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Abstract: Conventionally, a manufactured product undergoes a quality control process. The quality
control department mostly ensures that the dimensions of the manufactured products are within the
desired range, i.e., the product either satisfies the defined conformity range or is rejected. Failing
to satisfy the conformity range increases the manufacturing cost and harms the production rate
and the environment. Conventional quality control departments take samples from the given batch
after the manufacturing process. This, in turn, has two consequences, i.e., low-quality components
being delivered to the customer and input energy being wasted in the rejected components. The aim
of this paper is to create a high-precision measuring (metrology)-based system that measures the
dimension of an object in real time during the machining process. This is accomplished by integrating
a vision-based system with image processing techniques in the manufacturing process. Experiments
were planned using an experimental design which included different lightning conditions, camera
locations, and revolutions per minute (rpm) values. Using the proposed technique, submillimeter
dimensional accuracy was achieved at all the measured points of the component in real time. Manual
validation and statistical analysis were performed to check the validity of the system.

Keywords: quality control; metrology; machine vision; Industry 4.0

1. Introduction

The Fourth Industrial Revolution (Industry 4.0) brought about changes in the man-
ufacturing techniques and processes to achieve the highest quality of products. To meet
this challenging situation, innovation and implementation of new technologies for quality
control are essential for industrial sectors [1]. Manufacturing methods and processes are
changing rapidly due to the ever-demanding situation of industries producing quality
products. Product quality is a major concern, especially in the manufacturing of high-value
components. Manufacturing errors are not affordable in many industrial sectors, such as
automotive, aerospace, medical science, and large research and development facilities [2].
An error in the dimensions during manufacturing can translate into much larger prob-
lems. Cost requirements and design quality are two major factors in the manufacturing of
high-value components [3]. The quality control phase in the manufacturing process is the
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next-most important phase, which defines the cost of the overall manufacturing process [4].
Different standards were considered for assuring the quality of production, which helps
filter out flaws in the manufacturing process. In addition, the geometry of the designed
component is precisely measured once it is manufactured [5]. Control over quality in
manufacturing is an extremely important feature, as it can reduce the cost of manufacturing
significantly [6]. Different types of sensors are used to ensure real-time monitoring of the
products and detect possible defects during the manufacturing phase [7]. Metrology is
the measurement of any defects or deformities in a designed product that are incurred
during the manufacturing process [8]. Different instruments and metrology process such
as in situ metrology, in-line metrology, and in-process metrology are used to achieve more
efficiency as compared to a traditional setup [9]. Various contact and non-contact measuring
techniques that can be employed to inspect the geometry and dimensions of a workpiece
during manufacturing are discussed in [10].

Vision-based inspection is gaining popularity and is also widely used in many indus-
trial applications, including inspection, identification of parts, control, and guidance [11].
The placement of the workpiece, selection of sensors, and lighting conditions play a vital
role in increasing flexibility, reliability, and productivity and can be incorporated with
an image-processing algorithm to observe the minor details of manufacturing and detect
flaws [12]. Machine-vision-based algorithms are used for improving the quality of the
manufacturing process [13]. Moreover, a machine-vision-based algorithm can be used
to determine the quality of metal containers [14]—controlling the quality by filtering out
defective pieces [15]—by detecting scratches and burns, and by inspecting various equip-
ment [16,17].

Automated visual inspection provides a good solution for filtering out the best-
designed products from the ones which do not meet the design criteria [18]. One of
the most basic steps in automated visual inspection is the image acquisition used in
the semiconductor industry [19]: inspection of thermal fuses and detection of cracks in
bridges [20].

To assess the workpiece’s properties from the machined surface to the bulk mate-
rial and guide the following processes, an automatic and accurate microhardness profile
measurement method using image-processing technologies was proposed [21]. On the
basis of machine vision, a method of measuring thread dimensions to implement non-
contact, rapid, accurate measurements was proposed. The measurement samples were
metric threads, and the images of thread profiles were obtained with a backlight during the
measurement process [22]. A vision-based and high-precision method was used to measure
shaft diameter for components produced on a lathe. The difference achieved in the results
was up to ±0.03 mm. The study measures shaft diameter under static conditions and not
during the process [23].

Although modern equipment such as CNC machines has provided the facility of
manufacturing in less time and with great accuracy [24], when mass production is involved,
quality becomes an issue when employing a conventional quality control operation [25]. A
small change in dimensions during the manufacturing phase can contribute to huge losses.
Therefore, in-process measurement of the dimensional parameters can save a lot of effort
and time for the manufacturers [26,27].This process can be made more efficient by carrying
out the metrology-based inspection as close to the production line as possible.

