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A B S T R A C T   

As a new generation of thermal insulation materials, the effective thermal conductivity of aerogel 
and its composites is extremely low. The nanoporous structure of aerogels demobilises the 
movement of gas molecules, and the nano-skeleton system restricts solid heat transfer because of 
the size effect. Numerous research and modelling works have been carried out to understand and 
predict heat transfers. This review thoroughly discusses the existing theories and models of silica 
aerogel composites in gas, solid and radiative heat transfers. It investigates the correlation of the 
pore size distribution and solid skeleton network of the composites with the thermal conductivity. 
The review then assesses the advances of the development and questions remaining for further 
development, including 1) some unexplainable performance of existing models and 2) improve-
ments required for gas and solid thermal conductivity models. Bridging the identified research 
gaps shall lead researchers to understand existing models better, develop a more accurate model 
based on more realistic microstructure simulation and further innovate the models for other 
emerging composites.   

1. Introduction 

Unlike other conventional nanoporous materials, several physical properties of silica aerogel are extraordinary, such as light-
weight, translucent, high specific surface area, high porosity, and extremely low thermal conductivity. Therefore, silica aerogel has 
broad application prospects in chemistry, heat, optics, electricity, and many other industrial applications [1,2], especially in 
high-efficiency thermal insulation materials for building [3–7], adsorbent materials [8–11], chemical catalysts and carriers [12–15]. 

The modelling work for silica aerogel composites mainly consists of three parts, namely gaseous conduction, solid conduction, and 
radiation, on which researchers usually focus. Although there are differences in the heat transfer of silica aerogel materials prepared by 
different manufacturers, based on the experiments and summary made by J. Fricke et al. [16] in 1986, we can conclude that, in 
aerogels, the convection of trapped gas in the pores is totally suppressed [17]. Effective thermal conductivity is calculated by summing 
the thermal conductivities of each way of transferring heat and the gas-solid coupling heat transfer. It is worth noting that gaseous heat 
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conduction to the effective thermal conductivity and gas thermal conductivity is different. The gaseous heat conduction to the effective 
thermal conductivity leads to the gas-solid coupling effect compared to the vacuumed situation. At a higher gas pressure, gaseous heat 
conduction to the effective thermal conductivity in a nanoporous media is even greater than that in free space [18,19] More than half 
of effective thermal conductivity is contributed by gas conduction at room temperature. The mechanism of gas conductive heat transfer 
among aerogels has been studied since 1935. From experiment-derived empirical models [20] to analytical models [19,21–23], many 
researchers have taken several decades to improve the heat transfer theory of nanoporous materials, such as silica aerogel. There are 
two significant ways to improve the modelling of gas conduction from the base of gas kinetic theory [21], i.e. using actual pore size 
distribution [19,22] and considering the influence of solid skeleton on the mean free path of gas molecules [23]. 

Solid conduction is the second significant way of transfer in silica aerogel composites. To accurately predict the thermal con-
ductivity of the solid phase, researchers have chosen two different routes: numerical models and analytical models. In the latest works 
[24–26], two ways of designing a model were considered together to some extent by many researchers. The state-of-the-art research 
has been trying to address the following three problems at the same time, including modelling individual nanoparticles [27], 
reproducing the spatial distribution of nanoparticles [26,28] and taking the additives, such as opacifiers and fibres into consideration 
[29]. 

For radiative heat transfer, theories are developed based on Rosseland diffusion theory [30]. The irregular additives can also affect 
the radiative heat transfer of silica aerogel composite. Mie’s theory [31] has been introduced to simulate the influence of spherical 
additives. Lee & Cunnington’s equation [32] is introduced for fibrous additives. 

To date, as silica aerogel composites are more and more widely used in various sectors, especially where space and thermal 
insulation performance are strictly restricted, such as aerospace, military, industry and building construction, the silica aerogel 
composite has become a frontier hotspot in the field of materials research. Some modelling works at the level of effective thermal 
conductivity were made [33] most of them focused on only one aspect of heat transfer instead of considering all the ways of heat 
transfer organically. For silica aerogel composites, there is an existing study on the effect of fibres and opacifier on heat transfer. 
However, improvement can be made due to the unrealistic periodic cubic, spherical hollow model of the solid skeleton [19]. Currently, 
silica aerogel materials cannot be accurately predicted in terms of their thermal conductivity. The lack of this research does not match 
the widespread use of silica aerogels. Hence, this review investigates the models developed, examines their fitness for various materials 
and systems, and identifies and directs further research needs for the engineering and research community. 

2. Aerogel composites as insulation materials 

Aerogel has a loose foam structure with high porosity. The silica aerogel solid skeleton’s particle size and pore diameter are less 
than 50 nm. The solid skeleton of silica aerogel includes primary and secondary particles; the dense amorphous secondary particles 
(1–2 nm) formed by condensation polymerisation of a silicon source are aggregated into spherical primary particles around 10 nm. A 3- 
D skeleton structure connects primary particles like a pearl necklace. There are a large number of pores between the nanoparticles, 
which makes the characteristic of low density, 100–200 kg/m3, and high porosity, 90%–99%, of the silica aerogel. 

Since the pores of silica aerogel are mainly in the nanoporous range (2–50 nm), which is smaller than the free mean path of the 
vibration of air molecules at room temperature, around 97 nm, the heat conduction of the air in the pores is significantly inhibited [34, 
35]. Therefore, silica aerogel has extremely low thermal conductivity, 12–20 mW/(m⋅K) at room temperature, which is much lower 
than conventional thermal insulation materials. 

Although silica aerogel composite has perfect thermal insulation performance, the high brittleness and low strength [36] signif-
icantly limit the practical application of silica aerogel. To reduce the brittleness and increase strength, fibres are usually added to silica 
aerogel to enhance its mechanical properties [36–38]. In order to examine how different additives enhance the mechanical properties 
of aerogel composites, various additives have been tested and compared with molecular dynamics (MD) [39]. The carbon-based 
nanocomposites showed significantly higher toughness values in axial and lateral loadings than the native and glass fibre rein-
forced silica aerogel composites. Madyan et al. investigate clay aerogel composites’ thermal conductivity and mechanical properties by 
adding Polyvinyl alcohol (PVA) of different molecular weights [40]. By only simply controlling the mixing temperature, clay-PVA 
aerogel’s mechanical strength will be enhanced effectively; for instance, the compressive modulus will be increased by 7-folds 
without any increase in solid content. The hydrophilic nature of aerogel could hinder both physical and mechanical properties of 
aerogels by implementing environmentally friendly water-repellent agents [41], organically modifying clay aerogel composites using 
monomeric silicone-based chemicals and isocyanates [42], or applying an ion exchange process [43], the high moisture absorbance is 
addressed, as well as the physical and mechanical integrity is maintained. Furthermore, the thermal conductivity of samples including 
5% clay and 5% PVA was significantly reduced by 22% from 52 to 42 W/(m⋅k) simultaneously to create an open-cell microstructure 
[44,45]. 

Min Cao et al. manufactured an entirely biomass-based aerogel with naturally abundant ammonium alginate (AL) and phytic acid 
(PA) [46]. As a result of the uniform 3-D porous structure, biomass aerogel demonstrates excellent thermal insulation performance 
with low thermal conductivity (34–38 mW/(m⋅K)). Through directional freezing and thermal imidization, an up-and-coming hy-
droxyapatite nanowires/polyimide (HAnws/PI) composite aerogel was synthesised by the ultralong HAnws combined with polyamic 
acid [47]. With the lowest radial thermal conductivity of 32.21 mW/(m⋅K) and an anisotropy factor of 2.2, the material excels at 
preventing additional heat loss through insulation pipes. An eco-friendly l freeze-drying method followed by thermal imidization made 
it possible to design and synthesise this layered double hydroxide (LDH) - graphene oxide (GO) enhanced polyimide aerogel with 
excellent thermal insulation [48]. At room temperature, the thermal conductivity of this composite aerogel drops to 36 ± 1.7 
mW/(m⋅K). A facile strategy was used to prepare tubular carbon aerogels from kapok fibres with improved mechanical resistance and 
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thermal insulation based on the tubular structures found in natural thermal insulation materials [49]. The gaseous voids in the tubular 
structure interfere path of heat transfer, resulting in a low thermal conductivity of 54 mW/(m⋅K) at 113.7 ◦C. All aforementioned 
studies above illustrate aerogel’s enormous potential. 

