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The effect of intranasal insulin on appetite and mood in women
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BACKGROUND/OBJECTIVES: Intranasal (IN) administration of insulin decreases appetite in humans, but the underlying
mechanisms are unclear, and it is unknown whether IN insulin affects the food intake of women with obesity.
SUBJECTS/METHODS: In a double-blind, placebo-controlled, crossover design, participants (35 lean women and 17 women with
obesity) were randomized to receive 160 1U/1.6 mL of IN insulin or placebo in a counterbalanced order in the post prandial state.
The effects of IN insulin on cookie intake, appetite, mood, food reward, cognition and neural activity were assessed.

RESULTS: IN insulin in the post prandial state reduced cookie intake, appetite and food reward relative to placebo and these effects
were more pronounced for women with obesity compared with lean women. IN insulin also improved mood in women with
obesity. In both BMI groups, IN insulin increased neural activity in the insula when viewing food pictures. IN insulin did not affect

cognitive function.

CONCLUSIONS: These results suggest that IN insulin decreases palatable food intake when satiated by reducing food reward and
that women with obesity may be more sensitive to this effect than lean women. Further investigation of the therapeutic potential
of IN insulin for weight management in women with obesity is warranted.

International Journal of Obesity (2022) 46:1319-1327; https://doi.org/10.1038/s41366-022-01115-1

Insulin is well known to act in the periphery to control blood
glucose levels and promote nutrient storage. However, because
the amount of insulin released is in direct proportion to the
amount of body fat, and because it is able to cross the blood-brain
barrier to enter the brain, insulin also acts as a central nervous
system signal about levels of body fat, and simulation of brain
insulin receptors is associated with reduced appetite and weight
loss [1, 2]. Targeting of these central effects of insulin in the
absence of the peripheral metabolic effects can be achieved by
using the intranasal (IN) route of administration of insulin in
humans [3]. Acute administration IN insulin reduces food intake in
healthy adults [4-7] and longer term administration suppresses
hunger and decreases body fat content [8] suggesting potential
for weight management. However, not all studies have found
effects of IN insulin on appetite and body weight [9-11]. To
address these inconsistencies it is important to investigate the
underlying mechanisms.

IN insulin may influence brain reward and homeostatic
mechanisms to reduce food intake. In humans, IN insulin
decreases functional Magnetic Resonance Imaging (fMRI) signals
in the hypothalamus, a key centre of homeostatic control [12] that

modulates the dopaminergic reward system [13-15]. IN insulin
reduced intake of cookies in women when administered after a
satiating lunch, but not in the fasted state, indicating that IN
insulin might enhance satiation [16]. IN insulin also decreased
cookie palatability [16], suggesting that a potential underlying
mechanism is a reduction in the reward value of food.

IN insulin modulates neural activity in brain regions associated
with higher order cognitive processes including the hippocampus
and prefrontal cortex [17-19] and improves cognitive perfor-
mance, particularly hippocampal-related memory [4, 9, 10]. Mem-
ory has been shown to influence appetite [20], for example,
enhancing memory of recently eaten food reduces later intake
[21]. Therefore, IN insulin may reduce food intake by enhancing
memory. However, there has been no comprehensive assessment
of the effects of IN insulin on food intake, homeostatic, reward,
cognitive and neural processes.

Another important gap in understanding the actions of IN
insulin on food intake is how they vary as a function of body fat
mass and insulin resistance. Individuals with obesity may be less
sensitive to IN insulin and have cerebral insulin resistance. For
example, in contrast to men with obesity, lean individuals report a
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reduction in wanting of sweet foods after IN insulin [22].
Furthermore, effects of IN insulin on fMRI signals elicited by food
stimuli are weaker or absent in individuals with type 2 diabetes or
obesity [13, 15, 18, 22]. The effects of IN insulin on food intake in
women with obesity have not yet been examined.

This is the first multimodal study to investigate the acute effects
of IN insulin on palatable food intake and hunger in satiated
women with and without obesity. To assess underlying mechan-
isms, we included behavioural measures of homeostatic, reward,
and cognitive processes and used fMRI to assess effects of IN
insulin on neural activity. We also examined the effects of IN
insulin on emotional responses, as mood can impact weight
management interventions. We predicted that IN insulin would
reduce food intake, pleasantness of food and neural activity in
brain reward areas. In addition, we explored whether IN insulin
enhances cognitive performance, and predicted that any effects
may be less pronounced in women with obesity.

