take part in this study because we believe you are a current undergraduate
student in a Computing-related discipline (e.g., CS, CS with Business, Multimedia student, Computing
with Mathematics) at Aston University.

Unfortunately, you will not be able to participate if any of the following applies to you:

• You are not a current Aston University Undergraduate student who is studying a computing-
related discipline;

• You are not at least 18 years of age;

• You have failed your first term of your first year of your undergraduate degree;

• You are not able to access Blackboard Collaborate Ultra; and

• You are clinically blind as there is currently unfortunately no audio substitute for Code
Puzzles.

What will happen to me if I take part?

You will be required to participate in one 40-60 minute online session, via Blackboard Collaborate
Ultra which you can access via the Java Programming Foundations module on Blackboard (i.e., you
will not be required to install any additional software on your computer).

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 345

You will be asked to complete a series of code puzzles. For each, you will be presented with a series
of pieces of code and you will be required to arrange those pieces into a working Java class to solve a
problem. You do not have to use all the pieces required; you will also be able to create pieces of your
own to use if you prefer a different approach to the solution.
As you complete the puzzles, you will be asked to verbally explain your actions and reasoning. Your
actions and your narrative will be automatically audio/video recorded within the software for
analysis; the researcher will also be taken written notes as you work.

You will be also be required to:

• Fill in a short background questionnaire that focuses on your general experience with
programming and thoughts on coding;

• Fill in a very short first impressions questionnaire before each code puzzle;

• Fill in a very short final impressions questionnaire after each code puzzle; and

• Finally, after a short debriefing during which you will receive feedback from the researcher
on your coding strategy, fill in a very short questionnaire about your impressions of code
puzzles and their usefulness.

How will my narrative and any conversation during the session be recorded and the information I
provide managed?

With your permission we will audio record your narrative/discussion and take notes. The
recording will be typed into a document (transcribed) by the researcher. This process will
involve removing any information which could be used to identify individuals e.g. names,
locations etc.

Audio recordings will be destroyed as soon as the transcripts have been checked for accuracy.

We will ensure that anything you have told us that is included in the reporting of the study will be
anonymous.

You of course are free not to say anything you don’t want to or not to answer any questions that you
are asked without giving a reason.

How will the video recordings made during the study be managed?

The video recordings will be destroyed as soon as the research team have analysed the information
in them to answer the research question.

We will ensure that anything from the analysis of the videos that is included in the reporting of the
study will be anonymous.

Do I have to take part?

No. It is up to you to decide whether or not you wish to take part.

If you do decide to participate, you will be asked to sign and date a consent form. You would still be
free to withdraw from the study at any time without giving a reason.

Will my taking part in this study be kept confidential?

Yes. A code will be attached to all the data you provide to maintain confidentiality.

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 346

Your personal data (name and contact details) will only be used if the researchers need to contact
you. Analysis of your data will be undertaken using coded data.

The data we collect will be stored in a secure document store (paper records) or electronically on a
secure encrypted mobile device, password protected computer server or secure cloud storage
device.

To ensure the quality of the research, Aston University may need to access your data to check that
the data has been recorded accurately. If this is required, your personal data will be treated as
confidential by the individuals accessing your data.

Staff will not be informed of you participating or not participating in this study, nor will they view the
recordings themselves or hear your voice. This will not affect your course or mark in any way, and no
credit will be given to you for participating in this study.

What are the possible benefits of taking part?

The data collected during this study will be used as part of the researcher’s PhD thesis to further
knowledge in the area of using code puzzles as an analytical tool for understanding and teaching
programming. It is hoped, however, that the feedback delivered to you personally during the
debriefing session will be of direct benefit to you: it should hopefully help you to understand any
potential weaknesses in your understanding of coding.

What are the possible risks and burdens of taking part?

We do not perceive any foreseeable risks associated with this particular study beyond those
associated with normal study
We do acknowledge, however, that if you struggle to complete the puzzles it might cause you to lose
some confidence in your coding abilities. If that is the case, we would encourage you to contact the
module tutor for additional advice or the programming support officer for additional programming
support.

What will happen to the results of the study?