General speaking, additives such as fibre and plaster will improve the mechanical strength of aerogel composite and increase 
material density and thermal conductivity. A trade-off must be found to balance performance and cost of use. Nosrati et al. [50] found 
that 70% of aerogel-enhanced plaster had optimal balanced thermal performance and density. Another factor which influences the 
lifetime cost is the ageing conditions and results. From the study of Umberto et al. [51], we can conclude that the capability of 
aerogel-enhanced materials in maintaining their superior thermal performance can be up to 20 years. High relative humidity levels 
around all the ageing conditions are the most significant factors in thermal performance. 

With the above processes, it is essential to note that the processes inevitably complicate the estimation of thermal conductivity of 
aerogel insulation materials. Aerogels are almost transparent to radiation, making pure aerogels can hardly block heat transfer with 
radiation. Conventionally, additives such as opacifiers are applied to decrease the effective thermal conductivity in practice [29]. In 
the latest research, more complicated processes are applied to break through the limits of the past. The silica aerogel composite was 
successfully manufactured and reinforced with a reticulated SiC skeleton (SiC/CF-Aerogel) to achieve acceptable insulation perfor-
mance with thermal conductivity of 161 mW/(m⋅K) at 700 ◦C [52]. Moreover, the 3-D reinforcement enhanced the mechanical 
properties, including extending the performance of aerogel materials [53]. 

The thermal conductivity of porous materials is usually composed of the porous medium’s solid and gaseous heat conduction. The 
solid thermal conductivity () of materials can be expressed as [54]: 

λs = (1 − Π)λs,0 (1)  

where, Π is the porosity of the porous material and λs,0 is the intrinsic thermal conductivity of the solid. The heat conduction of the 
porous medium is mainly related to the porous medium, pore size distribution and pore volume. It can be seen from equation (1)) that 

Fig. 1. Evolution of gaseous thermal conductivity in silica aerogel composites.  

Z. Fu et al.                                                                                                                                                                                                              



Journal of Building Engineering 57 (2022) 104814

4

the lower the relative content of solids in the material, that is, the higher the porosity of the porous material, which results in the lower 
thermal conductivity coefficient. Silica aerogel has an ultra-high porosity of 90%–99%, so it has a low thermal conductivity and 
prerequisites for becoming a thermal insulation material. 

3. Modelling gaseous conductive heat transfer 

3.1. Evolution of models for gaseous thermal conductivity in silica aerogel composites 

There are two types of gaseous thermal conductivity models in silicon aerogel composites: empirical and theoretical models. The 
evolution of models can be summarised in Fig. 1. 

The empirical model was proposed by Fricke et al. [20] in 1992. However, the empirical model lacks necessary parameters, such as 
temperature and air pressure, making it valueless in reality and is no longer widely applied. 

The earliest theoretical model was proposed in 1935 by Kistler et al. [55], the inventor of aerogel. Instead of hydrodynamics, Kistler 
used gaseous kinetic theory to explain the movement of a single gas molecule in nanoporous materials (silica aerogel) on a micro-scale 
and obtained the final gaseous thermal conductivity. However, as the first theoretical model, the extensive variation between the 
predictions and the experiments without considering the interaction between gas molecules after the pressure rises. The model also 
contains a coefficient that is difficult to calculate in the experiment (reflected fraction). 

After more than three decades of evolution, the original Kaganer model was developed in 1969 [21]. The model has been optimised 
built on the previous Kistler’s model to make more accurate predictions. Unfortunately, the error between predictions and experi-
mental results obtained by the best Kaganer-based model is still 10%. 

Kaganer model introduces the Knudsen number, which is the ratio of the mean free path of the gas molecule to the pore diameter, to 
describe the effect of temperature and pressure on the thermal conductivity of the gas. The Kaganer model uses the two parallel plates 
assumption. By studying one gas molecule at a time, one can establish the relationship between the micro parameters and gaseous 
thermal conductivity. 

Although the accuracy is not ideal, the Kaganer model is a milestone across the age. The deviation in the Kaganer model mainly 
results from the oversimplified consideration of the values of mean free paths of gas molecules and pore sizes of materials. The large 
deviation is also due to the constraint of the experiment at the time, i.e., defective experiments to determine pore sizes. To date, 
experiments have proven that the general concept of the Kaganer model is accurate. Almost all of the later developed models have been 
based on the Kaganer model. 

The Kaganer model assumes that all pores in the silica aerogel have the same size, which is unrealistic. According to Reichenauer 
et al. aerogels can be represented by two mean pore diameters with different values; this can be expressed in the superposition form 
[8]. Therefore, Reichenauer et al. assumed that the pore size of the silica aerogel conformed to the Gaussian distribution and rewrote 
the Kaganer model accordingly. However, the normalised factor N of the Gaussian distribution is difficult to obtain and can only be 
calculated separately after integration. 

To solve this problem, Bi et al. [23] intercepted the Gaussian distribution to only the range of [D-3σ, D+3σ], thereby simplifying the 
calculation of the normalised factor N. Later, Bi found that the diameter of the pores of the silica aerogel was not a standard Gaussian 

Table 1 
Gaseous heat transfer models developed in silica aerogel.  

Model Year Equation Characteristics 

Empirical model [20] 1992 λg = Cgρ− 0.6 The most widely used empirical model, but the value of the gaseous 
thermal has nothing to do with pressure and temperature; hence, it does 
not match the actual situation. 

Kistler model [55] 1935 
λg = 0.058a

̅̅̅̅̅
M
T

√

cvl0
L

2(1 − a)
l0
p
+ a
(

L +
l0
p

)
The first model which designed based on gas kinetic theory and free 
mean path of gaseous molecules. The size effect is considered. 

Kaganer model [21] 1969 λg =
πλ0

1 + 2βKn
=

Πλ0

1 + 2β · lg/D 
The first model which designed based on two parallel plates 
assumption. The pore size distribution is simplified to a single value. 

Reichenauer model (a.k.a. 
Gaussian model) [57] 

2009 

λg(D,σ) =
1
N

∫
λ0

(
1 +

2βl(p)
D′

)e
−
1
2
(D′

− D)2

σ2 dD′

It was improved from the Kaganer model, with the consideration of the 
Gaussian distribution of pore diameters. However, after integration, the 
value of factor N must be computed apart. 

Bi model [23] 2012 λg =
∑n

i=1
ΦiK(Di)

Φi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ΔD
̅̅̅̅̅̅
2π

√
σ
e
−
(Di − D)2

2σ2 Di ∈ [D − σ,D + σ]

2ΔD
̅̅̅̅̅̅
2π

√
σ
e
−
(Di − D)2

2σ2 Di ∈ (D + σ,D + 3σ]

Improved from Reichenauer model, with the simplified calculation and 
emphasised the influence of large pores. 
Pores with diameters outside the range [D − σ,D+3σ] are ignored, which 
simplifies the calculation of the normalisation factor and considers 
more large pores that have a significant impact on the results. 

Zeng model [58] 1995 
λg =

60.22 × 105pT− 0.5Π
4.01 × 109p/T + 0.25Ssρ/Π 

By recalculating the restricted mean free path of gas molecules, Zeng 
et al. improved the Kaganer model by considering the influence of the 
solid skeleton of nanoporous materials (silica aerogel) on the mean free 
path gaseous molecules. 

*For the details of parameters, please refer to the next sections. 
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distribution. Instead, the asymmetric distribution lets the large pores have a wider distribution range than the tiny pores. In addition, 
the effect of large pores on the thermal conductivity of the gas is more pronounced than that of small pores. Therefore, Bi decided to 
consider only the pores with diameters in the range of [D − σ, D + 3σ], and double the influence coefficient to the gaseous thermal 
conductivity of pores with diameter in [D + σ, D + 3σ]. This improvement made the Bi model one of the most accurate models. 

However, Bi’s modification of the Kaganer model is only based on qualitative analysis. Whether ignoring the influence of pores with 
diameters in [D − 3σ, D − σ] or double the influence of pores with diameters in [D + σ, D + 3σ], the extent and selection of these 
thresholds lack rigorous theoretical and experimental supports. This over-simplification may cause the deviation by using the Bi 
model, and it is also a key point worthy of further analysis and improvement by researchers. 

When considering the movement of gas molecules in nanopores, the Kaganer model does not consider the influence of the solid 
skeleton on the mean free path of gas molecules. Based on this, Zeng et al. [56] further optimised the Kaganer model by proposing an 
improved mean free path calculation and obtained another accurate model. 

Model development with equations of Gaseous heat transfer in silica aerogel can be summarised in Table 1, which also summarises 
the main characteristic of various gaseous heat transfer models. 

