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Abstract: Cell disruption is an integral part of microalga production process, which improves the
release of intracellular products that are essential for biofuel production. In this work, pre-treatment
parameters that will enhance the efficiency of lipid production using high-pressure homogenizer
on microalgae biomass will be investigated. The high-pressure homogenizer that is considered is a
GYB40-10S/GY60-6S; with a pre-treatment pressure of 1000 psi, 2000 psi, and 3000 psi, the number of
passes; 1, 2, and 3, a reaction time of 3, 3.5, and 4 h. Pressure and cavitation increase the efficiency of
the pre-treatment process of the homogenizer. In addition, homogenization shear force and pressure
are the basic significant factors that enhance the efficiency of microalgae cell rupture. Also, the use of
modelling to simulate pre-treatment processes (Response Surface Methodology (RSM), Box-Behnken
Designs (BBD), and design of experiment (DOE) for process optimization will be adopted in this study.
The results clearly demonstrate that high-pressure homogenization pre-treatment can effectively
disrupt microalga cell walls to enhance lipid recovery efficiency, with a relatively short extraction time,
both that are essential for maintaining a good quality of lipids for biofuel production. A maximum of
18% lipid yields were obtained after 3 h of HPH pre-treatment at 3000 psi.

Keywords: high-pressure homogenizer; microalga; cell disruption; lipid extraction; biodiesel;
pre-treatment

1. Introduction

Presently, more than half of the world’s carbon monoxide emissions are seen to be from the
automobile industries. Improving this situation seem not to be achieved presently, as it has been
reported that there will be an increase of over two-billion automobile vehicles by the 2050 [1,2].
The combustion of fossil fuel produced from the transport sector has many air pollutants that are not
environmental friendly. In 2010, it has been predicted that the release of carbon monoxide emission
will be over 140 billion metric tonnes by 2035 [3]. In respect to these figures, some countries that
depend on the use of fossil fuels as a primary source of energy have the chances of being affected
by environmental degradation, which is as a result accumulation of CO; emissions [3]. The increase
in energy demand, and environmental hazards caused by the used of fossil fuels has intensified
attention towards the production of clean liquid fuel, termed as biofuels, as an alternative source of
energy [4]. Microalga biomass has shown great promise as a sustainable alternative to third generation
biofuels as they can potentially produce high rate of triglycerides, etc. The potential feedstock for
alga biofuel includes; edible oil (palm oil), non-edible (jatropha) and lignocellulosic biomass (e.g.,
wood) and microalgae cells [5,6]. Production of biofuels does not only reduce the dependence on
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fossil oil trade but also decreases the unavoidable uncertainties caused by the fluctuations in fossil fuel
prices. Third generation biofuel seems very interesting for several reasons: it is highly biodegradable
and has minimal toxicity, almost zero emission of sulphate, aromatic compounds and other, chemical
substances that are destructive to the environment and appears to cause significant improvement
of rural economic potentials. The use of microalga for biofuel production requires strain selection,
optimisation, and viability testing to ascertain the most appropriate organism for large-scale production.
Even as algae biofuels are sustainable, the economic feasibility and large-scale production is still
underachieved, simply because of high production the cost and the lack of economic techniques that
integrate the multiple steps associated with the harvest, extraction, and conversion process. However,
biomass energy will depend on the efficiency of bio-energy refineries as well environmental and
technological consideration [7]. Similarly, microalga production process is improving over the past
years but has been hindered by some factors during the production process, which has hindered
the realisation of its full potential. In some review studies, different pre-treatment techniques have
been used for microalga cell rupture, depending on the substrate’s morphology to perform a different
task, while biofuel production was estimated. Also, many studies have discussed the effect of using
homogenous catalyst for biodiesel production, as summarized by [8-26]. Bead mills and high-pressure
homogenizer has been designed among the most successful mechanical techniques on microalga
biomass to produce biodiesel. Cho et al. [27] used high-pressure homogenizer to extract lipid from
Scenedesmus quadricauda, and noted a recovery of 19.8% of lipid was produced with less temperature
and time for extraction. Zheng et al. [28] reported that using a bead milling vessel to extract lipids
from Chlorella vulgaris and noted a recovery of 11%, which was lower than the other methods that
were tested, while Shen et al. [29] proved that the highest lipid recovery of 18.8% (C. protothecoides alga
biomass) was obtained using bead beater shaking vessel. Similarly, Lee et al. [30] added that bead
beating of Botryococcus sp. cells resulted in a lipid extraction of 28%. Other cell pre-treatment using
beating includes; Prabakaran and Ravindran, which prove that using microalga cells of (Chlorella sp.,
Nostoc sp. and Tolypothrix sp.) on a bead beating pre-treatment enhances a lipid recovery of 25-30%.
In all of the applications of using mechanical pre-treatment to enhance lipid production, as discussed
above, no study has ever given detailed information of how to perform a numerical optimization using
pre-treatment process variables to increase lipid production efficiency. From this gap, the aim of this
study is to obtain a maximum yield of lipid by optimizing the pre-treatment process parameters using
high-pressure homogenizer to improve lipid production efficiency. RSM has been effectively applied in
DOE analyses, and been used for mathematical and statistical methods, which are used for modelling
and predicting the effect of input process parameters by optimizing their output responses [31],
as well as specifying the interaction between responses and their well-regulated input parameters [32].
As most previous studies have observed, the effect of optimizing and modelling process parameters
for lipid extraction efficiency is summarised in [33-35].