Surface metrology can prove to be very important in cases where cutting operation is
performed for surfaces and can provide much-needed directions for the manufacturing
machinery to make the workpiece as accurate as possible [28]. In [29], Jianming et al.
presented vision-based detection of a cylindrical object that measures the diameter of a
small cylindrical object using only one camera with high precision. Although the precision
achieved was up to 0.08%, it was not achieved during the machining process. Using a non-
contact, high-precision method for measuring the diameter of a shaft based on digital image
processing to optimize the camera model, the camera was calibrated using feature points
in the image’s measurement area. The authors proposed a shaft diameter measurement
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method based on the model’s parameters. Despite the fact that the average measurement
error was only 0.005 mm, the measurement was performed on a pre-machined shaft
under static conditions rather than on a lathe [30]. The diameter of a turned workpiece
with curvatures was measured using a modified triangular laser displacement sensor.
To ensure high accuracy, the parallelism between the workpiece axis and the travel of
the laser sensor was required to be within 1.5 m, adding complexity to the experimental
setup [31]. A machine-vision-based in-line inspection method was developed for roundness
error that includes a camera, work holding tools, lighting, and image processing software.
The measurement was performed without any machining operation [32]. Liu et al. [33]
proposed a technique which uses a line-structured laser and a camera to measure shaft
diameters. The image of the shaft’s line stripe was projected onto the virtual plane. The
camera parameters should be precisely calibrated for this method.

A number of researchers used full and fractional factorial DOE methods in their
studies, so it is critical to choose the appropriate design from which experimental runs
will be determined in order to obtain the required results. The design of experiments
(DOE) method is a systematic method for determining the relationship between factors
influencing a process and its output [34]. The DOE method can be divided in full factorial
design (FFD) and fractional factorial design, known also as Taguchi experimental design
(TED) [35,36]. In FFD design, all combinations of the parameter levels are tested in order to
analyze the results. Sheth and George recognized that spindle speed, feed rate, and their
interactions have a significant impact on cylindricity. They concluded that cylindricity
is minimal at lower spindle speeds [37]. The Taguchi optimization method is used to
optimize the fused filament fabrication process’s parameters to improve shape deviations
such as the cylindricity and circularity of 3D printed parts. As variable parameters for
experiments on cylindricity and circularity, the effects of thickness, infill pattern, number of
walls, and layer height were investigated [38]. The effects of various operational parameters
on surface roughness have been investigated, including abrasive mass flow rate, traverse
speed, and nozzle standoff distance [39]. The design of experiment is used to investigate
the performance of the proposed process [40].

The aim of this paper is to develop a high-precision measuring (metrology)-based
system during the machining process which measures the dimensions of the object in real
time for different input parameters (DOE). This is achieved by combining a vision-based
system with image processing techniques during the manufacturing process. This study
develops the technology for implementing real-time in-process measurement for quality
control during the manufacturing process. The proposed system measures the difference at
submillimeter ranges for all designs of the experiment (DOE). This research paper illustrates
two important facts: first, the accuracy of the proposed system; secondly, the results
demonstrate submillimeter accuracy for a cluster of data points of the workpiece for the
respective DOE in real time. This technology bridges the gap between the manufacturing
process and real-time quality control (metrology) inspection, as shown in Figure 1.
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Figure 1. Proposed in-process measurement solution.

2. Methodology

In this paper, the diameter of the cylindrical shape is measured under different en-
vironmental conditions. The experimental setup includes the CNC machine, a machine
vision system, a light source, a workpiece, and the calibrated object. Different parameters
are considered to analyze the proposed process measurement system (distance between
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the workpiece and the camera, distance between the workpiece and the light source, and
revolutions per minute of the CNC machine). All these parameters and their dimensional
results are acquired as per the design of experiment (DOE) and validated through manual
measurements (Vernier caliper) and statistical data analysis.