3.2. Empirical model 

The gaseous thermal conductivity value can be obtained from the experiment by comparing the total thermal conductivities before 
and after evacuation. If the total conductivities before and after evacuation are denoted as λ and λevac respectively, the difference λ−
λevac equals the gaseous conductivity λg. As aforementioned, the gaseous thermal conductivity could be related to pore geometry and 
solid substance of materials; based on this, Fricke et al. [20] has experimented with four different aerogel densities, namely ρ = 75,
120, 150 and 230 kg/m3 at T ≈ 300 K and predicted the gaseous thermal conductivity with their density. The experimental results are 
plotted in Fig. 2. 

Such the experimentally derived dependences can be approximated as: 

λg∝ρδ, with δ ≈ − 0.6 (2) 

It is worthy to note that only the gas in open-pored materials, such as aerogel, could be evacuated when the environment 
depressurises. In a closed-cell material, the air pressure within the pores is essentially unchanged during decompression because the 
gas cannot leave the closed pores. Consequently, this idea of designing comparative experiments is only valid for materials with open 
pores. 

The logarithm of λs and λg shows their linear correlation with the logarithm of density (Fig. 3). Since the average diameter of pores 
decreases when ρ increases, as anticipated, λg reduces with growing ρ. The empirical relationship between the gas thermal conductivity 
of aerogel λg and the density ρ was further examined by introducing an empirical constant Cg. Rearranging equation (2)) leads to, 

λg = Cgρ− 0.6 (3) 

When the material density is ρ = 70kg/m3, the gas thermal conductivity measured by the experiment was λg = 0.01 W ·m− 1 ·K− 1 

[59], therefore, the empirical constant Cg, can be calculated by equation (3) as Cg = 0.128 m5 · s− 3. 
The drawbacks of this empirical model are significant. Firstly, there is little theoretical basis; the credibility of the equation is 

entirely dependent on experimental accuracy. Secondly, the only parameter is density ρ, which cannot fully reflect microstructure, 
such as the structure of the solid skeleton and the distribution of pore sizes. Thirdly, the relationship between gas thermal conductivity 
and pressure, temperature and humidity cannot be revealed, making it impossible to calculate high-temperature and low-pressure 
scenarios, such as vacuum insulated panels. 

Fig. 2. ⋄: Thermal conductivity of aerogel at 1 atm, × : Thermal conductivity of aerogel at the vacuumed environment,Δ: Gaseous thermal conductivity, ○: Solid 
thermal conductivity (Replotted by Z. Fu) [20]. 
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3.3. Kistler model 

Hydrodynamics at the macroscopic scale investigates fluid flow in a much more extensive range than the mean free path of gaseous 
molecules. With hydrodynamics, regardless of the individual behaviour of molecules, the fluid is regarded as a continuous medium. 
However, the pore sizes of silica aerogel are at the nanoscale, smaller than the mean free path of gaseous molecules. Since the fluid flow 
of gas within the aerogel is a microscale fluid flow, hydrodynamics cannot be applied directly. Therefore, the Kinetic theory of gas is 
considered more appropriate for understanding gas flow at the microscale, as it is based on the material’s microstructure to explain 
thermal phenomena. In 1932, Kistler et al. [55] developed the gaseous thermal conductivity model for aerogel material. The model 
was correlated with the molecular mean free path of gas molecules as follows: 

λg = Bcvη (4)  

and 

η = 0.35ρvl (5) 

B,  in  m2
· kg− 1

, is a constant, cv,  in  J ·K− 1 ·m− 3, is the specific heat of the gas at constant volume, η ,  in  kg ·m− 1 · s− 1, is the 
viscosity, ρ is the density, v is the arithmetical average velocity of the molecules, and l is the mean free path of gaseous molecules. 

The gaseous thermal conductivity was finally deduced as: 

λg = 0.058
̅̅̅̅̅
M
T

√

cvl0
L

L +
l0

p
(6) 

This equation assumes that molecules reach thermal equilibrium with the surface with each impact before leaving. M is the weight 
of gaseous molecular, T is the given temperature. Within an aerogel, L signifies the mean free path of a highly attenuated gas, l0 is the 
typical mean free path of the gas at T and a pressure of 1 atm. Noteworthy is the fact that, due to the nanoporous structure of silica 
aerogel, L is usually substituted by the average pore diameter. 

When only the fraction a of the molecules comes to thermal equilibrium and the fraction 1 − a is specularly reflected, equation (6) 
is rewritten as: 

λg = 0.058a
̅̅̅̅̅
M
T

√

cvl0
L

2(1 − a)
l0

p
+ a
(

L +
l0

p

) (7) 

Kistler, the inventor of aerogels in 1931, was the first to study how gaseous heat transfer works within the aerogel. This Kistler’s 
model was also the first theoretical model designed to address the above problem. This model is rudimentary, and one of the drawbacks 
is the derivation of the coefficient 0.058. Earlier, the assumption has been made that all impacts experienced by gas molecules within 
aerogels occur on the surface. The assumption is very close to the truth, especially at lower pressures, but the coefficient should in-
crease slightly at higher pressures, with more direct interactions between molecules. With higher pressure, the value of L should 
increase slightly, and it is no longer accurate enough to be substituted by the average pore diameter. Furthermore, neither measuring 
nor calculating of the reflected fraction (1 − a) is easy. Therefore, for simplifying calculations, previous researchers usually assumed 
that a = 1. 

3.4. Kaganer model 

Aerogels are nanoporous materials typically have pores smaller than the mean free path of air (69 nm) in free space at 1 atm and 

Fig. 3. Y-axis: log λs and log λg, X-axis: log ρ, logarithm of aerogel density. The slope for the solid is α ≈ 1.5 and slope for the gas is δ ≈ − 0.6 (Replotted by Z. Fu) [20].  
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room temperature. The porous framework in a porous medium thus suppresses the motion of gas molecules; as compared to free space, 
gas thermal conductivity is much lower in nanopores. Kaganer described the impact of pore diameter on gaseous heat conduction using 
the mean free path of gas molecules and can help reveal how temperature and pressure influence gas phase thermal conductivity. As a 
widely used model of the gaseous thermal conductivity in micro or nanoporous media, the Kaganer model [21] was established by the 
assumption of two parallel plates: 

λg =
Πλ0

1 + 2βKn
(8)  

where, π is the porosity, λ0,  in  W ·m− 1 ·K− 1, is the thermal conductivity of the gas in free space, β is a coefficient (a dimensionless 
constant) related to the gas accommodation and adiabatic coefficient, the coefficient β for air is 1.55, which can be calculated by 
equation (13) and equation (14) in the next section. 

λ0 represent the gaseous thermal conductivity in free space as follow: 

λ0
g = (2.25γ − 1.25)*0.461(p/kBT)*

(
8kBT

/
πmg

)1/2*lg
(
CV,g

/
NA
)

(9)  

where, γ is the adiabatic ratio of the gas, kB = 1.38 × 10− 23J/K is Boltzmann constant, mg is the mass of gas molecules, CV,g,  in  J ·
K− 1 ·mol− 1

, is mole specific heat, NA,  in  mol− 1
, is Avogadro constant. 

The Knudsen number, Kn, indicates the proportion of the fluid molecules’ mean free path l to the scale of representative physical 
length L. In this case, it is also the proportion of the mean free path of the gas molecules lg to the average pore sizes D of the porous 
materials: 

Kn =
l
L
=

lg

D
(10) 

lg can be computed by the following formula: 

lg =
1
̅̅̅
2

√
πd2

gng
=

1
̅̅̅
2

√
πd2

g

·
1
p

kBT

=
kBT
̅̅̅
2

√
πd2

gp
=

kBT
̅̅̅
2

√
σ0p (11)  

where, ng,  in  m− 3, is the molecule number density of the gas, dg is the diameter of a gas molecule, and a value of dg = 0.353  nm for 
air molecules was taken. σ0 = πd2

g is the cross-section of the gas molecule. 
Then, one can substitute equations (10) and (11) into (8) and get 

λg =
Πλ0

1 + 2βKn
=

Πλ0

1 + 2β · lg
/

D
=

Πλ0

1 + 2β
kBT
̅̅̅
2

√
πd2

gp
·

1
kBT
̅̅̅
2

√
πd2

gp

·
lg

D

=
Πλ0

1 + 2β
kBT
̅̅̅
2

√
σ0p

·
1
lg
·
lg

D

=
Πλ0

1 +
̅̅̅
2

√
β

kBT
σ0p

·
1
D

=
Πλ0

1 +

̅̅̅
2

√
βkBT

σ0Dp

(12) 

