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Thesis Summary

Real-world emerging systems are characterised by several challenges and high level of complexities,

such as stochasticity, nonlinearities, high dimensionality, and systems with coupling. The aim of this

thesis is to address these inconveniences in order to develop robust control algorithms for such real

engineered emergent systems.

The study in this thesis considered the development of the fully probabilistic (FP) framework that

addresses the main challenge of controlling real-world stochastic and uncertain systems. The proba-

bilistic framework characterises the dynamics of the system to be controlled in terms of probability

distributions which is a desirable approach to handle the stochasticity of dynamical systems. Non-

linearity of real-world systems on the other hand, hinders the derivation of analytic control solutions,

yielding expensive numerical computations. To address this problem, a transformation method has

been introduced to the developed FP control framework which facilitated the derivation of an analytic

solution despite the nonlinearity of the system dynamics. This method transformed the nonlinear state

function to another variant where the nonlinearities are preserved but have now been transformed to

a nonlinear affine state function. The inclusion of this novelty allows for the control of more realistic

systems which tend to be nonlinear.

Further advancement includes the extension of the developed nonlinear FP control method to

control large-scale complex nonlinear systems. This is achieved by decomposing the complex system

into small subsystems and then decentrally controlling each individual subsystem by a local controller.

Probabilistic message passing is thereafter used to coordinate between the subsystems constituting

the complex system, thus achieving the overall objective of the controlled complex system. This

decentralised control framework has further been advanced to consider several control objectives,

including regulation, tracking and formation control where the subsystems that constitute the overall

network rely on the probabilistic message passing approach to interact with each other.
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Chapter 1

Introduction

1.1 Overview of the Research Problem

Since the arrival of the modern era of mechanical and technological devices, many systems in the

real-world have not just grown in complexity but also dimensionality which raised many challenges

to modern control theory and its effectiveness in practice. Countless systems have evolved in nature

resulting in complex networks which are composed of a large assemblage of elements that interact

with each other. The concerning problems that accompany such large-scaled complex systems are

omnipresence, intrinsic nonlinearities, high dimensionality, coupling and the effects of high level of

uncertainties [1]. These challenging characteristics make the process of analysing, approximating,

modelling and particularly regulating real-world systems increasingly onerous [2], [3], [4]. Thus,

traditional control designs have been further developed and new control strategies have been intro-

duced to facilitate the control of these systems [5]. Uncertainties found within real systems were

studied profusely to ensure robustness is achieved during the control process [6], [7]. One approach

introduced to effectively handle this complexity was stochastic control theory due to its suitability in

dealing with uncertainty [8]. The theoretical framework consists of representing systems and their

environments by a stochastic model, and minimising the expected value of a cost function. Several

stochastic control strategies were introduced, one of which is the fully probabilistic control design

method [9]. This method is based on the minimisation of the divergence measure between two prob-

ability distributions named the Kullback-Leibler divergence (KLD). FP control design is found to be

very efficient in controlling stochastic systems through the derivation of randomised control solutions.

Nonlinear control is one of the most well-researched areas in the field where advanced control

strategies are required to assist the complicated nature of the systems which demand more rigorous

design specifications [10], [11]. Promising and popular optimal control approaches have been further

developed to extend it to nonlinear systems [12], [13], [14], [15]. However, the main limitations
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of some of these methods is the involvement of online-dynamic optimisation which results in com-

putational delay [11] and the requirement of linearisation techniques such as feedback linearisation.

Furthermore, optimal control methods have also been considered for nonlinear stochastic systems

[16], [17], [18], but were solved numerically and were hence, unable to provide analytic control

solutions.

To address the high dimensionality of complex systems, further control advances in the control

literature have proposed control strategies such as decentralised control [19], [20], [21] distributed

control [22], [23], pinning control [24], [25], probabilistic control [26], consensus control, [27], and

multi-agent control [28], to name a few. Nevertheless, some of these strategies are inadequate due

to the construction of the controller as a single-agent which is centralised and thus, means that the

global state of the control system must be completely observable and known. Another reason is

that some of the aforementioned decentralised control approaches rely only on disconnected and

imperfect information for the decision making process. Moreover, these developments are more

likely to ignore the uncertainty in a control process, and thus do not prove to be efficient in regards

to dealing with the features of complex networks. Therefore, to assist real systems and suit their

complex nature accordingly, more precise and intricate control designs are required. An approach

that is decentralised, does not assume accessibility to global knowledge and considers the stochastic

nature of the considered control system is required to solve these problems.

To re-emphasise, the issue of overlooking some properties of complex dynamical control systems

while focusing on controlling large complex systems results in non-optimal decisions being taken

leading to a less effective control strategy. Therefore, this thesis will investigate the development

of efficient centralised and decentralised probabilistic control algorithms that address many of the

aforementioned challenges of real-world dynamical systems.

1.2 Thesis Aims

In this thesis, the aim is to further research and develop the Fully Probabilistic Control Design in order

to make it applicable to a wider range of systems which can be found in the real-world. As mentioned

before, the FP control design has proven to be an appropriate control strategy to handle stochasticity

of dynamical systems. Evidently, disregarding the stochasticity and uncertainty in the dynamics of

the controlled system can result into poor performance, thus need to be considered in the derivation

of the control law. It is recognised that failure to acknowledge these sources of randomness may

lead to systems instability and robustness cannot be achieved. Therefore, this work will look at the

development of the FP control method such that it considers uncertain information in control systems.
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Moreover, the FP control design was originally proposed in a centralised way restricting its ap-

plication to large-scaled complex systems. Therefore, exploiting the information structure of such

complex systems within a FP control design framework would prove to be rewarding. This involves

the process of decentralisation to obtain subsystems that constitute the overall complex system. It is

then achievable to understand the behaviour of the complex system by comprehending the behaviour

of the simpler subsystems. However, it is key to find a method that allows the subsystems to interact

with each other to guarantee the global behaviour of the system is accomplished. In essence, the aim

is to meet the global objective of the complex control problem through enforcing local actions at the

subsystems that compose the complex system. This forms part of the work in this thesis.

1.3 Thesis Contribution

Further development and exploitation of the FP control design has led to the novel proposed control

approaches in this thesis. This contribution will enable the control design to be shaped in a manner

that will allow it to perform well for several types of large-scaled complex real-world systems. To be

more specific, the contribution of this work falls under

• The development of the FP controller design for nonlinear stochastic systems. Many real

world systems tend to be governed by nonlinearities. This nonlinearity of the systems, gener-

ally hinders the derivation of analytic control solutions of the controller and in particular in the

FP control framework. Thus, the extension of these control methods such that the nonlinearity

of the systems is considered without the need to linearise their dynamics, has been investigated

and developed in this thesis. This contribution ensures that the exact nonlinearities are pre-

served during the control process, thus, guaranteeing more effective control, and facilitates the

derivation of analytic control solutions of the FP control design. To clarify, the main contri-

bution in this part of the work is the derivation of an approximate closed form solution to the

optimal control problem for the case of nonlinear dynamics, albeit one that performs well in

simulations and is computationally advantageous. This has been achieved mainly following a

FP design approach and referred to as the generalised FP control design. This generalised FP

control design framework for nonlinear systems is further developed for a number of perturba-

tions to ensure real control problems can be solved in a probabilistic way:

– Generalised FP control algorithm designed for nonlinear stochastic systems affected

by additive noise. The analytic solution of the FP control design is facilitated through

transformation methods such that the dynamics of the nonlinear systems are expressed to

be affine in both the state and control signals (the state and control matrices are multiplied
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by the state vector and control input respectively). This novel development of the FP

control design is considered for the first time in this work where the system dynamic is

assumed to be affected by additive noise.

– Generalised FP control algorithm derived for uncertain nonlinear stochastic sys-

tems. The dynamics of real systems tend to be unknown and thus, the underlying physics

of the systems need to be estimated. The estimation process however inevitably leads to

functional uncertainty where the estimated and actual values will differ from each other.

Thus, this work has further developed the FP control approach such that the estimation

error between the estimated and actual values is characterised and used in the derivation

of the control signal to improve the control accuracy of the considered systems.

– Generalised FP control algorithm designed for nonlinear systems with multiplicative

noise. In the real world, systems are also influenced by multiplicative noise. Therefore,

a novel algorithm within the FP control design framework has been designed for such

systems and has been published in [29]. This work is based on our initial development of

the FP control design which considered linear systems affected by multiplicative noises

[30]. However, only the development for nonlinear systems will be discussed in this

thesis.

• Decentralised FP control algorithm for nonlinear systems. To solve large-scale complex

control problems, the FP control design has been further developed to consider the decen-

tralised compositions of nonlinear systems to ensure the control algorithm is adapted to the

decomposed structure of the network accordingly. The notion of probabilistic message passing

has been introduced for information to be exchanged between the subsystems according to the

information structure. Rather than deriving a global randomised controller, as was done for the

other algorithms for single dynamical systems, multiple controllers are developed to ensure the

subsystems are controlled and the global behaviour of the complex network is achieved.

This novel decentralised advancement involves a number of probabilistic controllers that con-

vey knowledge through probabilistic messages which allows the decomposition of the control

of the large complex network to achieve a group of smaller control subproblems. Each of these

small subproblems can be dealt with independently, meaning the analysis and implementation

of these can now be conducted individually.

• FP control algorithm for tracking control problem with stochastic reference for nonlinear

systems with multiplicative noises. A fully probabilistic control strategy has been designed for

nonlinear systems with multiplicative noises that require the tracking of a stochastic reference
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model.

• FP control algorithm for formation control for systems with additive noises. The decen-

tralised approach for nonlinear complex systems is further developed to extend it to formation

control problems. This designed algorithm is based on the tracking error and generated good

results when simulated for robotics examples. The control method was able to influence the

position of the robots and force them to form the desired pattern.

1.4 Outline of the report

The structure of the thesis is as follows:

• Chapter 2: Literature Review. This chapter presents some of the significant challenges found

in complex systems and the control approaches that have been introduced to address these

challenges in the control literature. The theoretical frameworks that are surveyed in this chap-

ter are: centralised control, distributed control, and decentralised control approaches. Within

each framework, some of the proposed control strategies such as the developments of adap-

tive, optimal and stochastic control, are presented. Furthermore, the Fully Probabilistic control

design is surveyed to demonstrate how this methodology can address the shortcomings of the

other discussed methods and the extent to which it can be exploited. This exploitation is based

on the limitations of the current FP control approaches which are discussed in this chapter.

• Chapter 3: Fully Probabilistic Control for Nonlinear, Stochastic, and Uncertain Systems.

In this chapter, centralised Fully Probabilistic control designs are developed for nonlinear sys-

tems. In these developments, the derived form of the controller was affected by the nature

of the stochasticity of the system and the consideration of functional uncertainty. Firstly, a

randomised control algorithm is derived for nonlinear stochastic systems that are affected by

additive noise. This method is then further extended such that the functional uncertainties of

systems are characterised and taken into consideration in the derived optimal nonlinear con-

trollers. Lastly, nonlinear systems affected by multiplicative noises is another class of systems

for which the solution to the FP control problem is established. The effectiveness of the cen-

tralised controllers for nonlinear systems is demonstrated through simulation examples.

• Chapter 4: Decentralised FP Control Design for Complex Systems. Decentralised con-

trollers within a FP control design composition are designed for nonlinear complex systems in

this chapter. It discusses how the decomposed subsystems interact with each other to ensure
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the global objective of the controlled system is achieved. The proposed method is illustrated on

a simulation study.

• Chapter 5: Decentralised FP Control Design for Tracking and Multi-Agent Formation

Control. The decentralised control approach is further utilised and extended to tracking and

formation control problems. Firstly, for tracking control, local controllers are designed such

that each subsystem follows its corresponding predefined stochastic reference. Secondly, the

design of controllers that allow subsystems to communicate with each other while controlling

themselves independently to form a certain pattern is demonstrated in this chapter. In addition,

the convergence of the developed optimal randomised controller for a formation problem is

analysed. Simulation examples are implemented for both control strategies developed in this

chapter to illustrate the practicality of these designs.

• Chapter 6: Conclusion and Direction for Future Work. This chapter will conclude this

thesis by summarising the contributions of the work developed throughout and the novelty of

the results achieved. Furthermore, some recommendations for future work is mentioned which

could prove to be fruitful for the field of control.

• Appendix A: Derivation of the FP Control Solution for Nonlinear Systems. This appendix

demonstrates the derivation of the conventional FP control solution for nonlinear systems with

additive noises derived in Chapter 3.

• Appendix B: Derivation of the FP Control Solution for Nonlinear Systems with Func-

tional Uncertainty. The second fully probabilistic control strategy derived in Chapter 3 which

takes functional uncertainties in nonlinear systems into consideration, is proven in this ap-

pendix.

• Appendix C: Derivation of the the FP Control Solution for Nonlinear Systems with Mul-

tiplicative Noise. This appendix provides the proof of the third method developed in Chapter

3 which considers nonlinear systems with multiplicative noises.

• Appendix D: Derivation of the Decentralised FP Control Design for Nonlinear Systems.

Randomised controllers are developed in Chapter 4 for nonlinear systems with additive noises

within a decentralised framework. The derivations of this control strategy are outlined in this

appendix.

• Appendix E: Derivation of the Probabilistic Message Passing Approach. The control de-

sign developed in Chapter 4 and 5 involves the probabilistic message passing approach such
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that subsystems can communicate with each other. This methodology is key in the design of

the decentralised fully probabilistic control design. Therefore, this appendix provides a detailed

proof of the probabilistic message passing framework in this appendix.

• Appendix F: Derivation of the Decentralised FP Control Design for Nonlinear Systems

with Multiplicative Noises. This appendix demonstrates the derivations of the FP control

solution for nonlinear systems with multiplicative noises within a decentralised framework.

• Appendix G: Derivation of the Randomised Controller for Tracking Control of Nonlinear

Systems with Multiplicative Noises. The derivation of the optimal randomised controller for

a tracking control problem which has been developed in Chapter 5 is outlined in this appendix.

The proof demonstrates how the control solution takes the multiplicative noises that affect the

dynamics of the nonlinear systems into consideration.

• Appendix H: Derivation of the Randomised Controller for Formation Control of Non-

linear Systems with Additive Noises. This appendix provides the derivations of the local

randomised controllers that aim to influence the dynamics of the controlled subsystems such

that they form the desired formation. It proves the advancement of the FP control design for

formation control problems given in Chapter 5.

• Appendix I: Convergence Analysis of a Decentralised Nonlinear System with Additive

Noises. This appendix shows the methodology of analysing the convergence of the developed

controller for formation problems in Chapter 5 for decentralised nonlinear systems with addi-

tive noises.
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Chapter 2

Literature review

2.1 Overview of Control Engineering

The behaviour of an engineering system can be affected by an external signal which is sent to ensure

the control aim of the system is achieved. This external signal is referred to as the control input to

the system. Control systems can be categorised as either being an open-loop or closed-loop. An

open-loop control system consists of predefined control inputs for a system that is assumed to be

operating in an ideal situation, meaning full knowledge about the system and its operating condition

is assumed and uncertainties are assumed to be absent in the system. The knowledge about the system

output does not play a role in determining the control inputs. As a result, any changes affecting the

system dynamics are not considered by the open-loop system, thus lead to a poor control performance.

In contrast, closed-loop systems exploit the information about the output variables of the system

by feeding it back which is reflected in the form of a more effective and appropriate control input.

This contributes to an accurate control performance where the closed-loop controller compensates for

uncertainty in model parameters and measurement noise in the system.

Nevertheless, it is fundamental to seek a mathematical model for the dynamics of a real control

problem to ensure the correct strategies are enforced to influence the behaviour of the system to

be controlled. The mathematical models used to express the underlying physics of the systems are

idealisations which means some model discrepancy is bound to be found. Thus, the challenges that

arise with real systems are in the form of uncertain elements from functional uncertainties due to

the dynamics being unknown or incomplete, or due to uncertainties from the environment in which

the systems are operating [31]. These uncertainties prevent the system from operating as expected if

they are not taken into account in the design of the system controller. Therefore, it is vital to have

control actions in place to correct the error signal which is the difference between the actual and

desired states of the systems. As can be concluded from the previous discussion, closed-loop systems
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posses the ability to correct the error signals and are therefore more suitable for real-world problems.

In addition, feedforward [32] and feedback control [33] are control strategies that take actions to

compensate for any effects that fluctuations, uncertainties and noises have on the dynamical systems.

Feedfoward control deals with the perturbation before it influences the expected performance and

output of the system. Thus, it needs to possess the ability to predict the effect of perturbations on the

output of the system. Consequently, when considering feedforward control, it is important to know

which external changes to regard as perturbations and how to prevent those from influencing the

system. Therefore, acquiring information beforehand about possible changes and disturbances is key

for this control method. Unpredicatable perturbations on the other hand can normally be considered

by designing feedback control strategies. It can be said that feedback control takes time to correct

the output of the plant as it waits for an error or deviation to occur before correcting it. However, it

is a very efficient control method in the long term leading to stability as early intervention prevents

the system from deviating to a greater extent. Feedback is the solution to automatic control where

reliance on human interference is not required. More calculated and informative decisions are made

due to the state variables being fedback. On the contrary, feedforward control is a method that aims

to make a system error-free, but cannot achieve this in reality due to the existence of uncertainty and

external noises which cannot be measured beforehand. To conclude, feedback control is therefore the

preferred method as large-scale complex systems in the real world contain many uncertain elements

which cannot be predicted in advance [34].

2.2 Centralised Control

A centralised controller requires full knowledge of the global state since it is in charge of managing

the entire system by influencing the behaviour of the system to ensure it performs as expected. Many

control strategies have been proposed and introduced in the control literature and have proven to be

effective. Some of these that have gained recognition in the field of control include stochastic control,

optimal control, and adaptive control, to name a few. The aforementioned methods are surveyed

in this section due to its increasing popularity and relevance in this thesis. However, as the size of

the network increases, a centralised controller will require a tremendous amount of computation and

processing power to prevent any performance and response time issues.

2.2.1 Optimal Control

The application of control systems are widespread and can be found in numerous fields. Some of

these include vehicle control systems [35], aircraft engine control [36], pharmaceutical manufacturing
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[37], and chemical systems [38]. From the aforementioned application domains, the significance of

obtaining controllers that operate to the best of their abilities can be realised. In other words, control

strategies that deliver optimal results are vital for the satisfactory operation of these systems. On

this account, ’optimality’ needs to be defined in order to find such a control method. This can be

achieved by defining the task that needs to be conducted and specifying a mathematical formulation

that determines what can be considered optimal.

Optimal control theory is concerned with designing an optimal controller that finds a variable

for a dynamical system to influence the state variables over a given period of time. Given a set of

permissible inputs, the aim is to seek a sequence of control inputs that results in an optimal path for

the state variables. The optimal response of the system states is determined by a cost function which

is expected to be maximised or minimised.

Many techniques have been proposed to solve an optimal problem such as calculus of variations

[39] which is implemented to achieve the control trajectory that minimizes the performance index

by looking for the minimum value of a functional. A functional is a function of a function, and the

reason this optimal control problem deals with functionals is due to the fact that the state and control

trajectories are functions of time. In [40], a sequential estimation technique was proposed for nonlin-

ear systems of which the dependency was on the minimum least square measure which involved the

implementation of calculus of variations. However, the minimum least square criterion implemented

in [40] does not require information about the unknown inputs to the system and measurement errors

of the output. Thus, the control problem was redeveloped as a deterministic optimal control problem.

In addition, the derivation of the estimator includes linearisation using Taylor series.

The concept of optimisation is theoretically appealing but can be restrictive in terms of its appli-

cation due to being computationally expensive. Various strategies to solve optimal control problems

were introduced including iterative numerical methods such as dynamic programming [41] which is

a method that is widely used [42], [43] and has been further explained in Section 2.2.1. Some of these

iterative methods face the challenge of having to be used in an offline fashion, which is troublesome

for nonlinear systems due to not being able to respond and adjust rapidly to changes in its dynamics.

Achieving optimal control for nonlinear systems is a very challenging task within the field of

control as mentioned in [44]. A possibility is to transform the nonlinear optimal control problem

into the Hamilton-Jacobi-Bellman partial differential equation [45]. However, the practicality of this

approach is restricted due to the difficulties in its solution.

Primbs combined the generalisation of the Lyapunov method called Control Lypunov Functions

(CLF) [46] and Model Predictive control (MPC), also called receding horizon control, to achieve

nonlinear optimal control. The main aim of CLF is to provide information that is enough to produce a
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control technique for stability purposes [44]. For MPCs, the goal is to achieve optimum performance

[47]. MPCs adopts a moving horizon approach in order to strive for an estimation to the optimal

control problem in an online manner. MPCs have demonstrated their effectiveness for the computation

of systems which were capable to be computed online [48], [49]. However, the numerous benefits do

not imply that there are no concerns regarding stability and the application of it in practice, for which

research is still being conducted [50], [51].

Furthermore, the integration of neural network methods with optimal control has also been con-

sidered in an attempt to achieve better performance[52], [53], [54].

Dynamic Programming

Dynamic programming (DP) is an optimisation method introduced to assist in solving multi-stage

decision problems [41]. It is a technique developed for computational purposes to ensure that the

principle of optimality is applied to decision sequences which describe an optimal control policy. The

output of the previous decision is used to assist with the decision to be made for future ones. In fact,

dynamic programming is based on the principle of optimality.

The principle of optimality considers an optimal policy which is described as follows: regardless

of what the initial state and decisions are, the decisions made subsequently must form an optimal pol-

icy following the state obtained from the first decision. Hence, the multiple decisions made following

the initial state need to be completed in an optimal manner. The principle of optimality reduces a

multi-stage problem to a sequence of single-stage problems, thus making the optimisation process

computationally efficient. Having constraints on the state and control input results into a reduction

of the number of permissible values to be searched which leads to a simplification of the process of

establishing the optimal solution. A direct comparison is made between all entries of the permissible

control law, thus, ensuring that a global optimal control law is guaranteed [55], [56], [57].

This method can be applied to deterministic systems which are systems where the initial state and

decision uniquely determine the next state. It can also be applied to stochastic models where the next

state value cannot be determined exactly due to the effect of noise [55]. Furthermore, dynamic pro-

gramming techniques are also used when implementing control strategies such as Linear-Quadratic

Regulators [58] (which is discussed in Section 2.2.1). The main problem with dynamic program-

ming is that it follows intensive search to find the optimal solution. DP implements the principle of

optimality in order to decrease the number of computations when finding the optimal control law,

yet systems with a high dimension can cause computational restrictions on attaining minimum cost.

Thus, the curse of dimensionality [59], [60] which is a set of problems that arise when working with
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high-dimensional data is another challenge that dynamic programming faces. This problem is a hin-

drance in the process of solving dynamic optimisation problems by backwards induction due to the

high dimensionality of the problem.

Dynamic programming involves the Bellman equation [41] which is a requirement for optimality.

A Bellman equation is a recursive equation and is also called a functional equation, as its solution

consists of finding the unknown value function. The value function is a function of the state that

returns the best value of the control objective. Calculating the value function also allows one to find

the policy function which is also a function of the state but gives the optimal action. Originally, it was

applied to discrete time control problems but was later applied to continuous time control problems

and referred to as the Hamilton-Jacobi-Bellman theory [55]. The problem that arises is that both the

computation and memory requirements of dynamic programming grow exponentially with the state

dimension [61].

Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) approach is an optimal control method introduced by R.

Kalman in 1960 which was extended from the work by Lyapunov [58]. This approach consists of

a linear system with a quadratic cost function and has been discussed abundantly in the control lit-

erature and applications [62]. The LQR problem can be solved analytically and the derived optimal

controller is described in a state feedback form which is simple and straightforward to implement.

The solution of the LQR problem includes the derivation of a Riccati equation which is explained

later and again, relies on the aid of dynamic programming to solve this optimisation problem.

Since the focus of this thesis is on the FP control design and includes variants of the Riccati

equation as part of the solution of the FP control problem, the LQR is discussed briefly due to its

relevance to the researched method in this thesis.

For a deterministic model with a finite time horizon, H = {0, 1, ..., N}, described by vector

xk = Axk−1 +Buk, where xk ∈ Rn is the state variable, uk ∈ Rr is the control input, and A and B

are the state and control matrices respectively, the state feedback controller which is linear in the states

is given by uk = −Kkxk−1 where Kk is the optimal control gain. The optimal controller minimises

a quadratic (in the state) performance index Ji,N (xk) =
1

2
xTNPxN +

1

2

∑N−1
τ=i x

T
τ Qxτ + uTτ Ruτ ,

where Ji,N means the cost associated from time i to time N . It is important to note that matrix Q is

an n× n symmetric matrix, i.e. Q = QT and positive semidefinite. Furthermore, matrix R is also an

r × r symmetric matrix, but positive definite, i.e. R = RT . Matrix P is an n× n symmetric positive

definite or positive semidefinite matrix. Matrices Q, R, and P establish the significance of the error
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and the cost of the energies related to the state vector, control vector and the final state, respectively.

The optimal control law u∗k, the optimal control gain Kk, and the Algebraic Riccati Equation solution

Pk are given by:

u∗k = Kkxk−1, (2.1)

Kk = −(BTPk+1B +R)−1BTPk+1A, (2.2)

Pk = ATPk+1A−ATPk+1B(BTPk+1B +R)−1BTPk+1A+Q. (2.3)

This method has been extended to nonlinear systems but required linearisation of the dynamics to al-

low the application of the LQR approach [63], [64]. However, a nonlinear quadratic regulator (NQR)

approach has also been introduced in the literature which is based on the solution of a state dependent

Riccati equation [65], [66]. Essentially, the approach is motivated by the LQR formulation for linear

systems. The strategy involves the use of parameterisation to adjust the nonlinear system such that

it has a linear structure with state-dependent coefficient matrices. This is considered a linearisation

approach but is expected to perform better than the aforementioned Jacobian linearisation approach.

It updates the linear model approximation at each discrete time step.