2.1. Design of Experiment

The design of experiment is applied to the finalized parameters from the research
gap [41]. The three-level full factorial design is used in this study for experiment design.
In a 3k factorial design, k factors are considered at three levels each. The three-level
designs were proposed to handle the case of nominal factors at three levels. The first
parameter chosen was distance between the work piece and the camera because image
pixel resolution is critical when measuring objects with vision-based technology. As a
result, various distance values were set, such as 29.9 cm, 35 cm, and 45 cm, in order to test
their impact on the final result of the proposed system depicted in Table 1. The readings
were taken and measured in real time while the workpiece was being machined. Therefore,
in order to protect the equipment—specifically the camera lens—from machining particles,
the minimum distance between the camera lens and the workpiece was set to 29.9 cm for
the given experiment, as shown in Table 1.



Sustainability 2022, 14, 7472 5 of 17

Table 1. Design of experiment (DOE) factors.

S. No Distance between
Workpiece and Camera (cm) Distance between Workpiece and Light Source (cm) RPM

Workpiece and Light 1
(Upper) Distance (cm)

Workpiece and Light 2
(Lower) Distance (cm)

Workpiece and Light 3
(Camera Front Light) Distance (cm)

1 26.9 12 7 25 40

2 26.9 16 7 25 40

3 26.9 20 7 25 40

4 26.9 12 7 25 65

5 26.9 16 7 25 65

6 26.9 20 7 25 65

7 26.9 12 11 25 110

8 26.9 16 11 25 110

9 26.9 20 11 25 110

10 35 12 11 32.5 40

11 35 16 11 32.5 40

12 35 20 11 32.5 40

13 35 12 11 32.5 65

14 35 16 11 32.5 65

15 35 20 11 32.5 65

16 35 12 11 32.5 110

17 35 16 11 32.5 110

18 35 20 11 32.5 110

19 45 12 11 42.5 40

20 45 16 11 42.5 40

21 45 20 11 42.5 40

22 45 12 11 32.5 65

23 45 16 11 32.5 65

24 45 20 11 32.5 65

25 45 12 11 32.5 110

26 45 16 11 32.5 110

27 45 20 11 32.5 110

The distance between the work piece and the light source was chosen as the experi-
ment’s second parameter to increase the pixel intensity level of the target and calibrated
object in the image. Therefore, different light intensities were deployed at different angles
with respect to the workpiece, which increases the brightness, visibility of the workpiece
and calibrated object. In CNC, lathe-turning is a machining operation in which the work-
piece rotates at high speeds while a fixed cutting tool removes material [42]; therefore,
revolutions per minute (rpm) of the machine was selected as the third parameter for design
of experiment. The speed range was set between 40 and 110 rpm to examine the effect of
lower and higher rpm rates on the accuracy of the result shown in Table 1. The three-level
full factorial design is given as:

Runs of Experiment = Ln (1)

where
L is the number of levels = 3
n is the number of factors (parameters) = 3, listed below. The factors used in the

current study are as follows.
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Revolutions per minute (RPM) of the machine.
Distance between the work piece and the camera.
Distance between the work piece and the light source.
Twenty-seven different experiments are performed, as per DOE, and are shown in Table 1.

2.2. Experimental Setup

For executing in-process measurement through the proposed method, an experimental
setup was installed which included equipment such as a workpiece used as the target object,
a calibrated object, a digital Vernier caliper, a CNC machine, a high-definition camera with
a tripod, and light sources, shown in Figure 2.
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In Figure 2, an experimental setup in which “A” is the camera, “B” is light source
1, “C” is the light source 2, “D” is the workpiece, “E” is the calibrated object, “F” is light
source 3, and “G” is the CNC machine is shown. The complete details of the equipment
used are shown in Table 2.

2.3. Machining Operation

The work piece is fixed in the CNC machine chuck and the machine vision system for
in-process metrology is set up. For machining operation (turning process), the GM codes
are generated through power mill, and the depth of cut is set to 2 mm. Once the calibration
process for the camera is completed, the CNC machine is turned on and the machining
operation is performed on the workpiece.

Table 2. Equipment detail.