Coefficient β [21]can be calculated as 

β =
2γ

γ + 1
·
2 − α

α ·
1

Pr
(13)  

where, γ is the ratio of the specific heats at constant pressure and constant volume, Pr is the Prandtl number, which is defined as the 
ratio of momentum diffusivity to thermal diffusivity, and the correlation coefficient α (a dimensionless constant) [60] is calculated as 

α =
4mgms

(
mg + ms

)2 (14)  

where, mg and ms represent the weights of gas and solid molecules, respectively. 
It can be found that when the mean free path of gas molecules is equivalent to the pore diameter of the system, the thermal 

conductivity of the gas phase will decrease significantly. 
Kaganer model is one of the most popular models for gaseous thermal conductivity; it works with both analytical methods [23] and 

numerical methods [61] of solid heat transfer. 
However, there are three possible drawbacks of the Kaganer model. Firstly, the mean free path lg can be different in nanoporous 

than in the free space. Secondly, the pore diameter D of the porous media does not consider the influence of pore diameter distribution. 
Pore diameter distributions are frequently complex and cannot be adequately modelled by Gaussian distributions. Thirdly, some 
coefficients may be challenging to measure in the experimental environment. 
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3.5. Reichenauer model 

Using the average pore diameter to describe pore distribution, the Kaganer model can analyse porous media with a very 
concentrated distribution of pore diameters. For more complex cases with wide pore size distribution and multiple typical pore sizes, 
Reichenauer et al. [19] proposed the concept of bimodal gaseous thermal conductivity for porous materials. In the case of two different 
pore diameters D1 and D2 and their respective contributions to porosity (φ1 and φ2), according to the model of the parallel plates, the 
overall gaseous thermal conductivity λg can be written as a linear superposition of the following two terms: 

λg =
Πλ0φ1

1 + 2βlg
/

D1
+

Πλ0φ2

1 + 2βlg
/

D2
(15) 

By introducing the Gaussian distribution function for pore diameter distribution, Reichenauer et al. [19] enabled the calculation of 
the gaseous thermal conductivity of aerogel by summing the thermal conductivity of each pore: 

λg(D, σ) = 1
N

∫
λ0

(
1 +

2βl(p)
D

′

)e−
1
2
(D

′
− D)2

σ2 dD′

(16)  

where, D′ is the convolution variable, σ is the standard error of the Gaussian distribution of pore diameters, or the standard deviation 
and N is a factor that normalises the integral to provide the correct total porosity. Ideally, the value of N is the quantity of pores that 
should be counted. However, a model such as this one is complex and inconvenient in calculations since N cannot be calculated within 
the integration. 

3.6. Bi model 

To address the above problem from the Reichenauer model and get an approximate solution, Bi et al. [23]proposed an 
approximation: 

λg =
∑n

i=1
ΦiK(Di) (17)  

where, n is the quantity of pores, i is the index of each pore, K(Di) is the gaseous thermal conductivity of each pore (determined by pore 
size Di), and Φi is the contribution of the pores with a diameter Di to the overall porosity. Assuming the pores are normally distributed: 

Φi =

∫Di+ΔD

Di

1̅̅̅
̅̅

2π
√

σ
e−

(D
′
− D)2

2σ2 dD′

≈
ΔD
̅̅̅̅̅
2π

√
σ

e−
(Di − D)2

2σ2 (Di > 0) (18) 

Φi is the probability when the pore a diameter D′ locates in the diameter range of [Di, Di + ΔD]. If only pores with a diameter within 
the range of [D − 3σ, D+3σ] are being considered, about 99.74% of the population of pores will be included: 

lim
n→∞

∑n

i=1
Φi =

∫D+3σ

D− 3σ

1̅̅̅
̅̅

2π
√

σ
e−

(D
′
− D)2

2σ2 dD′

≈ 0.9974 (D − 3σ > 0) (19) 

For range [D − 3σ, D + 3σ], 99.74% of porous media pores are considered in calculating the λg. Thus, equations (18) and (19) with a 
computing deviation under 0.26% can be considered to be an approximate solution of equation (17). 

However, according to the experiment, pore diameter distribution in the nanoporous media is not a standard Gauss distribution; 

Fig. 4. Pore sizes distribution of one silica aerogel sample (Replotted by Z. Fu) [23].  
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large pores have a more comprehensive distribution range concerning the mean pore diameter than tiny pores, as shown in Fig. 4. 
Despite the non-uniformity and asymmetry of pore diameter distributions in aerogels, the following improvement was made 

addressed this situation. The pore diameter distribution function assumes the following form in order to emphasise the contribution of 
large pores to the total thermal conductivity of gaseous systems while simultaneously decreasing the contribution of tiny pores: 

Φi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔD
̅̅̅̅̅
2π

√
σ

e−
(Di − D)2

2σ2 Di ∈ [D − σ,D + σ]

2ΔD
̅̅̅̅̅
2π

√
σ

e−
(Di − D)2

2σ2 Di ∈ (D + σ,D + 3σ]
(20) 

It is apparent that this model neglects the contributions from the tiny pores, which have a diameter Di ∈ [D − 3σ,D+σ) to the λg and 
doubles the effect from the large pores, which have a diameter Di ∈ (D + σ,D + 3σ). 

In the previous study, the weight of the influence of a specific pore diameter on the gaseous thermal conductivity is only reflected in 
the number (possibility) of pores. However, this model doubles the weight of the pore in the range of (D + σ,D + 3σ), emphasising the 
influence of large pores. The weight of the pore in the range of [D − 3σ,D − σ] is set to 0; that is, their minor influence is ignored. 
Reichenauer et al. [19] addressed the non-uniformity problem by treating the pore diameter as a Gaussian distribution, and this model 
considered asymmetry through the above operations. 

3.7. Zeng model 

As aforementioned, one of the potential drawbacks of the Kaganer Model is that as the gas molecules in the aerogel collide, they also 
collide with the solid particles that lie within the aerogel. Zeng et al. assumes that the nanoscale solid skeleton changes the cross- 
sectional scattering area, which affects the mean free path of gas molecules. By adding a term in the denominator (lg) to represent 
the effect of the solid skeleton to mean free path of gas molecules, lg becomes: 

Fig. 5. Model performance under silica aerogel and fumed silica.  
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lg =
kBT

̅̅̅
2

√
πd2

gp +
1
Π

∫ ∞

0
πr2

s Ns(rs)drs

=
kBT

̅̅̅
2

√
πd2

gp + Ssρ
/

Π (21)  

where, Ns(rs)drs represents the number density of the solid particles of radius in the range of [rs, rs + drs]. Ss stands for the specific 
surface area, defined as surface area per unit mass. 

Taking the diameter of gas molecules dg = 3.53 × 10− 10  m  = 0.353  nm and the mass of one gas molecule 4.648× 10− 26kg into 
equation (21) yields 

lg =
1

4.01 × 109p
/

T + 0.25Ssρ
/

Π (22)  

and 

λg =
60.22 × 105pT − 0.5Π

4.01 × 109p
/

T + 0.25Ssρ
/

Π
(23) 

The specific surface area of aerogel Ss is determined by the porosity, pore diameter and particle diameter from experiments. λg is 
derived directly for nanoporous aerogel materials and used widely in thermal modelling studies [62]. 

3.8. Discussion of gaseous modelling 

The performance of the four latest models (pressure dependence of gaseous thermal conductivities) has been investigated and 
compiled in Fig. 5. The experimental values are extracted from Bi’s paper [23]. Zeng’s model performs the minimal error, and Bi’s 
model, as an improved version, is better than the Kaganer and Reichenauer models (Fig. 5a). However, the difference between the 
Kaganer and Reichenauer models is challenging to be identified, and both predictions are lower than the actual value. 

Reichenauer model uses a more realistic pore size distribution of nanoporous materials than the Kaganer model, but surprisingly, 
their prediction results are almost identical. The reason may be that the effect of large pores and small pores are offset by each other in 
the Gaussian distribution of pore size when applying the Reichenauer model. Despite featuring symmetry distribution, the Gaussian 
Distribution still cannot adequately picture the pore diameter in the actual aerogel materials. In contrast, aerogels always have 
asymmetric pore size distributions. The Bi model achieves a better result than the Reichenauer and Kaganer models by addressing the 
pore size distribution simulation. 

However, if one compares the results between silica aerogel and fumed silica (powder), a different phenomenon may be revealed 
(Fig. 5b). It is apparent that Kaganer and Reichenauer’s models still give similar underestimated predictions (adapted from Ref. [23]). 
However, it seems that Zeng’s model loses its advantages, performs worst, and gives a most underestimated result. This unexpected 
change cannot be explained from the current theory, and even the team that did this experiment couldn’t explain the difference either. 