The LQR optimal control law is designed for deterministic systems. However, stochastic systems

have been considered for the LQR approach in the control literature. Fisher et. al developed a LQR

control design for stochastic system which required the stochastic dynamics to be transformed into

deterministic dynamics but in higher dimensional state space [67]. However, an optimal control strat-

egy named the Linear Quadratic Gaussian control approach has been developed for linear stochastic

systems which is discussed in Section 2.2.2. In addition, Kárnỳ proposed the FP control design which

is an optimal control problem for stochastic systems [9]. A control solution was only demonstrated

to be derived for linear stochastic systems. A more detailed survey can be found in Section 2.4.

State Dependent Riccati Equation

Nonlinear dynamics can be represented by a linear form which consists of state-dependent coefficients

[68]. The dynamics given by xk = h(xk−1) + g(xk−1)uk can be described by the linear system state

equation xk = Axk−1 +Buk, where h(xk−1) = Axk−1 and g(xk−1) = B. Here, however, A and B

would not be constant and are instead state dependent. Once the system state is rewritten in a linear

structure with state-dependent coefficients, the SDRE can be solved. The name is derived from the

fact that some parts of the Riccati equations are state dependent.

Many methods have been developed which involve State Dependent Riccati equations (SDRE). It has
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been shown in [69] that solving an algebraic Riccati equation which evolves over time results into a

suboptimal solution of the infinite horizon problem.

2.2.2 Stochastic Control

Two concepts that have been widely investigated in control engineering are deterministic [61], [70]

and stochastic control theory [71]. Systems where the value of the output is exactly known given the

parameters and initial conditions are referred to as deterministic. On the other hand, stochastic con-

trol theory deals with dynamical systems that are affected by disturbances and random noise. These

systems behave in such a manner that the exact values of the state variables are unknown. Both,

deterministic and stochastic approaches aim to design robust controllers to guarantee that control sys-

tems perform satisfactorily, or practically optimally, even when knowledge about the system itself is

unavailable. Robustness is accomplished with the aid of a control strategy that achieves its purpose of

controlling the system dynamics despite the uncertain nature of the system. A great deal of effort was

spent on addressing and characterising the uncertainty with many researchers focusing on developing

robust control methods in a deterministic fashion [3], [72], [73], while others assumed that the ’actual’

system was a constituent of some domain centred around a nominal model on which the control de-

sign was based [74], [75]. It was therefore believed that prior information of the disturbance is known

[8]. Since the noisy and uncertain behaviour of systems tend to be unknown and unpredictable, this

assumption hinders the applicability to real problems. As a result, a coherent strategy to handle the

uncertain nature of the plant was suggested by introducing a probabilistic concept to the uncertainty

of the model, namely stochastic control theory.

The randomness of systems is of paramount importance in research and builds the foundation of

many studies [76], [77]. Hence, the focus of the study in this thesis is on the behaviour of stochastic

systems. The randomness found in such systems can be regarded as a mere complexity encountered by

systems which would have otherwise been labelled as deterministic. Nevertheless, stochastic systems

are a fundamental class of systems due to its practicality which has seen a thriving interest and has

considerably developed since many control strategies are concerned with the analysis, design and

control of such systems [78]. Standard stochastic control problems require the expected loss function

to be minimised with respect to the feedback control strategy [8] and are essentially managed by

implementing optimal control approaches.

Controlling a stochastic system is usually difficult as shown in the literature [79], [80] that de-

scribes the necessity of having significant memory and computation time. Thus, to deal with this

problem, linear stochastic systems with random variables from the Gaussian distribution were mainly

considered constraining the objective function to the mean or the variance of the stochastic output of
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the system [81], [82]. However, in practice, there exist systems with variables or noises that do not

belong to the Gaussian distribution. Hence, in those cases, the behaviour of the closed-loop system

cannot be described by merely the mean and variance of the output of the system [24]. A few tech-

niques have been proposed to control such systems. In 2009, one proposal involved the development

of a stochastic distribution control system [83]. The idea involves the modelling of a controller that

enables the probability density function of the output of the system to follow a predetermined ideal

probability density function. The second proposed technique involved the control of a closed-loop

probability density function [9], [84]. This allows the controller to impact the closed-loop behaviour

of the system. And lastly, there is the regulation of the tracking error probability density [85].

A recognised method in the control community is the Linear Quadratic Gaussian (LQG) control

approach that aims to find an optimal controller for linear stochastic systems affected by Gaussian

noise through the minimisation of a quadratic cost function. The LQG method is a combination of

LQR and the Kalman Filter. The Kalman filter is also referred to as a linear-quadratic estimator

(LQE). Attempts were made to generalise this approach to make it applicable to nonlinear stochastic

systems [86]. However, this approach requires the dynamics of the system to be linearised and a

further complication is that optimality in the LQG sense does not necessarily imply robustness [87].

Many proposed methods require linearisation of the system before or during the control process such

as discussed by He et al. [88] who attempted to retain the nonlinear characteristic of the system by

implementing online linearisation. Consequently, this gap in the literature motivated the research

on nonlinear systems. As such, this thesis discusses and presents an approach that preserves the

nonlinearities of systems and does not require the linearisation of the dynamics of such systems.

The mathematical approach to unravel the complexity in the form of uncertainties lies within the field

of probability theory which is a suitable means of handling stochasticity [89]. This is due to the ability

of probabilities to model uncertainty, lack of predictability and complexity. As a result, randomised

controllers have been developed to effectively handle uncertain systems with the aim to optimise the

expected value of a suitable cost function with respect to the feedback control approach [71].

As mentioned previously, the FP control design proved to be a promising method [9] where Kárnỳ

suggested to implement the probabilistic description of the closed-loop in the design model that needs

to be controlled. In FP control, a randomised control strategy is designed as opposed to many of the

control approaches where a deterministic control strategy is obtained. Since the dynamics of the

systems are characterised by probability distributions, it makes sense for the control law to be derived

as a distribution as well due to the fact that some statistical perturbations exist in the controller too.

This approach is further reviewed in more detail in Section 2.4.
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2.2.3 Adaptive Control

Adaptive control is a key branch in control theory that is concerned with the control of the output of a

system which consists of uncertainty in the parameters, structure and environment. Adaptive control

theory was originally described as an observer for single-input single-output (SISO) states of linear

dynamical systems with unknown parameters [90]. This has been extended to multivariable states

[91]. The field of adaptive control has evolved rapidly since the 1950’s with significant contributions

made by Astrom, Landau and others [92], [93], [94]. This theory involves the selection of a suitable

controller for an unknown system to identify all the unknown parameters of the system and estimate

the state simultaneously. The parameters of the model are estimated using rules that are referred to as

adaptive laws.

Within this field, there are two different approaches to adaptive control theory [95], [96]:

1. Indirect adaptive control: This approach considers the approximation of the unknown parame-

ters or state variables of the system which are then used to modify the control parameters [95],

[97], [98], [99]. In the literature, these type of systems have also been called self-tuning regula-

tors [92]. Indirect control is still being utilised, as shown in a recent paper that uses it for a class

of fractional order systems [100]. The model parameters are approximated using identification

laws, and as mentioned before, the control parameters are calculated using the approximated

model parameters.

2. Direct adaptive control: In this approach, the control parameters are estimated directly with the

objective to minimize some measure that calculates the error between the reference model

outputs and the plant [95]. This normally requires the determination of a set of differen-

tial/difference equations that characterises the error of the output in terms of a function of the

errors of the control parameters. For example, adaptive control laws are established in a form

of differential equations which outline the changes in the control parameters and are given as

functions of the output error [96].

Based on these two main adaptive control approaches, other forms of adaptive control have also

been proposed and discussed in the literature. One variant considers a combined direct and indirect

adaptive control strategy, yielding a method that utilises the advantages of the individual techniques

combined [101].

In the 1980s, further developments have demonstrated that under certain assumptions regarding the

model, it is possible to achieve global stability of the overall system by producing adaptive laws

whilst also obtaining an output error that goes to zero [102], [103]. However, since then, the main
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focus moved towards the robustness properties of adaptive control systems [99]. For the generation

of robust adaptive controllers, the following three elements were researched to a great extent:

a) the effect of external disturbances [104],

b) time-varying parameters [105], [106],

c) unmodeled dynamics [107].

In addition, the Multilayer Neural Network [108], [109] have also been combined with adaptive

controllers for nonlinear dynamical systems as a method of estimating the dynamics of these systems

[110], [111]. It was demonstrated in [110] that the indirect adaptive control approach was preferred

for nonlinear control theory.

When the parameters of a plant are described as time-varying or uncertain, adaptive control methods

[112], [110] are applied in an online fashion to ensure a good tracking performance. Nonetheless,

these techniques do not prove to be efficient when dealing with more complex circumstances such as

a multi-variable function describing a plant or if the system demonstrates distinct modes of behaviour

during its operation [85]. A number of solutions to this problem have been suggested in [113], [114].

Furthermore, stochastic adaptive control is an effective technique to implement when considering un-

certain systems [115], [116].

Adaptive control is one of the most efficient and widely implemented methods for nonlinear dynam-

ical systems that are uncertain as well [117], [118]. Since a high degree of uncertainty exists in

complex systems which needs to be controlled, this has become a challenge that today’s control the-

orists are investigating [111]. Thus, it is advantageous to obtain a controller with the ability to adapt

itself and adjust the parameters accordingly to deal with this issue. Hence, this branch of control

theory seems to be extremely promising and the ongoing research within this field reflects this.

2.3 Large-Scale Complex Systems

The field of control is growing at a fast pace with research being conducted on real-world control

systems. Emergent engineering systems are classified as complex systems and are known as complex

networks due to their architecture which consists of various nodes interacting with each other at a

large-scale. The complexity makes it difficult to analyse, design and implement control techniques.

The challenges that surface in complex systems include high level of uncertainties, high dimension-

ality, and information structure constraints [1], [21]. For large-scale systems, knowledge about the

state of the entire system may not be obtainable. Nevertheless, there may be cases where information

A.A.Z.Zafar, PhD Thesis, Aston University 2021 27



of the global state is available, but it would be unmanageable to control the system in a centralised

way due to the large scalability and highly complex nature which would require more processing

power [119]. Thus, to learn more about the overall complex system, it is necessary to consider local

information provided by the individual subsystems that constitute the complex system. However, not

only the information about the individual subsystems is required, but also information about their

interconnections. Many researchers have proposed various control strategies in an attempt to con-

trol large-scale complex systems that exhibit the challenges stated above [120], [121], [122], [123].

However, various developed methods seemed to be insufficient for the control of such systems as they

would either be managed by a single centralised controller that requires complete knowledge of the

global system which is challenging for large-scale systems or that the control algorithm is applied to

a decentralised system which consists of incomplete and disconnected knowledge.

Two of the strategies to analyse and control complex systems that are discussed widely in the con-

trol literature include decentralised control and distributed control. Although occasionally, the terms

distributed and decentralised control have been used interchangeably in the control literature, [124],

there exists a fine line between them. Decentralised control can be seen as a subset of distributed

control. The key difference lies between the way the control decision is made and how that decision

reaches other nodes in the system. Distributed control systems consist of various control loops that

are distributed all over the system. The control approach requires some interaction between the sub-

systems and decisions may still be made in a centralised fashion by a supervisory controller. This is

an efficient method as it reduces the cost and increases the reliability by having local controllers and

simultaneously ensuring the global objective is met with the supervision of the controller to which

the local controllers report. Moreover, when a single processor fails due to outage or experiences a

breakdown for instance, both, distributed and decentralised, control systems effectively diminish the

impact of this on the network due to the fact that control of other nodes in the network proceed as

normal. Only a small part of the network suffers from the technical disturbance.

It is key to consider the attributes of complex systems to realise the different challenges one can

face and how to handle them when solving the control problem. The high dimensionality complexity

can be resolved by decomposing the complex systems into subsystems and their interconnections.

Appropriate local control designs can then be derived for the updated decomposed system which

also consider the impact of the interconnections. There are decomposed process designs where the

coupled subsystems are strongly connected or designs with weakly coupled subsystems [125]. The

aim is to achieve a decomposition such that the sole responsibility of the designed local controllers

is to influence the behaviour of the corresponding subsystem it has been derived for. It can be said

that decomposition is a precondition for decentralised control in many cases. Numerous design tech-
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niques have been proposed to ensure a suitable decomposition of the complex system can be achieved

and more efficient and accurate decentralised controllers can be obtained. The notion of the various

decomposition strategies is to update the structure to ensure the controllers can be derived in such a

manner that they consider the interactions with the other subsystems. One way to obtain the structural

decomposition is based on the physical properties of the system [126]. This is however not always

achievable since there exist systems where no suitable weak coupling can be found. Therefore, nu-

merical decomposition has been suggested to accomplish the aim of generating more manageable

subproblems. Some of these decomposition approaches can be categorised as disjoint decomposition,

overlapping decomposition [127], [19], and epsilon decomposition systems [128], to name a few.

The disjoint decomposition has been used extensively since it results in disjoint subsystems and inter-

connections. Furthermore, overlapping decomposition is implemented for large systems where there

is some sort of intersection between the subsystems. With overlapping decomposition, the original

system that consists of strongly coupled subsystems is expanded into a higher dimensional system

but with weakly coupled subsystems. This concept has been applied in many fields to decompose the

system in overlapping subsystems such as mechanical systems [129], [129], electric power systems

[19], [130], [131], web winding systems [132] and many more.

There has been an increase in studies that focus on incorporating explicit knowledge of the inter-

connections in the control design and also on distributed control since it considers the communication

between subsystems. Most approaches to decomposing the system have been introduced with the aim

to augment the system with strong interconnecting subsystems to a system where the subsystems

are disjoint or weakly connected. However, this means that the controllers are designed based on

incomplete and disconnected knowledge. Consequently, numerous approaches have been exhausted

to preserve the communication links between subsystems. In [133], one such attempt was made by

Roberson et al. to deal with the decentralised control problem of a platoon of autonomous vehicles.

Each vehicle was fitted with an observer to estimate its own state and also the states of the vehicles

it communicated with. An observer based state feedback approach was implemented which allowed

them to access approximations of information that was not accessible via direct links. They exploited

the fact that each vehicle communicates with a common group of neighbouring vehicles which can

be referred to as a circulant network. This type of network results into a simplified system represen-

tation as it can be transformed to a convenient block diagonal form. The proposed method in [133],

however, is limited as it assumes a specific type of network.
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2.3.1 Distributed Control

Several distributed control strategies have been proposed to control complex systems. In [134], Kia

developed a class of distributed continuous-time coordination algorithms to achieve network optimi-

sation. However, the method requires some conditions to be met such as a connected graph topology

and globally Lipschitz gradients. The design parameters are computed offline and complexities such

as disturbances have not been considered. Furthermore, a distributed method for formation control

was suggested in [135] for multi-robots that communicate and share knowledge with their neigh-

bours. However, the dynamics of the robots are assumed to be homogenous and thus can not be

applied to systems that are heterogeneous. Another limitation is the constant velocity that is assumed

for the derivation which would prove to be problematic in case the speed changes abruptly resulting

in impracticable optimisation.

In [25], a distributed control framework was developed which involved the decomposition of

the large-scale complex network into subsystems for which individual probabilistic controllers were

derived. Each subsystem took the corresponding interaction with other subsystems into consideration

by treating the dynamics of the interacting subsystems as a measurable disturbance. The global aim

of the system is realised by the exchange of information between the subsystems which is achieved

through message passing. However, this method was solely developed for linear Gaussian systems.

2.3.2 Decentralised Control

The theory of decentralised control is a concept that solves complex large-scale control problems by

partitioning the problem into more manageable subproblems [136]. As a result, a single centralised

controller is not expected to control the entire plant but instead this task is indirectly fulfilled by

multiple independent controllers which are known as decentralised controllers. The control of the

interconnected dynamical system is achieved by controlling its subsystems and using knowledge that

is solely accessible locally. However, the challenge that needs to be addressed when designing de-

centralised controllers is that only limited knowledge about the global state of the system is available

[119]. Consequently, this would impact the stability of the overall system that is controlled by decen-

tralised controllers since the subsystems do not possess any information about the global state and the

behaviour of other subcontrollers.

Decentralisation reflects the information structure characteristics in the solution to the control

problem. This is achieved by considering decentralisation in the control law by incorporating knowl-

edge of the states and the command which allows independent implementation of controllers. In ad-

dition, the design process can also reflect the objective of decentralisation through the model and the
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aim of the design process. In that case, the derivation of control solutions are obtained independently

and are based on the individual design and model of the subsystems. The concept of decentralising the

design process is driven by various reasons which include subsystems that consist of weak coupling,

the objectives of subsystems are contradicting, or the system itself is of high dimensionality.

One of the fundamental issues that control theorists and analysts face with decentralised control

is the reliability of control systems in the presence of component failure. The solution to improving

the reliability of control systems cannot be obtained by the implementation of more reliable and

better performing components, but is achieved by considering the way the control systems handle

these complications [137]. Each subsystem within interconnecting dynamical systems possesses the

possibility of facing failure within the components due to for example a blackout, downtime or partial

degradation failure. An extensive amount of studies can be found on obtaining control strategies

that tackle this issue which highlights the requirement of considering this in the decentralised control

strategy [137], [138], [139], [140].

In a decentralised control system, each subsystem within the network derives a controller to in-

fluence its own behaviour without taking into account the behaviour of the other subsystems or their

controllers. The decentralised controllers consist of control systems that take place locally. Usually,

the subsystems do not posses complete global system knowledge and their controllers are only con-

cerned with controlling the individual subsystem [141]. In case of a technical disturbance, only a

small fraction of the network suffers from it. On the other hand, not considering information about

other neighbouring subsystems could result in failure to meet the global state objective.

2.4 Fully Probabilistic Control

The similarity between one probability distribution to another probability distribution can be obtained

by various divergence measures that have been developed and researched such as Jensen difference

divergence [142], Kullback Leibler Divergence (KLD) [143], Jeffreys divergence [144], Kagan’s di-

vergence [145] and considerably more. A very popular divergence measure for probability distri-

butions is the KLD which is computationally advantageous and a convenient statistical measure to

describe the "distance" or "divergence" between two distributions since many distributions can be

expressed as exponential functions. In [9], Kárnỳ proposed the FP control design which is an optimal

control method, i.e. minimises a cost function that is based on the KLD. This section is specifically

dedicated to the current state-of-the-art that has been produced on the FP control design. The scope

to further develop this control method proves to be propitious and is therefore the chosen approach in

this thesis.
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It was suggested by Kárnỳ [9] to seek a control design in which the derivation of the controller

is based on the characterisation of the joint probability distribution of the closed loop control sys-

tem. Since the considered systems are stochastic in nature, the theory of probabilities is a suitable

approach to handle them. This adaption of the description of the closed-loop enabled the shift from

the common minimisation of the expected value of a data-dependent cost function to the minimisa-

tion of two joint probability distributions using the KLD [143], [146]. The proposed control design

involves minimising the discrepancy between the actual joint probability distribution and the ideal

joint probability distribution of the closed-loop system. The developed framework is called the Fully

Probabilistic Control design which allows the derivation of an explicit form of the optimal controller.

The solution of the optimal control law is presented as a probability density function (pdf) [24]. In its

original form, the FP control design provided an explicit solution for stochastic systems with additive

noise that can be described by any arbitrary probability density function, but was only demonstrated

on linear Gaussian systems. Over the years, however, monumental progress has been made on the

FP control design. In [147], the design of the FP controller is generalised by extending it to a Gaus-

sian class of linear uncertain stochastic systems of which the dynamics are unknown and the model

discrepancy is considered in the design of the control law.

On the other hand, dynamical systems with multiplicative stochastic disturbances have recently

received a great amount of attention due to the extension of the application domain to fields such

as image processing systems [148], [149] in ultrasound and laser imaging, biological motor systems

[150], [151], and aerospace engineering systems to give a few examples. In fact, there are many key

problems in chemistry, biology, ecology, economics, physics, and engineering which involve multi-

plicative noise instead of additive noise [152], [153], [154], [155], [156]. Hence, the consideration

of multiplicative noise in real-life engineered dynamical systems is of paramount importance. Unlike

additive noise, the second moment of the multiplicative noise is not constant, but rather dependent on

the state of the system. Essentially, this creates complications and makes the research more challeng-

ing [157]. Consequently, many approaches have been developed in the literature for systems affected

by multiplicative noises including the linear matrix inequality (LMI) approach [158], [159], [160] and

the Riccati equation [161] to name a few. However, none of the aforementioned considered a fully

probabilistic approach. To ensure the FP controller can also be applied to linear systems affected by

multiplicative noises, the control framework was further developed in [30].

In addition, FP control design methods have mostly focused on demonstrating the control so-

lutions for linear and quadratic control systems [9], [30] since the derivation of an analytic control

solution for nonlinear systems cannot be obtained in a FP framework. This is due to the nonlinearity

of the parameters of the probability density functions that characterise the system state and control
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input. As a solution, nonlinear control problems have been solved numerically within a FP control

framework in [17], without the requirement of linearisation of the system dynamics. Furthermore, in

[17], the discussed control design is proposed for nonlinear stochastic systems affected by functional

uncertainties using the probabilistic dual heuristic programming (DHP) adaptive critic approach.

Despite, the many advancements, a closed form control solution to the FP problem had not been

developed for nonlinear systems. The hindrance to the derivation of an analytic solution and how to

address it is one of the contribution of the work in this thesis which has appeared in [29] and will

be explained in the next chapter. This extension allows the Fully Probabilistic control design to be

applied to a wider class of real systems as the physics of many real-world systems are affected by

multiplicative noises and governed by nonlinear dynamics [148], [150].

Much work has been done to further extend the FP control design to consider various aspects of

stochastic and uncertain systems [147], [18], [162], [30]. The original FP control design method was

derived by assuming the dynamics of the system are known [9]. The approach was further developed

for systems with unknown dynamics by Herzallah [147] and a generalised randomised controller that

considers functional uncertainty was derived. The paper recognises the existence of functional un-

certainty which is unavoidable and arises from the poor modelling of complex systems of which the

dynamics are unknown. It considers an intelligent control technique that incorporates functional un-

certainty in the optimisation of the randomised controller. This method was shown to be effective

in improving the performance of the stochastic controlled system which was also assumed to have

unknown dynamics, and were thus estimated online. The consideration of functional uncertainty in

the design of the randomised controller yielded less transient overshoot due to the development of a

cautious controller. The proposed method in [147], however, was demonstrated on linear stochastic

systems. Consequently, the work in this thesis considered the extension of this method to systems

governed by nonlinearities as can be seen in the discussion of Chapter 3. The proposed adaptive

control method in Chapter 3 is more complicated due to the estimation process of the nonlinearities

of the system dynamics, increasing the intensity of the estimation error, and making the consideration

of functional uncertainty of paramount importance.

The FP control design was originally proposed in a centralised way [9]. It was soon realised by

Herzallah et al. that the FP control framework needs to be adapted to ensure large-scale complex

systems can be controlled using the FP control design. The pinning control method was suggested for

large-scale systems [24]. However, the control strategy involved the design of randomised controllers

that pin or control a few nodes in the network, and therefore still follows a centralised architec-

ture. Further development of the FP control design within a decentralised framework was proposed
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for large-scale complex linear systems in [25]. It decomposes the system into smaller subsystems

which makes it more manageable to control. The individual subsystem considers its own dynamics

and obtain knowledge about the dynamics of the interacting subsystems as an external observable

disturbance. The interaction between the subsystems is achieved via probabilistic message passing.

Having information of the other interconnecting subsystems in the form of external observable dis-

turbances as part of the dynamics of the subsystem improves the control reliability. For example, if

some part of the system experience failure, the system can still predict information about the other

subsystems. Nevertheless, as real complex systems tend to be nonlinear in nature, this probabilistic

design approach has been further developed in Chapter 4. In addition, the FP control design has not

been demonstrated for a formation control problem. Hence, this gap and its solution are discussed in

Chapter 5.
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Chapter 3

Fully Probabilistic Control for Nonlinear,

Stochastic, and Uncertain Systems

3.1 Introduction

Many engineered dynamical systems in the industry are fraught with a variety of uncertainties which

have a direct impact on the dynamics of the systems. These disruptions affecting the performance

of the system could come in many forms such as functional uncertainties, noises and disturbances

caused by the surrounding environment or operating conditions. The aforementioned complexities

have made the designation and derivation process of an optimal controller more challenging. From

the literature, it can be established that many branches within control are proposed with the aim

to manage uncertainties in order to optimise the performance of the control systems resulting in

robustness and allowing near optimal control of real world applications that operate under noises and

functional uncertainties.

As such, the focus of this PhD is on stochastic systems since they consider noises and uncertain-

ties in the dynamics. Due to these noises, the exact value of the state cannot be determined at the

current time step. However, the probabilistic description of the state can be obtained for which it is

then required to derive a controller that handles the probabilistic nature of the system. For the regu-

lation problem of stochastic dynamical systems, a control method was developed following a Fully

Probabilistic control framework [9]. This approach considers the full distribution of the stochastic

system dynamics for the derivation of randomised controllers. Further advancements to the FP con-

trol method consider various aspects of stochastic and uncertain systems [30], [147], [162].

Despite its effectiveness in dealing with stochastic systems, an analytic control solution using the

FP control method can be obtained for linear and Gaussian systems only. The nonlinearities of the

parameters of the distribution of the system dynamics on the other hand, means that control solutions
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for nonlinear systems need to be obtained using numerical methods. Additionally, the Fully Proba-

bilistic Design in its original form considers systems with additive noises only [9] which makes the

application of it to real-world systems limited as many systems in reality are affected by multiplica-

tive noises as well. Thus, in [30], we considered linear stochastic systems affected by multiplicative

noises. The developed method is referred to as the generalised Fully Probabilistic control design as

the resulting solution consists of a generalised Riccati equation that has additional terms due to the

involvement and consideration of multiplicative noises in the stochastic system.

To address the aforementioned challenges, a novel approach that considers the nonlinearities of

the system dynamics is demonstrated in this chapter. Unlike many methods in the literature [88], the

proposed approach does not require the system to be linearised and sustains the nonlinear peculiarity

of the system. Furthermore, this chapter will exploit different types of noises and uncertainties found

in real-world systems and propose a probabilistic controller which takes these inconveniences into

consideration.