RESEARCH DESIGN AND METHODS

Participants

Fifty-four participants were recruited, but one lean and one
participant with obesity withdrew during the first test day due to
discomfort with having blood taken and experiencing a migraine
respectively. The resulting sample consisted of thirty-five lean
women and seventeen women with obesity. Assuming a small to
medium effect size with 80% power, we aimed to recruit 35
participants in each BMI group but difficulties in recruitment
resulted in a smaller sample size for women with obesity. Therefore,
effect sizes are presented with all statistical outcomes. Participants
were invited to the University of Birmingham Wellcome Trust
Clinical Research Facility to take part if they met the eligibility
criteria and passed a screening session. Participants were recruited
via posters and social media platforms and were compensated with
£100. Participants provided written informed consent and the
research was conducted according to Good Clinical Practice. The
study was approved by the Research Ethics Service (RG_17-102)
and was pre-registered on clinicaltrials.gov as NCT03632681.

Design

In a double-blind, placebo-controlled, crossover design, partici-
pants were randomized to receive 160 1U/1.6 mL of IN insulin
(Actrapid; Novo Nordisk, Bagsvaerd, Denmark) or 160 IU/1.6 mL of
placebo in a counterbalanced order. The dose was based on
previous studies that reported significant effects of insulin on food
intake [4, 6, 16, 23]. Placebo and insulin were identical in
appearance and odour. Placebo consisted of water, 2.7 mg/ml
m-cresol/mL, and 16 mg/mL glycerol (prepared by Guy’'s and St
Thomas’ NHS Foundation Trust’s Pharmacy Manufacturing Unit,
London, UK). Placebo and insulin sprays were prepared by a
pharmacist so that the study personnel and participants were
unaware of group allocation. All participants took part in two
sessions on two separate days at least 7 days apart. All procedures
including insulin administration were overseen by medically
qualified staff.

Screening session

Height and weight were measured and the participant had a
medical check. Questionnaires were completed to check eligibility
and characterize the sample: The Structured Clinical Interview for
DSM-5, Clinical Version (SCID-CV) [24], The Beck Depression
Inventory — Il (BDI-I) [25], The Dutch Eating Behaviour Ques-
tionnaire (DEBQ) [26], and The Power of Food Scale (PFS) [27]
(See Supplementary Table 1 for eligibility criteria).

Eating measures

Participants ate a lunch of cheese sandwiches (~588 kcal per
sandwich). The portion size of which was adjusted for each
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participant to comprise 40% of daily energy requirements. The
average portion served to each participant was 787.51 kcal (SD =
+133.56, minimum = 565.57 kcal, maximum = 1143.56 kcal).
Participants were asked to consume all of the lunch provided.
Lunch was consumed prior to dosing because IN insulin has been
reported to decrease consumption in women only in a
postprandial state [16]. 140 min post-dosing participants were
offered palatable Maryland® Chocolate Chip Cookies (along with a
glass of water). Palatable cookies were chosen to allow us to
examine food reward related responses. The cookies were broken
up to disguise portion size (80 g) and served on a Sussex Ingestion
Pattern Monitor (SIPM), which consists of a balance placed
underneath the surface of a table covered by a placemat [28].
The balance was connected to a laptop that recorded the weight
of the plate and alerted the participant to complete VAS ratings of
hunger, fullness, and pleasantness each time 10 g of cookies was
consumed (the participant was not aware of how much had been
consumed). When 60g of cookies were consumed, participants
were provided with a fresh bowl of 80 g and could continue until
they wished to stop. Eating rate was calculated as grams eaten/
time spent eating.

Appetite / Mood measures

Visual analogue scales (VAS). Participants rated how they felt at
that moment in relation to 14 sensations (alertness, drowsiness,
happiness, hunger, fullness, desire to eat, thirst, disgust, anxiety,
sadness, withdrawn, lightheaded, nausea, faint) by placing a
vertical mark through a 10 cm horizontal line with left and right
anchors indicating the extremes of each sensation (‘completely
absent’ to ‘most | could imagine’) [28, 29].

Positive and negative affect schedule (PANAS). The PANAS is a 20-
item scale that is a reliable and valid measure of positive and
negative affect [30].