It can be concluded that there is much research required in future that may lead to potential improvement of predictions. These may 
include that firstly, the different performance between different models should be investigated with different materials, e.g., silica 
aerogel and fumed silica (powder); Secondly, a more realistic pore size distribution is to be established for nanoporous materials. The 
Bi model does not truly consider the skewness of the distribution. If one can calculate equation (17) with an accurate pore size dis-
tribution, it is expected that one will get a better prediction; Thirdly, both Zeng and Bi’s models have their unique advantages, but no 
one has yet integrated them. It is worth considering a more realistic pore size distribution with gaseous molecules modified free mean 
path. 

Fig. 6. Microscopic view of silica aerogel sample [63].  
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4. Modelling solid conductive heat transfer in aerogel composites 

Aerogels are nanostructured solid networks formed by the agglomeration of nanoscale particles (Fig. 6). On the solid conductive 
heat transfer, the nanoscale skeleton has two effects: Firstly, because of its complex nanoscale porous structure, the solid skeleton can 
extend its conduction paths. Meanwhile, since the characteristic length of the solid skeleton is similar to the phonon mean free path, 
the heat transfer through the solid skeleton is also restricted by the size effect. Both effects reduce the heat transfer via solid skeleton. 

Modelling solid conductive heat transfer in silica aerogel can be categorised into empirical, analytical, and numerical methods. An 
analytical method consists of a closed-form mathematical solution to the governing transport equation under the assumptions of the 
initial and boundary conditions. The finite difference method or finite element method is applied in a numerical model. The semi- 
analytical method combines numerical and closed-form solutions to solve the governing equation. 

4.1. Empirical method 

Fricke et al. calculates the difference in thermal conductivity before and after the gas is extracted to obtain the value of the gaseous 
thermal conductivity since the solid conductive heat transfer is irrelevant to the air pressure [20]. After the gas is pumped out, ra-
diation and solid conduction remain. Although radiative heat transfer can be stopped completely when the temperature is at absolute 
zero (0 K), according to thermodynamic law, it is impossible to reach absolute zero using only thermodynamic means [64]. 

Fricke et al. measured the thermal conductivity of four opacified silica aerogels and treated the temperature as an independent 
variable in a vacuum environment to eliminate the radiative heat transfer. Although absolute zero is unreachable, one can calculate the 
intersection point of the fit line with the vertical axis, the value of solid conductivity λs can be estimated. In Fig. 7, the temperature- 
dependent variation of λs for various evacuated silica aerogels is shown. According to the experiment, these are around 0.009, 0.004, 
0.003 and 0.002 W ·m− 1 ·K− 1 for the different aerogels. The densities for each silica aerogel are ρ = 75, 120, 150 and 230 kg/m3 

respectively. 
As anticipated, λs increases with increasing ρ. The dependences can be estimated via experiment as 

λs∝ρα, with α ≈ 1.5 (24) 

Throughout this experiment, one can assume that solid conductive thermal conductivity is unchanged and independent of tem-
perature. However, this assumption is incorrect [65], which seriously compromises the credibility of this empirical model. 

4.2. Analytical method 

4.2.1. Periodic unit model 
Zeng et al. [62] proposed a periodic cubic array model of spherical nanoparticles to mimic the solid skeleton and simulate the heat 

transfer with silica aerogel materials (Fig. 8). The nanoparticles are assumed to be the full density primary particles. In addition to the 
intersecting spheres (Fig. 9a), Zeng et al. also introduced intersecting square rods (Fig. 9b) and intersecting cylindrical rods (Fig. 9c) to 
represent the solid skeleton. With these assumptions, the thermal conductivities of these structures were calculated via the equivalent 
circuit method. Nevertheless, intersecting square rods model and intersecting cylindrical rods model does not perform well and have 
not been widely used. Therefore, the investigation focuses on intersecting spheres model in the next. 

It is worth knowing that all possible heat transfers are included in the current Zeng’s model. However, in this section, we are only 
interested in solid conduction. From the top to the bottom of a cell, energy is transferred in four parts, namely Q1g transferred by the gas 
in the gap formed by two spheres in contact; Q1s transferred due to solid direct contact of the spheres; Q2 transferred from the spheres at 
the bottom to the spheres at the top through the gas; Q3 transferred by the gas inside the cell, as discussed below: 

Fig. 7. Thermal conductivity λevac of various evacuated opacified monolithic SiO2 aerogels vs T3
r . (+) ρ = 230 kg*m− 3, 2.5% soot; (▴) ρ = 150 kg* m− 3, 10% soot; (●) 

ρ = 120 kg*m− 3, 5% soot; (◆) ρ = 75 kg*m− 3, 5% soot [20]. 
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Q1g =

∫

a
2

d
2

(ΔT
n
)
2πxdx

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(d/2)2
− x2

√

ks
+

[
D
n
− 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(d/2)2
− x2

√ ]

kg

= −
πΔTdkg

2nβ

[
D

ndβ
ln
{

1 −
ndβ
D

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (a/d)2
√ }

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (a/d)2
√ ]

(25)  

Q1s =
π(a/2)2ΔTks

D
=

1
4

πa2ΔTks

D
(26)  

Q2 =
(D − d)2ΔTkg

D
(27)  

Q3 =

∫
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(d/2)2 − (a/2)2

√

0

4(n − 1)ΔTπxdx

2
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− x2

√
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+
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=
π(n − 1)ΔTd

β

⎛
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⎝

a
d
+

D
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ln
1 −
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D

1 −
βd
D

− 1

⎞

⎟
⎠kg

(28)  

Fig. 8. Model of geometric structure of aerogel.  

Fig. 9. Proposed skeleton of aerogel structure [62].  
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kf ,s =
Q1 + Q2 + Q3

ΔTD
=

Q1g + Q1s + Q2 + Q3

ΔTD

=

{
πα2

1α2
2

4(1 − β)
+
(
1 − α2

1

)
−

πα2
1

(
1 − α2

2

)

2β2 [β+ ln(1 − β)] +
π
β

(
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − α2

2

√ − α1

)[
1

βα1
ln

1 − βα1α2

1 − βα1
− (1 − α2)

]}

kg

(29)  

Fig. 10. Model of fibre-loaded aerogels. 
(a) microscale model; (b) nanoscale model; (c) heat flux path [27]. 
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α1 =
d
D

(30)  

α2 =
a
d (31)  

β = 1 −
kg

ks
(32) 

kg (thermal conductivity of gas) and ks (solid thermal conductivity of the rod of the cubic array) are determined on a case-by-case 
basis, not included in the original Zeng’s physical model. 

Based on Zeng’s model, Feng et al. [65]constructed a model to describe scale heat transfer mechanisms of fumed silica-based 
thermal insulation composites (with fibre additives). They studied the thermal conductivity of the composite at different tempera-
tures, including the proportion of gaseous conductive, solid conductive and radiative heat transfers. The Hamilton series model [66] 
was applied for the fibre additives to compute the integrated gas-solid conduction of the silica aerogel composites with non-spherical 
particles (fibres). 

Another application of Zeng’s model for aerogel-fibre composites is Zhao’s study [67]. Zhao et al. upgraded the model of 
fibre-loaded silica aerogels concerning the characteristics of fibres and silica aerogels [15]. The upgraded model is constituted with a 
cubic array of secondary nanoparticles considering both solid and gaseous heat transfer. To calculate the heat conduction for sec-
ondary particles, Wang et al. [59] designed a fractal model to calculate the thermal conductivity of non-metallic nanoporous materials. 
Moreover, for solid-liquid dilute suspensions, Maxwell’s theory [68] is usually applied to estimate the effective thermal conductivity 
with random spherical particles when there are no particle interactions. Zhao et al. borrowed Maxwell’s theory to mimic the heat 
conduction between aerogel and fibre. 

The Zeng model can also be applied with a multiscale system to predict the thermal conductivity of aerogel-fibre composites. 
Starting from the Zeng model, Lu’s designed a 3-D multiscale model [27] to analyse the influence of non-ideal structures and high 
temperatures on aerogel-fibre composites, as shown in Fig. 10. 