The results of this study may be published in scientific journals and/or presented at conferences. If
the results of the study are published, your identity will remain confidential.

A lay summary of the results of the study will be available for participants when the study has been
completed and the researchers will ask if you would like to receive a copy.

Expenses and payments

You should not incur any expense in order to participate in this study. We are, unfortunately, unable
to offer financial incentive.

Who is funding the research?

The study is being funded by Aston University School of Engineering and Applied Science (EAS).

Who is organising this study and acting as data controller for the study?

K. S. L. Jones, PhD Thesis, Aston University, 2021 || 347

Aston University is organising this study and acting as data controller for the study. You can find out
more about how we use your information in Appendix A.

Who has reviewed the study?

This study was given a favorable ethical opinion by the EAS Research Ethics Committee.

What if I have a concern about my participation in the study?

If you have any concerns about your participation in this study, please speak to the research team
and they will do their best to answer your questions. Contact details can be found at the end of this
information sheet.

If the research team are unable to address your concerns or you wish to make a complaint about
how the study is being conducted you should contact the Aston University Research Integrity Office
at research_governance@aston.ac.uk or telephone 0121 204 3000.

Research Team

Principal Investigator/Researcher: Miss Katrina Jones (jonesk6@aston.ac.uk)
Primary Supervisor: Dr. Tony Beaumont (a.j.beaumont@aston.ac.uk)

Thank you for taking time to read this information sheet. If you have any questions regarding the
study please don’t hesitate to ask one of the research team.

mailto:research_governance@aston.ac.uk
mailto:jonesk6@aston.ac.uk
mailto:a.j.beaumont@aston.ac.uk

348

Aston University takes its obligations under data and privacy law seriously and complies with the
General Data Protection Regulation (“GDPR”) and the Data Protection Act 2018 (“DPA”).

Aston University is the sponsor for this study based in the United Kingdom. We will be using
information from you in order to undertake this study. Aston University will process your personal
data in order to register you as a participant and to manage your participation in the study. It will
process your personal data on the grounds that it is necessary for the performance of a task carried
out in the public interest (GDPR Article 6(1)(e). Aston University may process special categories of
data about you which includes details about your health. Aston University will process these
datapoints on the grounds that it is necessary for statistical or research purposes (GDPR Article
9(2)(j)). . Aston University will keep identifiable information about you for 6 years after the study
has finished.

Your rights to access, change or move your information are limited, as we need to manage your
information in specific ways in order for the research to be reliable and accurate. If you withdraw
from the study, we will keep the information about you that we have already obtained. To safeguard
your rights, we will use the minimum personally identifiable information possible.

You can find out more about how we use your information at www.aston.ac.uk/dataprotection or by
contacting our Data Protection Officer at dp_officer@aston.ac.uk.

If you wish to raise a complaint on how we have handled your personal data, you can contact our
Data Protection Officer who will investigate the matter. If you are not satisfied with our response or
believe we are processing your personal data in a way that is not lawful you can complain to the
Information Commissioner’s Office (ICO).

11.1.7 Ethics Submission: Amendment Documentation

NOTICE OF MINOR OR SUBSTANTIAL AMENDMENT

To be completed in typescript by the Chief Investigator in language comprehensible to a lay person
and submitted to the both the Secretary and Chair of the School of Engineering and Applied Science
Ethics Committee via email j.leigh@aston.ac.uk/j.lumsden@aston.ac.uk.

Details of Chief Investigator:

Name: Katrina Jones

Telephone: [REDACTED]

Email: [REDACTED]

Full title of study:

Investigation into the effectiveness of
categorising the interactions that students have
with Computing-related puzzle pieces to
identify their level of understanding.

http://www.aston.ac.uk/dataprotection
mailto:dp_officer@aston.ac.uk

349

REC reference number:

Ethics Submission 1115

Date study commenced:

20th February 2017

Amendment number and date:

Amendment 2.0. An initial amendment was
filed and approved on 24.07.2017 to permit
payment to participants in order to address
poor recruitment rates. This second
amendment is dated 24.06.2020.

Type of amendment (indicate all that apply in bold)

(a) Amendment to information previously given on the Ethics Application Form

Yes / No

If yes, please refer to relevant sections of the REC application in the “summary of changes” below.