S. No Equipment Model Detail

1 Turning Center FTC 30 Feeler/250 diameter/650 length

2 Camera Canon EOS 70D f-18 mm -153 mm

3 Workpiece Aluminum Alloy A3035

4 Calibrated Object Aluminum Alloy A3035

5 Light Source PC-12 12 W White Light

2.4. Camera Calibration

Before performing the measurement process (metrology), the camera is calibrated to
eliminate lens distortion. The intrinsic and extrinsic parameters of the camera are adjusted
to remove lens distortion effects from an image. An asymmetric checkerboard is used
as a calibration pattern. Around 40 pattern images from different angles are taken for
accurate calibration.
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2.5. Data Acquisition

Images are acquired from the camera in the first stage of data acquisition. As shown
in Figure 3, A, B, C, D are set as the target object’s measuring points with respect to the
calibrated object’s E, F points. For extracting the workpiece and the reference calibrated
object from the image f (x,y), the ground truth data are used, and image segmentation is
performed. The segmentation process splits the image into different segments, making it
easier to analyze the objects using the details in the pixels. The image f (x,y) is binarized
using Otsu’s auto-thresholding method. This method determines the best threshold for
minimizing the intraclass variance of binarized black and white pixels that separate the
objects and the background pixels. In this method, different intensity values are grouped
into two dominant modes. Then, any pixel (x,y) in the image at which f (x,y) > T is set as
the object pixel; otherwise, the pixel is related to the background. The segmented image,
g(x,y), is given by the following equation [43]:

g(x, y) =
{

1 i f f (x, y) > T
0 i f f (x, y) ≤ T

(2)

where T is a constant applicable over an entire image.
Sustainability 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

Figure 3. Real-time-captured RGB image of target object and the calibrated object. 

Both the workpiece and reference objects were identified separately using the label-

ing operation on the binarized image g(x,y) shown in Figure 4. The location of the cen-

troids for both objects in the image were identified using blob analysis provided by the 

Computer Vision Toolbox in MATLAB. The block of blob analysis gives the centroid co-

ordinates of a matrix. The center of mass for a binary image is the binary object’s average 

x and y positions. 

 

Figure 4. Binary processed image of target object and the calibrated object. 

The obtained parameters are then validated with a digital Vernier caliper. The flow 

chart of the proposed in-process measurement system is shown in Figure 5. 

Figure 3. Real-time-captured RGB image of target object and the calibrated object.

Both the workpiece and reference objects were identified separately using the labeling
operation on the binarized image g(x,y) shown in Figure 4. The location of the centroids for
both objects in the image were identified using blob analysis provided by the Computer
Vision Toolbox in MATLAB. The block of blob analysis gives the centroid coordinates
of a matrix. The center of mass for a binary image is the binary object’s average x and
y positions.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 17 
 

 

Figure 3. Real-time-captured RGB image of target object and the calibrated object. 

Both the workpiece and reference objects were identified separately using the label-

ing operation on the binarized image g(x,y) shown in Figure 4. The location of the cen-

troids for both objects in the image were identified using blob analysis provided by the 

Computer Vision Toolbox in MATLAB. The block of blob analysis gives the centroid co-

ordinates of a matrix. The center of mass for a binary image is the binary object’s average 

x and y positions. 

 

Figure 4. Binary processed image of target object and the calibrated object. 

The obtained parameters are then validated with a digital Vernier caliper. The flow 

chart of the proposed in-process measurement system is shown in Figure 5. 

Figure 4. Binary processed image of target object and the calibrated object.

The obtained parameters are then validated with a digital Vernier caliper. The flow
chart of the proposed in-process measurement system is shown in Figure 5.
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2.6. Manual Measurement

The validation of results is obtained with a digital Vernier caliper. The diameter of the
workpiece and the calibrated object are measured as 37.48 mm and 36.6 mm, respectively
shown in Figure 6. The readings are taken at different points on the workpiece, and the
average values are obtained. These values are used as nominal values to verify the in-
process measurement system. The values of the computed diameter at different points on
the workpiece after machining operation are found in the range of 33.43 mm to 33.53 mm.
The average value of 33.48 mm is selected as a reference value to evaluate the in-process
measurement system.
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3. Metrology Results

In the experiment, a calibrated object is used as a reference object to ensure the
accuracy of the measured values. The target and calibrated objects were both placed the
same distance from the camera, ensuring that their pixel measurements were identical. The
dimension (diameter) of the workpiece is estimated in real time at multiple points using
vision and image-processing technologies.

