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The opacity myth: A response to Swofford & Champod (2022)  
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A B S T R A C T   

Swofford & Champod (2022) FSI Synergy article 100220 reports the results of semi-structured interviews that 
asked interviewees their views on probabilistic evaluation of forensic evidence in general, and probabilistic 
evaluation of forensic evidence performed using computational algorithms in particular. The interview protocol 
included a leading question based on the premise that machine-learning methods used in forensic inference are 
not understandable even to those who develop those methods. We contend that this is a false premise.   

Letter to the Editor 

Swofford & Champod [1] reports the results of semi-structured in-
terviews conducted with three anonymous individuals from each of the 
following groups of stakeholders: laboratory managers, prosecutors, 
defence attorneys, judges, academic scholars. The interviewees were 
asked their views on probabilistic evaluation of forensic evidence in 
general, and probabilistic evaluation of forensic evidence performed 
using computational algorithms in particular. 

The issue we wish to raise here is the use of a leading question in the 
interview protocol that may have led to bias in the interviewees’ stated 
opinions, and that promotes what we call the opacity myth. The questions 
was: 

Many modern computational algorithms are based on artificial in-
telligence and machine learning (AI/ML) methods, which are often 
“black boxes” even to their developers irrespective of the availability 
of the source-code. What is your opinion about the use of these al-
gorithms in forensic science for court purposes? 

The question incorporates the premise that machine-learning 
methods used in forensic inference are not understandable even to the 
developers of machine-learning-based forensic-inference systems. This 
premise is repeated several times in the Swofford & Champod [1] article 
itself. 

As developers of forensic-inference systems that make use of 
statistical-modelling and machine-learning methods, e.g., [2], [3], we 
contend that this is a false premise.1 We do understand how the methods 
we use work. They are technology. They are not magic. 

One could pursue an argumentum ad extremis and reach a level at 
which there are things that developers do not understand, but this would 
become a philosophical debate about the meaning of “understand”, and 
would have no practical relevance. 

Contrary to a claim of opacity made in §1 of Swofford & Champod 
[1], “although algorithmic tools generally possess remarkable potential 

to provide advanced scientific capabilities and promote more objective 
foundations to the evaluation of forensic evidence, they often do so at 
the cost of transparency and explainability”, forensic-evaluation systems 
that calculate likelihood ratios using relevant data, quantitative mea-
surements, and statistical models/machine-learning algorithms are 
actually paragons of transparency [4], [5]. The data and software can be 
shared with other practitioners, and the algorithms implemented in the 
software can be exactly described. In addition, such systems can be (and 
should be) empirically calibrated and validated under conditions that 
reflect those of each case to which they are applied [6]. In contrast, what 
is opaque, and what is practically difficult to empirically calibrate and 
validate (and hence seldom is), is human perception and subjective 
judgement based on training and experience [7], [8]. 

We think that the opacity myth is related to a broader prejudice 
against the use of statistics and machine learning, and we would 
particularly commend the discussion of this topic in Swofford & 
Champod [9]. We think that the term artificial intelligence is an unfor-
tunate buzzword whose connotations contribute to this prejudice. For 
many people, we think that artificial intelligence conjures up 
science-fiction stories involving Frankensteinian machines. We would 
recommend that the term not be used in the context of forensic 
inference. 

It is of course true that those who have not studied and have not 
gained experience implementing and using statistical-modelling and 
machine-learning methods will be unlikely to understand them. Triers of 
fact are therefore unlikely to understand forensic-inference systems that 
make use of statistical models and machine-learning algorithms. That 
triers of fact are unlikely to understand evidence in a particular field 
unaided is the reason why expert witnesses with knowledge, training, 
and experience in that field are called to testify. But what is it that they 
must testify about? §5 of Swofford & Champod [1] claims that “algo-
rithms need to be understandable and explainable to lay fact-finders”. 
We argue that this is not the case, and agree with Curran [10] that “As an 
expert presenting evidence to the court, I have an obligation to use the 

1 Contrary to the impression that one might get from reading Swofford & Champod [1], there is no sharp dividing line between what constitutes a statistical model 
and what constitutes a machine-learning algorithm. 
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best scientific methods available to me, not the ones that are the easiest 
to explain.” US Federal Rule of Evidence 702 combined with the Daubert 
trilogy of Supreme Court rulings2 and England & Wales Criminal Prac-
tice Directions 19A3 both identify method validation under conditions 
relevant for the case as a consideration for admissibility, but neither 
identifies as considerations for admissibility either the explainability of 
an expert witness’s methods or the understandability of those methods 
for the trier of fact. What provides the warrant for whether the trier of 
fact should or should not trust the output of a forensic-inference system 
is not understanding by the trier of fact of the methods that constitute 
that system, but validation of that system. What the trier of fact needs to 
understand are: first, whether the system has been validated under 
conditions sufficiently representative of those of the case under 
consideration; and, second, whether the results of that validation indi-
cate that the system works sufficiently well under those conditions. 
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