Microalga cell disintegration is a process of breaking down algae rigid cell wall for an effective
lipid production [36,37], where cell rupture is also a process of breaking algae cell [36]. This can be
achieved both mechanically, non-mechanically, and as well combined pre-treatment methods [38—41],
other techniques include; chemical and physical pre-treatment; e.g., microwave and ultrasonic [42].
According to Ekpemi et al. [34], added that cell disruption is the ability to disintegrate algae cell walls
for the release of lipids for industrial uses, where other applications using high-pressure homogenizer
are summarized in [43-48]. Also, during microbial cell disruption, viscosity has proven to be an
effective parameter to enhance a high degree of cell disintegration [34], while homogenizing microalgae
cell, pressure and nozzle diameter, and number of passes still have a significant effect on the disruption
rate and enhances lipid production [27].
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2. Results and Discussion

2.1. Recovered Lipids

Table 1 indicates an RSM table for design and coded factors for input parameters, where
homogenization pressure was at a range of 1000-3000 psi, the number of passes (1-3), and reaction time
of (3—4) h. Experimental design are performed using Box-Behnken Design (BDD), when considering
the homogenization pressure, number of passes, as well as time of reaction were analyzed, as indicated
in Table 2.

Table 1. Response Surface Methodology (RSM) table for design and coded values for input parameter.

Variable Units Levels
-1 0 1
Pressure Psi 1000 2000 3000
Number of Passes 1 2 3
Extraction Time h 3 3.5 4

Table 2. Experimental results for both output and input parameters.

Input Factors Response
Pressure (psi) Number of Passes Reaction Time (h) Recovered Lipids (%)
3000 2 3 17.693
2000 2 3.5 7.595
2000 2 35 7.038
1000 2 3 3.45
2000 2 35 7.526
2000 2 35 13.937
2000 1 3 5.606
2000 2 3.5 7.202
1000 2 4 3.65
1000 1 3.5 2.744
2000 1 4 8.359
2000 3 4 6.351
3000 3 35 10.207
3000 2 4 8.166
2000 3 3 4.496
1000 3 3.5 4.15
3000 1 35 16.332

Results of an analysis of variance (ANOVA) from homogenized studies are depicted in Table 3.
According to the analysis, all of the variables are statistically significant.

Table 3. Analysis of variance (ANOVA) analysis.