Cognitive tasks

Delay discounting. To assess ability to delay reward gratification
participants completed a monetary discounting task that included
nine delays. Participants saw the question ‘Which would you
prefer?’, with two choices: £xx now or £xx after a delay (varying
from one day to one year) and selected the preferred option. They
also completed a food version in which they chose between a
smaller amount of food now and a larger amount later, for
example ‘Which would you prefer?” with the options ‘one bite of
chocolate now or a bar of chocolate in a month?. Data are
expressed as area under the curve [31, 32].

Verbal paired associates (VPA). To assess hippocampal memory
participants memorized 60 associated word pairs that were
presented for 2 seconds on a computer screen. Immediately after
(and then again after an hour delay) they received a cue word and
responded aloud with the target word [33].

N-Back. To assess working memory blue circles were presented
on a white 3x3 grid for 500 ms. Participants indicated if the circle
was in the same position or a different position as it was two
(2-back) and three trials back (3-back). Accuracy and reaction
times (RT) for correct responses by stimuli (2 and 3-back) were
recorded [34].

Pivital” oxford emotional test battery

Emotional categorisation task (ECAT): (see [35]; www.p1vital.
com) Sixty positive and negative adjectives were presented for
500 ms. Participants indicated whether they would like or dislike
to be described as such. RT by valence and accuracy (selection of
positive adjectives for self-reference/rejecting negative adjectives
for self-reference) were measured.

International Journal of Obesity (2022) 46:1319- 1327
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Fig. 1 Procedure. Schematic overview of the test day procedure.

Emotional recall task (EREC): Participants were given four
minutes to recall as many words from the ECAT task as they
could within 4-mins. Accuracy and commission errors by valence
were analyzed.

Emotional recognition memory task (EMEM): Participants were
presented with 60 personality descriptor words, along with 60
matching novel distractor words and indicated whether the word
had been presented during the ECAT. Percentage accuracy, RT for
correct responses and commission errors were analyzed by
valence.

fMRI picture rating task

Participants viewed food and non-food pictures (36 from each
category and visually matched) [36]. The food pictures varied in fat
and sugar content (high fat, high sugar; high fat low sugar; low fat
high sugar and low fat, low sugar). ltems were rated on appeal
using a scale from 1 (not at all) to 5 (very much). Each picture was
presented for 1500 ms, followed by a fixation cross (500-1500 ms).
At the end of the test day, participants were asked to recall as
many of the pictures as possible and to record these responses on
paper. Accuracy (percentage correct recalled) by category was
analyzed.

Acquisition, processing and analysis of fMRI data

Data were collected using a 3-Tesla Phillips Achieva MRI scanner
with a 32-channel head coil at the Birmingham University Imaging
Centre. Functional images during the picture task (3 x 185
volumes) were acquired with a single-shot echo-planar imaging
(EPI) sequence: repetition time (TR = 2400 ms), adjusted flip angle
(77°), echo time (TE =30 ms), and 43 transverse slices (voxel size
=3x3x2mm?>). A gradient echo field map was also acquired
(echo time (short) = 9.2 ms, echo time (long = 11.5 ms), flip angle
=90°). The T;-weighted anatomical scan was acquired with a TR/
TE of 7.4/3.5ms, a flip angle of 7°, FOV of 256 x 256 x 176 mm,
176 sagittal slices, and a voxel size of 1x1x1 mm?>. Data were
analysed using SPM12 standard procedures [37]. For each subject
a model contained 4 regressors: four food stimulus categories and
four matched non-food stimulus categories resulting in two
contrast images: food versus matched non-food pictures. Six
motion parameters were included. Contrast images from subject
level were entered into a second level within-subjects ANOVA
(insulin versus placebo).

Blood insulin and glucose

Four blood samples (4 mL) were collected via an intravenous
catheter inserted into an antecubital vein of the forearm of the
participant’s choice at baseline, 5, 135 and 155 min post-IN insulin
administration for the determination of haemoglobin (HbA1C;
mmol/mol) on test day one and insulin and glucose on both test
days. A small sample of blood collected from the intravenous
catheter was tested at each timepoint to check for hypoglycaemia
as a safety precaution. Blood samples were kept on ice or stored
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at —80 °C until centrifuged at 1500 x g for 15 min. At the end of
the test day, capillary blood glucose was measured to ensure
euglycaemia prior to the participant’s departure.