The structure of this chapter is as follows: Section 3.2 discusses the objectives of the FP control

design and briefly describes the conventional FP control design as discussed in [9]. Section 3.3

focuses on the development of an analytic solution of the FP control design for nonlinear systems

with additive noises. Section 3.4 describes how to include knowledge of functional uncertainty in the

derivation of the randomised controller in a FP control framework. Section 3.5 discusses the design

of an optimal randomised controller that considers multiplicative noises which have an impact on the

dynamics of nonlinear systems. Section 3.6 concludes this chapter.

3.2 Fully Probabilistic Control Design

A control strategy is implemented to control the state of a dynamical system to a predefined desired

state. It is to ensure and guarantee that the system behaves as expected making it crucial for the

control problem and the dynamics of the stochastic system to be understood. Since the governing

dynamics that describe the states of a dynamical system are usually unknown and affected by noise,

the stochasticity of the system only allows the probability distribution of the states to be estimated.

Therefore, the objective and formulation of the control problem needs to be adapted accordingly. This

signifies that the controller is required to reflect the probabilistic framework in which it is operating.

The Fully Probabilistic Design is an optimal control method that is based on the minimisation of

a predefined performance index for systems described by probability distributions. This performance

index is derived from the Kullback-Leibler Divergence measure which is the foundation of the FP

control design. The KLD, defined in (3.1), measures the distance between the actual and ideal joint
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probability density functions,

D(f ‖ f I) =

∫
f(D) ln

(
f(D)

f I(D)

)
dD, (3.1)

where D = {x1, . . . , xH , u1, . . . , uH}, with x and u being the state and control input vector respec-

tively, and H is the control horizon. The FP control design minimises the KLD given in (3.1) by

designing a probabilistic controller that brings the actual joint pdf f(D) of the closed-loop system

closer to the ideal joint pdf f I(D) of the closed-loop system.

A stochastic system is characterised with the inputs uk and measurable states xk, and expressed in dis-

crete time steps k = {1, ...,H}. It is assumed that the behaviour of the system state xk is represented

by a known conditional pdf and is given by,

s(xk|uk, xk−1), (3.2)

with xk being the state of the system at time step k. Furthermore, the probabilistic controller which

needs to be derived is described by the probability distribution given by,

c(uk|xk−1), (3.3)

where one can notice the dependency of the controller on the state. This is a valid assumption given

that the states are directly observable.

To re-emphasise, the objective of the FP control design is to control the joint pdf of the system

dynamics and controller to a predefined desired joint pdf. This objective can be achieved by design-

ing a randomised controller c(uk|xk−1) that minimises the discrepancy between the joint distribu-

tion of the system state and control input, f(xk, uk|xk−1) and a predefined ideal joint distribution,

f I(xk, uk|xk−1) . Using the chain rule for probability density functions [163], f(xk, uk|xk−1) can

be factorised as follows,

f(xk, uk|xk−1) = s(xk|uk, xk−1)c(uk|xk−1). (3.4)

Similarly, the ideal joint probability distribution of the closed-loop system can be factorised as fol-

lows,

f I(xk, uk|xk−1) = sI(xk|uk, xk−1)cI(uk|xk−1), (3.5)
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where sI(xk|uk, xk−1) represents the ideal distribution of the dynamics of the system state, and

cI(uk|xk−1) is the ideal distribution of the controller. The minimisation of the KLD is attained

by finding a probabilistic control law, c(uk|xk−1), which regulates the actual closed-loop system,

f(xk, uk|xk−1) stated in (3.4) and brings it as close as possible to the ideal joint probability distribu-

tion of the closed-loop system, f I(xk, uk|xk−1) as defined in (3.5).

The minimum cost-to-go function that minimises equation (3.1) with respect to the admissible

control sequence, uk, is given by the following recurrence equation [162],

− ln(γ(xk−1)) = min
{c(uk|xk−1)}

∫
s(xk|uk, xk−1)c(uk|xk−1)

[
ln

(
s(xk|uk, xk−1)c(uk|xk−1)

sI(xk|uk, xk−1)cI(uk|xk−1)

)
︸ ︷︷ ︸

Partial cost

− ln(γ(xk))︸ ︷︷ ︸
Optimal cost-to-go

]
d(xk, uk), (3.6)

where − ln(γ(xk−1)) is the expected minimum cost-to-go function. The equation given in (3.6)

equates to the recurrence equation of the dynamic programming solution to the control problem. A

more detailed derivation of the cost-to-go function can be found in [162].

3.2.1 General Solution to the FP Control Design Problem

Following the discussion above, it is now possible to obtain a general optimal solution for the FP

control problem as shown in Proposition 1.

Proposition 1. The minimisation of the cost-to-go function (3.6) with respect to the control law,

c∗(uk|xk−1) results in the designation of the optimal controller. This yields the following optimal

randomised controller,

c∗(uk|xk−1) =
cI(uk|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]

γ(xk−1)
, (3.7)

where

β1(uk, xk−1) =

∫
s(xk |uk, xk−1)

(
ln

s(xk |uk, xk−1 )

sI(xk |uk, xk−1 )

)
dxk, (3.8)

β2(uk, xk−1) = −
∫
s(xk |uk, xk−1 ) ln(γ(xk))dxk, (3.9)

γ(xk−1) =

∫
cI(uk|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]duk. (3.10)

Proof. The details of the complete proof of the performance index − ln(γ(xk−1)) defined in (3.6)

and the optimal control law c∗(uk|xk−1) given in (3.7) - (3.10) can be found in [162], [9].
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Equation (3.7) provides the general solution of the randomised controller for arbitrary probability

density functions of the system dynamics and controllers. However, it is important to note that the

randomised optimal control solution only allows an analytic solution to be evaluated for systems that

are characterised by Gaussian distributions and are linear as will be demonstrated in the next section.

3.2.2 Solution of FP control for linear systems

This subsection gives a brief insight into the solution of the conventional FP control design for linear

dynamical systems which may be used for comparison purposes with the methods developed and

explained in the subsequent sections in this chapter.

Consider the discrete time linear stochastic system with additive noise represented by the follow-

ing model,

xk = Axk−1 +Buk + εk, (3.11)

where xk ∈ Rn is the system state, uk ∈ Rm is the control input, A ∈ Rn×n and B ∈ Rn×m are

the state and control matrices, respectively. The noise defined by εk is assumed to have a Gaussian

distribution with zero mean and covariance Σ. Under the assumption that the noise affecting the

system is Gaussian noise, the stochastic linear model in (3.11) can be characterised by the following

Gaussian probability density function conditioned on previous state and control input,

s(xk|uk, xk−1) ∼ N (x̄k,Σ), (3.12)

where,

x̄k = Axk−1 +Buk, (3.13)

is the mean of the system and Σ is the global covariance. Although the distribution of the system

dynamics is assumed to be Gaussian in (3.12), any other distribution could have been assumed. If a

different distribution to the Gaussian one is assumed though, the analytic solution as will be obtained

here might not be possible. The ideal probability distribution of the system state which represents the

desired behaviour of the system is given by,

sI(xk|uk, xk−1) = N (0,Σ). (3.14)

The mean equates to zero since a regulation problem is considered where the aim is to reach state

zero. In this section, the covariance matrix Σ of the ideal distribution is assumed to be equal to

the covariance matrix of the controlled system and the random noise affecting it. However, this

covariance matrix of the ideal distribution is generally a design parameter that can be specified based
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on prior knowledge we have on the noise affecting the system. For example, if the noise is known

to be constant and state independent, the covariance matrix of the ideal distribution can be set to be

equal to the one estimated from the data as will be discussed in section 3.3.2. For systems that are

affected by state dependent noise, the covariance matrix of the ideal distribution can be specified to

be very small, as will be seen later in this chapter and in Chapters 4 and 5 (Sections 4.8.1, 5.3.1),

since this noise can be controlled and minimized. Otherwise this covariance of the ideal distribution

can be determined from the constraint of the system as discussed in [164]. Furthermore, the ideal

distribution of the randomised controller is described by,

cI(uk|xk−1) = N (0,Γ), (3.15)

where the mean is zero and Γ determines the permissible range of control inputs for a given confidence

level.

The analytic solution of the FP control problem for linear systems that are described by Gaussian

pdfs can be found in the following proposition. It is referred to as the conventional FP control design

in this thesis and was originally demonstrated by Kárnỳ [9].

Proposition 2. The randomised control law for the linear system described by the distribution in

(3.12) and the ideal pdfs of the system state and controller expressed by (3.14) and (3.15) respectively,

is given by,

c∗(uk|xk−1) = N (µ∗k, Rk), (3.16)

where,

µ∗k =−Kkxk−1, (3.17)

Kk =(Γ−1 +BT (Σ−1 +Gk)B)−1BT (Σ−1 +Gk)A, (3.18)

Rk =

(
Γ−1 +BT (Σ−1 +Gk)B

)−1

. (3.19)

The quadratic cost function implemented to obtain the designed randomised controller in (3.16) is

given by,

− ln(γ(xk)) = 0.5xTkGkxk + 0.5ωk, (3.20)
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with,

Gk−1 =AT
{

(Σ−1 +Gk)− (Σ−1 +Gk)B[Γ−1 +BT (Σ−1 +Gk)B]−1BT (Σ−1 +Gk)

}
A,

(3.21)

wk−1 =wk + tr(GkΣ) + ln |Γ|+ ln
(
BT (Σ−1 +Gk)B + Γ−1

)
, (3.22)

where Equation (3.21) represents the discrete time algebraic Riccati equation (DARE) and wk−1 in

(3.22) is some constant term that has no dependency on the state. The derived optimal controller

described by (3.16) is a Gaussian distribution with mean µ∗k given by (3.17) where the control gain,

Kk, is expressed by (3.18) and covariance Rk is defined by (3.19).

3.3 Generalised Fully Probabilistic Design for Nonlinear Systems with

Global Variance

The FP control design has been demonstrated for various scenarios, primarily linear and quadratic

control systems [9], [147], [30], [165], [25], [166], yet the derivation of a closed form control solution

has failed to be demonstrated for nonlinear systems [29]. Research on the FPD for systems governed

by nonlinearities has been conducted in the literature, but the proposed methodologies consist of

numerical solutions [18], [17]. The hindrance of the achievement of an analytic control solution is

due to the nonlinearity of the parameters of the pdfs that describe the system state and control input.

Consequently, this section proposes a novel approach for the derivation of analytic solutions of

the randomised controllers for nonlinear systems. The derivation of analytic control solutions is

facilitated by the means of transformation methods. This will be shown to be achieved through

transforming the nonlinear state function to another variant where the nonlinearities still exist in the

state but have now been transformed to a nonlinear affine state function. The introduced novelty

allows the FP control design to be extended to more realistic control problems that are characterised

by nonlinearities, and does not require linearisation of the systems.

3.3.1 System Description

In real-world, many systems are governed by nonlinear dynamics. As such, a class of nonlinear

discrete time dynamical stochastic systems are considered which are described by the following state

space model,

xk = ĥ(xk−1) + ḡ(xk−1)uk + εk, (3.23)
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where k = 1, ...,H denotes the discrete time step, xk ∈ Rn describes the state, and uk ∈ Rm is the

control input to the system. Also, εk ∈ Rn is a Gaussian noise with zero mean and fixed arbitrary

covariance, Σ̄. The nonlinear state vector and control matrix are represented by ĥ(xk−1) ∈ Rn and

ḡ(xk−1) ∈ Rn×m, respectively.

To re-emphasise, for the nonlinear system (3.23), the presence of the noise εk means that the previ-

ous state and current control input specify the probability distribution of the present state, s(xk|uk, xk−1)

rather than their actual values. To clarify, given the assumption that εk is a Gaussian noise, the distri-

bution of the present state of the nonlinear system (3.23) can be characterised by a Gaussian distribu-

tion with mean given by, ĥ(xk−1) + ḡ(xk−1)uk and a global covariance matrix given by Σ̄. However,

this nonlinearity of the parameters of the distribution that characterises the dynamics of the nonlinear

system (3.23) means that the optimal solution of the randomised controller given in (3.7) can only

be obtained using numerical methods, and an analytic or closed form solution of the randomised

controller can not be obtained. Therefore, the derivation of the randomised controller will be facili-

tated by first transforming Equation (3.23) such that it becomes nonlinear affine in the system state to

obtain:

xk = h̄(xk−1)xk−1 + ḡ(xk−1)uk + εk, (3.24)

where ĥ(xk−1) = h̄(xk−1)xk−1.

The matrix h̄ is defined as follows,

h̄(xk−1) =


h̄11(xk−1) . . . h̄1n(xk−1)

...
. . .

...

h̄n1(xk−1) . . . h̄nn(xk−1)

 . (3.25)

The stochastic evolution of the system state defined in Equation (3.24) can then be captured during

the control process by estimating its generative distribution, s(xk|xk−1, uk), from the observed data

as will be explained in the next subsection.

Definition 3.3.1. Suboptimal solution to the nonlinear FP control design: The FP control approach

for obtaining a suboptimal solution of nonlinear control problems (such as Equation (3.23)) can be

obtained using the following definition:

1. Use transformation methods to bring the nonlinear dynamics to the nonlinear affine dynam-

ics. For example, for the formulation in the current section, transform the nonlinear equation

in (3.23) to the nonlinear affine dynamics in (3.24).
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2. Solve the equations provided in Proposition 1 to obtain the closed form suboptimal solution at

each discrete time instant.

3.3.2 System State Estimation

Since the physical description of most real-world systems is unknown, the proposed adaptive control

method in this section will utilise neural network techniques to estimate the dynamics of the controlled

system. To be specific, the Multilayer Perceptron (MLP) is implemented to predict the probability

distribution of the system state variables.

Firstly, it should be noted that the dynamics of the system are unknown. The only data available

to us is the measurable state xk and the input to the system defined as uk. Furthermore, a prior

assumption about the dynamics of the system is that it is governed by affine nonlinearities. This

means that in (3.24), the state xk−1 is multiplied by a matrix h̄(xk−1) whose elements are nonlinear

functions of the state and the control input is multiplied by a control matrix ḡ(xk−1), whose elements

are also nonlinear functions of the state. Based on these assumptions and the data available to us, the

conditional mean of the system dynamics can be approximated using a MLP neural network.

Throughout this thesis, a three-layer MLP perceptron neural network is assumed. The three layers are

the input layer, the hidden layer, and the output layer. The nonlinear activation functions of the hidden

layer could be taken to be any of the known activation functions for instance the sigmoid and tanh

function. Once the structure of the MLP is defined, this neural network model can be used to provide

a prediction for the conditional expectation of the system state as shown in Fig 3.1. The output of the

MLP provides an estimation for the conditional expectation of the actual state of the system defined

in (3.24) and is given by the following equation,

x̂k = mlp(xk−1),

= h(xk−1)xk−1 + g(xk−1)uk, (3.26)

where h(xk−1) and g(xk−1) are the estimates of the actual state, h̄(xk−1), and control, ḡ(xk−1), ma-

trices respectively. The parameters of the MLP model (3.26) are optimised online at each instant of

time by computing the sum of squares error between the actual state values xk as obtained from (3.24)

and the estimated x̂k as obtained from (3.26). The details of this online optimisation (parameter esti-

mation and control of the system are done simultaneously with each time step) is given in Algorithm

2. However, to improve the convergence property of the neural network model, it is pre-trained offline

using some generated data from the system equation as explained in Algorithm 1.

Therefore, once the estimation has been completed, the following stochastic model can be gener-
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Figure 3.1: The input layer consists of the state vector xk−1, the hidden layer consists of the elements
of matrix h(xk−1) and g(xk−1), and the output layer consists of the state values x̂k. DL is the delay
line. In the diagram, an example of an activation function, namely the tanh function, has been given.
There are, however, a variety of activation functions that can be selected.

ated,

xk =x̂k + ek−1, (3.27)

where the residual error of the output of the system is characterised by the last term ek−1. It is stated

in [162] and [167] that the error ek−1 can be shown to be close to Gaussian random noise with zero

mean and an input dependent covariance matrix, Σk. This is a well-known finding which states that

if the approximation model accurately approximates the system behaviour, then the estimation error

will be very small and close to a Gaussian noise [168]. This covariance matrix Σk indicates the

covariance of the error in predicting state xk and is calculated by considering the residual value of the

error between the actual and estimated state values,

Σ̃k = (xk − x̂k)(xk − x̂k)T . (3.28)

To clarify, Σ̃k here is input dependent, meaning it can be computed for each state variable. However,

using the process outlined in [162], the global covariance Σk can be estimated by averaging over all

the input values,

Σk = E
[
(xk − x̂k)(xk − x̂k)T

]
, (3.29)
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where E(.) represents the expected value. To elucidate, the computation of the global covariance

matrix is achieved by adding up the input dependent covariances, Σ̃k and dividing it by the length of

time.

Consequently, according to the universal approximation property of neural network models [168], the

conditional distribution of the system state at time k can be represented by a Gaussian distribution,

s(xk|uk, xk−1) = N (x̂k,Σk), (3.30)

where the mean, x̂k is defined in (3.26) and Σk is the global covariance matrix given in (3.29). As

mentioned earlier, a Gaussian distribution facilitates the derivation of a closed form solution to the

randomised controller.

Algorithm 1 Algorithm for Training MLP

1: procedure PRE-TRAINING OF THE MLP FOR THE ESTIMATION OF THE NONLINEAR DYNAM-
ICS AND THE GLOBAL COVARIANCE

2: Generate a vector of length L of control inputs to excite the system equation and cover all
operation range

3: Generate a vector of length L of random noise, εk.
4: Initialise the state at time k = 0 to a certain value, x(k = 0) = x0.
5: for k = 1 : L
6: Use Equation (3.23) to calculate the next state value, ĥ(xk−1)xk−1+ḡ(xk−1)uk+εk ← xk.
7: End for
8: Use the generated state vector xk−1 that was obtained in Steps 5-6 along with the control

input vector from Step 2 uk as input to the neural network model and the non-delayed state vector
xk as output to optimise its parameters. Here, the forward backward algorithm is used to update
and optimise the parameters of the neural network model.

9: Forward the generated state data from Steps 5-6 along with the control input vector from Step
2 to the optimised neural network model to predict the state values.

10: Calculate the input dependent covariance matrix Σ̃k using Equation (3.28), (xk − x̂k)T (xk −
x̂k)← Σ̃k.

11: Calculate the global covariance matrix Σk using equation (3.29),
E
[
(xk − x̂k)T (xk − x̂k)

]
← Σk.

3.3.3 FP Control Solution for Nonlinear Systems

The advancement of the FP control design is demonstrated in this section for the system state dis-

tribution described by (3.30). As discussed previously, the aim of the FP controller is to shape the

joint pdf of the closed-loop system such that it converges to the desired pdf of the system. Hence, the

following requirement is the provision of the definition of the behaviour of the desired distribution of

the system state which in the case of a regulation problem is specified by,

sI(xk|uk, xk−1) ∼ N (0,Σk), (3.31)

A.A.Z.Zafar, PhD Thesis, Aston University 2021 45



where the zero mean reflects the regulation objective of making the states converge to zero, and

Σk denotes the covariance of the ideal distribution of the system which in this case is assumed to

be the same as the covariance of the actual distribution given in (3.30). The assumption of equal

covariance matrices here is due to the fact that the systems considered in this chapter are assumed to

be affected by state and control independent noises. Where the noise is state and control dependent,

this assumption can be generalised in a straight forward manner as will be seen in the next chapters.

Furthermore, the ideal probability distribution of the controller is described by the following Gaussian

distribution with mean zero and ideal covariance Γ which represents the permitted range of optimal

control inputs,

cI(uk|xk−1) ∼ N (0,Γ). (3.32)

It can be seen that the objective, which in this case is the regulation of the system, is taken into con-

sideration in the ideal distribution of the system sI(xk|xk−1, uk) and the ideal controller distribution

cI(uk|xk−1).

The succeeding theorem outlines the randomised controller obtained from the minimisation of the

cost-to-go function given in (3.6).

Theorem 1. The suboptimal control law as described by Definition 3.3.1 for the system state distri-

bution specified by (3.30) and the ideal pdfs of both the state and the controller described by (3.31)

and (3.32) is given by,

c∗(uk|xk−1) = N (u∗k, Rk), (3.33)

where

u∗k = −Kkxk−1, (3.34)

Kk = Rk

[
gT (xk−1)(Σ−1

k +Mk)h(xk−1)

]
, (3.35)

Rk =

[
Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)

]−1

. (3.36)

The distribution of the randomised controller in (3.33) is Gaussian with mean u∗k and covariance Rk.

The optimal gain is defined by Kk in (3.35). The performance index for the system state described

by the pdf (3.30) is specified by,

− ln(γ(xk)) = 0.5xTkMkxk + 0.5wk, (3.37)
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where,

Mk−1 =hT (xk−1)

[
(Σ−1

k +Mk)− (Σ−1
k +Mk)g(xk−1)

[
Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)

]−1

×gT (xk−1)(Σ−1
k +Mk)

]
h(xk−1), (3.38)

wk−1 =wk + tr(MkΣ) + ln |Γ|+ ln |gT (xk−1)(Σ−1
k +Mk)gk−1 + Γ−1|. (3.39)

Proof. A detailed proof of the randomised optimal controller in (3.33), the performance index in (3.37)

and the DARE in Equation (3.38) can be found in Appendix A.

The DARE is given by (3.38) and the constant term wk−1 is specified by (3.39). In comparison

to the conventional DARE (3.21) obtained from the conventional FPD (Proposition 2), the derived

DARE is a state dependent Riccati equation (SDRE) due to the dependency of the nonlinear parame-

ters of the state and control distributions on previous state values. The SDRE is not new and has been

used in the literature to solve quadratic control problems when the system equations are nonlinear

[169], [68], [65], [170]. However, to our best knowledge, the SDRE has not been considered in the

Fully Probabilistic Control design. As such, it is shown for the first time that the suboptimal solution

of the nonlinear FP control design problem for stochastic nonlinear affine systems results in a SDRE.

The obtained solution (3.33) will be referred to as the conventional SDRE FP control approach.

3.3.4 Algorithm of Proposed Method in Theorem 1

The optimal controller given by (3.33) requires the evaluation of the Riccati equation solution in (3.38)

in order to be implemented. If the probabilistic controller is being employed for an infinite horizon

optimal control problem, the solution of the Riccati equation becomes a steady state (SS) solution.

It should be noted that the Riccati equation solution is computed backwards in time, i.e. Mk needs

to be computed first to determine Mk−1. However, in infinite horizon control problems, this is not

possible since we do not know the final value of the Riccati equation solution Mk. Therefore, as a

solution to this problem, the steady state solution of the Riccati equation can be found as a result

of adjusting the time index. To clarify, the way the DARE is evaluated for the employment of the

randomised controller derived in (3.33) is presented here. Equation (3.38) is calculated by adjusting

the time index such that an increase in k refers to earlier time instants as shown below,

Mk =hT (xk−1)

[
(Σ−1

k +Mk−1)− (Σ−1
k +Mk−1)g(xk−1)

[
Γ−1 + gT (xk−1)(Σ−1

k +Mk−1)g(xk−1)

]−1

×gT (xk−1)(Σ−1
k +Mk−1)

]
h(xk−1). (3.40)
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The idea is to keep iterating the amended DARE (3.40) until a steady state solution is found. The

pseudocode in Algorithm 2 summarises the approach of the conventional SDRE FP control design.

Algorithm 2 Pseudo-code of conventional SDRE FP control approach

1: procedure IMPLEMENTATION OF THE FP CONTROL DESIGN FOR NONLINEAR SYSTEMS WITH

THE GLOBAL COVARIANCE

2: Initialise: x0,M0 and pre-train the neural network model as discussed in Algorithm 1 (op-
tional).

3: for k = 1→ H do
4: Estimate h(xk−1), g(xk−1) from the neural network model, and compute Σk using (3.29).
5: Calculate the SS solution of M using (3.40).
6: Use the SS value from Step 5 in (3.35) to find the SS solution of K.
7: Calculate u∗k using equation (3.34).
8: Forward the control signal u∗k obtained in Step 7 to the system equation (3.23)
9: Using a one step delayed of the new state value xk−1 from Step 8 and the calculated

control signal uk from Step 7 as input to the neural network model and the new state xk from
Step 8 as output, retrain the neural network model and update its parameters.

10: end for

3.3.5 Simulation

The effectiveness of the control solution given by (3.33) in Theorem 1 for nonlinear systems with

global variance Σk is verified in this section. As a simulation example, a discrete time model of the

driven inverted pendulum is implemented [171] of which a diagram is given in Figure 3.2. The perfor-

mance of the randomised controller designed in (3.33) is then compared with the nonlinear quadratic

regulator SDRE of which the formulations of the suboptimal controller, suboptimal feedback gain

and Riccati equation [172] are respectively given by,

u∗k =−Kkxk−1, (3.41)

Kk = [R+ gT (xk−1)Pkg(xk−1) +R]−1gT (xk−1)Pkh(xk−1), (3.42)

Pk−1 =− hT (xk−1)Pkg(xk−1)[R+ gT (xk−1)Pkg(xk−1)]−1gT (xk−1)Pkh(xk−1)

+ hT (xk−1)Pkh(xk−1) +Q, (3.43)

where the weight matricesQ andR determine the significance of the error and the cost of the energies

related to the state and control vector, respectively.

The control problem consists of finding the optimal control sequence for the pendulum from the

specific initial level to the unstable equilibrium point. With the assumption that the origin corresponds

to the unstable equilibrium, the dynamics of the system for the simulation are described in the form
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of equation (3.24) which is repeated here,

xk = h̄(xk−1)xk−1 + ḡ(xk−1)uk + εk, (3.44)

where,

h̄(xk−1) =

 1 Ts
Tsg

Lx1,k
sin(x1,k) 1− Tsγ

ML

 , ḡ(xk−1) =

0

1

, (3.45)

with,

Ts = 0.05, M = 0.1, L = 0.1, g = 10, γ = 0.05. (3.46)

Figure 3.2: Diagram of the inverted pendulum.