With the help of the equivalent circuit method, heat transfer from the top to the bottom was considered (Fig. 10a and b). There are 
three types of energy transferred by conduction (Fig. 10c), namely Q1 transfers vertically through the fibre skeleton, Q2 transfers inside 
the opacifier-loaded aerogel, and Q3 transfers from the upper fibre skeleton to the lower fibre skeleton. They can be expressed as 
follows: 

Q1 =
4n2ΔT
2n
kc

+
L
kf

(33)  

Q2 =
M(M − b)kopaer ΔT

L + 2n
+

kopaer (M − a)bΔT
L + 2n

+
(a − b)bΔT

b
kg

+
L + 2n − b

kopaer

+
b2ΔT

[ c
kg

+
L + 2n − c

kopaer

]
(34)  

Q3 =
2MnΔT

[ L
kopaer

+
n
kf

]
(35)  

where, ΔT represents the temperature difference between the upper and lower surfaces, kf is the fibre thermal conductivity, kop_aer is 

Fig. 11. Cubic array models of composite aerogel materials [69].  
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the coupled thermal conductivity of the opacifier-loaded silica aerogel, kc is the thermal conductivity of the joints between inter-
connected fibres, which is equal to either the thermal conductivity of the gas, kg, or the thermal conductivity of the silica aerogel, kaer, 
depending on which component fills the joint between the interconnected fibres. 

Based on Q1, Q2 and Q3, the final thermal conductivity is: 

keff , c =
(Q1 + Q2 + Q3)

ΔT(M + 2n)2 (L + 2n) (36) 

In addition to fibres, xonotlite is also a common aerogel composite additive. The calcium silicates of xonotlite-type contain hollow 
spherical agglomerates interspersed with fibres of several hundred nanometres in diameter. A typical aerogel pore size is between 10 
and 50 nm. In other words, the microstructures of xonotlite and aerogel do not adhere to the same dimensional scale and xonotlite has a 
much larger mean pore diameter than aerogel. As shown in Fig. 11, xonotlite-loaded aerogels can be treated as Zeng’s model of the 
cubic array of nano-spheres. 

The spherical hollow cube model can also be used with the equivalent circuit method. By removing the sphere from a cube, Dan 
et al. proposed a model with a periodic unit [70] (Fig. 12 and Fig. 13). It is noteworthy that this model considers the size effect in the 
final thermal conductivity calculation in contrast to Zeng’s model. However, similar to Zeng’s Model, Dan’s Model was derived with 
the equivalent circuit method. 

Four parts of the total heat flux were considered in the cube structure. 
Q1 represents the thermal conduction only through the solid structure: 

Q1 =
λsA1ΔT

a/2
=

λs

[
a2 − πr2

2
+ 2 arccos

( a
2r

)
r2 − a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 −
(a

2

)2
√ ]

a
ΔT

(37) 

Q2 represents the thermal conduction only through the gas within the cell: 

Q2 =
λgA2ΔT

a/2
=

λgπ
(
r2 − a2/4

)

2a
ΔT (38)  

where, A1 and A2 are the surfaces of thermal conduction. 
Q3 and Q4 represent the thermal conduction through gas and solid skeleton simultaneously (Fig. 12b), and are calculated as follows: 

Q3 =

∫a/2

̅̅̅̅̅̅̅̅̅̅̅̅
r2 − a2/4

√

π
2

xdxΔT
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − x2

√ /
λg +

(
a
/

2 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − x2

√ )/
λs

(39)  

where, k = λs/λg − 1. 

Fig. 12. (a) Overall spherical hollow structure; (b) one spherical hollow cube [70].  
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(40)  

where, a represents the cubic side length, r represents the radius of the spherical hollow, λs and λg are the thermal conductivity of solid 
and gas, respectively, and θ, θ0, and θ1 are intermediate variables for integration. 

The overall thermal conduction through the unit cell is: 

λc=
Q1 +Q2 +Q3 +Q4
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(41) 

There have been several attempts to calculate the structure of the nanoporous aerogel material using regular structures, such as 
cubic arrays of intersecting spheres and spherical hollow cubes. With regular structures, heat transfer analysis within the material is 
simplified, but such analyses overlook the complex microstructural properties of aerogel material. 

4.2.2. Fractal model 
Fractal structures are often observed in nanoporous materials, such as silica aerogels. When constructing the physical model, the 

fractal theory can be applied to simulate the irregular characteristics of the aerogel better. Xie et al. made a meaningful attempt [24] to 
integrate the intersecting spheres and fractal elements. A new fractal interlocking sphere model combines the classic Sierpinski sponge 
with the intersecting sphere structure (Fig. 14). The size effect on gas conduction and solid conduction is also a part of the consid-
eration in a fractal-intersecting sphere model. 

Cheng and Hsu [71] used equivalent circuit method to predict the effective thermal conductivity of the fractal-intersecting sphere 
model: 

k1
ae = 4kunit

(
1 − γ

2

)2

+
4kunitkgγ(1 − γ)

2kg(1 − γ) + 2kunitγ
+ kgγ2 (42)  

kn
ae = 4kn− 1

ae

(
1 − γ

2

)2

+
4kn− 1

ae kgγ(1 − γ)
2kg(1 − γ) + 2kn− 1

ae γ
+ kgγ2 (43)  

where, kg is the gaseous thermal conductivity, and kunit is the effective thermal conductivity of primary unit cell of fractal-intersecting 
sphere model (Fig. 14c), which can be expressed as: 

Fig. 13. (a) One unit cell (one-eighth of the spherical hollow cube); (b) exploded view of one unit cell [70].  
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kunit =

{
− 2k2
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(
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))

− M
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ks − kg

}

+ a2ks (44)  

where, M  =  cos  (arcsin  (a)), a is the ratio of contact resistance length to the diameter of the particle. 

4.3. Numerical method 

4.3.1. Periodic and fractal model 
Spagnol et al. [72] built a two-dimensional periodic fractal pattern to determine the heat flux and temperature field by solving the 

steady heat conduction equation for solid-gas coupling heat conduction with Fourier’s Law. 
In the Spagnol model, periodic models were designed with elementary Von Koch snowflakes. These geometries (Fig. 15) allow the 

modelling of the complex structure’s different pore sizes, fractality, and isotropy. Based on two parameters: density and tortuosity, the 

Fig. 14. (a) One cubic array cube (b) overall structure (c) one unit cell [24].  
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numeric model of effective thermal conductivity was built by Spagnol. 
At the steady-state conditions, Spagnol et al. solved the equation of ∇(− ki ×∇Ti) = 0 for both solid and gas phases via the 2-D heat 

diffusion equation. For the top (the hot side) and bottom side (the cold side), every place was assumed with the same temperature and 
flux, and the Dirichlet boundary conditions were imposed. The left and right sides are the adiabatic sides for heat transfer. Finally, the 

Fig. 15. a) brick wall model, (b)–(e) periodic Von Koch snowflakes at different order, and f) 2-D DLCA model [72].  
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finite differences method can be used to solve ∇(− ki ×∇Ti) = 0 (Fig. 16). 

keffX =
X

Y × (Thot − Tcold)
×

∫Y

0

(

− ki ×
∂Ti

xi

)

dy (45)  

where, X is the length of the vertical axis, and Y is the length of the horizontal axis. 
For the original model, Spagnol et al. made the following assumptions:  

(1) no heat convection between different phases (gas and solid).  
(2) temperature and heat flux change continuously at the interface between different phases.  
(3) The Kaganer model is used to analyse non-equilibrium effects with the rarefied gas. 

One of the most severe drawbacks of this model is no consideration of the size effect. 
Knudsen number is close to 1 since the free mean path of gas molecules is similar to the average pore size of silica aerogel materials. 
To take size effect into consideration of calculating thermal conductivity, Bi et al. [61] proposed an improved Spagnol model with 

two more assumptions and expanded the original model to three-dimension, as shown in Fig. 17, to make a more accurate prediction. 
To calculate the solid-gas coupling heat conduction of aerogels, Spagnol used the steady-state heat diffusion equation (46) as the 

numerical method, 

∂
∂x

(

λi
∂T
∂x

)

+
∂
∂y

(

λi
∂T
∂y

)

+
∂
∂z

(

λi
∂T
∂z

)

= 0 (46)  

where, λi can be λg (gaseous thermal conductivity) or λs (solid thermal conductivity) respectively. 
The first extra assumption compared to the original Spagnol’s model is introducing the size effect in solid heat conduction. 

Applying the approximation λs ≈ λbackbone of in equation (46), one can calculate λs by the kinetic theory: 

λbackbone =
CV νλ

3
(47)  

where, CV is the volume-specific heat, v is the mean sound velocity in the aerogel backbone, and Λ the average interatomic spacing in 
the aerogel backbone, determined by the diameter of aerogel particles and the space between aerogel particles. 