A cylindrical-shaped workpiece with a diameter of 37.48 mm is selected for the
experimental trials. The turning operation reduced the thickness of the workpiece by up
to 4 mm. Based on the given data, after one complete machining operation, the measured
diameter at different points of the workpiece is found in the range of 33.43 mm to 33.53 mm.
The average value of 33.48 mm is taken and set as actual value for real-time metrology
operation. The system measures the diameter of the workpiece from points A, B to C, D
using reference values from points E and F of the calibrated object in the binary image,
as shown in Figure 6. The calibrated object’s reading is taken very precisely because the
output is based on the reference object. As the values are measured with the reference
calibrate object, so the system achieves accuracy at the submillimeter level at thousands of
points of the workpiece. The deviation is calculated using the following equation:

Deviation Value = Original Value − Computed Value (3)

Graph Results Discussion

Twenty-seven experiments were performed as stated in the DOE using the defined
parameters. Figures 7–9 show three results, out of twenty-seven experiments, in which
the distance between the camera and the workpiece was set to its maximum value, i.e.,
45 cm, against the different lightning and rpm values. The graph is established between
the deviation values against the number of pixels for each experiment respectively. Total
of 1800 observations are studied. It is observed that each measured value lies close to the
reference value of 33.48 mm at all points against the specific pixel. The variation in the
graph shows that the error generated either falls closer to zero or produces (positive and
negative) deviation around the reference value zero. It can be observed that in experiment
21, 48%, 42%, and 9% of readings show zero, greater than zero, and less than zero error,
respectively, illustrated in Figure 7. In experiment 24, 10%, 35%, and 53% of readings show
zero, greater than zero, and less than zero error, respectively. Figure 8 shows an example of
this. Similarly, in experiment 25, the values are distributed as follows: 10% of the measured
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values show zero error, 24% show negative error, and 64% show positive error. Figure 9
depicts this.
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The lowest percentage errors were observed in experiment 21. It was found that by
decreasing rpm values at the given capturing distance, the proposed system shows error
in the submillimeter range. The graphs in Figures 7–9 show that values produced at all
the points from A, B to C, D against the specific pixel of the workpiece image constitute
thousands of values for each DOE case.

The experimental data produced by the in-process metrology experiment are sub-
jected to statistical analysis to empirically observe patterns and trends, if any, in the data.
Descriptive statistics are used to find the central point around which the data is clus-
tered. Inferential statistics are primarily used to test hypotheses regarding the error of
measurement observed.

4. Statistical Analysis

For analyzing the result from the proposed technique, 27 trials with different and
controlled DOE parameters are performed. In measurement and statistical analysis, these
trials are identified by index i, which varies from 01 to 27. Each trial resulted in a massive
real-time, repeated automatic measurement of the workpiece’s diameter, which is denoted
by Dij. For trial i, the subscript j is used to identify individual measurements taken on
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the same workpiece. The subscript j varies from 1 to the sample size in a particular trial,
varying from trial to trial. Further, Eij defining the error of measurement given as

Eij = Dij − 33.48 (4)

4.1. Descriptive Statistical Analysis

This paper summarized the results of three sample trials numbered 21, 24, and 25 from
the given set by performing different statistical analysis methods to prove how close and
frequent the measured value is.

4.2. Measure of Central Tendency

The mean, median, and mode are measures of central tendency; Table 3 shows these
values. The mean absolute error, a measure of uncertainty, was 0.035 mm for D21j, 0.050 mm
for D24j, and 0.083 mm for D25j. This clearly shows that even the worst case (D24j) is
accurate to one tenth of a millimeter. The mean relative error, a measure of uncertainty when
put in perspective, was 0.104% for D21j, 0.150% for D24j, and 0.249% for D25j. Therefore,
in all cases, error was much less than 1%. The maximum absolute error was 0.151 mm
for D21j, 0.135 mm for D24j, and 0.180 mm for D25j, which defines the maximum absolute
error of the measurement process as less than 0.2 mm. This shows that the results obtained
are valid.

Table 3. Measures of central tendency and dispersion.

D21 E21 D24 E24 D25 E25

Sample Size 1847 1847 1919 1919 1919 1919

Mean (mm) 33.45 −0.03 33.52 0.04 33.56 0.08

Median (mm) 33.48 0.00 33.53 0.05 33.57 0.09

Mode (mm) 33.48 0.00 33.53 0.05 33.57 0.09

Standard Deviation (mm) 0.05 0.05 0.05 0.05 0.05 0.05

Coefficient of Variation (mm) 0.14 173.22 0.13 110.82 0.15 65.09

The center of the data is calculated as in [44],

x =
∑ xi

n
(5)

where x = sum of all observations, n = no. of observation.
The average variation in the data around a central position is calculated as in [44],

s =
√

variance =

√
∑(xi − x)2

n− 1
(6)

4.3. Measure of Location

Percentiles are important measures of location. Table 4 shows the values of the selected
percentiles from P05 to P95. Together, these percentiles give an idea about the distribution
of the data around a central location (i.e., 33.48 for diameter and 0.00 for error). The median
(P50) value of E21j is 0.00 mm; the same value for E24j is 0.05 mm, whereas the same value
for E25j is 0.09 mm. This shows that compared to E21j, both E24j and E25j are slightly
upward-biased. However, the amount of bias (about 0.27%) is negligible. This shows the
validity of the findings obtained.
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Table 4. Measures of location.