Source Sum of Squares df Mean Square F Value p-Value prob > F
Model 211.26 5 42.25 4.79 0.0143
A-Pressure 184.36 1 184.36 20.90 0.0008
B-Number of passes 7.68 1 7.68 0.87 0.3708
C-Reaction time 2.78 1 2.78 0.32 0.5855
AB 14.18 1 14.18 161 0.2310
A? 2.26 1 2.26 0.26 0.6223
Residual 97.01 11 8.82
Lack of Fit 61.99 7 8.86 1.01 0.5280
Pure Error 35.02 4 8.76
Cor Total 308.27 16

The fit synopsis output outlined, that for output parameters, a sequential model is suggested for
more analytical measures containing utmost Pred. and Adj. R? [32]. The ANOVA response surface
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table gives a descriptive idea on the effect of all theinput responses and the significance of the model,
where adequacy measures R?, adjusted R? and predicted R? have values of 0.6853, 0.5423, and 0.3703,
as indicated in Table 3. In addition, the F-values of 4.79 imply that the model is significant. The “Pred
R-Squared” of 0.3703 is in reasonable agreement with the “Adj R-Squared” of 0.5423; i.e., the difference
is less than 0.2. The “Lack of Fit F-value” of 1.01 implies that the Lack of Fit is not significant relative to
the pure error. There is a 52.80% chance that a “Lack of Fit F-value” this large could occur due to noise.
Also, the adequate precession ratio in the ANOVA response surface linear model is above 4, which
specifies that the entire model is very adequate and as a sign good model discrimination. However,
for a model to be adequate, the model reduction will certifies and significantly accept the essential
statistical analysis to carry out an optimization process [49]. The final equation for the experimental
parameters and actual factors, as determined by the software is shown in Equation (1):

Recovered lipids (%) = —0.551 + 5.641-1072 P+ 2.786 N — 1.179 R — 1.882:1073 PN + 7.312-103 P> (1)

where:

P is the pressure
N is the number of passes
R is the reaction time

As shown in Table 3, there are three interaction terms that have a significant effect on the amount
of lipid produced, which are: pressure, number of passes and reaction time.

Figure 1 represents a perturbation plot that shows the interaction between the three process
parameters on the amount of lipid concentration produced. From the plot, the amount lipid
concentration produced is because of an increase in homogenization pressure on % of lipid recovered.
This indicates that, as the homogenizing pressure increases, the % of lipid yield increases; while (b);
number of passes show a slightly significant increase in the amount of lipid recovered; (c) Reaction
time seem to behave the same way with number passes on the lipid concentration produced. Thus,
from the perturbation plot, increase in pressure will constantly improve the amount of lipid produced.

Design-Expert® Software .
Factor Coding: Actual Perturbation

Amount of recovered lipid (mg)

20 —
Actual Factors

A: Pressure = 2000

B: Number of passes = 2
C: Reaction time = 3.48649

Recovered lipid (%)

-1.000 -0.500 0.000 0.500 1.000 1.500

Deviation from Reference Point (Coded Units)

Figure 1. Perturbation plot for percentage of recovered lipids.
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Figure 2 shows a predicted vs. actual plot. This plot shows that our predicted model supports our
experimental data, as the square shape figures are seen to be very close to the diagonal line.

Design-Expert® Softw: .
AI?TSOI?J:'E o)f(?:cover(;d Iie[‘)riz Predicted vs. Actual

Color points by value of 20 —]
Amount of recovered lipid:

17.693
2.744

Predicted
1

0 5 10 15 20

Actual

Figure 2. Predicted vs. actual plot.

However, homogenization pressure is shown to be a predominant factor using homogenizer
for microalga cell rupture. According to Samarasinghe et al. [50], proved that the most significant
parameters for algae cell rupture is a pressure differential across the nozzle and the number of passes
through the homogenizer. Also, Yap BH]J et al. [42], discover that the amount of cell rupture will
increase with increasing the homogenizing pressure.