However, the original model of the driven inverted pendulum that is used in [171] is deterministic,

meaning unaffected by any noises which does not resemble real-world situations. Consequently,

the system is simulated the right way as it would operate in the real-world by adding noise to the

equation obtained from [171] as shown by (3.44). The noise εk in (3.44) has zero mean and covariance

Σ̄ = 0.001I2×2. The state and control matrices given by h̄(xk−1) and ḡ(xk−1), respectively, are

unknown and are therefore required to be estimated to obtain h(xk−1) and g(xk−1) of which the

estimation process is explained in Section 3.3.2. Since this simulation example is demonstrated on

the method proposed in this section and the NQR SDRE [172], two experiments are required to be

implemented.

For comparison purpose, two sets of experiments were conducted. The first set of experiment

considers the derivation of the suboptimal control law using the proposed conventional SDRE FP

control approach. Here, the covariance Γ of the ideal controller is taken to be 50 to give the controller

more freedom which results in a faster rate of convergence. In addition, the covariance of the ideal

distribution is taken to be the same as the covariance of the global covariance matrix Σk of the actual

system state distribution which is estimated as discussed in Section 3.3.2.
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In the second set of experiment the suboptimal control law is derived using the NQR SDRE

control method. This method requires the specification of the weighting matrices R and Q as can be

seen from (3.41) - (3.43). These tuning parameters are chosen to be R = 0.01 and Q = 0.1I2×2

where I is the identity matrix. Multiple experiments are carried out in which the parameters are tuned

to obtain a good convergence. Additionally, similar to the proposed conventional SDRE FP control

approach, the system equation is assumed to be unknown thus estimated as discussed in Section 3.3.2.

The difference here is that only the expected value of the system state estimated using MLP neural

network model is required.

The control objective for both approaches is to bring the state values of the pendulum to zero

where the initial state is taken to be x0 =

[
7 −5

]T
. The results are illustrated in Fig 3.3 - 3.4 where

the states have converged towards zero and very closely oscillate around zero for both approaches.

Figure 3.3: Comparison between the conventional SDRE FP control approach, the NQR SDRE con-
trol strategy and the SDRE FP control approach which uses the true functions h̄(xk−1) and ḡ(xk−1)
on state x1. The subplot demonstrate that the states oscillate around zero.

From the plots 3.3 - 3.4, it can be seen that the states of the pendulum (3.44) have converged

faster for the conventional FP SDRE than the NQR SDRE control strategy. In addition, the NQR

SDRE demonstrates more oscillations as opposed to the proposed conventional SDRE FP control

design which also shows a quicker achievement of the transient response. The plots also demonstrate

the performance when the FP control design is implemented but using the true functions, h̄(xk−1)

and ḡ(xk−1) as given by (3.45). From the plots, it can be seen that the proposed conventional SDRE

FP control strategy (green), converges slower than the SDRE FP control design (blue) that uses the

true functions h(xk−1) and g(xk−1). The latter is faster due to the fact that the covariance matrix
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Figure 3.4: Comparison between the conventional SDRE FP control approach, the NQR SDRE con-
trol strategy and the SDRE FP control approach which uses the true functions h̄(xk−1) and ḡ(xk−1)
on state x2. The subplot demonstrate that the states oscillate around zero.

Figure 3.5: Comparison between the Conventional SDRE, the NQR SDRE control strategy and the
SDRE FP control approach which uses the true functions h̄(xk−1) and ḡ(xk−1) on the control input
uk.

Σk is given to be Σk = 0.001× I2×2 while the estimated covariance matrix of the proposed method

converges to Σk =

0.0322 0

0 0.0182

. The penalisation on the states is obtained by finding the
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inverse of the covariance matrices, namely Σ−1
k . This would give us Σ−1

k =

31.0634 0

0 54.8902


for the proposed conventional SDRE FP control method and Σ−1

k =

1000 0

0 1000

 for the FP

control design that uses the true functions h(xk−1) and g(xk−1). The penalisation is higher on the

FP control design with the true functions in comparison to the proposed SDRE FP control method.

Higher penalisation means a higher cost is incurred for a slower convergence rate of the states. This

explains the quick convergence of the states towards zero when the FP control design using the true

functions is implemented. However, as mentioned previously, it is unrealistic to assume that the true

functions h̄(xk−1) and ḡ(xk−1) are known.

Nevertheless, the conventional FP control design effectively handles the effects of the MLP net-

work approximation errors compared to the NQR SDRE method. The estimation of the global co-

variance matrix for the conventional FP control method allows for systems uncertainty to be taken

into consideration as was explained in Section 3.3.2. Figure 3.5 plots the control inputs uk obtained

from the proposed SDRE FP control strategy with the global covariance, the NQR SDRE approach

and the FP control strategy which uses the true functions h̄(xk−1) and ḡ(xk−1). All three computed

control inputs uk converge towards and closely oscillate around zero. In conclusion, the simulation

has illustrated the effectiveness of the derived solution to the FP control problem in (3.33).

3.3.6 Selection of Tuning Parameters

In Section 3.3.5, the parameters Q and R were subject to experimentation since they were tuned until

the states of the system described by Equation (3.44) converged towards values extremely close to

zero. This process makes the method less time efficient due to the requirement of trial and error when

tuning the NQR parameters. The advantage of the proposed conventional SDRE FP control design is

that the covariance matrix, namely Σk is estimated which makes the method more time efficient since

no tuning is required.

Furthermore, it should be noted that the inverse of Σk and Γ in the FP control method represent

the penalisation on the states and control input, respectively. Hence Σ−1
k and Γ−1 correspond toQ and

R in the NQR control strategy, respectively. Thus, in this section, the simulation in Section 3.3.5 is

implemented again, where theQ andR in the NQR method are now updated such that they correspond

to the parameters of the SDRE FP control design. In the previous section, the covariance Γ of the ideal

controller was set to be 50. Therefore, in this simulation, R is set to be R = Γ−1 = 50−1 = 0.02.

The global covariance Σk in Section 3.3.5 converged to Σk =

0.0322 0

0 0.0182

. Therefore, in this
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simulation, Q is set to be Q = Σ−1
k =

31.0634 0

0 54.8902

. The parameters of the proposed SDRE

FP control design remain the same as in Section 3.3.5 as well as the initial state values for both the

NQR and FP control method, that is x0 =

[
7 −5

]T
. The results are displayed in Figures 3.6 - 3.7

which demonstrate that the performance of both the NQR method and the SDRE FP control strategy

are comparable when the parameters of the NQR SDRE method correspond to the parameters of the

FP control design. In particular, the zoomed-in subplots within Figures 3.6 - 3.7 demonstrate the

likeliness of the two control strategies when the parameters are set to be the same. Moreover, the

control inputs of both methods have been plotted in Figure 3.8.

Figure 3.6: Comparison between the conventional SDRE FP control approach and the NQR SDRE
control strategy on state x1. The equivalence of the estimated global covariance matrix Σk for the FP
control method is taken as theQ value andR is the equivalent of the covariance of the ideal controller
Γ. The subplot shows that the states oscillate around zero.

3.4 Generalised Fully Probabilistic Design for Nonlinear Uncertain Sys-

tems

The FP control design is further exploited in this section for nonlinear uncertain systems. The dy-

namics of real world systems are unknown and are hence required to be approximated. However, the

modelling of unknown systems governed by nonlinearities inevitably results in some approximation

error in the estimated model leading to functional uncertainties and uncertainty from the unknown
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Figure 3.7: Comparison between the conventional SDRE FP control approach and the NQR SDRE
control strategy on state x2. The equivalence of the estimated global covariance matrix Σk for the FP
control method is taken as theQ value andR is the equivalent of the covariance of the ideal controller
Γ. The subplot shows that the states oscillate around zero.

Figure 3.8: Comparison between the Conventional SDRE and the NQR SDRE control strategy on the
control input uk.

parameters. These complications necessitate and increase the requirement for the development of

robust cautious controllers. The previous section (Section 3.3) focused on the designation of a fully
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probabilistic controller for systems governed by nonlinearities. Despite having to estimate the pa-

rameters of the distribution of the system state, the controller derived in Section 3.3 did not consider

functional uncertainty. Therefore, the designation of the controller in this section considers functional

uncertainty to ensure robustness.

3.4.1 System State Estimation

The system for which the controller is derived in this section is governed by the same dynamics as

described in Section 3.3.1 and is repeated here for the convenience of the reader,

xk = h̄(xk−1)xk−1 + ḡ(xk−1)uk + εk. (3.47)

For the estimation of the probability distribution of the system state variables, two Neural Net-

works that are optimised online, are implemented in this section to provide predictions for the condi-

tional expectation of the system state and the covariance of the estimation error.

To re-emphasise, the functions h̄(xk−1) and ḡ(xk−1) need to be approximated to obtain the esti-

mation of the conditional expectation of the system state variables. The same procedure as explained

in Section 3.3.2 is followed to achieve this. Again, it is repeated here for the reader’s convenience,

x̂k =mlp(xk−1),

=h(xk−1)xk−1 + g(xk−1)uk, (3.48)

where h(xk−1) and g(xk−1) are the approximations of the actual states and control matrices, given

by h̄(xk−1) and ḡ(xk−1), respectively.

Once the system state estimation has been completed, the following stochastic model can be

established,

xk = x̂k + e(xk−1, uk), (3.49)

where the estimation error e(xk−1, uk) represents the functional uncertainty of the estimated model

at time k which is shown to be close to Gaussian noise [167] with zero mean and an input dependent

covariance matrix given by Σ̃k = E[(xk − x̂k)(xk − x̂k)T ].

This input dependent covariance matrix Σ̃k can then be estimated using a second Generalised

Linear neural network model which takes the state variables and control signal as inputs,

Σk = Dxk−1 +Guk, (3.50)
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where D and G are partitioned matrices and are updated online at each instant of time with the aim

to minimise the error between the actual covariance matrix, Σ̃k and the estimated one, Σk. Also

note that xk−1 and uk should be represented as block matrices in (3.50). The linear structure is

assumed for simplification and better clarification of the system uncertainty estimation. To elaborate,

the parameters of the GLM network can be obtained using linear optimisation methods (i.e. with

the Pseudo-inverse). The state xk−1 and the control signal uk are taken to be the input (I) to the

GLM. The actual output (O) of the GLM is the square of the error between the actual state xk and the

estimated state x̂k. The parameters (w) of the GLM are obtained by computingO = wI → w = OI†,

where † is the Pseudo-inverse. The obtained parameters (w) can then be represented as the partitioned

matrices D and G.

To re-emphasise, D and G are partitioned matrices that are obtained from the parameters of the GLM

to reconstruct the covariance matrix in the correct way. Furthermore, we introduced checks to make

sure that the estimated covariances are always positive. To elaborate, whenever the covariance value

goes negative, it is replaced by a small positive number.

For a more detailed explanation and visual representation of the estimation process of the condi-

tional distribution of the system, the readers are referred to Figure 3.9.

Following the assumption that the residual error from the estimation process is Gaussian, the

distribution of the system state at time k will then be Gaussian and hence represented by,

s(xk|uk, xk−1) = N (x̂k,Σk), (3.51)

where the mean, x̂k is defined in (3.48) and Σk is the covariance matrix given by (3.50). This charac-

terisation of the system state by Gaussian distribution, facilitates the derivation of a closed for control

solution as will be seen from further developments. To re-emphasise, the parameters of the estimated

pdf of the system state are state and control input dependent. The estimated covariance matrix given

in (3.50) characterises the functional uncertainty that results due to the discrepancy between the actual

and estimated behaviour of the system dynamics.

To clarify and understand the concept of partitioned matrices, let us consider a two-dimensional sys-

tem as an example, for which the dimension of the covariance matrix is (2× 2). It is assumed that uk
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Figure 3.9: The shaded area in blue represents the process of the MLP for the estimation of the system
dynamics. The outer part and dashed lines correspond to the GLM process. For both, the MLP and
GLM, xk−1 is the input layer to the neural network.

is a single input to the system, and is therefore a scalar. Hence, the equation in (3.50) is given by,

 σ2
11 σ2

12

σ2
21 σ2

22

 =

 [d11 d12] [d13 d14]

[d21 d22] [d23 d24]



 x1;k−1

x2;k−1


+

 g11 g12

g21 g22

uk,
=

 D11 D12

D21 D22

xk−1 +

 g11 g12

g21 g22

uk,
=Dxk−1 +Guk (3.52)

where dij are the elements of the partitioned matrix D and gik are the elements of matrix G with

i = {1, 2}, j = {1, 2, 3, 4} and k = {1, 2}. In this example, D is a partitioned matrix of size (2× 2),

xk−1 is a partitioned matrix of size (1 × 1), G is a partitioned matrix of size (2 × 2) and uk is a
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partitioned matrix of size (1 × 1). Note that the dimension of each sub-matrix of the partitioned

matrix D corresponds to the dimension of the state vector xk−1, which in the case of this example is

2-dimensional. Likewise, the dimension of each sub-matrix of the partitioned matrix G corresponds

to the dimension of the control input uk which in this case is a scalar.

As can be seen from (3.52), the covariances have been obtained by computing the following,

σ2
11 =d11x1;k−1 + d12x2;k−1 + g11uk,

σ2
12 =d13x1;k−1 + d14x2;k−1 + g12uk,

σ2
21 =d21x1;k−1 + d22x2;k−1 + g21uk,

σ2
22 =d23x1;k−1 + d24x2;k−1 + g22uk.

3.4.2 FP Control Solution for Nonlinear Systems with Functional Uncertainty

Similar to Section 3.3, the purpose of the developed controller presented in this section is to regulate

the system to state zero. Therefore, the ideal distribution of the system is given by,

sI(xk|uk, xk−1) = N (0,Σ2), (3.53)

where the zero mean reflects the regulation around zero objective. Note that unlike the method de-

veloped in Section 3.3, the covariance of the ideal distribution (3.53) in this section is not the same

as the covariance of the actual distribution (3.51). The ideal covariance Σ2 is assumed to be smaller

than the actual covariance Σk. This is permissible as the covariance matrix Σk is state and control

dependent and thus can be driven to a smaller value which is specified by the covariance of the ideal

distribution of the system state. Finally, the ideal distribution of the controller is still determined to

be Gaussian and given by,

cI(uk|xk−1) = N (0,Γ), (3.54)

where the covariance Γ identifies the permissible range of optimal control inputs.

Given the pdfs of the system state (3.51), and ideal distributions of the system state and control

input given by (3.53) and (3.54) respectively, the randomised suboptimal controller is presented in the

following theorem.

Theorem 2. The suboptimal control law that minimises the cost-to-go function (3.6) and has been

derived based on Definition 3.3.1 and the assumption that the state covariance matrix depends linearly
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on the system state is specified by the following Gaussian distribution,

c∗(uk|xk−1) = N (u∗k, Rk), (3.55)

where,

u∗k = −Kkxk−1 − Pk, (3.56)

Kk = Rk

[
gT (xk−1)(Σ−1

2 +Mk)h(xk−1)

]
, (3.57)

Pk = Rk

[
1

2
gT (xk−1)Tk +

1

2
tr(GMk)

]
, (3.58)

Rk =

[
Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)

]−1

. (3.59)

The suboptimal controller is specified by a Gaussian distribution with mean u∗k and covariance Rk.

Based on the estimated distribution of the system state given by (3.51), it can be shown that the

performance index, − ln(γ(xk)), is described as follows,

− ln(γ(xk)) =0.5xTkMkxk + 0.5Tkxk + 0.5ωk, (3.60)

where,

Mk−1 =hT (xk−1)

[
(Σ−1

2 +Mk)− (Σ−1
2 +Mk)g(xk−1)

[
Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)

]−1

×gT (xk−1)(Σ−1
2 +Mk)

]
h(xk−1), (3.61)

Tk−1 =Tkh(xk−1) + tr(DMk)− 2

(
1

2
Tkg(xk−1) +

1

2
tr(GMk)

)
×
[
Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)

]−1

gT (xk−1)(Σ−1
2 +Mk)h(xk−1), (3.62)

ωk−1 =ωk −
1

2

(
Tkg(xk−1) + tr(GMk)

)[
Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)

]−1

×1

2

(
gT (xk−1)Tk + tr(GMk)

)
+ ln |Γ|+ ln |Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)|.

(3.63)

Proof. The proof of Theorem 2 can be found in Appendix B.

In this theorem, Equation (3.61) is the discrete time algebraic SDRE, Tk in (3.62) is the linear

equation and ωk in (3.63) is the constant term . Note that Equation (3.62) is a key adjustment to the

conventional form of the FP control design. This term arises from the consideration of the input and

state dependent noise. As such, this equation can be referred to as the equation of cautiousness since
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it is the part that allows the probabilistic controller to be cautious and take functional uncertainty

into consideration. The reason as to why this linear term has appeared in the development of the FP

control design in this section is due to the form of the covariance matrix (3.50) which is linear in the

state and control input. After observing the form of the suboptimal randomised controller given by

Equation (3.55), one can notice that it differs from the controller derived in Section 3.3.3. The mean

of the designed controller in this section involves a linear shift given by Pk. This shift exists due to the

involvement and consideration of the input and state dependent noise, and is based on the parameter

of the noise model (3.50) and the equation of cautiousness (3.62).

3.4.3 Algorithm of Proposed Method in Theorem 2

As outlined in Section 3.3.4, the SDRE defined in (3.61) and in this case, the linear term given

by (3.62) need to be computed to implement the fully probabilistic controller given by (3.55). The

same approach is followed and hence, the time index is adjusted to obtain the steady state solution

of the Riccati equation. Once the SS solution of the Riccati equation has been obtained, it is used in

Equation (3.62) of which the time index is again changed such that the solution of the Riccati equation

at k is obtained from earlier time instants. Thus, the following is computed to obtain the SS solution

of Tk.

Mk =hT (xk−1)

[
(Σ−1

2 +Mk−1)− (Σ−1
2 +Mk−1)g(xk−1)

×
[
Γ−1 + gT (xk−1)(Σ−1

2 +Mk−1)g(xk−1)

]−1

gT (xk−1)(Σ−1
2 +Mk−1)

]
h(xk−1), (3.64)

Tk =Tk−1h(xk−1) + tr(DMk)− 2

(
1

2
Tk−1g(xk−1) +

1

2
tr(GMk)

)[
Γ−1 + gT (xk−1)

× (Σ−1
2 +Mk)g(xk−1)

]−1

gT (xk−1)(Σ−1
2 +Mk)h(xk−1). (3.65)

To re-emphasise, the reversed SDRE (3.64) and reversed equation of cautiousness (3.65) need to be

reiterated a certain arbitrary number of times until the steady state solutions are found. The pseu-

docode in Algorithm 3 summarises the approach of the FP control design developed in this section as

a pseudocode.

3.4.4 Simulation

A simulation example is implemented here to demonstrate that the derived randomised controller

in (3.55) effectively controls stochastic systems that are characterised by functional uncertainty and

achieves the desired control objective. The inverted pendulum on a cart problem which is imple-
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Algorithm 3 Pseudo-code of FP control design that considers functional uncertainty

1: procedure IMPLEMENTATION OF THE FP CONTROL DESIGN FOR NONLINEAR SYSTEMS THAT

CONSIDER FUNCTIONAL UNCERTAINTY

2: Initialise: x0,M0, T0 and optionally pre-train the neural network model as discussed in Al-
gorithm 1 (optional).

3: for k = 1→ H do
4: Estimate h(xk−1), g(xk−1) from the neural network model.
5: Approximate D and G for Σk as according to (3.50).
6: Calculate the SS solution of M using (3.64).
7: Use the SS solution M from Step 6 to find SS solution of T using (3.65).
8: Use the SS values from Steps 6-7 in (3.57) - (3.58) to obtain the SS solutions of K and P .
9: Calculate u∗k using Step 8 in Equation (3.56).

10: Forward the control signal u∗k obtained in Step 9 to the system equation (3.23).
11: Using a one step delayed of the new state value xk−1 from Step 10 and the calculated

control signal u∗k from Step 9 as input to the neural network model and the new state xk from
Step 10 as output, retrain the neural network model and update its parameters.

12: end for

mented extensively as a simulation example [173], [174] for control problems is used here to evaluate

the performance of the proposed nonlinear FP control method. The results are compared with the

conventional SDRE FP control approach discussed in Section 3.3 which does not account for func-

tional uncertainty. The discrete time equation of the nonlinear inverted pendulum is described in the

form of (3.47) and repeated below,

xk = h̄(xk−1)xk−1 + ḡ(xk−1)uk + εk, (3.66)

where,

h̄(xk−1) =



1 T 0 0

0 a22(xk−1) a23(xk−1) a24(xk−1)

0 0 1 T

0 a42(xk−1) a43(xk−1) a44(xk−1)


, ḡ(xk−1) =



0

b2(xk−1)

0

b4(xk−1)


,

and where xk is four-dimensional such that,

xk =



x1,k

x2,k

x3,k

x4,k


. (3.67)

The original inverted pendulum system equation that is used in [173] does not involve any noises

which is not the case in real-world situations. Therefore, to simulate the system properly as it operates
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in real-world, the equation obtained from [173] is modified by the addition of noise to it. The noise

εk in (3.66) is Gaussian with zero mean and covariance Σ̄ = 0.001I4×4. The matrices h̄(xk−1) and

ḡ(xk−1) are the state and control matrices respectively of which the variables are defined as follows,

a22(xk−1) =1 + T
−b
Ω2
,

a23(xk−1) =T
m2L2g cos(x3,k) sin(x3,k)

Ω2(l +mL2)
,

a24(xk−1) =T
mL sin(x3,k)

Ω2
(x4,k),

a42(xk−1) =T
mLb cos(x3,k)

(M +m)Ω1
,

a43(xk−1) =− T
mgL sin(x3,k)

Ω1(x3,k)
,

a44(xk−1) =1− T
m2L2 cos(x3,k) sin(x3,k)(x4,k)

(M +m)Ω1
,

b2(xk−1) =
T

Ω2
,

b4(xk−1) =− T
mL cos(x3,k)

(M +m)Ω1
, (3.68)

where,

Ω1 = l +mL2 −
m2L2 cos2(x3,k)

M +m
,

Ω2 = M +m−
m2L2 cos2(x3,k)

l +ML2
.

The description of the parameters of the system are assumed to be,

M = 0.5kg, m = 0.5kg, b = 0.1N.
sec
m

,

L = 0.3m, and l = 0.06kg.m2,
(3.69)

where:

• M is the mass of the cart.

• m is the mass of the pendulum.

• b is the friction coefficient between cart and ground.

• L is the length to the pendulum center of mass.

• l is the inertia of the pendulum.

Details on how to find the estimations of matrices h̄(xk−1) and ḡ(xk−1) to obtain h(xk−1) and

g(xk−1) can be found in Section 3.4.1.

A.A.Z.Zafar, PhD Thesis, Aston University 2021 62



Figure 3.10: A diagram of the inverted pendulum on a cart. The pendulum can be balanced at a
specific position following the application of a horizontal force to drive the cart. The pendulum mass,
m, is focused at the end of the massless rod. The horizontal displacement on the cart is denoted by x.
θ represents the rotational angle of the pendulum. The carriage driven by the Force is u. The friction
coefficient of the cart is given by b. The mass of the cart is given by M .

The covariance Γ of the controller is chosen to be 100 to give the controller more freedom and

achieve a faster convergence rate. The consideration of functional uncertainty in this section means

that the covariance matrix is dependent on the state and control input which was taken into account

in the derivation of the proposed method. On the contrary, the method developed in Section 3.3

which is referred to as the conventional SDRE FP control approach, does not consider the functional

uncertainty of the system dynamics. There, the ideal covariance matrix Σ2 is assumed to be the same

as the actual global covariance namely Σk. In addition, the development in Section 3.3 only requires

the evaluation of the SDRE given by equation (3.38). The equation of cautiousness given in (3.62)

as well as the additional linear term (3.58) which are required for the evaluation of the randomised

controller in this section given by (3.55), do not exist. These additional equations emerge in the

proposed method in this section only due to the consideration of the functional uncertainty of the

system dynamics as explained earlier.

To clarify, two sets of experiments were conducted. In the first experiment, the conventional

FP SDRE developed in Section 3.3 is used to derive the suboptimal randomised controller. In this

experiment, the covariance matrix of the ideal distribution of the system state is taken to be equal to

the global variance of the actual covariance matrix which is estimated as discussed in Section 3.3.2. In

the second experiment, the method proposed in this section that accounts for functional uncertainties

is used to derive the suboptimal randomised controller. Here, the covariance matrix, Σ2, of the ideal
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distribution of the system state is taken to be,

Σ2 = 10−2 ×



0.0001 0 0 0

0 0.0004 0 0

0 0 0.0009 0

0 0 0 0.0013


. (3.70)

The ideal covariance matrix Σ2 is a design parameter which is chosen here to be smaller than the co-

variance matrix of the noise affecting the system, since the noise is state dependent, thus its effect can

be minimised as discussed in Section 3.3.2. For both, the conventional SDRE FP control design and

the proposed method, the initial state of the pendulum is taken to be, x0 =

[
−1 2.4 0.2 −0.2

]
,

and the control objective is to bring the four states of the pendulum from their initial values to zero.

Figure 3.11: Comparison between the proposed method and conventional SDRE FP control design
on state x1.

The results of both experiments are shown in Fig. 3.11 - 3.14 from which it can be seen that

the states of the pendulum (3.66) have converged to zero for both the conventional SDRE FP control

design and the proposed method in this section. However, compared to the conventional SDRE FP

control approach, the states converge faster and with less oscillations using the proposed method in

this section which accounts for functional uncertainty and input dependent noises. Hence, the tran-

sient response is reached quicker for the proposed FP control design. The consideration of functional

uncertainty embedded in Pk affects the transient response of the system and the speed in which the
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Figure 3.12: Comparison between the proposed method and conventional SDRE FP control design
on state x2.