D21 (mm) E21 (mm) D24 (mm) E24 (mm) D25 (mm) E25 (mm)

P00 = Minimum 33.33 −0.15 33.34 −0.14 33.43 −0.05

P05 33.33 −0.15 33.43 −0.05 33.48 0.00

P10 33.37 −0.11 33.48 0.00 33.48 0.00

P15 33.40 −0.08 33.48 0.00 33.53 0.05

P20 33.40 −0.08 33.48 0.00 33.53 0.05

P25 = Q1 = Lower
Quartile 33.44 −0.04 33.48 0.00 33.53 0.05

P30 33.44 −0.04 33.48 0.00 33.53 0.05

P35 33.44 −0.04 33.53 0.05 33.53 0.05

P40 33.44 −0.04 33.53 0.05 33.57 0.09

P45 33.48 0.00 33.53 0.05 33.57 0.09

P50 = Q2 = Median 33.48 0.00 33.53 0.05 33.57 0.09

P55 33.48 0.00 33.53 0.05 33.57 0.09

P60 33.48 0.00 33.53 0.05 33.57 0.09

P65 33.48 0.00 33.53 0.05 33.57 0.09

P70 33.48 0.00 33.53 0.05 33.57 0.09

P75 = Q3 = Upper
Quartile 33.48 0.00 33.57 0.09 33.62 0.14

P80 33.48 0.00 33.57 0.09 33.62 0.14

P85 33.48 0.00 33.57 0.09 33.62 0.14

P90 33.48 0.00 33.57 0.09 33.62 0.14

P95 33.52 0.04 33.57 0.09 33.62 0.14

P100 = Maximum 33.52 0.04 33.62 0.14 33.66 0.18

4.4. Measure of Dispersion

Coefficient of variation (CV) is a unitless relative measure of dispersion, whereas
standard deviation is an absolute measure and is therefore measured in the unit of data
provided. These measures are very important for quality control purposes. Table 3 provides
details about these measures of dispersion. CV less than 10% is considered excellent. The
coefficient of variation, a relative measure of uncertainty when put in perspective, was
0.14% for D21j, 0.13% for D24j, and 0.15% for D25j. Therefore, in all three cases, CV was less
than 0.2%. This shows that statistically, the results are highly consistent and reliable.

The variations observed in the mean of the data set are calculated as in [44],

CV =
Standatrd Deviation

Arithmetic Mean
× 100 (7)

4.5. Shape of Distribution

Skewness and kurtosis, along with histogram, are important measures used to describe
the shape of a distribution as shown in Figure 10. It is evident from these statistics that
although the data show negative skewness, the distribution for statistical testing purposes
may be considered symmetrical. Therefore, errors in observations are approximately
symmetrically distributed around a central value of 0.
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4.6. Statistical Inference

Statistical inference deals in the estimation and testing of research hypothesis to test
whether the data produced by a given trial is unbiased or not. The null hypothesis for the
discussion test, for a specified trial k, is given below.

Hk0. The population mean of a kth trial is equal to 33.48.

Mathematically,

Hk0 : µk = 33.48 against Hk1 : µk 6= 33.48 (8)

Hk1 is the alternate hypothesis, and µk denotes the unknown population mean of
all possible observations that, theoretically, can be obtained under trial k. Alternatively,
the given hypothesis can be a frame in terms of error of measurement. Let εk denote the
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unknown population mean of all possible error values that, theoretically, can be obtained
under trial k. Then, Hk0 can be given as:

Hk0 : εk = 0 against Hk1 : εk 6= 0 (9)

If the null hypothesis (Hk0) is accepted, this concludes that the measurements gener-
ated in trial k are unbiased. Otherwise, if an alternate hypothesis (Hk1) is accepted, then this
implies that the measurement process under trial k is biased and may require adjustment
or zero correction. The one-sample t-test is used to test the hypothesis in the discussion.
The t-test is calculated as [44],

t = (x− µ)/
(
s/
√

n
)

(10)

where
µ denotes the population mean
x bar is the sample mean
s is the standard deviation
n is the sample size
With an error of measurement analysis, µ is hypothesized to be equal to 0. The

alternate hypothesis states that it is different from 0. Preliminary information regarding the
test is given below in Table 5.