Compared to the original Spagnol’s model, Bi introduced the size effect of heat conduction in the gas phase as the second extra 
assumption. Total three equations are introduced with this assumption: 

D ≈
4Vpore

Sext
=

4
Sext

(
1
ρ −

1
ρs

)

(48) 

Fig. 16. Geometric parameters of one Von Koch snowflake; a) to calculate keffX and b) to calculate keffY [72].  
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dp ≈
6

Sextρs
(49)  

Φ = 1 −
ρ
ρs

(50)  

where, Vpore is the pore volume, Sext is the external specific surface area of aerogel, ρ is the aerogel density, ρs is the density of aerogel 
solid phase, and Φ is the aerogel porosity. 

Solving (48), (49) and (50) together, then Bi got the equation dp = 3
2 D 1− Φ

Φ and finally obtained the relation between the pore size D 
and particle size dp of the aerogel [61]. 

4.3.2. Aggregation model 
Aerogels are generally referred to as lightweight solid nanoscale materials, which are made up of nanoparticles aggregating to form 

solid networks that are nanostructured. To generate the random aggregated nanoparticle structure, the following three basic colloidal 
aggregation processes have been implemented, diffusion-limited cluster aggregation (DLCA) [73], ballistic cluster aggregation (BCA), 
and reaction-limited cluster aggregation (RLCA) [74]. In comparison to BCA, DLCA and RLCA are better for modelling the structure of 
silica aerogel. The DLCA process happens when nanoparticles adhere to each other upon collision if there is no significant repulsive 
force between them. The RLCA process occurs when there is a significant but not overwhelming interaction between the nanoparticles 
[25]. 

Fig. 17. Schematic of base-catalysed aerogel structures. (a) Aerogel backbone. (b) Regular triangular prism. (c) Cube. (d) Octahedron. (e) Regular hexagonal 
prism [61]. 

Fig. 18. Definition of pore size of the ordered structures. (a) Triangular. (b) Cubic. (c) Hexagonal [61].  
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The authors of the above articles have compared the advantages and disadvantages of various methods for generating aerogels in 
detail; however, they have not addressed the topic of heat transfer and have remained at the level of physical structure. Zhao et al. [28] 
applied the DLCA model to generate a 3-D random structure of aerogel material used to predict the effective thermal conductivity, 
including radiation and conduction. 

Every elementary cubic unit in the material was determined by DLCA generation, including the gas or nanoparticles. Inside a cubic 
box of side length N1, as shown in Fig. 19a, heat transfer simulation was calculated with gas or nanoparticles. The heat transfer was 
assumed for the cubic box itself through 6 adjacent cubic boxes, as shown in Figure 19b. 

The 3-D steady-state heat diffusion equation is: 

∇
(
kc∇T − q′′

r

)
= 0 (51) 

Subject to isothermal boundary conditions on the left and right faces and adiabatic boundary conditions on the other four faces 
(Fig. 18a), then, 

T(0, y, z) = Th (52)  

T(L, y, z) = Tc (53)  

∂T
∂y

(x, 0, z) =
∂T
∂y

(x, L, z) =
∂T
∂z

(x, y, 0) =
∂T
∂z

(x, y, L) = 0 (54)  

where ∇ is the 3-D gradient operator, q′′
r is the radiative heat flux, L is the insulation thickness or the cubic box side length, Th is the hot 

side temperature, Tc is the cold side temperature, and kc is the conductive thermal conductivity of the material in the cubic element, 
which is kg for gases or ks for the equivalent solid cubic element consisting of the nanoparticle and the gap gases between adjacent 
nanoparticles. 

The calculation started from the hot side (0, y, z) to the cold side (L, y, z). The heat diffusion equation (51) was solved with a finite 
volume method under the boundary conditions in equation (52), equation (53) and equation (54) to calculate the steady-state tem-
perature field in the cubic domain T (x, y, z). 

Similar to Zhao’s study, Zhu et al. proposed an improved DLCA to generate the structure of silica aerogel [26], which is shown in 
(Fig. 20a). With a small gap between adjacent particles, all particles are arranged in rows (Fig. 20b). It is possible to describe the 
structure of silica aerogels with the help of the generated 3-D model. Based on that unique structure, lattice nodes can easily enclose the 
gap between two particles. 

Zhao’s study solved the energy governing equation with the finite difference method (FDM). However, FDM, Finite element method 
(FEM) and Finite volume method (FVM) are macroscopic numerical methods used for the continuous medium in classical 

Fig. 19. (a) Boundary conditions; (b) lattice face-contacting six neighbouring lattices [28].  
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Computational Fluid Dynamics (CFD) methods. Strictly speaking, FDM, FEM and FVM cannot be applied to the nanoporous aerogel 
material. The Lattice Boltzmann Method (LBM) should be better. Multiple particle interactions are easily achieved using LBM and 
complex geometric boundary conditions. Therefore, over the decades, LBM has been successfully used as a mesoscopic approach to 
address heat transfer problems in micro and nanoporous materials [75]. 

There are advantages and disadvantages of periodic and aggregation models (Table 2). Therefore, it is essential to develop a 
strategy of taking advantage of two models for an accurate prediction. By doing so, one may obtain the randomness of the pore size and 
the solid skeleton distribution and calculate the effective thermal conductivity with analytical methods by considering each nano 
(primary) particle and even the nano-secondary particle. In addition, as discussed in the previous section 3.7, the randomness of pore 
sizes can be created more realistic by considering the actual distribution of nanopore sizes and achieving by the improved aggregation 
(DLCA) algorithm. 

4.4. Discussion of solid conduction modelling 

As one of the major heat transfer approaches in porous materials, solid heat conduction has been the focus of researchers trying to 
simulate. At first, when scientists had minimal knowledge about the microstructure of nanoporous materials such as aerogel, only 
empirical models could be obtained by experiments. Fricke et al. are the first group of recorded scientists who performed the repeated 
vacuumed experiments with the controlled variable of different environmental temperatures. Supported by experimental results, 
Fricke et al. assumed that the effective thermal conductivity and environmental temperature have a linear relationship; hence, the 
value of y-intercept in Fig. 7 is the thermal conductivity of solid conduction only. The idea of Fricke’s experiment is instructive to later 
scientists, but the assumptions for making the conclusions are flawed. Details are referred in Section 4.1. 

Due to the unremitting pursuit of the accuracy of prediction results, analytical modelling was performed by the later scientists with 
more advanced microscopes and tomography equipment. The initial thought is to treat the solid skeleton as a periodical structure, such 
as a cubic array by Zeng et al. Lu improved Zeng’s work by considering the microstructure as two scales: microscale and nanoscale 
achieve a more realistic physical modelling. Dan improved Zeng’s model from the other direction and treated the unit cell as a 
spherical hollow cube. All the periodic physical models are applied with equivalent circuits method to compute heat transfer. In 
pursuit of the simulation of more complex microstructures, fractal models were introduced by Xie, Cheng and Hse. However, although 
the idea of fractals adds endless complexity to physical models, fractal models are still overly idealised that ignore the irregularities of 
the reality of materials. 

The latest analytical model applies the idea of aggregation. Although the physical structures of the aggregation models generated 

Fig. 20. A improved DLCA generation result with a (93% porosity) generated (a) the overall structure; (b) the 2-D slice [56].  

Table 2 
The advantages and disadvantages of existing periodic and aggregative physical models.   

Advantages Disadvantage 

Current aggregation 
models 

1) More in line with the randomness of the skeleton of 
nanoporous materials 
2) Non-uniform pore size distribution 

1) No analytical method used to calculate thermal conductivity 
2) No consideration of nano secondary particles 
3) lack of consideration of the more complex actual pore size 
distribution 

Current periodic models 1) Easy to use analytical methods to calculate accurate thermal 
conductivity 
2) Consideration of nano secondary particles in some models 

1) Assumption of uniform pore size distribution, which is not 
realistic 
2) Assumption of periodic distribution of solid skeleton, which is 
not realistic  
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by different random seeds are different, scientists can obtain the most realistic microstructure and achieve the most accurate prediction 
of thermal conductivity, without the tomography, by repeating the experiment and taking the average. 

5. Modelling radiative heat transfer of aerogel composites 

Radiative heat transfer is the heat transfer from a heated object to a cold object via the radiant energy emitted from the heated 
object. The radiant energy, known as radiation, can be absorbed, reflected, or scattered when it transfers through the media. Rosseland 
diffusion approximation is applied to predict the radiative heat flux of aerogel substances. 