Figure 3.13: Comparison between the proposed method and conventional SDRE FP control design
on state variable x3.

system converges to the steady state value as has also been shown in [147]. Thus, it can be concluded

that the converging speed of the proposed design is better. Also, having a controller that takes un-

certainties into consideration ensures that the system does not overshoot which can also be clearly
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Figure 3.14: Comparison between the proposed method and conventional SDRE FP control design
on state variable x4.

Figure 3.15: Comparison between the proposed FP method that considers functional uncertainties
and the conventional SDRE FP control design on the control input uk.

seen from Fig. 3.11 - 3.14. In addition, Figure 3.15 shows the obtained control sequence for both the

proposed SDRE FP control design and the conventional SDRE FP control design.
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3.4.5 Simulation on Multiple Noise Sequences

In this section, the previous simulation is repeated multiple times with different noise sequences.

This is done with the objective of numerically estimating the distribution of the closed loop system

and then demonstrating that the distribution of the closed loop system converges to the predefined

ideal distribution. In this section, the simulations for the various noise sequences are repeated for

both the proposed SDRE FP control method that takes functional uncertainty into consideration in

the derivation of the suboptimal control law, and the conventional SDRE FP control design. The

averages, the global averages and the global variances of the states of both the proposed SDRE FP

control method and the conventional SDRE FP control design can be found in Table 3.1, 3.2 and 3.3.

For each simulation, the average of the states is calculated over time (averagetime). The mean x̄ is

calculated by finding the average of these averages, i.e. (
∑

averagetime
number of simulations ). Furthermore, the variance

is computed as follows: var =
∑

(averagetime−x̄)2

number of simulations .
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Table 3.1: Proposed SDRE FP Control Method

H
HHH

HHH
HHH

HHH

Averagetime
State no.
(×10−4)

Sim. no.

1 2 3 4 5 6 7 8

State 1 -8.15 -5.33 -0.67 -0.97 12.4 -18.8 -9.7 -0.68

State 2 6.92 5.09 -0.99 1.9 -11.6 14.7 6.96 -3.48

State 3 -0.83 -0.801 -0.68 0.18 1.05 -2.99 -1.67 -1.1

State 4 7.07 6.06 2.09 -0.41 -9.78 17.2 8.91 1.36
HH
HHH

HHH
HHHHH

Averagetime
State no.
(×10−4)

Sim. no.

9 10 11 12 13 14 15 16

State 1 -0.44 -1.27 -6.93 1.29 7.87 3.08 8.54 4.39

State 2 -0.599 5.94 6.83 -1.57 -6.85 -1.76 -5.29 1.66

State 3 -0.53 0.85 -0.91 0.19 0.46 0.27 1.78 2.5

State 4 2.2 -8.21 7.83 -1.81 -4.79 -2.64 -6.91 -6.6
H
HHH

HHH
HHH

HHH

Averagetime
State no.
(×10−4)

Sim. no.

17 18 19 20 21 22 23 24

State 1 4.13 1.15 0.4 3.49 2.22 -5.12 0.48 -0.16

State 2 -2.78 -1.95 1.98 -1.46 -1.86 2.56 2.15 -2.7

State 3 -0.43 -0.25 1.27 0.75 0.38 -1.66 1.2 -0.73

State 4 -2.92 -1.21 -0.12 -2.42 -1.58 6.32 -1.91 0.11
HHH

HHH
HHH

HHHH

Averagetime
State no.
(×10−4)

Sim. no.

25 26 27 28 29 30 31 32

State 1 -0.75 -4.47 -4.47 10.37 -16.95 -18.07 -1 -1.4

State 2 3.69 2.18 3.87 -12.06 13.42 12.12 -0.23 -8.1

State 3 0.85 -3.02 -0.801 0.37 -3.28 -3 0.07 0.32

State 4 -0.15 13.57 5.56 -8.99 16.04 14.38 -0.23 -1.3
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Table 3.2: Conventional SDRE FP Control Design

H
HHH

HHH
HHH

HHH

Averagetime
State no.
(×10−4)

Sim. no.

1 2 3 4 5 6 7 8

States 1 -11.81 -9.65 -0.82 -9.43 18.75 -17.52 -13.11 2.78

State 2 10.51 6.36 -1.23 8.34 -13.56 13.29 7.77 -3.24

State 3 -0.56 -0.71 -0.71 0.89 1.26 -3.2 -1.49 -0.7

State 4 6.33 5.59 1.6 -0.13 -10.25 16.79 8.38 0.85
HH
HHH

HHH
HHHHH

Averagetime
State no.
(×10−4)

Sim. no.

9 10 11 12 13 14 15 16

States 1 -0.92 -13.73 -10.64 0.3 10.81 3.74 8.78 -0.11

State 2 -0.29 11.37 7.68 0.44 -7.5 -3.33 -3.27 4.79

State 3 -0.46 -0.29 -0.77 0.47 0.49 0.39 1.84 2.55

State 4 1.83 5.94 6.64 -1.4 -4.66 -2.9 -7.27 -6.21
H
HHH

HHH
HHH

HHH

Averagetime
State no.
(×10−4)

Sim. no.

17 18 19 20 21 22 23 24

States 1 7.15 2.32 2.18 2.48 4.77 -4.2 2.22 1.53

State 2 -4.75 -3.39 1.19 0.23 -3.02 0.55 -1.3 -2.49

State 3 0.28 -0.44 0.94 0.86 0.42 -1.82 0.47 -0.54

State 4 -2.71 -0.55 0.39 -2.99 -1.62 6.16 -1.77 0.34
HHH

HHH
HHH

HHHH

Averagetime
State no.
(×10−4)

Sim. no.

25 26 27 28 29 30 31 32

States 1 -5.85 -0.23 -7.6 18.36 -35.49 -19.39 -59.14 -8.9

State 2 5.79 -3.02 3.64 -14.55 17.5 12.45 -45.2 -87.23

State 3 0.87 -1.22 -0.69 0.22 -3 -2.98 72.3 8.18

State 4 -0.13 2.26 5.16 -8.55 15.59 14.49 -23.8 -93.23
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Table 3.3: Global Averages and Global Variances

State number x̄ = Global Average (×10−4) Var = Global Variance (×10−4)

State number Proposed Conventional Ideal Distr. Proposed Conventional Ideal Distr.

State 1 -1.35 -4.45 0 0.169 0.679 1

State 2 0.76 -2.67 0 0.125 1.11 4

State 3 -0.292 2.28 0 0.00625 0.518 9

State 4 1.48 -2.18 0 0.158 1.05 1.3

To repeat, the ideal probability distribution of the system state is described by a Gaussian distri-

bution with mean of zero and covariance matrix Σ2 given by

Σ2 = 10−2 ×



0.0001 0 0 0

0 0.0004 0 0

0 0 0.0009 0

0 0 0 0.0013


. (3.71)

From Table 3.3, it can be realised that the global averages of the states from both the proposed

SDRE FP control and the conventional SDRE FP control methods demonstrate close convergence

to the mean of the ideal Gaussian distribution of the states, which is zero. Both estimated means

and covariance matrices for the conventional FP control design and proposed method can be seen to

be converging towards the ideal mean of zero and covariance matrix given in (3.71). The proposed

method also demonstrates to work effectively when affected by various noise sequences.
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3.5 Generalised Fully Probabilistic Design for Nonlinear Systems with

Multiplicative Noises

Among the variety of noises that affects the dynamics of stochastic systems, multiplicative noises

are one variant of noises that can be found in systems. The FP control design was further extended

to linear systems with multiplicative noises in [30]. This advancement is further developed here for

systems governed by nonlinearities that are affected by multiplicative stochastic disturbances which

will be discussed and demonstrated in this section.

3.5.1 System State Estimation

The computation of the controller that is designed in this section handles systems that are nonlinear

and affected by multiplicative stochastic noises. The dynamics of these systems are assumed to be

governed by the following stochastic nonlinear discrete time equation,

xk = ĥ(xk−1) + ḡ(xk−1)uk + D̄xk−1vk−1. (3.72)

The system goes through the same transformation as explained in Section 3.3.1 to obtain,

xk = h̄(xk−1)xk−1 + ḡ(xk−1)uk + D̄xk−1vk−1, (3.73)

where h̄(xk−1) and ḡ(xk−1) are the nonlinear state and control matrices, respectively. The system

matrix D̄ is multiplied with the scalar noise vk−1 with zero mean and variance Q,

vk−1 ∼ N (0, Q). (3.74)

The estimations for the conditional expectation of the system state is obtained by estimating the

functions h̄(xk−1) and ḡ(xk−1) as explained in Section 3.3.2. To remind the reader, it is repeated

here,

x̂k = mlp(xk−1),

= h(xk−1)xk−1 + g(xk−1)uk. (3.75)

The functions h(xk−1) and g(xk−1) were estimated using the measurable state xk. However,

there does exist some error ek between the actual value xk and the estimated x̂k such that xk − x̂k =

ek = D̄xk−1vk−1. from which the estimation of matrix D̄ defined as D can then be obtained as
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follows,

D = ek(xk−1vk−1)†, (3.76)

where (.)† represents the pseudoinverse [175]. In addition, the covariance matrix, Σ̄k which is given

by,

Σ̄k =cov(xk|uk, xk−1),

=E{(xk − x̂k), (xk − x̂k)T },

=E{D̄xk−1vk−1v
T
k−1x

T
k−1D̄

T },

=D̄xk−1Qx
T
k−1D̄

T , (3.77)

can now be estimated due to the achievement of the approximation D of D̄.

Hence, the final estimation obtained for the state dependent covariance matrix is specified by,

Σk =E{Dxk−1vk−1v
T
k−1x

T
k−1D

T },

=Dxk−1Qx
T
k−1D

T . (3.78)

Consequently, since the distribution of the multiplicative noise affecting the system dynamics is as-

sumed to be Gaussian, the distribution of the model described in (3.73) will also be Gaussian,

s(xk|uk, xk−1) ∼ N (x̂k,Σk), (3.79)

where the mean x̂k is given in (3.75) and the covariance is defined in (3.78). This Gaussian assump-

tion on the multiplicative noise and consequently the distribution of the system state facilitate the

derivation of a closed form control solution as will be see shortly.

3.5.2 FP Control Solution for Nonlinear Systems with Multiplicative Noises

Having estimated the conditional distribution of the system state, the ideal distribution of the sys-

tem state and controller needs to be specified next to allow the implementation of the FP control

method. The ideal distribution aims to achieve the same objective as outlined in Section 3.4.2 by

Equations (3.53) and (3.54). Similar to the additive input dependent noise discussed in Section 3.4,

since the multiplicative noise is state dependent, the covariance of the ideal distribution of the system

state, Σ2, can be specified to be smaller than the actual covariance of actual system state.

Theorem 3. Based on Definition 3.3.1, the suboptimal control law that minimises performance index
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− ln(γ(xk−1)), subject to the probabilistic description of the system dynamics given by (3.79) and

ideal distributions of the system and controller defined by (3.53) and (3.54) respectively, is specified

as follows,

c∗(uk|xk−1) = N (u∗k, Rk), (3.80)

where,

u∗k =−Kkxk−1, (3.81)

Kk =Rk

[
gT (xk−1)(Σ2

−1 + Sk)
Th(xk−1)

]
, (3.82)

Rk =

[
Γ−1 + gT (xk−1)(Σ2

−1 + Sk)g(xk−1)

]−1

. (3.83)

The suboptimal control law specified in (3.80) is described by a Gaussian distribution with mean u∗k

in (3.81) and covariance Rk given in (3.83). The term Kk in (3.82) is the suboptimal control gain.

The suboptimal performance index for nonlinear systems with multiplicative stochastic disturbances

is given by,

− ln(γ(xk)) =0.5xTk Skxk + 0.5ωk, (3.84)

where,

Sk−1 =− hT (xk−1)(Σ2
−1 + Sk)g(xk−1)

[
Γ−1 + gT (xk−1)(Σ2

−1 + Sk)g(xk−1)

]−1

×gT (xk−1)(Σ2
−1 + Sk)h(xk−1) + hT (xk−1)(Σ2

−1 + Sk)h(xk−1) +DTSkQD, (3.85)

ωk−1 = ωk + ln |Γ|+ ln|gT (xk−1)(Σ−1
2 + Sk)g(xk−1) + Γ−1|. (3.86)

Proof. In Appendix C, the proof of Theorem 3 has been demonstrated.

Here, (3.85) is the discrete time algebraic state dependent Riccati equation due to the dependency

of the nonlinear parameters of the state and control distributions on previous state values. Also, com-

pared to the DARE obtained in Sections 3.3.3 and 3.4.2, it has been shown that the derived DARE is a

generalised Riccati equation solution that has an additional term, DTSkQD, due to the consideration

of the multiplicative noise in the stochastic system. The other DAREs given by (3.61) and (3.38) do

not have this additional term. Hence, the DARE in (3.85) is referred to as the Generalised SDRE.

As a result, a cautious controller is yielded by ensuring it considers the multiplicative noises effects

and an analytic control solution that is based on the evaluation of a SDRE. The control solution in
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Theorem 3 is referred to as the Generalised FP (GFP) control approach.

3.5.3 Algorithm of Proposed Method in Theorem 3

The employment of the suboptimal control law given by (3.80) requires the evaluation of the gen-

eralised state dependent Riccati equation solution specified by (3.85). Following the discussion in

Section 3.3.4, the time index of the SDRE has been changed such that,

Sk =− hT (xk−1)(Σ2
−1 + Sk−1)g(xk−1)

[
Γ−1 + gT (xk−1)(Σ2

−1 + Sk−1)g(xk−1)

]−1

×gT (xk−1)(Σ2
−1 + Sk−1)h(xk−1) + hT (xk−1)(Σ2

−1 + Sk−1)h(xk−1) +DTSk−1QD.

(3.87)

The pseudocode in Algorithm 4 summarises the approach of the FP control design as a pseudo-code.

Algorithm 4 Pseudo-code of Generalised SDRE FP control approach

1: procedure IMPLEMENTATION OF THE GENERALISED SDRE FP CONTROL DESIGN FOR NON-
LINEAR SYSTEMS WITH MULTIPLICATIVE NOISE

2: Initialise: x0, S0 and optionally pre-train the neural network model as discussed in Algorithm
1 (optional).

3: for k = 1→ H do
4: Estimate h(xk−1), g(xk−1) from the neural network model.
5: Approximate D for Σk in (3.78).
6: Calculate the SS solution of S using (3.87).
7: Use the SS values from Step 6 in (3.82) to obtain the SS solutions of K.
8: Calculate u∗k using Step 7 in Equation (3.81).
9: Update the state using u∗k from Step 8.

10: Forward the control signal u∗k obtained in Step 9 to the system equation (3.72).
11: Using a one step delayed of the new state value xk−1 from Step 10 and the calculated

control signal u∗k from Step 9 as input to the neural network model and the new state xk from
Step 10 as output, retrain the neural network model and update its parameters.

12: end for

3.5.4 Simulation

To demonstrate the effectiveness of the method developed for nonlinear system that are affected by

multiplicative noises, the simulation example implemented in Section 3.4.4 is used here. However, the

model in [173], [174] is transformed into a stochastic model with multiplicative noise. The discrete

time nonlinear system is given by,

xk = h̄(xk−1)xk−1 + ḡ(xk−1)uk + D̄xk−1vk−1, (3.88)
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where the state matrix h̄(xk−1) and control matrix ḡ(xk−1) are defined in Section 3.4.4. The matrix

D̄ is randomly generated and is introduced to the system to be multiplied with the noise term vk−1.

D̄ =



0.02 0.4 0.4 0.06

0.4 0.046 0.04 0.8

−0.4 0.08 −0.24 0.026

0.8 −0.46 −0.0028 0.04


. (3.89)

The noise vk−1 is Gaussian with zero mean and variance Q = 0.09.

For the simulation, the system is initially assumed to be in state x0 =

[
0.1 0.1 −0.1 0.2

]T
.

For the GFP control design for this nonlinear system, Γ = 0.5. The chosen value for the covariance

of the controller delivered good results after experimenting with different values. Nevertheless, to

minimise the fluctuations of the system state, it is beneficial to choose a small covariance matrix Σ2.

Thus, for the implementation of the GFP control design for the inverted pendulum and cart problem,

the covariance matrix Σ2 is chosen to be,

Σ2 =



0.004 0 0 0

0 0.001 0 0

0 0 0.0004 0

0 0 0 0.003


. (3.90)

The effectiveness of the designed controller in this section is compared to the conventional SDRE

(Section 3.3). Both methods require the estimation of h̄(xk−1), ḡ(xk−1) and D̄ to obtain h(xk−1),

g(xk−1), and D respectively. The comparison demonstrated that it is important to take account of

the type of noise that is affecting the behaviour of the dynamics of the system when designing

the controller. The simulation for the conventional SDRE FP control approach for a system with

multiplicative noise is implemented by simply seeing the noise as an added stochastic noise, i.e.

Dxk−1vk−1 = εk. It does not account for the multiplicative stochastic behaviour of the system. The

ideal covariance matrix used for the conventional SDRE FP control design is the same as the global

covariance of the actual system state of which the estimation process is explained in Section 3.3.2.

The control results are demonstrated in Fig. 3.16 - 3.19 which demonstrate the regulation of

the states of the system using the conventional SDRE FP control solution (Section 3.3) and the pro-

posed GFP control design method in this section. It can be seen that the states oscillate around

zero for both as expected from a regulation problem. However, compared to the conventional SDRE

solution, the states converges faster and with less oscillations using the GFP control design. The

proposed GFP control design demonstrates a faster transient response. It can therefore be concluded
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Figure 3.16: Comparison between the Generalised SDRE and Conventional SDRE on state x1. The
zoomed-in subplot demonstrates the states oscillating around zero.

Figure 3.17: Comparison between the Generalised SDRE and Conventional SDRE on state x2. The
zoomed-in subplot demonstrates the states oscillating around zero.
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Figure 3.18: Comparison between the Generalised SDRE and Conventional SDRE illustrated on state
variable x3. The zoomed-in subplot demonstrates the states oscillating around zero.

Figure 3.19: Comparison between the Generalised SDRE and Conventional SDRE illustrated on state
variable x4. The zoomed-in subplot demonstrates the states oscillating around zero.
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Figure 3.20: Comparison between the Generalised SDRE and Conventional SDRE illustrated on the
control inputs uk. The zoomed-in subplot demonstrates the convergence of the control input towards
zero.

that the proposed design considers the dependency of the noise on the states. Furthermore, Figure

3.20 demonstrates the convergence of the control inputs for both the proposed Generalised SDRE FP

control design and the conventional SDRE FP control method.

3.6 Conclusion

This chapter discussed the development of an approximate analytic solution for the FP control de-

sign of nonlinear systems which has not been considered in the previous literature. Since the control

problem involves multiple integrations that need to be solved for the designation of a suboptimal con-

troller, it seemed to be impossible to derive an analytic solution for the controller of nonlinear systems

due to the nonlinear dynamics. The discussed approach in this chapter, however, allows the derivation

of an approximate analytic solution for control problems for nonlinear systems by a simple transfor-

mation of the nonlinear state function of the system dynamics to a nonlinear state function which is

affine in the state. The derived solution to the FP control design problem leads to a SDRE due to the

nonlinearities found in the mean of the probability distribution of the system dynamics. Furthermore,

this chapter has exploited uncertainties and noises that influence the behaviour of nonlinear systems.

Firstly, the conventional FP control design was extended to nonlinear systems, where the covariance
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matrix was estimated as a global covariance. The resulting Riccati equation solution is classified as

the State Dependent Riccati equation due to the dependency of the equation on the state variables.

The next developed solution in this chapter takes the system functional uncertainty into consid-

eration in the derivation of the suboptimal randomised controller. It also generated a SDRE and

possesses the ability to have a smaller ideal covariance matrix to reduce the fluctuations in the system

state. Incorporating these novelties into the FP control design framework resulted in an additional lin-

ear term that represents the equation of cautiousness. Also, the suboptimal control law had an extra

term which regards the aforementioned equation of cautiousness, resulting into the advancement of a

cautious controller. This method was compared with the approach discussed in Section 3.3 where the

controller does not account for functional uncertainties. The simulation demonstrated the reduction in

overshoots when considering functional uncertainty in the derived suboptimal control law. The tran-

sient response was also better than the conventional SDRE FP control design which does not consider

functional uncertainties.

Furthermore, a fully probabilistic control strategy was proposed for nonlinear systems with mul-

tiplicative noises. The derived solution was a generalised form of the Riccati equation due to the

addition of a term which was arisen from considering multiplicative noises in the derivation of the

control law. Consequently, a generalised SDRE was derived. Since the covariance matrix is also state

and control input dependent for systems with multiplicative noises, it is possible to drive the actual

covariance matrix to a smaller ideal covariance matrix for this developed approach. This method was

compared to the conventional SDRE derived in Section 3.3 and proved to be an efficient control strat-

egy since considered the dependency of the noise on the states, resulting into a quicker achievement

of the transient response.
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Chapter 4

Decentralised FP Control Design for

Complex Systems

The complexity of real world control systems increases in terms of the dimensionality and scalability

of the network for which centralised control strategies fail to deliver good results. The methods

developed in Chapter 3 operate in a centralised way and thus are inefficient in controlling large-

scale complex systems. The FP control design, however, has been further developed to ensure it

can effectively control such systems [166]. Nevertheless, the development is mostly demonstrated

on linear Gaussian systems. This chapter demonstrates the decentralised FP control approach on

nonlinear systems where the subsystems interact via probabilistic message passing.

4.1 Representation of Subsystems of Interconnected Complex Networks

The approach explained in this chapter is based on large-scale complex stochastic dynamical sys-

tems that can be decomposed into N subsystems where the subsystems interact with one another via

probabilistic message passing (Section 4.2). Each subsystem is described by probability distributions

allowing uncertainties and noises to be considered, which enables the derived control algorithm to

be extended to real-world control problems. In this scenario, the decentralised strategy consists of

multiple local controllers that are responsible for the control of their corresponding subsystems. As

explained in Chapter 2, many methods require the network structure to be adjusted to achieve, for

example disjoint or overlapping systems, to ensure communication between subsystems is taken ac-

count of in the designation of the controllers. However, the communication strategy introduced in

this chapter implements a probabilistic message passing technique to exchange information among

the connected subsystems, while preserving the actual structure of the network [26], [27]. The incor-

poration of probabilistic message passing aids the communication among the subsystems to achieve
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the global aim of the interconnected network.

To re-emphasise, each node i, where i ∈ [1, ..., N ], in the interconnected complex network

is controlled locally by an individual randomised controller of which the distribution is given by

c(uk;i|zk−1;i), where k ∈ {1, ...,H} is the discrete time step, with H being the control horizon. The

set of multivariate control inputs, defined by uk;i, ensures the control aim for subsystem i is achieved.

The controller distribution depends on the state vector, zk;i = [xk;i, yk;i]
T of the subsystem, where

xk;i is the multivariate internal state of subsystem i and where the multivariate observed external state

yk;i is received from the neighbouring subsystems by means of probabilistic message passing. Note

that the external state yk;i received from neighbouring subsystems has an impact on the control input

uk;i of subsystem i due to the dependency of uk;i on both the internal and external states which there-

after influences the internal states of subsystem i. The derived control input uk;i for subsystem i does

not affect the states of neighbouring subsystems.

Therefore, the stochastic behaviour of the subsystems of the complex dynamical system is de-

scribed by

s(xk;i, yk;i, uk;i|xk−1;i, ..., x0;i, yk−1;i, ..., y0;i, uk−1;i, ..., u0;i)

= s(xk;i|uk;i, zk−1;i)s(yk;i|yk−1;i)c(uk;i|zk−1;i). (4.1)

The probabilistic representation of Equation (4.1) is suitable to describe an interconnected stochastic

complex dynamical system with coupled nodes. The first distribution in (4.1) given by s(xk;i|uk;i, zk−1;i)

is the conditional probability distribution of the multivariate internal states of subsystem i. The ran-

domised controller of subsystem i is described by the probability density function c(uk;i|zk−1;i), and

the multivariate external states of the subsystem are represented by s(yk;i|yk−1;i).

From the characteristic of the pdf of the internal states of node i, s(xk;i|uk;i, zk−1;i), it can be

seen that the internal state dynamics are also influenced by the external states, yk−1;i received through

message passing from neighbouring subsystems. This means that the coupling between the node and

the neighbouring nodes are taken into consideration in the system dynamics. Conversely, the pdf

of the external state of node i is given by s(yk;i|yk−1;i) which shows that the dependency is on the

previous external state only, namely yk−1;i. This is due to the legitimate assumption that holds in

this thesis that the control input uk;i does not affect the dynamics of the external state yk−1;i, and

neither does the internal state xk−1;i have an impact on the behaviour of the external state. To re-

emphasise, although it is possible to pass the control input to other subsystems via the probabilistic

message passing approach as mentioned in [164], in this thesis, only the states of the subsystems are

passed to each other. The control input uk;i of subsystem i does not directly influence the states of
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the neighbouring subsystems. However, the state of these neighbouring subsystems and the control

actions optimised within these neighbouring subsystems will be affected by the external states that

are passed to these subsystems. Nevertheless, if the control input uk;i of subsystem i is passed to the

neighbouring subsystems following the probabilistic message passing approach, it will then have a

direct effect on the states of the neighbouring subsystems as explained in [164].

Furthermore, the proposed decentralised control message passing approach are based on the actual

structure of the system. This means that if the control input uk;i applied to subsystem i affects

a neighbouring subsystem, then this control input uk;i can be passed through the message passing

approach and it will be considered in the model representing the actual system as already explained

previously [164]. Nevertheless, in this thesis, the case where the model structure consists of the

passing of the control input is not discussed.