2.2. Response Surface Model (RSM)

Figures 3 and 4 demonstrate the three-dimensional (3D) plots of the outcome of pressure on %
recovered lipid yield. In Figure 3, at a fixed number of passes 2, and considering a homogenization
pressure of 3000 psi and 1000 psi and a reaction time 4 h. The % of lipid recovered decreases from 15% to
3%. The final % of lipid that is recovered at this point is 80% at 4 h extraction time. This result confirms
that increasing the pressure and the reducing the number of passes does not have any significant
effect on lipid extraction efficiency. This may be attributed to the inability of the microalga cell well
not completely disrupted during the pre-treatment process to improve lipid extraction efficiency.
At a constant homogenization pressure of 3000 psi and considering a reaction time of 3 and 4 h,
the percentage of lipid recovered decreases from 15% to 13%, respectively. The final percentage of lipid
yield is 13%. The results confirm that at a pressure of 3000 psi and 3 h reaction time the final percentage
increases to 15%, while at 4 h extraction time, the lipid yield decreases. This simply proves that at a
low reaction time and high pressure the lipid yield efficiency increases, while at higher reaction time
and pressure the yield of lipid decreases. In summary, Figure 3, under a high-pressure condition of
3000 psi and number of passes of 3, satisfy the agreement that a pressure increase results in high yield
of lipid produced.
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Design-Expert® Software

Factor Coding: Actual

Amount of recovered lipid (mg)
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Figure 3. Response surface plot in three-dimensional (3D) for pressure and reaction time for percentage
of lipid recovered.

Design-Expert® Software
Factor Coding: Actual
Amount of recovered lipid (mg)
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Figure 4. Response surface plot in 3D for Pressure and Number of passes for the percentage of
lipid recovered.
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In Figure 4, the plot demonstrates the outcome of homogenization pressure and the passes number
on the output response. At a 3.5 h time of reaction, pressure of 3000 psi and 1000 psi respectively,
the % of lipid yield decreases from 10% to 4% respectively. The final percentage yield of lipid is 60%.
A decrease in % yield of lipid may be attributed that during cell pre-treatment at a high the algae cell
must have been disrupted completely which made it difficult to extract the lipid even with a high
extraction time, while for low pressure and low lipid yield, it might be the algae cells is still intact
after completing the pre-treatment even with higher extraction time. For a pressure of 3000 psi and
1000 psi under a fixed reaction time of 3.5 h, the lipid produced was decreased from 16% and 4%
respectively, while the final % of lipid produced is 75%. The amount of lipid produced at various
pressure difference certifies the idea of [51] that mechanical cell rupture is a process that involves
the application pressure differences during homogenization of algae cells. In the literature, previous
research work has applied high pressure homogenizer and bead beater for biomass pre-treatment
to enhance lipid production efficiency. Cho et al. [27] applied high pressure homogenizer to extract
lipid from Scenedesmus quadricauda and recorded a 19.8% of lipid yield at a pressure of 1200 psi.
Zheng et al. [28] observed 11% lipid yield on Chlorella vulgaris after bead mill pre-treatment. A similar
study conducted by Lee et al. [30] achieved a 28% of lipid yield using Botryococcus sp. after bead
mill pre-treatment, while Prabakaran and Ravindran [52] observed that bead beating of (Chlorella sp.,
Nostoc sp. and Tolypothrix sp.) resulted in 20-30% lipid yield. The result presented in this present work
shows a maximum lipid yield of 18% achieved at 3 h of HPH at 3000 psi. The result agreed with
Ekpeni et al. [34] who observed that increase in pressure increases the highest protein concentration.
While Lee et al. [53] proved that increasing pressure during microalgae cell pre-treatment using HPH
increases cell disruption efficient to enhance lipid production. Halim et al. [54] noted 90% disruption
efficiency by increasing the HPH operating pressure. Conclusively, shear stresses influences pressure,
and it is dependent of relative velocity which enhances a high degree of cell disruption efficiency
of algae biomass [55]. The two 3D response surface plots indicate that pressure increases after
homogenization significantly increases the amount of recovered lipid after extraction.