Procedure
Participants completed baseline VAS and PANAS, had a medical
check and blood draw. They then consumed lunch and afterwards
completed a set of the VAS/PANAS and self-administered the IN
insulin by inhaling 0.1 mL of insulin or placebo in a single puff.
There were eight puffs per nostril giving a total of 1.6 mL and 30-
second intervals between puffs. 5 min post-IN insulin administra-
tion, there was a blood draw and VAS/PANAS completed.
Participants then underwent the fMRI scan for 1.5h during
which they completed an inhibition task (results not reported
here) and the picture rating task. Participants then completed the
DD task, VAS/PANAS and had another blood draw, after which
they consumed chocolate cookies. The final blood draw was taken
and another set of VAS/PANAS completed. The participants then
completed the immediate recall phase of the VPA, the N-back and
ETB followed by VAS/PANAS. The delayed recall phase of the VPA
was then completed. Next, the participants had 5 min to recall the
images that were presented in the scanner and then completed a
final set of VAS/PANAS. See Fig. 1.

Analysis

Performance based exclusion criteria were determined prior to
analysis. Outlying data points defined as <200 ms and =6000 ms
for RT and outside 3*interquartile range of the lower and upper
grand mean for other performance measures were removed.
Participants scoring at below chance performance on the EMEM
and N-back tasks were removed from the respective analysis. Six
participants (3 lean and 3 participants with obesity) were missing
more than 75% of blood draws and were removed from blood
analyses. Eight participants were excluded from fMRI analysis due
to excessive movement (n=6), no second scan (n=1) and
missing data (n = 1). The final sample size for fMRI analysis was 29
lean and 15 participants with obesity. Data were analysed using
mixed factorial ANOVA with ‘BMI status’ (lean/with obesity) as a
between-subjects factor and ‘treatment’ (IN insulin/placebo) as a
within-subjects factor. Composite VAS scores were created by
averaging individual ratings according to the factor structure
reported in [29]: ‘Arousal’ (alertness, drowsiness, happiness),
‘Appetite’ (hunger, fullness, desire to eat), ‘Negative Effects’
(disgust, anxiety, sadness, withdrawn), ‘Physical Effects’ (light-
headed, nausea, faint) and thirst and area under the curve was
analyzed using the trapezoid method. Any effects that did not
include the treatment factor of time, stimulus type and BMI status
are not reported or followed-up. To test our a priori hypothesis
that lean women and women with obesity might differ, we
conducted planned t tests in the event of a significant main effect
of insulin. Multiple comparisons were Holm-Bonferroni corrected.
Violations of sphericity were addressed using the Greenhouse-
Geisser correction.
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Fig. 2 Eating-related measures. A depicts cookie intake of lean women and women with obesity in the placebo (light grey fill) and insulin
conditions (dark grey fill). B depicts eating rate of lean women and women with obesity in the placebo and insulin conditions. C depicts
palatability ratings of lean women and women with obesity at the beginning of the snack in the placebo and insulin conditions. D depicts
palatability ratings of lean women and women with obesity at the end of the snack in the placebo and insulin conditions. Squares denote
mean of each outcome. Asterisks denote follow-up significance at 0.05 level.

RESULTS

Demographics

Women with obesity had a higher BMI and self-reported more
restrained and emotional eating in line with previous research
(e.g. [38, 39]). See Supplementary Table 2 for participant
demographics.

Cookie intake

There was a main effect of IN insulin on cookie intake (F(1,50) = 4.59,
p=0.04, r]p2 =0.08) and follow-up tests revealed reduced intake of
cookies for women with obesity (t(16) =—2.12, p=0.05, d = 0.46)
and no effect for lean women (t(34) =—0.55, p=0.59, d =0.07).
There was a main effect of IN insulin on initial ratings of cookie
pleasantness (F(1,47) = 4.83, p = 0.03, np2 =0.09) and follow-up tests
showed that IN insulin reduced initial cookie liking for women with
obesity (t(15) =—2.87, p=0.01, d=0.42) but not for lean women
(t(32) = —0.34, p =0.74, d = 0.04). There was no main effect of IN
insulin on rated 2pleasantness at the end of the session (F(1,47)=
0.01, p=0.99, ny,“ < 0.01). There was no effect of IN insulin on eating
rate (F(1, 47) = 0.02, p = 0.89, n,> < 0.01) (Fig. 2).