The local controllers for the decomposed system follow a FP control method. For this approach, an

ideal probability distribution is specified which reflects the control aim of subsystem i and aids to

achieve the desired steady state behaviour of the joint pdf of the closed-loop system. The ideal joint

pdf is described by

sI(xk;i, yk;i, uk;i|xk−1;i, ..., x0;i, yk−1;i, ..., y0;i, uk−1;i, ..., u0;i)

= sI(xk;i|uk;i, zk−1;i)s(yk;i|yk−1;i)c
I(uk;i|zk−1;i), (4.2)

where sI(xk;i|.) and cI(uk;i|.) represent the ideal distributions of the internal state dynamics and the

controller, respectively. The conditional pdf given by s(yk;i|yk−1;i) in (4.2) is the same as the pdf of

the external state in (4.1) due to the fact that it has been assumed that the external measurable state

cannot be influenced or changed in subsystem i. The sole contribution of the inclusion of knowledge

about the external states in the dynamics of subsystem i is to inform subsystem i about the state of the

neighbouring nodes so that it can receive complete knowledge and information about aspects that have

an influential affect on the internal states. To clarify, the randomised local controller designed in this

chapter only affects the dynamics of the internal states, not the external. The proposed decentralised

control framework has been illustrated in Figure 4.1.

Due to the decomposition, the suboptimal randomised control solution to the FP control design

explained in Proposition 1 in Chapter 3 needs to be updated. The Kullback-Leibler Divergence be-

tween the actual joint pdf given by (4.1) and the ideal joint pdf defined by (4.2) now needs to be
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Figure 4.1: The architecture of the proposed decentralised control framework for a complex system
that has been decomposed into two subsystems, i and j. Subsystem i controls the states x1,k and x2,k

and receives knowledge about the states x3,k and x4,k from node j via probabilistic message passing
(pm). On the other hand, node j receives information about the states x1,k and x2,k via probabilistic
message passing and controls the states x3,k and x4,k. The receiving states to the nodes are registered
as external states of the subsystem.

minimised such that,

− ln(γ(zk−1;i)) = min
{c(uk;i|zk−1;i)}

H∑
τ=k

∫
f(Zk;i|Zk−1;i) ln

(
f(Zk;i|Zk−1;i)

f I(Zk;i|Zk−1;i)

)
dZk;i, (4.3)

where − ln(γ(zk−1;i)) represents the value function, the joint pdf of the closed-loop system of sub-

system i is defined by f(Zk;i|.) =
∏H
k=1 s(xk;i|uk;i, zk−1;i)s(yk;i|yk−1;i)c(uk;i|zk−1;i), and

Zk;i = {zk;i, ..., zH;i, uk;i, ..., uH;i} is the observed sequence of data.

Proposition 3. The minimum cost-to-go function that derives the optimal controller c(uk;i|zk−1;i)
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can be obtained for the decomposed subsystem i, such that,

ln(γ(zk−1;i)) = min
{c(uk;i|zk−1;i)}

∫
s(xk;i|uk;i, zk−1;i)s(yk;i|yk−1;i)c(uk;i|zk−1;i)

×
[
ln

(
s(xk;i|uk;i, zk−1;i)c(uk;i|zk−1;i)

sI(xk;i|uk;i, zk−1;i)cI(uk;i|zk−1;i)

)
︸ ︷︷ ︸

Partial cost

− ln(γ(zk;i))︸ ︷︷ ︸
Optimal cost-to-go

]
d(zk;i, uk;i). (4.4)

Proof. A detailed derivation of the minimum cost-to-go function shown in (4.4) can be found in

[25].

4.2 Probabilistic Message Passing

The decomposition of large-scale complex systems into a number of subsystems allows local con-

trollers to be designed with the responsibility of achieving the control objective for their individual

subsystems. However, it is key to inform the subsystems of the state and objectives of the neighbour-

ing subsystems to achieve the individual as well as the global control objectives. The decentralisation

of the complex system integrated with probabilistic message passing simplifies the control problem

and circumvents the need of centrally controlling the large network to achieve the global aim.

The message passing strategy can be split into two parts: the passing and the receiving of the

probabilistic message. When subsystem i passes a message to subsystem j, subsystem j will receive

it as an external multivariate signal. This external state that subsystem j has received influences the

dynamics of the internal states of node j but the external signal itself will not get affected or changed

by the receiving subsystem j. The sole purpose is to convey a message to the receiving subsystem

j about the conditions, states and objectives of other interacting neighbouring subsystems to aid the

control of the internal states. As a result, more efficient and accurate local controllers are designed that

fulfil the objectives of each individual subsystem as well as the global objective of the interconnected

global network.

Once the message has been passed to the receiving subsystem, the receiving subsystem needs

to fuse the information together with the prior knowledge they already had to update its external

states. Local controllers are responsible for diffusing the message to neighbouring subsystems in

order to share the behaviour of the controlled node with each individual interacting subsystem. The

strategy of probabilistic message passing is implemented for subsystems to receive diffused messages

as external signals.
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4.3 Solution to the Decentralised FP Control Design Problem

The following proposition outlines the optimal control solution to the FP control problem in a decen-

tralised framework, subject to the actual and ideal pdfs described by (4.1) and (4.2), respectively.

Proposition 4. The optimal randomised controller that minimises the KLD can be derived from the

cost-to-go function (4.4) for the actual joint pdf given by (4.1) and the ideal joint pdf defined in (4.2)

such that,

c∗(uk;i|zk−1;i) =
cI(uk;i|zk−1;i) exp(−β(uk;i, zk−1;i))

γ(zk−1;i)
, (4.5)

γ(zk−1;i) =

∫
cI(uk;i|zk−1;i) exp(−β(uk;i, zk−1;i))duk;i, (4.6)

β(uk;i, zk−1;i) =

∫
s(xk;i|uk;i, zk−1;i)

[
ln

(
s(xk;i|uk;i, zk−1;i)

sI(xk;i|uk;i, zk−1;i)

)
− ln(γ̃(xk;i, yk−1;i))

]
dxk;i,

(4.7)

with

ln(γ̃(xk;i, yk−1;i)) =

∫
s(yk;i|yk−1;i) ln(γ(zk;i))dyk;i. (4.8)

Proof. The derivation of the optimal controller given in (4.5) can be found in [25].

It should be noted that the control solution given in (4.5) has no limitations regarding the choice

of pdfs, the distribution of the system state or the ideal distribution, since a general solution can

still be obtained. However, due to the involvement of multiple integrals, an analytic solution for

the randomised controller can not be derived except for linear systems with Gaussian distributions.

Nevertheless, the same transformation approach as explained in Chapter 3 is followed here to extend

the FP control approach within a decentralised framework to nonlinear systems.

4.4 Decentralised Control Approach for Nonlinear Systems with Addi-

tive Noises

This section discusses the derivation of the analytic control solution of a randomised controller for

complex nonlinear systems with additive noises in a decentralised control framework.
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4.4.1 Subsystem Representation of Nonlinear Complex Systems with Additive noises

The following representation of nonlinear discrete time stochastic subsystems is considered here.

zk;i =F̃i(zk−1;i) + g̃i(zk−1;i)uk;i + εk;i, (4.9)

where F̃i(zk−1;i) ∈ Rn and g̃i(zk−1;i) ∈ Rn×m are the state and control matrices respectively, and

are both nonlinear functions of the state zk−1;i. The vector F̃i(zk−1;i) can be written as F̃i(zk−1;i) =f̃i(zk−1;i)

h̃i(yk−1;i)

, where f̃i(zk−1;i) is the nonlinear internal state function and where the nonlinear exter-

nal state function is described by h̃i(yk−1;i).

The noise εk;i belongs to the Gaussian distribution with zero mean and covariance Qi. The same

approach as explained in Chapter 3 to transform the system to a nonlinear system that is affine in the

state and control input is followed here to give,

zk;i =F̄i(zk−1;i)zk−1;i + g̃i(zk−1;i)uk;i + εk;i. (4.10)

To clarify the construction of the proposed decomposition which introduces the concept of internal

and external variables, Equation (4.10) can be explicitly written in terms of the multivariate internal

state xk;i and external state yk;i such that,

xk;i =f̄1i(zk−1;i)xk−1;i +
∑

j∈Ni,j 6=i
cijxk−1;j + ḡi(zk−1;i)uk;i + ε1k;i,

=f̄1i(zk−1;i)xk−1;i + f̄2i(zk−1;i)yk−1;i + ḡi(zk−1;i)uk;i + ε1k;i,

=f̄i(zk−1;i)zk−1;i + ḡi(zk−1;i)uk;i + ε1k;i, (4.11)

yk;i =h̄i(yk−1)yk−1;i + ε2k;i. (4.12)

The noises ε1k;i and ε2k;i have zero mean and covariances Q1;i and Q2;i, respectively. The internal

state matrix is given by f̄1i(zk−1;i) and the control matrix is defined as ḡi(zk−1;i). The matrices cij

represent the coupling strength between the interacting subsystems. The second term of the internal

states that consists of the coupling term, namely
∑

j∈Ni,j 6=i cijxk−1;j where Ni means the neighbour-

ing nodes of subsystem i, has been rewritten to achieve a more compact form such that the states from

the neighbouring nodes, xk−1;j enter subsystem i as external states, yk−1;i. The elements of matrix

f̄2i(zk−1;i) are given by cij , meaning f̄2i(zk−1;i) = [cij ]j∈Ni,j 6=i. Moreover, the vector yk−1;i con-

sists of elements that equate to the states of the neighbouring nodes xk−1;j , in other words, yk−1;i =

[xTk−1;j ]
T
j∈Ni,j 6=i. Lastly, matrix f̄i(zk−1;i) represents f̄i(zk−1;i) =

[
f̄1i(zk−1;i) f̄2i(zk−1;i)

]T
.
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In addition, Equation (4.11) - (4.12) can also be written in matrix-vector form such that,

xk;i

yk;i


︸ ︷︷ ︸
zk;i

=

f̄1i(zk−1;i) f̄2i(zk−1;i)

0 h̄i(yk−1;i)


︸ ︷︷ ︸

= F̄ (zk−1;i)

xk−1;i

yk−1;i


︸ ︷︷ ︸
zk−1;i

+

ḡi(zk−1;i)

0


︸ ︷︷ ︸
g̃i(zk−1;i)

uk;i +

ε1k;i

ε2k;i


︸ ︷︷ ︸
εk;i

. (4.13)

Definition 4.4.1. Suboptimal solution to the decentralised nonlinear FP control design: The FP

control approach for obtaining a suboptimal solution for decentralised nonlinear control problems

(such as Equations (4.9)) can be obtained using the following definition:

1. At each discrete time step, use transformation methods to bring the nonlinear dynamics to the

nonlinear affine dynamics. For example, for the formulation in the current section, transform

the nonlinear equation in (4.9) to the nonlinear affine dynamics in (4.10).

2. Solve the equations provided in Proposition 4 to obtain the closed form suboptimal solution at

each discrete time instant.

The internal state, external state and control matrices described by f̄i(zk−1;i), h̄i(yk−1), and

ḡi(zk−1;i) respectively, are unknown and need to be estimated. An MLP neural network is imple-

mented to obtain an approximation for the conditional mean of the system dynamics for the internal

states of subsystem i,

x̂k;i = mlp(zk−1;i),

= fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i, (4.14)

where fi(zk−1;i) and gi(zk−1;i) are the estimations of the internal state and control matrices, respec-

tively. To re-emphasise, the internal state matrix can be written as fi(zk−1;i) =

[
f1i(zk−1;i) f2i(zk−1;i)

]T
.

Furthermore, an MLP is used to output an estimation for the conditional expectation of the external

state variables such that,

ŷk;i = mlp(yk−1;i),

= hi(yk−1;i)yk−1;i, (4.15)

where hi(yk−1;i) is the estimation obtained for the external state matrix, h̄i(yk−1;i). A more detailed

approach on how to obtain the MLP estimations can be found in Chapter 3.

Secondly, the global covariance Σx;i can be estimated from the error between the actual internal

state xk;i and estimated internal state x̂k;i. Similarly, the global covariance of the conditional distri-

bution of the external state, Σy;i can be estimated from the error between the external state received
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by the probabilistic message passing approach and the estimated external state. The methodology of

approximating this can be found in Section 3.3.2.

It is now possible to describe the stochastic behaviour of the dynamics of subsystem i which is

characterised by Gaussian probability density function since the noise affecting the system dynamics

as specified by Equation (4.13) is Gaussian. This is given by,

s(xk;i|uk;i, zk−1;i) ∼ N (x̂k;i,Σx;i), (4.16)

s(yk;i|yk−1;i) ∼ N (ŷk;i,Σy;i). (4.17)

The conditional distribution s(xk;i|uk;i, zk−1;i) describes the stochastic behaviour of the internal

states, whereas s(yk;i|yk−1;i) describes the conditional pdf of the external states of subsystem i.

4.4.2 Randomised Suboptimal Controller for Nonlinear Systems

As discussed previously, it is key to specify the desired behaviour of the system state and controller

within a FP control design framework to outline the control objective. Since the aim here is to regulate

the system states from the initial value to zero, the ideal distributions of the internal and external states

are described by,

sI(xk;i|uk;i, zk−1;i) ∼ N (0,Σx;i), (4.18)

sI(yk;i|yk−1;i) ∼ N (ŷk;i,Σy;i), (4.19)

where sI(xk;i|uk;i, zk−1;i) describes the ideal distribution of the internal states which needs to be re-

flected in the design of the probabilistic controller. However, the external states are messages received

from neighbouring nodes and thus are not supposed to be controlled or influenced by the output of

subsystem i. Therefore, the ideal distribution of the measurable external signal yk;i is taken to be the

same as the actual distribution of the external signal to subsystem i. To re-emphasise, the external

states are the messages passed from neighbouring subsystems, thus, they cannot be influenced by the

output of the subsystem they are passed to.

In addition, the ideal pdf of the controller is given by,

cI(uk;i|zk−1;i) ∼ N (0,Γk;i), (4.20)

where the mean is assumed to be zero and covariance Γk;i specifies the permissible range of the

optimal control inputs for a given confidence level. Given the above conditions and constraints and

based on Definition 4.4.1, the next theorem states the form of the suboptimal randomised controller
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for subsystem i.

Theorem 4. Based on Definition 4.4.1, the suboptimal randomised controller for subsystem i of

which the dynamics are characterised by (4.16) and (4.17) and for which the ideal distribution of the

subsystem and controller is described by (4.18), (4.19), and (4.20) is given by,

c∗(uk;i|zk−1;i) = N (u∗k;i, Γ̄k;i), (4.21)

where

u∗k;i = −Kk;izk−1;i, (4.22)

Γ̄k;i =
(

Γ−1
k;i + gTi (zk−1;i)Q̃k;igi(zk−1;i)

)−1
, (4.23)

Kk;i = Γ̄k;ig
T
i (zk−1;i)

[
Q̃k;if1i(zk−1;i) Q̃k;if2i(zk−1;i) +M2,k;ihi(yk−1;i)

]
, (4.24)

Q̃k;i = (Σ−1
x;i +M1,k;i). (4.25)

The obtained Gaussian distribution of the suboptimal randomised controller (4.21) for subsystem i

has mean u∗k;i and covariance given by Γ̄k;i. The control gain Kk;i is described by Equation (4.24).

Furthermore,the quadratic performance index for the present control strategy is given by,

− ln(γ(zk;i)) =
1

2
zTk;iMk;izk;i +

1

2
Vk;i, (4.26)

where the matrix Mk;i has been partitioned as follows,

Mk;i =

M1,k;i M2,k;i

MT
2,k;i M3,k;i

 , (4.27)
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and where,

M1,k−1;i =− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if1i(zk−1;i) + fT1i(zk−1;i)Q̃k;if1i(zk−1;i),

(4.28)

M2,k−1;i =fT1i(zk−1;i)Q̃k;if2i(zk−1;i) + fT1i(zk−1;i)M2,k;ihi(yk−1;i)

− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if2i(zk−1;i)

− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i), (4.29)

M3,k−1;i =fT2i(zk−1;i)Q̃k;if2i(zk−1;i) + 2fT2i(zk−1;i)M2,k;ihi(yk−1;i) + hTi (yk−1;i)M3,k;ihi(yk−1;i)

− fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if2i(zk−1;i)

− hTi (yk−1;i)M2,k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i), (4.30)

Vk−1;i =Vk;i + tr(Σx;iM1,k;i) + tr(Σy;iM3,k;i) + ln |Γk;i|+ ln |Γ−1
k;i + gTi (xk−1;i)Q̃k;igi(xk−1;i)|.

(4.31)

Proof. The proof of Theorem 5 can be found in Appendix D.

To further elaborate the idea and understanding of the partitioning of matrix Mi;k, it can be

demonstrated by rewriting the quadratic cost function defined by (4.26) such that − ln(γ(zk;i)) =

1
2 [xTk;iM1,k;ixk;i + 2xTk;iM2,k;iyk;i + yTk;iM3,k;iyk;i + Vk;i]. From the form of the suboptimal con-

troller given by (4.21) - (4.25), it can be seen that to derive the suboptimal controller, only two of

the elements of the full Riccati matrix need to be computed, namely M1,k;i and M2,k;i which are

described by Equations (4.28) and (4.29), respectively. The Riccati equation solution, M3,k;i which

is quadratic in the external states is not required to be solved. Therefore, the full block of the Riccati

matrix (4.27) does not need to be solved which results in a reduction in computational expenses to

obtain the control law within the proposed decentralised framework as opposed to the global control

solution. The implementation of the suboptimal randomised controller is computationally efficient

as a consequence of the decomposition of the Riccati matrix which is especially beneficial when

handling large-scale complex systems. In [176], the sequential execution time is shown to scale lin-

early with the size of the system. However, when it is computed in a decentralised non sequential

mode, the time it takes for the system to converge is independent of the actual size of the system.

To clarify, if a large system is controlled centrally, the time needed to compute scales linearly, i.e.

time to control node 1 + time to control node 2 + .... Nevertheless, the decentralised approach allows

the control of all the subsystems simultaneously. Hence, parallel computers for the control of a decen-

tralised large system means that the computational time will only be bound to the size of the largest
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subsystem.

The interaction among interconnecting subsystems is important to achieve the global control objec-

tive. The algorithm developed in this chapter uses probabilistic message passing as a communication

medium between the subsystems [26], [27]. The next section explains the probabilistic message

passing approach in detail.

4.5 Probabilistic Message Passing Algorithm

The decomposition of each subsystem consists of the internal states for which the local controller

is responsible and the external state which aids the local controller to complete the information it

requires to achieve its local and aid the global control objective.

The approach that has been used to receive messages from neighbouring subsystems to update

the external state of the subsystem is probabilistic inference. The stochastic nature of the subsystems

allows the complete description of the closed-loop system of each subsystem to be given by the joint

pdf of the variables that are linked to each other namely the internal states, external states and the

control input of the subsystem under consideration such that,

s(xk;i, yk;i, uk;i|zk−1;i). (4.32)

The message passing technique involves subsystem i conveying knowledge about its internal states,

xk;i to the interacting subsystems. Hence, it is required to find the marginal distribution of the states

that need to be passed from subsystem i to other neighbouring subsystems. The process and theorems

are outlined and explained using subsystem i and j where node i passes the message to the receiving

node j. This is an example implemented to describe the probabilistic message passing approach. To

clarify, the passing of messages is not restricted to be unidirectional, it can be bidirectional as well

and the same procedure can be followed.

Firstly, the following statement is key to the message passing approach.

Lemma 1. The stochastic formulation of the probabilistic message being conveyed from subsystem

i to j is given by,

Mj←i(xk;i|zk−1;i) =

∫
s(xk;i, yk;i, uk;i|zk−1;i)dyk;iduk;i, (4.33)

which implies that the joint pdf of the variables that compose subsystem i is integrated over the exter-

nal variable and control input such that the marginal distribution for the internal states of subsystem i
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can be found and passed onto subsystem j which receives it as an external signal.

Following the statement in (4.33) provided by Lemma 1, the consequent theorem can be obtained.

Theorem 5. Following the distribution of subsystem i defined in (4.16) - (4.17), its designed optimal

controller described by (4.21), and Lemma 1, the knowledge about the internal states of subsystem i

to subsystem j is given by the following probabilistic message,

Mj←i(xk;i|zk−1;i) = N (µxk;i ,Pxk;i), (4.34)

where,

µxk;i = fi(zk−1;i)zk−1;i + gi(zk−1;i)u
∗
k;i, (4.35)

Pxk;i = gi(zk−1;i)Γ̄k;ig
T
i (zk−1;i) + Σx;i. (4.36)

Note that Σx;i in (4.36) is the covariance of the actual pdf of the internal states of subsystem i as given

by (4.16). The probabilistic message in (4.34) can be described by any probability distribution and

does not necessarily have to be Gaussian. However, if the components of the subsystems and their

individual controllers are described by Gaussian distributions, then the distribution of the messages

passed (Equation (4.34)) will also result in a Gaussian distribution.

Proof. A detailed proof of this theorem can be found in Appendix E.

Nevertheless, Theorem 5 is solely the first stage of the probabilistic message passing approach

since the message about the internal states of the passing subsystem i (4.34) still needs to be utilised

by the receiving subsystem j to update the knowledge of its external state variables. A mathematical

representation can be given by,

Mj←i(xk;i|zk−1;i) = N (µxk;i ,Pxk;i) ∼ yk;j ← xk;i. (4.37)

Using Bayes’ rule, prior knowledge about the external states yk;j that subsystem j possesses can be

fused with the updated knowledge received from subsystem i as a probabilistic message about the

internal states of node i. The following theorem formulates the second stage of the probabilistic

message passing approach.

Theorem 6. The prior knowledge that node j has about its external states, namely s(yk;j |yk−1;j) =

N (yk;j ,Σy;j) can be updated using the notion introduced in (4.37) by fusing it with the probabilistic

message (4.34) subsystem i has passed. This is achieved by using Bayes’ rule, i.e. the posterior dis-

tribution of ŷk;j,new is calculated using Bayes’ theorem where prior knowledge about the distribution
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of ŷk;j,new as defined in Equation (4.17) is combined with the new information from the probabilis-

tic message given by (4.34). Following this, the maximum a posteriori estimation (MAP) estimates

ŷk;j,new as the mode of the posterior distribution of this random variable. This gives,

s(yk;j,new) = N (ŷk;j,new, Σ̄yk;j ,new), (4.38)

where,

ŷk;j,new = ŷk;j + K̄k;j(µxk;i − ŷk;j), (4.39)

Σ̄yk;j ,new = Σy;j − K̄k;jΣy;j , (4.40)

with,

K̄k;j = Σy;j(Σy;j + Pxk;i)
−1. (4.41)

Proof. The proof of this theorem can be found in Appendix E.

4.6 Algorithm of the Decentralised FP Control Approach with Proba-

bilistic Message Passing

There are a number of steps required in the process of implementing the suboptimal randomised

controller in a decentralised control framework. The key steps are summarised in Algorithm 5 as

a pseudocode. As discussed previously for centralised FP control designs, it is required to find the

steady state solutions for both the DARE’s M1,k;i and M2,k;i given by (4.28) and (4.29). This is

achieved by changing the time index as explained previously.
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Algorithm 5 Pseudo-code of randomised controller for decentralised nonlinear systems with additive
noises

1: procedure IMPLEMENTATION OF FP CONTROL DESIGN FOR DECENTRALISED NONLINEAR

SYSTEMS WITH ADDITIVE NOISES

2: Initialise: x0;i, y0;i,M1,0;i,M2,0;i, hi(yk−1;i) where i = {1, ..., N}, N being the number of sub-
systems and pre-train the neural network model as discussed in Algorithm 1 (optional).

3: for k = 1→ H do
4: for subsystem i:
5: Estimate fi(zk−1;i) and gi(zk−1;i) from the neural network model.
6: Calculate the SS solution of M1;i using (4.28).
7: Q̃i ← (Σ−1

x;i +M1;i)

8: Γ̄i =
(

Γ−1
k;i + gTi (zk−1;i)Q̃igi(zk−1;i)

)−1

9: Use Steps 6-8 in (4.29) to find the SS solution of M2;i.
10: Use the SS values from Steps 6-9 in (4.24) to find the SS solution of Ki.
11: Compute u∗k;i using Step 10 in Equation (4.22).
12: Forward the control signal u∗k obtained in Step 11 to the system equation (4.9).
13: Using a one step delayed of the new state value from Step 12 and the calculated control

signal u∗k from Step 11 as input to the neural network model and the new state from Step 12 as
output, retrain the neural network model and update its parameters.

14: end for
15: for subsystem i:
16: ComputeMj←i(xk;i|zk−1;i) given by (4.34) using (4.35) and (4.36).
17: Update the prior pdf of the external states using (4.38) - (4.41).
18: Update the external state matrices hi(yk−1;i).
19: end for
20: end for

4.7 Simulation

The validity of the proposed decentralised FP control approach with probabilistic message passing as

a means of communication between the subsystems is demonstrated in the current section. The nu-

merical example implemented to illustrate the effectiveness of the proposed decentralised FP control

approach is taken from [177] by Wang et al. The dynamics of the discrete time stochastic system for

the simulation in this section are thus given by,

xk;i = f1i(zk−1;i)xk−1;i +

N∑
j∈Ni,j 6=i

cijxk−1;j + uk;i + ε1k;i, (4.42)

where the coupling strength matrix cij is given by cij = Lij(0.1I2×2) which links it to the jth state

variable. Furthermore, f1i(zk−1;i) = a(zk−1;i) + Lii(0.1I2×2) = a(zk−1;i) + cii, where,

a(zk−1;i) =

 −0.5 1
x2,k−1;i

tanh(0.65x1,k−1;i)− 0.15

0 1.1− 1
x2,k−1;i

tanh(0.95x2,k−1;i)

 . (4.43)
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In addition, L = [Lij ]N×N is the Laplacian matrix which shows the connections and interactions

between the individual subsystems and is given by,

L =


−0.2 0.1 0.1

0.1 −0.2 0.1

0.1 0.1 −0.2

 . (4.44)

The Laplacian matrix, L represents the decomposition of the complex nonlinear network in three

subsystems that need to be regulated to state zero. A key adjustment to the system state equation in

[177] is the addition of the noise ε1k;i to obtain a stochastic system as defined in (4.42). This allows

us to demonstrate a more realistic control problem which can be found in real-world situations where

noises are inevitable. The noise has zero mean and the noise intensity is described by the covariance

Qi = 0.1I2×2.