As previously emphasized in perturbation plot, Figure 1; show that homogenization pressure
and passes number have a significant outcome on homogenized algae cell. Both of the parameters
(homogenization pressure and passes number) have a positive impact on homogenized algae cell
disruption. As the homogenization passes number comes into effect, the microalgae cells are being
disrupted after each phase or passes on the homogenizer. After the one to three passes, it is assumed
that the thick algae cells have been disrupted to enhance an efficient lipid production. The effect of
reaction time on lipid production as being studied in this work shows that the highest amount of lipid
yield is obtained in 4 h. This indicates that increasing the reaction time, as shown in Table 3, does
not have a much significant difference in output responses. Past studies have reported that decreasing
reaction time increases the amount of biodiesel yield and production cost [56—69]. This scenario shows
that even as the time of reaction is increases, there was no significant outcome on the % of lipid recovered.

2.3. Optimization of Lipid Recovered

From the response surface mathematical model, as indicated in Equation (1), that defines the
significant effects of input variables on the output responses (% of lipid recovered), a study on
optimization were performed using Design Expert Software V10. While the basic reason for conducting
the optimization is to combine the productivity and cost of the entire process. The percentage of
lipid produced was maximized with level 5, and the number of passes was maximized at level 5,
the homogenizing pressure varies in the ranges specified in Table 1. The optimal recovered lipid
yield of 16.55 from the numerical optimization was achieved at a number of passes = 1, pressure =
3000 psi, and reaction time = 3 h. The graphical optimization plots (Figures 5 and 6) clearly shows
the optimal input responses (optimal parameters by means visual observation. The yellow region in
the graphical optimization plot indicates that the ideal values certify that the calculated standard as
indicated in the curve agrees with the standard of optimization criteria. The plots clearly established
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that the optimum conditions for a maximized % of recovered lipids are at a pressure of 3000 psi,
the number of passes = 1, and reaction time of 3 h of high-pressure homogenizer pre-treatment.

Design-Expert® Software
Factor Coding: Actual Overlqy Plot

Overlay Plot

Amount of recovered lipid
® Design Points

X1 = A: Pressure

X2 = B: Number of passes 25
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Figure 5. Graphical optimization for maximizing the percentage of recovered lipid yield minimizing
pressure.
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Figure 6. Graphical optimization for maximizing percentage of recovered lipid yield and minimizing
the pressure.
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3. Materials and Methods

Cultivation of Microalgae: In this study microalgae strain, namely; A290 Scenedesmus quadricauda
purchased from Sciento, 61 Bury Old Road Whitefield MANCHESTER M45 6TB United Kingdom.
The strain was explored in terms of growth under room temperature and was stored in a freezer at a
temperature of 0 to 4 °C for one week.

3.1. Medium and Culture Conditions

Four conical flasks of five-liter sizes were thoroughly washed and allowed to dry at room
temperature by placing them inversely on the laboratory rack as shown in Figure 7. The dried flask
was then sterilized at 60 °C for 4 h, and then allowed to cool before using. Exactly four liters of distilled
water H,O was poured in each sterilized flask following the inoculation of 0.4 g of the microalga into
the flask, which 1.5 g of K10 (Unicellular algae medium) (chemical composition includes; Sodium
nitrate, Magnesium sulphate, Dipotassium hydrogen orthophosphate, Calcium chloride, Ammonium
chloride and Trace elements with weight (%) of 62, 16, 15, 4, 3, and <1, respectively) were added to
each flask. After the additions, the flasks were vigorously shaken to ensure proper circulation of the
nutrients inside the flasks. The pumps that supply air (CO,) were then directly connected maintained
for an effective growth. A 24-h white fluorescent light intensity of 75 lumens was maintained during
the culture period. At 6 h interval, each of the flasks was jiggled (hand shake manually) to avoid the
settling of the nutrients at the bottom of the flask. The microalga sample were cultured for a period of
14 days (two weeks).

Figure 7. Microalga culture.