(b) Amendment to the protocol

Yes (see changes) / No

If yes, please submit either the revised protocol with a new version number and date, highlighting
changes in bold, or a document listing the changes and giving both the previous and revised text.

(c) Amendment to the information sheet(s) and consent form(s) for participants, or to any other
supporting documentation for the study

Yes (see changes) / No

If yes, please submit all revised documents with new version numbers and dates, highlighting new
text in bold.

Is this a modified version of an amendment previously notified to the REC and given an
unfavourable opinion?

No, the original version of this application (#1115) was first submitted on 24th February 2017, and
was approved on 24th March 2017. Due to poor participant recruitment, a modification was added
on 23rd July 2017 to grant permission to use £5-£10 Amazon Vouchers as an incentive. This
amendment was approved on 24th July 2017.

(a) Amendments to information previously given on the Ethics Application Form

350

• Change of end date (from 31st December 2019 to 7th September 2020): due to my six
months leave of absence from July 2019 to January 2020 my research was temporarily
paused and I have been unable to complete my data collection as a result. Ideally, I
require a larger sample size than has been collected to date for my PhD research. As such,
I would like to request an extension of the study period to 7th September 2020.

• Change of supervisor (from Dr. Errol Thompson to Dr. Tony Beaumont): I had a change in
primary supervisors due to the retirement of Dr. Errol Thompson. My new primary
supervisor is Dr. Tony Beaumont: a.j.beaumont@aston.ac.uk / 0121 204 3447.

(b) Amendment to the Protocol

• Change to recruitment and consenting process: Similar to the pilot study, the participants
will be contacted through an announcement via BB on the Java Programming Foundations
module. If they reply to the announcement, the participant information sheet (PIS) and
consent form will be emailed to them for review. If, after reviewing the PIS and consent
form, they still wish to participate, they will be required to complete, sign and email the
consent form to the researcher before study participation commences. Given the entirely
online process amid COVID-19 restrictions, consent forms will need to be signed one of
two ways: (1) the student can digitally sign the PDF document (using an Adobe signature
or hand written digital signature); or (2) the student can print, physically sign, and
photograph/scan the signed consent form. Once the student’s consent form has been
received, (s)he will be invited to an individual Blackboard Collaborate Ultra study session
where the consent form and participant information sheet will be read through again to
confirm understanding before commencing the study activities.

• Change of face-to-face format, to online format: COVID-19 restrictions now mean it is
impossible to conduct in-person, paper-based Code Puzzles as per the approved procotol.
Instead, participants will be asked to complete the same task but using electronic task
code puzzle sheets via Blackboard Collaborate Ultra. Their activities and narrative will be
recorded using the tools embedded within Collaborate Ultra and these recordings
processed in the same way as originally articulated for video recordings of in-person
sessions.

• Anonymity of student: Blackboard Collaborate Ultra sessions will be individually set up
for participants at a time that suits them. These will only be accessible to the individual
student and module tutors. Module tutors will be advised that the sessions are running
and asked to avoid entering the sessions; there is no way to prevent the module tutor
from entering as (s)he has all-access permission on BB but we will rely on the module
tutor’s professional integrity not to breach this request. Furthermore, to reinforce the
private nature of the session and avoid student identity being disclosed, they will be
entitled ‘Experiment In Progress: Do not Enter’ and will only be visible to those permitted
to enter and the module tutor. Individual participants will be asked to enter a Collaborate
session using a ‘guest access’ link that will be provided to them. On entering, Collaborate
asks them to self-identify and they will be instructed to enter ‘Study Participant’ instead
of their name. Their guest role will be set to ‘Presenter’ so that they can then
anonymously share their desktop. Unfortunately, there is no way to guarantee participant
attendance isn’t recorded in the backend of BB but if the session is deleted after the
recording is downloaded, this should minimise the likelihood of the participant’s
anonymity being breached. We feel these steps – the maximum possible within the
enabling technology – should allow us to protect student anonymity as far as possible and
that the remaining risk is acceptable given the nature of the study activities and data
collection.