Appetite and Mood

IN insulin reduced appetite (F(1,50) = 5.66, p = 0.02, r]p2 =0.10) and
this effect was more pronounced for women with obesity (t(16) =
—2.11, p=0.051, d=060) than for lean women (t(34) =—0.74,
p=047, d=0.11). There were no significant main effects of IN
insulin on arousal (F(1,50)=2.16, p=0.15, np2:0.04), negative

SPRINGER NATURE

effects (F(1,50) = 1.39, p = 0.24, np2 = 0.03), physical effects (F(1,50) =
006, p=081, n,2<001), and thirst (F(1,50)=001, p=098,
e’ <0.01).

There was no significant main effect of IN insulin on PANAS
ratings (F(1,47) =3.78, p =0.06, np2:0.07), but the interaction
between IN insulin and BMI was significant (F(1,47) =5.47, p=
0.02, r]p2 =0.10) which was explained by a significant increase of
positive affect (PA) ratings for women with obesity (t(16) = 2.86,
p=0.01, d=0.42) (Fig. 3).

Cognitive tasks

The only effect of IN insulin was improved accuracy for selection
of self-referent positive adjectives and rejection of negative
adjectives and slower RT on the n-back task for women with
obesity. See below for statistical results and Supplementary Table
3 for descriptive statistics.

VPA. The effect of IN insulin condition on recall accuracy was not
significant (F(1,50) = 0.01, p=0.93, n,”> < 0.01).

ETB — ECAT. IN insulin improved accuracy for selection of positive
adjectives for self-reference and rejecting negative adjectives for
self-reference (F(1,49) = 6.76, p = 0.01, n,” = 0.12). Follow-up tests
revealed no significant differences of IN insulin on ECAT accuracy
for lean women (t(32) = 1.87, p = 0.07, d = 0.22) nor women with
obesity (t(16) = 1.72, p =0.10, d = 0.49). The effect of IN insulin on
RT (F(1,48) =1.64, p=0.21, r]p2 =0.03) was not significant.

International Journal of Obesity (2022) 46:1319- 1327
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Fig. 3 Appetite and mood. A depicts post-dose area under the curve (AUC) visual analogue scale (VAS) ratings of lean women between
placebo (light grey fill) and insulin (dark grey fill) conditions. B depicts post-dose AUC VAS ratings of women with obesity in the placebo and
insulin conditions. C depicts post-dose AUC Positive and Negative Affect (PANAS) ratings of lean women between placebo and insulin
condition. D depicts post-dose AUC PANAS ratings of women with obesity in the placebo and insulin conditions. CM centimetre, Mins
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significance at 0.05 level.

ETB — EREC. Neither the effect of IN insulin on recall accuracy
(F(1,50) = 0.67, p = 0.42, n,> = 0.01) nor errors (F(1,50) = 0.15, p =
0.70, n,” = 0.03) was significant.

ETB - EMEM. Neither the effect of IN insulin on accuracy (F(1,34) =
2.13,p=0.15, r]p2 = 0.06), commission errors (F(1,50) = 1.20, p = 0.28,
N> = 0.02) nor RT (F(1,49) =0.72, p=040, n,” =0.02) was signifi-
cant. The interaction between IN insulin and BMI for accuracy was
significant (F(1,34) =5.65, p =0.02, np220.14) but follow-up tests
revealed no significant effects for either BMI group (ps > 0.05).

N-back. There was no effect of IN insulin on accuracy (F(1,27) =
108, p=031, n,>=0.04), nor RT (F(1,45) =189, p=0.18, n,°=
0.04). The interaction between IN insulin and BMI was significant for
the RT measure (F(1,45) =12.36, p<0.01, np2:0.22). Women with
obesity were slower in the insulin condition than the placebo
condition ((15) =3.33, p =0.01, d = 0.56).

PRT recall. The effect of IN insulin on recall (F(1,49)=0.01,
p=0.94, np2 <0.01) was not significant.

Picture rating task
Pleasantness ratings.
on pleasantness

p=0.26, n,> =0.3).