3.2. Determination of Specific Growth Rate of the Microalga and Cell Concentration

Specific Growth Rate is a measure of the number of generations (the number of doublings) that
occur per unit of time in an exponentially growing culture [70]. Hence, it was obtained using the
equation below:

MIIH%IT,}—TO (2)

0

where;

Ny is the number of cell at the end of log phase
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N, is the number of cells at the start of log phase
T} is the final day of log phase
T, is the initial day of log phase

The initial concentration of the Scenedesmus quadricauda cells is = 1.815 x 10° g/mL (Inoculum).
While the final concentration after day two was 3.975 x 10% g/mL.

3.3. Microalga Cell Pre-Treatment

The machine in Figure 8 is comprises of two homogenizing valves and single pump. The two valves
(homogenizing) pressure are used to control and to maintain a steady pressure before cell pre-treatment.
Before homogenization of cultured microalgae samples, run clean water (H,O) through the inlet nozzle,
and switch on the machine to clean up the entire homogenizing chambers. Use the first homogenizing
valve to set up the required pressure and the second valve to maintain a steady pressure during
microalgae cell disruption. 500 mL flask of cultured samples (microalga) were poured through the
inlet nozzle and homogenized at a variable pressure of 3000 psi, 2000 psi, 1000 psi, number of passes
of 1, 2, and 3, respectively. Where Figure 8 (right), indicates how algae cells are being disrupted with
the effects the homogenization components (valve head and seat, impact ring). The laboratory work
was performed with GYB40-105/GY60-65 high-pressure homogenizer (Source: No, 188 DouHui Road,
MiniHang Area, Shanghai china. Email: donghua@donghuamachine.com).

- " Premixed
feed

Impact ring

e |y "o

-— -
- .
- -
- w—
- .-
—-— -

Figure 8. High-Pressure Homogenizer (HPH) used in this study (left), Operational performance of
high-pressure homogenizer (right).

3.4. Extraction Procedure

A 500 cm?® of each homogenized sample was placed in a round bottom flask containing 500 cm?
of methanol as an organic solvent were mixed with 10 cm? of concentrated sulphuric acid and inserted
into a round bottom flask. Methanol as an organic solvent has been previously used by many studies for
effective lipid extraction because of low cost and easy extraction time. Then, anti-bump granules were
added to the round bottom flask and a condenser fitted inside the flask before reflux. The homogenized
microalga samples were poured into the round bottom and reflux according to the selected reflux time
for 3, 3.5, and 4 h, respectively using a heating mantle. After cooling for two to three hours, the mixture
was poured into a separating funnel for extraction. The FAME mixture was then extracted using
3 x 150 cm® and one portion of diethyl ether and washed with 5% of sodium bicarbonate solution.
The solution was then tested to ensure that it was neutral using a pH paper to avoid any trace of acid
inside the extract. The lipid extract was poured into a tiny beaker and was placed in a steam bath at a
temperature less than 30 °C for 3 mins to remove some tiny solvents contained in the lipid produced.
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3.5. Gas Chromatography

The lipid extract was examined by gas chromatography (AGILENT GC 78Z0OA), with a Flame
Ionization Detector (FID), an automatic sample injector, gas chromatography injectors and detectors,
and capillary column of diameter 0.2-0.7 mm, 100 m long, flow rate of 0.5-15 mL/min, head pressure
of 340 psi, capacity of 100 mg/pack, film thickness of 0.1-8 pm. The packed column has a length of
0.5-5 m, a diameter of 2—4 mm, flow rate 10-60 mL/min, the head pressure of 1040 psi, a capacity
of 10 ug/pack, and the film thickness of 1-10 pm. Helium, hydrogen, and nitrogen are being used
as a carrier gas, while diethyl ether serves as a solvent during the analysis. During GC analysis,
37 components certified standard of FAME’s was used to confirm the presence of the individual FAME
and to accurately calculate the concentration of the components found. A second sample was used,
which was a standard 80:20 mixture of biodiesel and diesel from a soya source. Each sample was
injected at a volume of 1 puL. and the resulting chromatograms were used to identify each of the FAME’s
by their retention times using the standard. Once identified, the concentrations were calculated by
using the peak area. This allowed for the concentrations to be calculated in pug/ml (ppb) and as a
percentage of the total peak area.