The local controllers designed for this numerical example are responsible for three individual sub-

systems which are referred to as node i ∈ {α, χ,Ω}. All nodes equally interact with each other and

thus, following the system state equation given by Equation (4.42), the dynamics of the nodes can be

described by the distributions,

s(xk;i|uk;i, zk−1;i) = N (fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i,Σx;i), (4.45)

where fi(zk−1;i) =

[
f1i(zk−1;i) f2i(zk−1;i)

]
with f2i(zk−1;i) = [cij ]j∈Ni,j 6=i such that,

fi(zk−1;i) =

 −0.5− 0.02 1
x2,k−1;i

tanh(0.65x1,k−1;i)− 0.15 0.01 0 0.01 0

0 1.1− 1
x2,k−1;i

tanh(0.95x2,k−1;i)− 0.02 0 0.01 0 0.01

 ,
(4.46)

gi(zk−1;i) =

 1

1

 , (4.47)

and,

s(yk;i|yk−1) = N (hi(yk−1;i)yk−1;i,Σy;i), (4.48)
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where,

hi(yk−1;i) =



h11;i h12;i 0 0

h21;i h22;i 0 0

0 0 h33;i h34;i

0 0 h43;i h44;i


. (4.49)

To reaffirm, the pdfs of the system state dynamics are assumed to be unknown apriori and are therefore

estimated online as explained in Sections 4.4.1 and 3.3.2. The external state matrix hi(yk−1;i) is

initialised randomly at k = 1, and is updated accordingly during the probabilistic message passing

procedure as explained in Section 4.5. The state vector zk;i for the nodes are given by:

1. node α is given by zk;α =

[
z1,k;α z2,k;α z1,k;χ z2,k;χ z1,k;Ω z2,k;Ω

]T
, where the first

two variables z1,k;α and z2,k;α are the internal states and the remaining four states are the

external states. The internal states are initially assumed to be z1,0;α = 7.5 and z2,0;α = −3.5.

2. node χ is given by zk;χ =

[
z1,k;χ z2,k;χ z1,k;α z2,k;α z1,k;Ω z2,k;Ω

]T
, where the first

two variables z1,k;χ and z2,k;χ are the internal states and the remaining four states are the exter-

nal states. The internal states are initially assumed to be z1,0;χ = −2.7 and z2,0;χ = 5.1.

3. node Ω is given by zk;Ω =

[
z1,k;Ω z2,k;Ω z1,k;α z2,k;α z1,k;χ z2,k;χ

]T
, where the first

two variables z1,k;Ω and z2,k;Ω are the internal states and the remaining four states are the

external states. The internal states are initially assumed to be z1,0;Ω = 4.2 and z2,0;Ω = −2.9.

The covariance of the ideal controllers for the three subsystems is set to be Γk;i = 5 which

represents the permissible range of control inputs. The covariance of the ideal distribution of the

internal states is the same as the global covariance, Σx;i of the actual distribution of the internal states

which can be estimated as explained in Section 4.4.1. The three subsystems are identical in this case

as can be seen from the parameters and the symmetry of the Laplacian matrix.

In a further experiment, the decentralised FP control approach is compared to the centralised FP

control method. The system that is controlled following a centralised approach consists of a state

vector of six states, i.e. xk =

[
x1,k−1 x2,k−1 x3,k−1 x4,k−1 x5,k−1 x6,k−1

]T
. The global
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state matrix A(xk−1) is given by

A(xk−1) =



−0.5 A11 − 0.15 0 0 0 0

0 1.1−A12 0 0 0 0

0 0 −0.5 A21 − 0.15 0 0

0 0 0 1.1−A22 0 0

0 0 0 0 −0.5 A31 − 0.15

0 0 0 0 0 1.1−A32


+ Lcoupled, (4.50)

where

A11 = 1
x2,k−1

tanh(0.65x1,k−1) A12 = 1
x2,k−1

tanh(0.95x2,k−1)

A21 = 1
x4,k−1

tanh(0.65x3,k−1) A22 = 1
x4,k−1

tanh(0.95x4,k−1)

A31 = 1
x6,k−1

tanh(0.65x5,k−1) A32 = 1
x6,k−1

tanh(0.95x6,k−1)

andLcoupled = L
⊗
I2×2 with

⊗
being the Kronecker product. The global control matrix is given by

B =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


(4.51)

.

Furthermore, the covariance of the ideal controller is set to be Γglobal = 5I3×3. The covariance of the

ideal distribution of the states is the same as the global covariance matrix. The initial state values are

assumed to be x0 =

[
7.5 −3.5 −2.7 5.1 4.2 −2.9

]T
. The results of the system controlled by

a centralised controller can be found in Figure 4.3 and the results of the decentralised FP controller

can be found in Figure 4.2. As mentioned previously, the decentralised FP control approach allows

the control of the subsystems to take place simultaneously, while the execution time of the centralised

FP control strategy scales linearly with the size of the system [176]. From Figure (4.2), it can be

observed that the internal states of the subsystems closely oscillate around zero. Also, Figure 4.3

demonstrates that the states closely oscillate around zero.

In conclusion, it has hence been validated that the proposed approach is effective since it simplifies
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the process by decomposing the complex system into smaller sub-problems, allowing the nodes to

interact with the neighbouring subsystems via probabilistic message passing while still ensuring that

the global objective is achieved using only decentralised local knowledge.

Figure 4.2: The results of the states following a centralised FP control approach are presented in this
figure.
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Figure 4.3: The results of the internal states of the nodes following a decentralised FP control ap-
proach are presented in this figure.

4.8 Decentralised Control Approach for Nonlinear Systems with Mul-

tiplicative Noises

The previously discussed design does not take account of multiplicative noises that affect complex

nonlinear systems. Therefore, this sections discusses the design process of FP local controllers for

nonlinear subsystems with multiplicative noises.

4.8.1 Subsystem Representation of Nonlinear Complex System with Multiplicative

Noises

The FP control design within a decentralised framework has also been further developed for nonlinear

systems with multiplicative noises. This allows the randomised controller to be implemented for

nonlinear systems affected by a variety of noises.

Following the decentralised framework discussed in Section 4.1 and the transformation of a nonlinear

system to a nonlinear system that is affine in the state and control input (Chapter 3), the dynamics of

stochastic subsystem i with multiplicative noise is described by,

zk;i =F̄i(zk−1;i)zk−1;i + g̃i(zk−1;i)uk;i + D̄izk−1;i · vk−1;i, (4.52)
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where F̄i(zk−1;i) and g̃(zk−1;i) are the nonlinear state and control matrices, respectively. The system

matrix D̄i is multiplied by the state vector zk−1;i which is thereafter multiplied by the noise vector

vk−1;i that has zero mean and covariance Qi, using the Hadamard product.

The matrix-vector form of (4.52) is given by,

xk;i

yk;i


︸ ︷︷ ︸
zk;i

=

f̄1i(zk−1;i) f̄2i(zk−1;i)

0 h̄i(yk−1;i)


︸ ︷︷ ︸

F̄i(zk−1;i)

xk−1;i

yk−1;i


︸ ︷︷ ︸
zk−1;i

+

ḡi(zk−1;i)

0


︸ ︷︷ ︸
g̃i(zk−1;i)

uk;i+

D̄1;i 0

0 D̄2;i


︸ ︷︷ ︸

D̄i

xk−1;i

yk−1;i


︸ ︷︷ ︸
zk−1;i

·

1n×1vk−1;i

1m×1ṽk−1;i


︸ ︷︷ ︸

vk−1;i

,

(4.53)

where 1n×1 is an (n×1) unit vector which corresponds to the state dimension of the internal variables

xk;i and 1m×1 is an (m × 1) unit vector which corresponds to the state dimension of the external

variables yk;i. Also, it is assumed that the multiplicative noises of the internal and external states are

uncorrelated.

As can be read from (4.53), the dynamics of the multivariate internal state xk;i is represented by the

following equation,

xk;i = f̄i(zk−1;i)zk−1;i + ḡi(zk−1;i)uk;i + D̄1;ixk−1;ivk−1;i, (4.54)

where f̄i(zk−1;i) =

[
f̄1i(zk−1;i) f̄2i(zk−1;i)

]
and the scalar noise vk−1;i has zero mean and vari-

ance Q1;i. In addition, the system state equation of the multivariate external state is given by,

yk;i = h̄i(yk−1;i)yk−1;i + D̄2;iyk−1;iṽk−1;i, (4.55)

where the scalar noise ṽk−1;i has zero mean and variance Q2;i.

As discussed in Sections 3.5.1 and 4.4.1, the state matrices f̄i(zk−1;i) and h̄i(yk−1;i), and the con-

trol matrix ḡi(zk−1;i) are estimated using mlp neural networks to obtain fi(zk−1;i), hi(yk−1;i) and

gi(zk−1;i) respectively. Previously in Section 3.5.1, the process of estimating the system matrix D

has been outlined for nonlinear systems where the concept of internal and external states does not ex-

ist. Nevertheless, the same approach to estimate Di is followed for systems within the decentralised

framework. To clarify, the estimation ofD1;i of the internal states depends on the internal and external

states such that D1;i = exk;i(xk−1;ivk−1;i)
†, where exk;i = xk;i− x̂k;i. On the other hand, the estima-

tion of D2;i of the external states depends on the external states only, i.e. D2;i = eyk;i(yk−1;iṽk−1;i)
†,

where eyk;i = yk;i − ŷk;i.

The Gaussian probability density functions of the internal and external states of node i can then
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be obtained,

s(xk;i|uk;i, zk−1;i) ∼ N (x̂k;i, Rx;i), (4.56)

s(yk;i|yk−1;i) ∼ N (ŷk;i,Σy;i), (4.57)

where s(xk;i|uk;i, zk−1;i) is the pdf of the internal states with the mean expressed by,

x̂k;i = fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i, (4.58)

and covariance,

Rx;i =E[(xk;i − x̂k;i)(xk;i − x̂k;i)
T ],

=E[(D1;ixk−1;ivk−1;i)(D1;ixk−1;ivk−1;i)
T ],

=E[D1;ixk−1;ivk−1;iv
T
k−1;ix

T
k−1;iD

T
1;i],

=D1;ixk−1;iQ1;ix
T
k−1;iD

T
1;i. (4.59)

Furthermore, the probabilistic description of the behaviour of the external states of subsystem i is

given by s(yk;i|yk−1;i) with the mean defined by,

ŷk;i = hi(yk−1;i)yk−1;i, (4.60)

and covariance matrix expressed by,

Σy;i = D2;iyk−1;iQ2;iy
T
k−1;iD

T
2;i. (4.61)

In addition, the ideal distributions of the conditional distributions of the internal and external states

of subsystem i are given by,

sI(xk;i|uk;i, zk−1;i) ∼ N (0,Σx;i), (4.62)

sI(yk;i|yk−1;i) ∼ N (ŷk;i,Σy;i), (4.63)

where the mean of the ideal distribution of the internal variables of subsystem i is zero due to the

regulation objective of the control problem, and covariance is Σx;i. Unlike the approach discussed

previously in Section 4.4.1, the covariance matrix Rx;i of the actual distribution of the internal states

is different than the covariance matrix Σx;i of the ideal pdf of the internal states of subsystem i. This
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is due to the state dependency of covariance matrix Rx;i on the states which are expected to converge

to zero, as can be seen from (4.59). This allows us to set a smaller ideal covariance matrix, Σx;i than

the actual covariance Rx;i.

Since the objective of the control problem is still the same as the previously discussed decen-

tralised FP approach, the ideal distribution of the controller remains the same, namely,

cI(uk;i|zk−1;i) ∼ N (0,Γk;i), (4.64)

which is a Gaussian distribution with zero mean and covariance Γk;i to specify the range of permissi-

ble control inputs.

4.8.2 Randomised Suboptimal Controller for Nonlinear Systems with Multiplicative

Noises

This section presents Theorem 7 to outline the form of the distribution of the randomised controller

designed for nonlinear subsystems that are affected by multiplicative stochastic noises.

Theorem 7. Using Proposition 4 and Definition 4.4.1, the suboptimal approximation of the opti-

mal control law for node i that considers multiplicative noises, subject to the dynamics of subsys-

tem i characterised by (4.56) and (4.57), the ideal distribution of the system states given by (4.62)

and (4.63), and the ideal pdf of the controller stated in (4.64), can be obtained such that,

c∗(uk;i|zk−1;i) = N (u∗k;i, Γ̄k;i), (4.65)

where

u∗k;i = −Kk;izk−1;i, (4.66)

Γ̄k;i =
(

Γ−1
k;i + gTi (zk−1;i)Q̃k;igi(zk−1;i)

)−1
, (4.67)

Kk;i = Γ̄k;ig
T
i (zk−1;i)

[
Q̃k;if1i(zk−1;i) Q̃k;if2i(zk−1;i) +M2,k;ihi(yk−1;i)

]
, (4.68)

Q̃k;i = (Σ−1
x;i +M1,k;i). (4.69)

The suboptimal controller for node i presented by (4.65) has mean u∗k;i and covariance Γ̄k;i. The

control gain Kk;i is given by Equation (4.68). Furthermore, the quadratic performance index for the

control strategy is given by,

− ln(γ(zk;i)) =
1

2
zTk;iMk;izk;i +

1

2
Vk;i, (4.70)
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where matrix Mk;i has been partitioned as follows,

Mk;i =

M1,k;i M2,k;i

MT
2,k;i M3,k;i


T

, (4.71)

and where,

M1,k−1;i =− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if1i(zk−1;i) + fT1i(zk−1;i)Q̃k;if1i(zk−1;i)

+DT
1;iM1,k;iQ1;iD1;i, (4.72)

M2,k−1;i =fT1i(zk−1;i)Q̃k;if2i(zk−1;i) + fT1i(zk−1;i)M2,k;ihi(yk−1;i)

− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if2i(zk−1;i)

− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i), (4.73)

M3,k−1;i =fT2i(zk−1;i)Q̃k;if2i(zk−1;i) + 2fT2i(zk−1;i)M2,k;ihi(yk−1;i) + hTi (yk−1;i)M3,k;ihi(yk−1;i)

− fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if2i(zk−1;i)

− hTi (yk−1;i)M2,k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i) +DT

2;iM3,k;iQ2;iD2;i,

(4.74)

Vk−1;i =Vk;i + ln |Γk;i|+ ln |Γ−1
k;i + gTi (xk−1;i)Q̃k;igi(xk−1;i)|. (4.75)

Proof. The proof of Theorem 7 can be found in Appendix F.

If one observes the suboptimal controller designed in Section 4.4 given by Equations (4.21) -

(4.25) and compares it to the derived suboptimal controller that considers multiplicative stochastic

disturbances described by (4.65) - (4.69), it can be seen that both controllers have the same for-

mulation of the Gaussian distribution including the optimal gains, means and covariance matrices.

However, when considering the Riccati equation solution M1,k;i, one can notice an additional term,

DT
1;iM1,k;iQ1;iD1;i which arose from the consideration of multiplicative noises. Although, there is an

additional term in the Riccati element M3,k;i, namely DT
2;iM3,k;iQ2;iD2;i, there is no requirement to

solveM3,k;i due to the fact that it is not part of the optimal control law. This reduces the computational

expenses since solving the full block of Mk;i is not required.

The communications between the subsystems follows the probabilistic message passing approach

explained in Section 4.2.
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4.8.3 Algorithm of the Decentralised FP Control Approach for Nonlinear Subsystems

with Multiplicative Noises

The algorithm of the FP control design that considers multiplicative noises in nonlinear subsystems

is summarised in Algorithm 6 as a pseudocode of the key steps. The time index is required to be

changed to find the steady state solutions of the DARE’sM1,k;i andM2,k;i given by (4.72) and (4.73).

Algorithm 6 Pseudo-code of randomised controller for decentralised nonlinear systems with multi-
plicative noises

1: procedure IMPLEMENTATION OF FP CONTROL DESIGN FOR DECENTRALISED NONLINEAR

SYSTEMS WITH MULTIPLICATIVE NOISES

2: Initialise: x0;i, y0;i,M1,0;i,M2,0;i, hi(yk−1;i) where i = {1, ..., N}, N being the number of sub-
systems and pre-train the neural network model as discussed in Algorithm 1 (optional).

3: for k = 1→ H do
4: for subsystem i:
5: Estimate fi(zk−1;i), gi(zk−1;i), D1;i, and D2;i from the neural network model.
6: Calculate the SS solution of M1;i using (4.72).
7: Q̃i ← (Σ−1

x;i +M1;i)

8: Γ̄i ←
(

Γ−1
k;i + gTi (zk−1;i)Q̃igi(zk−1;i)

)−1

9: Use Steps 6-8 in (4.73) to find the SS solution of M2;i.
10: Use the SS values from Steps 6-9 in (4.68) to obtain the SS solution of Ki.
11: Compute u∗k;i using Step 10 in Equation (4.66).
12: Forward the control signal u∗k obtained in Step 11 to the system equation (4.52).
13: Using a one step delayed of the new state value from Step 12 and the calculated control

signal u∗k from Step 11 as input to the neural network model and the new state from Step 12 as
output, retrain the neural network model and update its parameters.

14: end for
15: for subsystem i:
16: ComputeMj←i(xk;i|zk−1;i) given by (4.34) using (4.35) and (4.36).
17: Update the prior pdf of the external states using (4.38) - (4.41).
18: Update the external state matrices hi(yk−1;i).
19: end for
20: end for

4.9 Simulation

The proposed method discussed in Section 4.8 is illustrated here using the same simulation [177] as

Section 4.7. The parameters of the pdfs of the system dynamics stay the same for the three individual

subsystems and are also expected to be estimated since there is no apriori knowledge about them.

However, instead of additive noises, the simulated example is affected by multiplicative noises, which

is the key difference here. The localised controllers are designed in such a way that they consider the

multiplicative stochasticity of the subsystems. The matrix D1;i that is multiplied by the noise vk−1;i
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with zero mean and variance Q = 1 is given by,

D1;i =

0.73 0.25

0.4 0.75

 . (4.76)

To re-emphasise, matrix D1;i is unknown and hence is required to be estimated. For the nodes α, χ

and Ω, the ideal covariance matrix is chosen to be Σx;i = 10−2diag([2.1; 1.1]). For the proposed

method, it is possible to have a smaller ideal covariance Σx;i than the actual covariance Rx;i due to

the state dependency of the actual covariance matrix. Furthermore, the range of allowable control

inputs is described by Γk;i = 5.

In addition, in a further experiment, a centralised controller is implemented to control the system.

The global state matrix and the global control matrix is taken to be the same as described in Section

4.7 by Equations (4.50) and (4.51), respectively. The ideal covariance matrix is the same as the global

covariance matrix and the covariance of the ideal controller is given by Γglobal = 5I3×3. The assumed

initial state values remain the same for both the decentralised FP controller and the centralised FP

controller as described by Section 4.7.

The results plotted in Figure 4.5 show that the internal states of the subsystems have converged

to values extremely close to zero as expected from a regulation problem following a decentralised

control strategy. It becomes clear that the addition of the external states to the state vector zk;i is to

ensure that node i is aware of the state of the interacting subsystems. The global objective has been

achieved by using decentralised controllers that only have access to local information. The approach

of probabilistic message passing allowed the three subsystems to communicate with one another.

The results of the converged states that are regulated by a controller that follows a decentralised

approach are plotted in Figure 4.4. Although both controllers regulate the states, the implementation

of decentralised controllers allows the regulation of the states to happen simultaneously resulting in

computational efficiency. Controlling the system centrally has meant that the execution time scales

linearly with the size of the system [176].

4.10 Conclusion

Many approaches have been introduced for the control of large-scale complex systems in the control

literature. However, some methods require full knowledge of the system since a centralised controller

was implemented, whereas others developed decentralised controllers that were based on incomplete

knowledge of the system. In addition, many technical difficulties can arise and as a result may sever

the connection between interacting nodes leading to poorer results since local controllers may fail to
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Figure 4.4: The results of the states controlled by a centralised controller are presented in this figure.
The zoomed-in plot demonstrates the oscillation of the states around zero.

Figure 4.5: The results of states of the subsystems are presented in this figure The zoomed-in plot
demonstrates the oscillation of the states around zero.
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consider important information.

The proposed method in this chapter has addressed these gaps for nonlinear systems with additive

and multiplicative noises in order to circumvent these issues. The large-scale complex network is

decomposed into a number of subsystems for which individual local controllers have been developed.

These controllers are responsible for the control of the subsystems they are assigned to. Nevertheless,

since it is key to consider the communication between the nodes to ensure the global objective of the

system is achieved, probabilistic message passing has been introduced to achieve this. Furthermore,

the problem of reliability of control systems in the presence of component failure has also been

addressed since the state vector of each independent subsystem consists of internal and external state

variables. The knowledge received from other neighbouring subsystems via probabilistic message

passing is preserved by including it in the state matrix as the dynamics of the external state variables,

which are constantly updated. This way, the node always has access to some dynamical information

of its neighbouring nodes.

In addition, it has been shown that the proposed method is computationally efficient as the full

block of the Riccati matrix is not expected to be computed to obtain the suboptimal controller. In-

stead, only two elements of the Riccati matrix are required to be solved, resulting in a reduction

in computational expenses. The simulations results for the developed decentralised FP control ap-

proaches for nonlinear systems (additive and multiplicative) demonstrated the validity and efficiency

of the proposed method as it nicely regulated the states to zero.
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Chapter 5

Decentralised FP Control Design for

Tracking and Multi-Agent Formation

Control

5.1 Introduction

The developed FP control strategies introduced in Chapters 3 and 4 (centralised and decentralised)

have primarily focused on the control of nonlinear stochastic systems which are required to be regu-

lated to state zero. Nevertheless, many control objectives for real-world dynamical systems involve

the tracking of a predefined desired value. This means the output of the system is expected to follow

a predetermined desired state value which is achieved by focusing on the tracking error rather than

the actual output of the system.

The implementation of this control problem is different than the previously discussed approaches.

The regulation problem involves the minimisation of the Kulback-Leibler divergence of the actual

and ideal joint pdf of the system state and controller. However, this development required an alter-

native strategy where the KLD now considers the distance between the actual and ideal joint pdf of

the tracking error and the controller. Based on this key modification, a new set of algorithms arise

which results into an optimal randomised controller that aims to track a predefined desired value or

trajectory. In [178], [179], a tracking error-based FP control design has been studied by Herzallah et

al. to design a randomised optimal controller that influences the pdf of the tracking error of the system

to be controlled, instead of the pdf of the dynamics of the system. However, the optimal controller

proposed by Herzallah is centralised and has only been demonstrated for linear stochastic systems.

Therefore, the study discussed in this chapter demonstrates the process of obtaining local randomised

controllers within a FP design approach for decentralised nonlinear stochastic systems, thus, allowing
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it to be implemented for more complex systems which may be found in the real world of control.

The problem of finding a control solution within a fully probabilistic framework that enables

the output of the system to track a predefined desired state value is demonstrated in the first part

of this chapter. It is important to emphasise that a reference model could be either deterministic

or stochastic. The first part of this chapter focuses on solving a tracking control problem where the

system output tracks a predefined desired state which is specified by a stochastic model. Additionally,

the stochastic system is affected by multiplicative noises which are considered in the development

of the tracking control solution. The validity and efficiency of this method is demonstrated with a

simulation example.

The FP control design based on the tracking error in a decentralised framework allows control

problems with different objectives to be implemented such as the management and control of multi-

agent systems. The increasing popularity of the control of multi-agent systems is due to its practicality

in a number of applications and the theoretical challenges that are encountered in order to coordinate

and control them. These difficulties mostly exist as researchers aim to design decentralised controllers

for multi-agent systems that possess incomplete knowledge of the systems or aim to have complete

information but require a centralised controller to achieve this. The control of multi-agent systems

that has actively been studied is called formation control which aims to coordinate a group of agents to

achieve and sustain a formation described by a certain shape. To achieve the control objective, it can

be realised that communication between the agents is crucial in order to be aware of the neighbouring

interacting nodes. The incorporation of probabilistic message passing in the FP control design plays

an important part in formation control. The randomised local controllers developed with the aim of

achieving a formation are affected by additive noises. As far as the literature is concerned, formation

control within a fully probabilistic framework has not been considered for either linear or nonlinear

stochastic systems and is discussed in Section 5.4. Therefore, the formation of a certain shape using

the developed method is illustrated by two simulations, one for systems governed by linearities, and

the other for nonlinear stochastic systems.

5.2 Fully Probabilistic Control Design for a Tracking Control Problem

in a Decentralised Framework

The objective of the FP control design in its original form was to drive the joint pdf of the system

state dynamics and the controller to its ideal joint pdf. The behaviour of the closed-loop system

of the system to be controlled is completely characterised by the joint probability density function

of the dynamical system state and the controller. This description of the closed-loop behaviour,
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however, may be slightly inconvenient and more complicated if implemented for control problems

that require the tracking of a predefined desired state value or trajectory. Therefore, the optimal

controller designed for this purpose is reformulated such that it reshapes the joint pdf of the controller

and the tracking error rather than the joint pdf of the controller and system state dynamics [178], [179].

The aim of the randomised controller is to ensure the pdf of the tracking error slightly fluctuates

around mean zero which enables the system to track the desired state value. Once the pdf of the

tracking error has been reshaped to a distribution that fluctuates around zero, the desired state value

or trajectory has been achieved. Having small variations around zero means that the tracked trajectory

is affected by a low level of uncertainty.

The tracking control solution discussed in [178], [179] is demonstrated for systems that require a

central controller. However, the control solution would fail for large-scale complex networks which

consist of various nodes interacting with each other. From Chapter 4, it is recognised that the state of

the nodes are composed of internal states and external states within the FP control framework. To re-

emphasise, the external signals are treated as an external disturbance to the system which is considered

for the sole purpose of having knowledge of interacting neighbouring nodes in order to design an

optimal local controller. As such, it can be easily deduced that the external states of the system

state dynamics of the nodes cannot be controlled or changed by the corresponding local suboptimal

controllers. To re-emphasise, the external states are only passed as messages from the neighbouring

subsystems and thus, they cannot be influenced by the output of the subsystem they are passed to. The

same notion applies to the tracking error control problem where the tracking error is only considered

for the internal states of the nodes since the external states are not intended to be controlled.