There was no significant effect of IN insulin
ratings of food stimuli (F(1,43)=1.32,

International Journal of Obesity (2022) 46:1319 - 1327

fMRI. Statistically significantly greater (whole-brain FWE-cor-
rected) blood-oxygen-level-dependent (BOLD) responses to food
compared to non-food images (independent of condition) were
observed in the left precuneus (n voxels =427, xyz=1[—6,51,18],
Z=5.46, p<0.001), left superior frontal gyrus (n voxels =611,
xyz=[—6,63,—3], Z=4.78, p < 0.001), left thalamus (n voxels = 99,
xyz =[—3,—15,6], Z=5.46, p =0.031), left orbitofrontal cortex (n
voxels =121, xyz=[—30,12,9], Z=4.52,=0.016), and left inferior
temporal cortex (n voxels =99, xyz=[—30,66,45], Z=4.16, p=
0.046). All ps FWE-corrected.

Under a whole-brain FWE-corrected significance threshold, the
BOLD response in the left insula [—45,0,6] when viewing food
versus non-food pictures was significantly greater in the insulin
condition compared to placebo in both BMI groups (n voxels =
107, Z=4.47, p=0.038) (see Fig. 4). No regions showed an
attenuation of activity after insulin compared to placebo. There
was no interaction between food category and treatment.

Blood insulin and glucose

Pre-dose blood glucose did not differ according to BMI (F(1,49) =

097, p=0.33, n,” = 0.02) or test day (F(1,49) =032, p=0.58, n," =

0.01) (Supplementary Table 4). IN insulin had no effect on blood

glucose (F(1,48) =0.10, p = 0.75, np2 < 0.01) (Supplementary Table 4)
Women with obesity had higher baseline blood insulin than

lean women (F(1,44) =7.03, p=0.01, np2:O.14). Women with
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Fig. 4 fMRI. Top panel: Significant cluster (FWE-corrected p < 0.05) in the left insula for contrast Insulin > Placebo. Figure thresholded at initial
uncorrected detection threshold p < 0.001. Bottom panel: Parameter estimates from left insula cluster [45,0,6]. Asterisks denote significant
difference between placebo (light grey fill) and insulin (dark grey fill) for both lean participants and participants with obesity at 0.05 level.

Squares depict the mean.

obesity had higher post-dose blood insulin concentrations than
lean women (F(1,44) =13.04, p<0.01, n,°=0.23). There was a
significant increase in blood insulin after IN insulin at 5 min post-
dose (t(45) = 3.24, p<0.01, d = 0.36) (see Fig. 5).

DISCUSSION

A post-prandial acute dose of IN insulin reduced cookie intake,
appetite and the reward value of cookies in women. These effects
were stronger for women with obesity compared with lean
women. IN insulin improved mood in women with obesity. In both
BMI groups, IN insulin increased the BOLD fMRI signal in the insula
when viewing food (versus non-food) pictures. IN insulin did not
improve cognitive function. Taken together these results suggest

SPRINGER NATURE

that IN insulin may reduce food intake by influencing food reward
processes and that women with obesity may be more sensitive to
these effects than lean women.

Given previous reports of blunted effects of IN insulin in
individuals with obesity [13, 15, 18, 22, 40] presenting with
peripheral insulin resistance [41] we hypothesized that partici-
pants with obesity could be less responsive to effects of IN insulin
than lean women. In our sample, women with obesity had higher
baseline blood levels of insulin compared with lean participants
but did not differ in blood glucose levels and had normal HbA1c
levels. This suggests that elevated insulin release may have
compensated for reduced insulin sensitivity. It might be argued
that IN insulin had effects in the women with obesity in our study
because they retained sensitivity to intracerebral (rather than
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Fig. 5 Blood insulin and glucose. Mean (tstandard error of the mean) blood insulin concentration of lean women (left) and women with
obesity (right). Fork image denotes timing of lunch and cookie image denotes timing of the snack. Asterisks denote follow-up significance at
0.05 level. Women with and without obesity had higher blood insulin concentrations 5 min post-dose in the insulin condition.

peripheral) insulin. In aged mice showing an attenuated effect on
cortical activity of subcutaneously administered insulin, intracer-
ebroventricular insulin delivery yielded a response similar to that
seen in young animals [42]. Accordingly, the compromised brain
effect of endogenous or peripherally administered insulin in
obesity might stem primarily from attenuated insulin transport to
the brain as a result of hyperinsulinaemia [43, 44], which can be
overcome by directly targeting the brain with IN insulin [45].