However, silica aerogel has a slight absorption coefficient in the range of 3 μm–8 μm, where radiation transfers a large amount of 
energy [76]. At room temperature, radiative heat transfer only contributes a small proportion of the effective thermal conductivity of 
silica aerogel, but this proportion will increase rapidly with the increasing temperature. Hence, opacifiers, such as carbon or TiO2, are 
added to silica aerogel materials to reduce thermal radiation transfer by efficiently absorbing and scattering the radiation. As a theory 
for particle scattering, Mie’s theory is the most commonly used and fundamental algorithm, and it is unrivalled in terms of particle 
scattering issues. In this theory, Maxwell equations can determine radiation characteristics for spherical particles. 

The unique three-dimensional network structure of silica aerogel causes low strength and brittleness, and it is often fragmented, 
which could be its most significant disadvantage. In most studies, researchers add fibres to improve the mechanical behaviour of 
aerogel. Fibres are mixed chemically and mechanically into the silicon aerogel skeleton to produce a composite aerogel with the fibre 
reinforcement method. There are currently a variety of inorganic fibres, such as glass fibres, mullite fibres, composite fibres, carbon 
fibres and polymer fibres. 

To compute the total extinction coefficient of aerogel composites, researchers need to calculate the extinction factors of aerogel and 
additives separately and add them together. Aerogel extinction factors are calculated by treating the silica aerogel material as a ho-
mogeneous medium without considering its nanoporous structure. Radiation calculation of aerogel is based on the material’s overall 
performance and not on nanoscale characteristics. For additives, due to the characteristics of absorption and scattering of radiation, 
researchers need to adopt different methods and ideas for different shapes of additives, such as sphere and long cylinder. 

These various shapes of additives complicate the calculation of radiation. In particle scattering issues raised by additives, the Mie 
scattering theory [31] is the most accurate as well as the commonly used method. Regarding fibrous additives, Lee and Cunnington 
developed Mie’s theory to make it applicable to non-spherical additives by calculating the total radiative properties of fibres from 
integrating each fibre’s radiative properties. As an alternative, van de Hulst’s Anomalous Diffraction Theory (ADT) can also be applied 
to approximate Einstein’s Mie theory. It can predict spheres, spheroids and cylindrical extinction efficiency within a reasonable range. 

5.1. Modelling radiative conductivity of aerogel 

Practically speaking, the optical thickness of nanoporous materials or fibre-based materials is typically substantial. Hence, the 
radiative thermal conductivity can be expressed based on the Rosseland diffusion approximation [30]: 

λr =
16n2σT3

3ρKe,m
(55)  

where, σ is the Stefan–Boltzmann constant, n is the mean refractive index, T is the absolute temperature, ρ is the density of materials 
and Ke,m is the specific extinction coefficient. 

5.2. Modelling radiative conductivity of additives (opacifier particles and fibres) 

5.2.1. Radiative conductivity of spherical additives 
Assuming that the opacifiers are spherical particles, according to Mie’s theory [31], the extinction factors of a single particle could 

be calculated by: 

Qeλ =
Ceλ

πr2 =
2
χ2

∑∞

n=1
(2n + 1)Re[an + bn] (56)  

where, Re is the symbol of the real part, r is the particle radius, χ is the size factor defined as πD/λ, where D = 2r is the particle diameter, 
Qeλ is the spectral extinction factor, an and bn are the Mie coefficients which are functions of particle’s complex refractive index (n −
ki). Using the above equation, it is necessary to first calculate the particle’s complex refractive index before calculating the scattering 
and extinction factors. 

Mie assumed that the distribution of opacifier particles in aerogel composites is sparse; hence, the scattering of every particle is 
independent. One can calculate the total radiative properties of opacifier particles once one gets the radiative characteristic of each 
particle by summing the contribution of all opacifier particles. 

Following is the relationship between total extinction coefficient and extinction factor for each individual particle: 

σeλ =
π
4
∑n

i=l
D2

i NiQeλ,i =
3
2
∑n

i=l
Qeλ,i

fv,i

Di
=

3
2

Qeλ
fv

D (57)  

where, Ni is the particle number density for the ith particle, n is the number of different particle sizes, fv,i is the volume fraction for the 
ith particle and given by fv,i = πDi3 Ni/6. 
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5.2.2. Radiative conductivity of fibrous additives 
Like Mie’s theory, one can calculate the radiative properties of fibres once one gets the radiative characteristic of each fibre by 

calculating integrating the total extinction coefficients of each fibre [32]. 

{σeλ} =

∫ωf 2

ωf 1

∫ξf 2

ξf 1

∫∞

0

2r{Qeλ}N
(
r
(
Rf
))

drd2F (58)  

where, d2F and N (r (Rf)) are the orientation distribution and number size distribution, and the limits of integration (ξf1, ξf2, ωf1, ωf2) 
denote the range of the angular orientation of fibres. For the case in which fibres are randomly oriented, the equation becomes: 

{σeλ} =
2fv

πr

∫π/2

0

{Qeλ(θ)}cosθdθ (59) 

The incident angle θ becomes 90◦ when fibres are located perpendicular to the direction of heat flow, and the equation becomes: 

σeλ =

∫ωf 2

ωf 1

∫ξf 2

ξf 1

∫∞

0

2r{Qeλ}N
(
r
(
Rf
))

drd2F =
2fv

πr
Qeλ (60) 

The Mie theory is feasible but inefficient since the calculation of the infinite series. Anomalous diffraction theory (ADT) [77] is an 
acceptable approximation to Mie theory which can predict the extinction efficiency of spheres, spheroids, and cylinders. Furthermore, 
based on the incident angle, fibre geometry, and optical properties, ADT provides an elegant mathematical model of fibre extinction 
efficiency. 

5.3. Discussion of radiative heat transfer modelling 

Due to the low absorption of silica aerogel within some wavelengths, the Rosseland diffusion approximation, which can only be 
applied to thick opaque media, is not a satisfactory solution to calculate the radiation of porous medium as silica aerogel. To address 
the limitation of Rosseland diffusion approximation, a formulation for the coupling of conduction and radiation in a porous medium 
with arbitrary thickness has been proposed by Zeng et al. [78] Besides. 

As the latest and most complete theory, Mie’s theory is the accurate method to calculate the globule extinction coefficient. Lie et al. 
[79] confirmed that Mie’s theory was in relatively good agreement with the retrieved data. 

Unlike solid and gaseous conduction, radiation and global extinction coefficients are irrelevant to pressure but positively correlate 
with temperature [79]. When silica aerogel composites work in an ordinary low temperature, the percentage of radiative heat transfer 
compared to the effective heat transfer is between 0.9% (290 K) and 2.1% (290 K). This percentage increases rapidly when the working 
temperature goes up, reaching 9.2% at 690 K and 23.8% at 990 K. In this circumstance, the radiation must be considered to avoid 
noticeable errors. 

6. Conclusions 

The modelling of aerogels’ gaseous, solid and radiative heat transfers has been comprehensively reviewed to examine their 
principles, application fitness and limitations and identify the research needs. Some significant conclusions can be drawn as follows:  

1) All the current work only concentrated on one way of heat transfer. No one considered the problem at the level of effective thermal 
conductivity with a complete heat transfer model of silica aerogel materials, the lack of which does not match the widespread use of 
silica aerogels.  

2) There have been two types of models of gaseous thermal conductivity in silicon aerogel composites: empirical and theoretical 
models. All the latest gaseous models came from gas kinetic theory, which could be divided into two branches: firstly, a gaussian 
distribution of pore sizes was applied to obtain a more accurate microstructure of silica aerogels and secondly, a model was 
proposed considering the influence of solid skeletons on the mean free path of gas molecules. Integration of a more realistic dis-
tribution of pore diameters and adjusting the mean free path of gas molecules might be the breaking point of gaseous modelling in 
the future.  

3) Modelling solid conductive heat transfer in silica aerogel could be categorised into empirical, analytical and numerical methods. 
Periodic and aggregated models were two major solid models. The aggregated models considering secondary particles represented 
the state-of-the-art of solid modelling works. However, even the aggregated model could not construct a physical model compa-
rable to the actual microstructure of materials. A more advanced machine learning algorithm with 3D scan results might be applied 
to improve the fidelity of physical models.  

4) Rosseland diffusion theory empowered researchers to calculate the radiative heat transfer through silica aerogels. Considering the 
influence of additives, Mie’s theory has been used to compute the extinction factors of spherical opacifier particles, extended to the 
calculation of fibrous additives together with the Anomalous diffraction theory. 
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