To understand the true yield of FAMESs, the crude biodiesel samples were analyzed by GC.
The fatty acid methyl ester in biodiesel mix was assessed by a comparison of fatty acid methyl esters
peak area, biodiesel standard, biodiesel mix, and their retention time. However, the basic fatty acid or
analytes found includes; methyl myristate—C14, methyl palmitate—C16, methyl stearate—C18, methyl
linoleate—C18:2, methyl arachidate—C20, methyl eicosate—C20:1, methyl eicosadienoate—C20:2,
and methyl erucate—C22. The analyses found indicate that biodiesel samples contain a high
proportion of monounsaturated FAMEs, while the lipid extract contains a high concentration of
Methyl myristate—C14 and Methyl palmitate—C16 at a value of 154.73 and 268.12, respectively,
as shown in Figure 9. The analyses found fully fit well with the basic requirements of biodiesel mix
from soya feedstock and fame standard.
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Figure 9. Gas chromatography—mass spectrometry (GC-MS) of Scenedesmus quadricauda lipid extraction.
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3.6. Experimental Design

In this paper, a design of experiment will be adopted to analyze the effect of input responses,
as well as to test the efficiency of each of the input responses to the output response (% of lipid
produced), where % of lipid produced is the amount of lipid extracted divided by the dry weight of
alga biomass in each 500-mL flask used for each pre-treatment. Design of experiment application has
been extensively used in most of engineering data solving techniques [71]. This method (DOE) has
been used to determine experimental design order, performing statistical analysis, and showcase a
graphical representation of the effects on input parameters to output responses. However, DOE has
been applied in different areas as summarized by [72,73].

3.7. Response Surface Methodology (RSM)

This approach is an effective statistical technique for modeling, interpreting outputs of interest of
single or multiple responses. Similarly, response surface methods consist of the experimental strategy
for exploring the space of the processor input factors, empirical statistical modeling to develop an
appropriate approximating relationship between the yield and the process variables, and optimization
methods for finding the levels or values of the process variables that produce the desirable values of
the response outputs. The initial step for RSM is to determine the limits of the experimental domain to
be explored; these limits are selected to give a distinct response from the model. The homogenizing
pressure, number of passes, and reaction time are the input variables selected for this study, as shown
in Table 2. The next step is how the experiment will be designed by RSM using Box-Behnken Design.

3.8. Box-Behnken Designs (BBD)

Box-Behnken Design as applied in this study is design from values: —1, 0 and +1, as indicated in
Table 1. It is formed by a combination of two different stages with unfinished block scheme, it generates
designs with required arithmetical steps, by a fraction of the experimental requirements for three-level
factorial [34]. Base on three level factorials, the quadratic model is suitable, while blocking selection is
presented for all of the schemes that are used [73]. This shows that Response surface methodology as
defined above is used for explicating and estimating all experimental process parameters X (level— j).
This aim is to perform optimization criteria for both single and numerous responses (y’), in this
research work, the output response (single response) is the percentage of lipid recovered, as specifically
indicated in Equation (3).

Y = by + ) biXi+ Y biX%i + ) biXiX; 3)

4. Conclusions

The wet biomass pre-treatment in this research study has proved to enhance the effective lipid
yield of 49% from wet Scenedesmus quadricauda sp. using methanol and sulfuric acid during the
extraction process. This substantial development of the effective conversion process (% of lipid
recovered) is highly promising, as this can reduce the large amount of energy consumed during drying
process before extraction. The optimal conditions for lipid yields were at a pressure 3000 psi, number
of passes of 2 and reaction time of 3 h. This method can be very useful to increase the efficiency of
producing microalga lipid yield for biodiesel production as an alternative renewable resource to reduce
the global effect of fossil fuels. Conclusively, this has been proved a successful conversion analysis of
lipid extract and clearly shows that producing biofuel from microalga biomass after optimizing the
pre-treatment process is potentially feasible”.
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