351

• No monetary incentive: amendment #1, as approved, allowed for participants to receive
Amazon vouchers for their participation. It is no longer feasible to (a) access the vouchers
for distribution nor (b) to safely distribute them to participants and so no incentive will
now be provided.

Additional Changes:

• Change in length of time of experiment (from 30-40 minutes to 40-60 minutes): via
practical experience, it was discovered that most participants could not complete the
study within the originally estimated 30-40 minutes. To accommodate this as well as to
factor for the new online deployment we would like to extend the estimated/stated
participation length to 40-60 minutes.

• Number of questionnaires given during the study: participants, according to the 2017
ethics application, were originally given two questionnaires to complete after the code
puzzles were completed. These questionnaires gauged the difficulty and confidence of the
participants in regards to their submission. It was felt that, after piloting this, that more
information needed to be gathered and so four other questionnaires were introduced
(see appendix for all of these): two are associated to the two code puzzles, and ask about
the perceived difficulty of the task itself before participants begin the puzzles, one is
completed at the end after the follow-up meeting where participants are asked about the
perceived usefulness of the code puzzle to them personally, and one solicits necessary
background information on:

• The number of programming languages participants know and at what level;

• The names of the programming languages participants know;

• How confident participants feel with programming in general;

• Participants’ thoughts on what qualities a programmer should possess;

• Participants’ thoughts on what qualities they, themselves, possess; and

• What approach participants believe they take when creating a coded solution.

• Follow up meeting protocol: this was originally optional but was changed to immediate:
participants are given feedback immediately during the debriefing portion of the 40-60
minute session.

• Making the second Code Puzzle easier: the content of the Java foundations and
programming courses in the first year undergraduate CS program changed after the study
commenced and it was determined that the second code puzzle may be perceived as
more difficult now than it was previously. As a result, the original second code puzzle
remains in place for participants who complete the primary two puzzles confidently and
wish to be given a harder puzzle; another, easier, puzzle was developed to replace it as
one of the two core puzzles.

Points to Note (the following points reflect behind-the-scenes changes to the analysis of the
study):

• Study Focus: the focus has changed slightly from testing an algorithm to testing whether
code puzzles are an effective way to gauge understanding (final study). This focus in no
way impacted how the study was run and the participation experience.

• Data Analysis: the way in which the data is analysed is different as a mathematical
formula was not shown to be effective due to the discovery of the ‘workspace’
phenomenon (where participants used a self-created central area to reorganise their
thoughts instead of the standard interface restricted two column approach); instead, the
same data is collected but it is now analysed via the use of axial coding and Grounded
Theory in an attempt to unbiasedly form a theory about the person’s understanding. The
consent form has been adjusted to reflect this albeit it is of no direct consequence to the
participant (see Appendix).

352

Any other relevant information

Applicants may indicate any specific ethical issues relating to the amendment, on which the
opinion of the REC is sought.

Change from five week data withdraw policy to two weeks: participants will have less time to
withdraw their data – from 5 weeks to 2 weeks. This is due to the practicalities of completing and
writing up the PhD thesis.

List of enclosed documents (see Appendix)

Appendix Number Document Version Date

A-1 Background Questionnaire 3.0 03/03/2018

A-2 Pre-Code Puzzle Questionnaire 1.0 02/10/2017

A-3 Post-Code Puzzle Questionnaire 2.0 12/02/2017

A-4 Post-Experiment Questionnaire 2.0 02/10/2017

A-5 Consent Form 6.5 04/07/2019

A-6 Participant Information Sheet 2.0 04/07/2019

A-7 CP1 2.0 24/03/2020

A-8 CP2 2.0 24/03/2020

A-9 Debriefing Document 2.0 04/05/2018

A-10 Original Ethics Submission 1.0 23/02/2017

A-11 Modified Ethics Submission 7.0 12/02/2020

A-12 Blackboard Recruitment Announcement 2.0 04/03/2020

Declaration

• I confirm that the information in this form is accurate to the best of my knowledge and I
take full responsibility for it.

• I consider that it would be reasonable for the proposed amendment to be implemented.

Signature of Chief Investigator:

[REDACTED]

Print name: [REDACTED]

Date of submission: [REDACTED]