The decrease in initial pleasantness of the palatable cookies
after IN insulin suggests that the decrease in intake may be
mediated by reduced food reward. Since the participants were in a
post-prandial state when insulin was administered and cookies
were offered, it is conceivable that IN insulin enhanced
postprandial signals that reduce food reward when satiated. This
is important because reductions in reward-related responding that
are specific to the satiated state are likely to be effective in helping
individuals to curb their appetite but are unlikely to reduce
hedonic responding in general. However, in order to further
understand the scope of the effect, future studies should examine
the effects of IN insulin on intake of a range of foods varying in
palatability and macronutrient content.

Further support for a specific effect of IN insulin on post-
prandial signals comes from the fMRI data. Greater BOLD fMRI
responses were elicited by viewing food compared to non-food
images across several brain regions and in line with effects on
eating behaviour, we observed an increased BOLD signal in
response to food images in mid insula following IN insulin. This is
consistent with evidence for a high density of insulin receptors in
the insula [46] and that insulin facilitates neuronal firing in the
insular cortex of mice [47] and increases neuronal excitability via a
reduction in calcium dependent afterhyperpolarization [48]. The
insula is hypothesized to integrate interoceptive and exterocep-
tive appetite and food reward signals [49, 50]. Hence, IN insulin-
induced activation of the insula might enhance post-prandial
signals that nutrients have been consumed, which in turn
decreases the attractiveness of food.

Increased insula activation by IN insulin was observed in both
BMI groups, but effects on appetite and food intake were
observed only in women with obesity. Our task may have
identified effects of IN insulin on processing of interoceptive
signals in both lean women and women with obesity, but whether
these actions were translated into reduced food intake could have
depended upon downstream neural processes during food
consumption that varied according to BMI status. One possibility
is that women with obesity may have impaired interoception [51]
and thereby benefit from enhanced interoceptive signals more
than lean women.

Contrary to the results of Hallschmid et al. [16], we did not find a
robust effect of IN insulin on cookie intake in lean women. Our
study offered only one cookie type, while participants in the
Hallschmid et al. [16] study were offered three varieties and IN
insulin affected intake of the most palatable cookies. Variety
stimulates intake [52] and so effects of IN insulin on cookie intake
in lean women in the previous study [16] may have been related
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to the range of palatable options. There was substantial variability
in the cookie intake of lean women in the placebo condition
suggesting that not all found the cookies palatable in the present
study. Therefore, it may be that because effects of IN insulin on
intake are most pronounced for palatable foods we could have
seen an effect if more palatable options had been provided.

Unlike previous studies [13-15] we saw no effects of IN insulin
in brain regions associated with food reward or in the
hypothalamus. However, most previous studies examined effects
of IN insulin on resting state activity and in fasted participants
[14, 15, 53], whereas we examined task related (picture rating)
activity in satiated participants. This suggests that the effect of IN
insulin on neural responses may vary depending upon nutritional
state. Future investigations should examine how the neural
responses to food cues in lean individuals and individuals with
obesity are altered by IN insulin depending on their fed versus
fasted state.

Intranasal insulin increased working memory RT of women with
obesity but had no other effect on cognitive measures for either
BMI group. This suggests that cognitive processes do not underlie
the effects of IN insulin on food intake and appetite although the
cognitive tasks used may have been insufficiently sensitive to
detect effects of IN insulin on memory. Previous studies used a
spatial memory task [4], which may be more sensitive to
hippocampal effects of IN insulin.

We observed enhancement of mood after IN insulin for women
with obesity. This is consistent with reports of IN insulin-induced
mood improvement in men with obesity [9, 54]. The ability of IN
insulin to decrease appetite and food intake in women with
obesity combined with its mood enhancing effects are very
promising in terms of therapeutic use of the hormone, especially
given the co-morbidity of obesity, diabetes and mood disorders
[55, 56]. Moreover, while there was an increase in blood insulin
levels 5 mins after administration, suggesting some spillover of IN
insulin into circulation, blood glucose levels were unchanged
throughout the test day, highlighting the safety of the
intervention.

This study has some limitations. The uneven and smaller sample
size for participants with obesity may have masked statistical
effects, although the large effect sizes suggest that they are
robust.

In summary, we provide evidence that IN insulin reduces
appetite and food intake and increases positive mood in women
with obesity. These results show promise for the therapeutic use
of IN insulin as a weight management option for women with
obesity, particularly those with co-morbid mood disorders and
further investigation of the longer-term effects of the hormone on
weight in women with obesity is warranted.

DATA AVAILABILITY
Data for this study will be made available in a public archive following publication of
this study. In the interim, data are available upon request
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