Table 5. Preliminary information of t-test [Hk0: εk = 0].

Trial (k) Sample Size Mean (mm) Standard
Deviation (mm)

Standard Error
of Mean (mm)

21 1847 −0.0278 0.0482 0.0011
24 1919 0.0408 0.0452 0.0010
25 1919 0.0791 0.0515 0.0012

Necessary results of the test are summarized in Table 6 below. The p-value column in
Table 6 shows the probability that the mean of sample is the same as the test value. Here,
p-value = 0.0000, which shows that there is a 0.0000 probability that the sample mean is
the same as the test value. Thus, the sample mean is actually different from the test value.
Therefore, this particular sample is biased.

Table 6. Detailed information of t-test [Hk0: εk = 0].

Trial (k) Value of
t-Statistic

Degrees of
Freedom p-Value Percentage

%

Mean
Difference

(mm)

99% Lower
Confidence
Limit (mm)

99% Upper
Confidence
Limit (mm)

21 −24.810 1846 0.0000 0.083% −0.0278 −0.0307 −0.0249
24 39.530 1918 0.0000 0.121% 0.0408 0.0381 0.0434
25 67.304 1918 0.0000 0.236% 0.0791 0.0761 0.0821

The p-value column of the test clearly shows that all of the listed sample trials are
biased. Trial 21 is downward-biased and, on average, creates values less than the actual
value, while cases 24 and 25 are upward-biased. It was observed that this might be an error
of the instrument (Vernier caliper), which is used for calculating the average nominal value
of the workpiece and the difference in the pixel intensity value concerning the threshold
value at the border of the objects. These errors can be removed by making a positive
correction of 0.0278 mm and negative corrections of 0.0408 mm and 0.0791 mm, respectively.
The statistical analysis shows that the in-process metrology provides a real-time, sufficiently
accurate, and reliable measurement method.
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5. Discussion

In this paper, the proposed system was developed to measure the diameter of the
workpiece in real time during the CNC lathe operation. Before the experiments, all the
possible DOE factors were defined for the given input parameters. In order to check the
system’s performance, the results were analyzed against different rpm rates and lightning
conditions with the camera location set at the highest position with respect to the workpiece.
The workpiece diameters, measured at multiple points for experiments 21, 24, and 25, were
in the ranges of (−0.05 mm, 0.03 mm), (−0.049 mm, 0.013 mm), and (−0.05 mm to 0.09 mm),
respectively. A similar study conducted by Jianming et al. [29] achieved precision between
0.082 percent and 0.318 percent against five data points, compared to 1500 datapoints in
the current study, with an accuracy range of 0.083 percent to 0.236 percent. Sun et Al.
measured the error up to 0.005 mm against four different measuring points. The maximum
and the minimum error were both found within the range of −0.004 mm to 0.006 mm [30]
compared to the current research, which has a range of−0.049 mm to 0.013 mm for a cluster
of 1500 datapoints. According to Ayub et al. [32], the roundness error difference between
the maximum and minimum values was 0.11 mm. In the proposed technique, a difference
of 0.0356 mm is reported.

6. Conclusions

The designed product undergoes a quality control process in manufacturing industries
to ensure the components’ dimensional accuracy after the manufacturing process (3rd
Industrial Revolution). A novel real-time metrology system which can be implemented for
quality control during the manufacturing process is proposed, developed, implemented,
analyzed, and statistically validated. It is concluded that better light conditions with a
higher resolution camera produce better results for the CNC lathe machine. The system
has submillimeter accuracy and can be extremely useful to save costs and time for a
conventional quality control department. The framework will be extremely helpful in
implementing the concepts of a smart factory (Industry 4.0) and reducing both waste and
the rejection of high-value components. The system can also be altered to provide factory-
level engineering management data, such as the number of components manufactured,
production rate, cutting time and other product performance parameters. At an application
level, in the future, the dimensions of many complicated objects can be collected in real
time using a mix of machine learning, deep learning techniques, and computer vision
technologies. Moreover, this technology can be deployed in different manufacturing
processes, including forging, etc., in which the dimensions of the object can be measured in
real time at high temperature.
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