To be more precise, the state dynamics of node i can be represented by the distribution,

s(zk;i|uk;i, zk−1;i) = s(xk;i|uk;i, xk−1;i, yk−1;i)s(yk;i|yk−1;i), (5.1)

where zk;i = [xk;i, yk;i]
T is the state vector of subsystem i, xk;i is the multivariate internal state of sub-

system i and yk;i is the external multivariate state that node i receives from neighbouring subsystems

via probabilistic message passing (Chapter 4). Although, state xk;i is observable, the distributions

that characterises its dynamics, namely s(xk;i|uk;i, zk−1;i) and s(yk;i|yk−1;i) need to be estimated.

The estimation process of the dynamics of the subsystems has already been discussed in Chapter 4.

The tracking control problem requires the internal state of subsystem i to track the reference

model xr,k;i from which the system tracking error ek;i can be obtained,

ek;i = xk;i − xr,k;i. (5.2)
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It is known that the dynamics of the system state can only be represented by a probability distribution

as given by (5.1) due to the stochasticity of the system dynamics. Hence, for the purpose of tracking a

predefined trajectory, the designed controller is concerned with the reshaping of the distribution of the

tracking error. Consequently, knowledge of the pdf of the tracking error is required which is obtained

by using the estimated state value xk;i. The pdf of the tracking error can be achieved by exploiting

the probability distribution of the internal system state s(xk;i|uk;i, xk−1;i, yk−1;i) and the definition

in (5.2) such that,

sei(xk;i, xr,k;i) = s(ek;i + xr,k;i|uk;i, ek−1;i + xr,k−1;i, yk−1;i). (5.3)

To re-emphasise, for a tracking control problem, the dynamics of the subsystems are described by

the pdfs of the tracking error ek;i and the external states yk;i instead of the pdfs of the internal, xk;i

and external, yk;i state variables. Therefore, the states of node i are now represented by nk;i =

[ek;i, yk;i]
T . This means that the behaviour of subsystem i described by (5.1) now conforms to the

pdf s(nk;i|uk;i, nk−1;i) for a tracking control problem,

s(nk;i|uk;i, nk−1;i) = s(ek;i|uk;i, nk−1;i)s(yk;i|yk−1;i), (5.4)

where s(ek;i|uk;i, nk−1;i) and s(yk;i|yk−1;i) are the conditional distributions of the tracking error and

external states of node i, respectively.

Following the discussion above, and the attention being shifted to the pdfs of the tracking error

ek;i and external states yk;i of node i, the optimal randomised controller can be derived by revisiting

and updating the definition of the Kullback-Leibler divergence accordingly. This adjustment is made

with the purpose of minimising the divergence between the joint pdf of the tracking error and the

controller and a predetermined ideal joint pdf. The redefined KLD that the designed optimal controller

minimises is given by,

D(f ‖ f I) =

∫
f(D) ln

(
f(D)

f I(D)

)
dD, (5.5)

where,

f(D) =
H∏
k=1

s(ek;i|uk;i, nk−1;i)s(yk;i|yk−1;i)c(uk;i|nk−1;i),

f I(D) =

H∏
k=1

sI(ek;i|uk;i, nk−1;i)s
I(yk;i|yk−1;i)c

I(uk;i|nk−1;i),

with D = (nk;i, ..., nH;i, uk;i, ..., uH;i) with H being the control horizon. To re-emphasise, for the
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special case of a regulation problem, the distribution of the system state vector zk;i of subsystem i

was composed of the internal xk;i and external states yk;i as shown in (5.1). However, the control

solution of a tracking error problem considers the pdf of subsystem i that is now constructed of the

tracking error ek;i and external states yk;i.

The randomised controller c(uk;i|nk−1;i) that minimises the KLD in (5.5) with respect to the

control sequence uk;i is given by [162],

− ln(γ(nk−1;i)) = min
{c(uk;i|nk−1;i)}

∫
s(nk;i|uk;i, nk−1;i)c(uk;i|nk−1;i)

×
[
ln

(
s(nk;i|uk;i, nk−1;i)c(uk;i|nk−1;i)

sI(nk;i|uk;i, nk−1;i)cI(uk;i|nk−1;i)

)
︸ ︷︷ ︸

Partial cost

− ln(γ(nk;i))︸ ︷︷ ︸
Optimal cost-to-go

]
d(nk;i, uk;i).

(5.6)

Although the formulation of the minimum cost-to-go function is the same as the conventional ap-

proach for decentralised systems discussed in Proposition 3 (Chapter 4), the difference lies in the

joint pdf that is considered for the current proposed method, namely the joint pdf of the tracking error

term and the external states.

From the minimisation of the recursion equation defined in (5.6), the optimal randomised con-

troller can be obtained as will be outlined in the following proposition.

Proposition 5. The optimal randomised controller that minimises the redefined KLD (5.5) can be

derived from the cost-to-go function (5.6) for the tracking error control problem such that,

c∗(uk;i|nk−1;i) =
cI(uk;i|nk−1;i) exp(−β1(uk;i, nk−1;i)− β2(uk;i, nk−1;i))

γ(nk−1;i)
, (5.7)

γ(nk−1;i) =

∫
cI(uk;i|nk−1;i) exp(−β1(uk;i, nk−1;i)− β2(uk;i, nk−1;i))duk;i, (5.8)

β1(uk;i, nk−1;i) =

∫
s(ek;i|uk;i, nk−1;i)

[
ln

(
s(ek;i|uk;i, nk−1;i)

sI(ek;i|uk;i, nk−1;i)

)]
dek;i, (5.9)

β2(uk;i, nk−1;i) = −
∫
s(ek;i|uk;i, nk−1;i) ln(γ̃(ek;i, yk−1;i))dek;i (5.10)

with,

ln(γ̃(ek;i, yk−1;i)) =

∫
s(yk;i|yk−1;i) ln(γ(nk;i))dyk;i. (5.11)

Proof. The derivation of the formulation of the optimal controller given by (5.7) - (5.11) can be

obtained by following the proof in [25].
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From the above proposition, the tracking control problem where the state is required to follow

a stochastic reference model is discussed in Section 5.3. The proposed method is novel since the

fully probabilistic approach has not been demonstrated for the tracking control problem for nonlinear

systems in a decentralised framework. The added originality emerges from the consideration of a

stochastic reference model that the system state is instructed to track. Also, multiplicative noises are

considered for the design of the proposed optimal controller.

In addition, the general solution for the randomised controller outlined in Proposition 5 is derived

for a formation control problem in Section 5.4. In the control literature, the FP control design has not

been implemented with the purpose of the controlled agents forming a certain shape, i.e. formation

control. The developed probabilistic control approach is demonstrated for both linear and nonlinear

stochastic systems with additive noises.

While there are no restrictions on the required pdfs, it is a key requirement for the pdfs to be

Gaussian in order to derive a closed form control solution for the FP controller using Proposition 5.

Hence, in both sections (Sections 5.3, 5.4), the pdfs are specified by the Gaussian distribution though

the parameters of the distribution are not restricted to be governed by linear functions. This gener-

alises the solution obtained from the Fully Probabilistic control method and allows its implementation

to a broad range of real-world control systems. Otherwise, if the system was treated to be nonlinear

in the state and control input, the solution needs to be obtained following a numerical approach where

multiple integrations over multiple time steps would have been needed to be evaluated numerically.

5.3 Tracking Error Control with Stochastic Reference

This section discusses the approach of obtaining a randomised controller where the nonlinear system

with multiplicative noises is required to track a stochastic reference model.

5.3.1 Problem Formulation

The concept and general solution of the controller explained in Section 5.2 is applied here to nonlinear

stochastic systems affected by multiplicative noises. An important aspect that is regarded is the

random behaviour of the reference model that the output of the controlled system tracks.

The discrete time stochastic model of subsystem i with multiplicative noises within a decen-

tralised framework has already been considered for a regulation problem in Section 4.8.1 and is now

studied for a tracking control problem. To remind the reader, the stochastic dynamics of the multi-

variate internal state xk;i and external state yk;i of subsystem i with multiplicative noises are repeated
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below.

xk;i =f̄i(zk−1;i)zk−1;i + ḡi(zk−1;i)uk;i + D̄1;ixk−1;ivk−1;i, (5.12)

yk;i =h̄i(yk−1;i)yk−1;i + D̄2;iyk−1;iṽk−1;i, (5.13)

where the state matrices of the internal and external states are given by f̄i(zk−1;i) and h̄i(yk−1;i),

respectively. The control matrix is represented by ḡ(zk−1;i) and the system matrices are given by

D̄1;i and D̄2;i. Furthermore, the internal noise vk−1;i has zero mean and varianceQ1;i and the external

noise ṽk−1;i has zero mean and variance Q2;i.

Definition 5.3.1. Suboptimal solution to the decentralised nonlinear FP control design: The FP

control approach for obtaining a suboptimal solution for decentralised nonlinear control problems

can be obtained using the following definition:

1. At each discrete time step, use transformation methods to bring the nonlinear dynamics to the

nonlinear affine dynamics (as demonstrated by Equations (5.12) - (5.13)).

2. Solve the equations provided in Proposition 5 derived from (5.6) to obtain the closed form

suboptimal solution at each discrete time instant.

The parameters of the pdfs of the dynamics of the internal and external states of node i are

estimated online using mlp neural networks to obtain the Gaussian distributions, (Section 4.8.1) as

follows,

s(xk;i|uk;i, zk−1;i) ∼ N (x̂k;i, Rx;i), (5.14)

s(yk;i|yk−1;i) ∼ N (ŷk;i,Σy;i), (5.15)

where the means of the multivariate internal xk;i and external yk;i state variables are given by,

x̂k;i =f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i, (5.16)

ŷk;i =hi(yk−1)yk−1;i. (5.17)

The covariances of the internal and external states for subsystems affected by multiplicative noises

are given by,

Rx;i = xTk−1;iD
T
1;iQ1;iD1;ixk−1;i, (5.18)

and,

Σy;i = yTk−1;iD
T
2;iQ2;iD2;iyk−1;i, (5.19)

A.A.Z.Zafar, PhD Thesis, Aston University 2021 114



respectively. The same approach as outlined in Section 4.8.1 is followed to obtain the estimations for

D1;i and D2;i.

To obtain the tracking error as defined by (5.2), the reference model needs to be discussed. In this

section, the internal output of subsystem i needs to track a reference model which is stochastic and

therefore given by,

xr,k;i = m̃i(xr,k−1;i)xr,k−1;i + D̃ixr,k−1;ivr,k−1;i, (5.20)

where m̃i(xr,k−1;i) is the state matrix which is nonlinear in the reference signal xr,k−1;i. The Gaus-

sian noise vr,k−1;i has zero mean and variance Qr and is multiplied by the matrix D̃i. There are no

restrictions imposed on the nature of the model of the reference state and hence, it can be either deter-

ministic or stochastic [180]. Stochastic reference models are relevant to applications where the exact

state of the system is not critical or potentially cannot be physically achieved. Therefore, this section

will consider the case of stochastic reference model that is affected by multiplicative noise. The case

of deterministic reference model will be considered later in Section 5.4. The equation in (5.20) can

be expressed as a distribution where the mean x̂r,k;i is given by x̂r,k;i = m̃i(xr,k−1;i)xr,k−1;i and the

covariance is described by Σr,k;i = xTr,k−1;iD̃
T
i QrD̃xr,k−1;i.

It is now possible to calculate the tracking error ek;i by subtracting the reference xr,k;i from the

multivariate internal state xk;i such that the description of the dynamics of the tracking error is given

by,

ek;i = xk;i − xr,k;i,

= f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i +D1;ixk−1;iv1,k−1;i − xr,k;i

= f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i

+D1;iek−1;iv1,k−1;i +D1;ixr,k−1;iv1,k−1;i − D̃ixr,k−1;ivr,k−1;i, (5.21)

where the substitution C = [f1i(zk−1;i) − m̃i(xr,k−1;i)] is introduced for notational convenience.

Following equations (5.3) and (5.21), the conditional Gaussian distribution of the tracking error with

mean êk;i and covariance Σek;i can be determined such that,

s(ek;i|uk;i, nk−1;i) ∼ N (êk;i,Σek;i), (5.22)
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where,

êk;i =f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i, (5.23)

Σek;i =E[(ek;i − êk;i)
T (ek;i − êk;i)],

=E[(D1;iek−1;ivk−1;i +D1;ixr,k−1;ivk−1;i − D̃ixr,k−1;ivr,k−1;i)
T

× (D1;iek−1;ivk−1;i +D1;ixr,k−1;ivk−1;i − D̃ixr,k−1;ivr,k−1;i)],

=E[eTk−1;iD
T
1;iv

T
k−1;ivk−1;iD1;iek−1;i + 2eTk−1;iD

T
1;iv

T
k−1;ivk−1;iD1;ixr,k−1;i

− 2eTk−1;iD
T
1;iv

T
k−1;ivr,k−1;iD̃ixr,k−1;i + xTr,k−1;iD

T
1;iv

T
k−1;ivk−1;iD1;ixr,k−1;i

− 2xTr,k−1;iD
T
1;iv

T
k−1;ivr,k−1;iD̃ixr,k−1;i + xTr,k−1;iD̃

T
i v

T
r,k−1;ivr,k−1;iD̃ixr,k−1;i],

=eTk−1;iD
T
1;iQ1;iD1;iek−1;i + 2eTk−1;iD

T
1;iQ1;iD1;ixr,k−1;i + xTr,k−1;iD

T
1;iQ1;iD1;ixr,k−1;i

+ xTr,k−1;iD̃
T
i Qr;iD̃ixr,k−1;i. (5.24)

The above result for Σek;i is derived with the assumption that the noise of the internal state, vk−1;i

and the noise of the reference model, vr,k−1;i are not correlated.

As can be seen from (5.4), the complete description of subsystem i for the purpose of tracking control

requires the involvement of the pdf of the external states yk;i as well. Since the pdf of the external

states remains unchanged due to the absence of a reference signal, the pdf is still the same as described

by (5.15).

5.3.2 Randomised Controller

The derivation of the suboptimal randomised controller for nonlinear subsystems with multiplica-

tive noises defined by the conditional distributions (5.14) - (5.15) considered for a tracking control

problem with a stochastic reference model is discussed in this section. The fully probabilistic con-

troller aims to track the desired state trajectory specified by (5.20) by minimising the divergence

between the distribution of the tracking error s(ek;i|uk;i, nk−1;i) and the pdf of its ideal distribution

sI(ek;i|uk;i, nk−1;i). Since the purpose of the control solution is to bring the tracking error to zero,

the predefined distribution is assigned to be,

sI(ek;i|uk;i, nk−1;i) ∼ N (0,Σ2,k;i), (5.25)

where the mean is zero and the covariance given by Σ2,k;i determines the permissible variations of

the tracking error around the mean value. The ideal distribution of the controller c(uk;i|nk−1;i) is
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Gaussian and is given by,

cI(uk;i|nk−1;i) ∼ N (ûk;i,Γk;i), (5.26)

where Γk;i is the covariance of the ideal distribution of the controller and the mean is given by ûk;i. To

achieve the control objective of the tracking control problem, and regulate the tracking error around

zero, the mean of the ideal distribution of the controller is evaluated as follows,

lim
k→∞

[E{ek;i}]︸ ︷︷ ︸
=0

= lim
k→∞

[E{f1i(zk−1;i)ek−1;i}︸ ︷︷ ︸
=0

+E{f2i(zk−1;i)yk−1;i}+ E{gi(zk−1;i)uk;i}

+ E{Cxr,k−1;i}+ E{D1;iek−1;ivk−1;i}︸ ︷︷ ︸
=0

+E{D1;ixr,k−1;ivk−1;i}︸ ︷︷ ︸
=0

− E{D̃ixr,k−1;ivr,k−1;i}︸ ︷︷ ︸
=0

],

lim
k→∞

[E{uk;i}] =− g†i (zk−1;i)[f2i(zk−1;i)E{yk−1;i}+ CE{xr,k−1;i}]

ûk;i =− g†i (zk−1;i)

[
f2i(zk−1;i)ŷk−1;i + Cx̂r,k−1;i

]
. (5.27)

The distribution of the randomised controller can now be obtained and is shown in the following

theorem.

Theorem 8. Following Definition 5.3.1, the pdf of the tracking error given by (5.22), the ideal dis-

tribution of the tracking error provided by (5.25) and the pdf of the ideal controller in (5.26), the

suboptimal randomised controller for subsystem i that ensures the internal states of subsystem i fol-

lows a predefined desired trajectory and minimises the KLD in (5.5) is given by,

c∗(uk;i|nk−1;i) = N (µk;i, Γ̄k;i), (5.28)

where,

µk;i =−Kk;ink−1;i − Tk;i, (5.29)

Γ̄k;i =
(

Γ−1
k;i + gTi (zk−1;i)S̃k;igi(zk−1;i)

)−1
, (5.30)

Kk;i =Γ̄k;ig
T
i (zk−1;i)

[
S̃k;if1i(zk−1;i) S̃k;if2i(zk−1;i) +M2,k;ihi(yk−1;i)

]
, (5.31)

Tk;i =Γ̄k;i(g
T
i (zk−1;i)S̃k;iCxr,k−1;i + 0.5gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i), (5.32)

S̃k;i =(Σ−1
2,k;i +M1,k;i). (5.33)

The mean of the derived optimal randomised controller is represented by µk;i in (5.29) and the co-
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variance Γ̄k;i is given by (5.30). The control feedback gain is given byKk;i, and Tk;i is the linear shift

that originated from considering the purpose of the controller, namely tracking control problem.

In addition, the performance index for nonlinear systems with multiplicative stochastic distur-

bances for a tracking control problem is expressed by the following equation,

ln(γ(nk;i)) =
1

2
nTk;iMk;ink;i + Pk;ink;i + Vk;i, (5.34)

where

Mk;i =

M1,k;i M2,k;i

MT
2,k;i M3,k;i

 , (5.35)

Pk;i =

[
P1,k;i P2,k;i

]
, (5.36)

with,

M1,k−1;i =− fT1i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)S̃k;if1i(zk−1;i) + fT1i(zk−1;i)S̃k;if1i(zk−1;i)

+DT
1;iM1,k;iQ1;iD1;i, (5.37)

M2,k−1;i = fT1i(zk−1;i)S̃k;if2i(zk−1;i) + fT1i(zk−1;i)M2,k;ihi(yk−1;i)

− fT1i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)S̃k;if2i(zk−1;i)

− fT1i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i), (5.38)

M3,k−1;i = fT2i(zk−1;i)S̃k;if2i(zk−1;i) + 2fT2i(zk−1;i)M2,k;ihi(yk−1;i) + hTi (yk−1;i)M3,k;ihi(yk−1;i)

− fT2i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)S̃k;if2i(zk−1;i)

− hTi (yk−1;i)M2,k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2fT2i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i) +DT

2;iM3,k;iQ2;iD2;i,

(5.39)

P1,k−1;i = 2xTr,k−1;iC
T S̃k;if1i(zk−1;i) + P1,k;if1i(zk−1;i) + 2xTr,k−1;iD

T
1;iM1,k;iQ1;iD1;i

− 2xTr,k−1;iC
T S̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)S̃k;if1i(zk−1;i)

− 2(0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (zk−1;i)S̃k;if1i(zk−1;i), (5.40)
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P2,k−1;i = 2xTr,k−1;iC
T S̃k;if2i(zk−1;i) + 2xTr,k−1;iC

TM2,k;ihi(yk−1;i) + P1,k;if2i(zk−1;i)

+ P2,k;ihi(yk−1;i)− 2xTr,k−1;iC
T S̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)S̃k;if2i(zk−1;i)

− 2(0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (zk−1;i)S̃k;if2i(zk−1;i)

− 2xTr,k;iC
T S̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2(0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (zk−1;i)M2,k;ihi(yk−1;i), (5.41)

Vk−1;i = Vk;i + xTr,k−1;iC
T S̃k;iCxr,k−1;i + P1,k;iCxr,k−1;i + xTr,k−1;iD

T
1;iM1,k;iQ1;iD1;ixr,k−1;i

+ xTr,k−1;iD̃
T
i M1,k;iQr;iD̃ixr,k−1;i + ûTk;iΓ

−1
k;i ûk;i − xTr,k−1;iC

T S̃k;igi(zk−1;i)Γ̄k;i

× gTi (zk−1;i)S̃k;iCxr,k−1;i

− 2xTr,k−1;iC
T S̃k;igi(zk−1;i)Γ̄k;i(0.5g

T
i (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i)

− (0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;i(0.5g

T
i (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i)

+ ln |Γk;i|+ ln |Γ−1
k;i + gTi (xk−1;i)S̃k;igi(xk−1;i)|, (5.42)

where M1,k;i is the Riccati equation solution of the error ek;i, M2,k;i considers the mixed Riccati

equation solution of the error ek;i and external variables yk;i, M3,k;i is the Riccati equation solution of

the external states yk;i, P1,k;i is the linear term in the error ek;i, P2,k;i is the linear term in the external

states yk;i and Vk;i is a constant term.

Proof. Appendix G demonstrates the proof of Theorem 8

A comparison between the above developed theorem for a tracking control problem and the the-

orem proposed for a regulation problem (Theorem 7) within the decentralised framework for the FP

control design shows that there are many similarities between the two methods. The derived Riccati

matrix Mk;i in (5.35) and its elements are exactly the same as the Riccati matrix in (4.71) in Theorem

7. However, the difference between the two methods manifests from the additional terms in the solu-

tion of the optimal controller in the theorem above. For the tracking control problem, one can realise

that the suboptimal control signal consists of a linear shift Tk;i which includes the term P1,k;i. Hence,

to obtain the solution of the probabilistic controller, the Riccati equation solutions M1,k;i, M2,k;i and

the term P1,k;i needs to be solved. The linear term P1,k;i considers the effect of the reference input

xr,k−1;i and the mean of the controller ûk;i which is vital to achieve the control objective. Again,

this method is computationally effective since the computation of the full matrix block Mk;i is not

required (only M1,k;i and M2,k;i) and only the element P1,k;i of the vector Pk;i needs to be solved.

It is important to note that the subsystems composing the complex network are required to communi-

cate with their neighbouring subsystems. This is achieved by implementing the probabilistic message

A.A.Z.Zafar, PhD Thesis, Aston University 2021 119



passing approach which has been explained in Section 4.5. The messages that are passed to subsys-

tem i are about the internal states of subsystem j, i.e. xk−1;j which node i receives as its external

states yk−1;i.

5.3.3 Algorithm of the FP Control Solution for a Tracking Control Problem with

Stochastic Reference Models

The algorithm of the FP control design that considers multiplicative noises in nonlinear subsystems

is summarised in Algorithm 7 as a pseudocode of the key steps.

Algorithm 7 Pseudo-code of randomised controller for tracking problem

1: procedure IMPLEMENTATION OF RANDOMISED FP CONTROL DESIGN FOR A TRACKING CON-

TROL PROBLEM WITH MULTIPLICATIVE NOISES

2: Initialise: x0;i, y0;i,M1,0;i,M2,0;i, P1,k;i, hi(yk−1;i) where i = {1, ..., N}, N being the number

of subsystems.

3: for k = 1→ H do

4: for subsystem i:

5: Estimate fi(zk−1;i), gi(zk−1;i), D1;i, and D2;i.

6: Compute xr,k;i.

7: Evaluate C = f1i(zk−1;i)− m̃i(xr,k−1;i) and ûk;i in (5.27).

8: Calculate the SS solution of M1;i using (5.37).

9: S̃i ← (Σ−1
2;i +M1;i)

10: Γ̄k;i ←
(

Γ−1
k;i + gTi (zk−1;i)S̃igi(zk−1;i)

)−1,

11: Use Steps 7-10 in (5.38) and (5.40) to find the SS solution of M2;i and P1;i.

12: Use Step 7 and the SS values from Steps 8-11 in (5.31) - (5.32) to find the SS solutions

of Ki and Ti.

13: Compute the error value ek−1;i.

14: Calculate µk;i using Steps 12-13 and external states yk−1;i in (5.29).

15: Update the internal states of the subsystems using µk;i from Step 14 .

16: end for

17: for subsystem i:

18: ComputeMj←i(xk;i|zk−1;i) given by (4.34) using (4.35) and (4.36).

19: Update the prior pdf of the external states using (4.38) - (4.41).

20: Update the external state matrices hi(yk−1;i).

21: end for

22: end for
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5.3.4 Simulation

This section demonstrates the validity and efficiency of the method proposed for a tracking control

problem with a simulation example implemented from [181]. The numerical example consists of a

stochastic complex dynamical network which consists of ten identical interacting subsystems. The

interaction between the subsystems is represented by the Laplacian matrix, L which is given in (5.50)

below.

In this simulation, the system state equations of the internal and external states are presented

according to Equations (5.12) - (5.13) which are repeated here,

xk;i =f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i +D1;ixk−1;ivk−1;i,

yk;i =hi(yk−1;i)yk−1;i +D2;iyk−1;iṽk−1;i, (5.43)

where the internal stochastic noise vk−1;i and external noise ṽk−1;i have mean zero and variances

Q1;i = 1 and Q2;i = 1, respectively.

The details of the dynamics of the internal state xk;i as well as the dynamics of the external states

yk;i of node i are discussed here by formulating (5.43) as Gaussian pdfs. Each subsystem i where

i ∈ {1, ..., 10} is described by the nonlinear and Gaussian pdfs given by (5.14) and (5.15) with the

parameters,

x̂k;i =f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i,

ŷk;i =hi(yk−1;i)yk−1;i,

Rx;i =xTk−1;iD
T
1;iQ1;iD1;ixk−1;i,

Σy;i =yTk−1;iD
T
2;iQ2;iD2;iyk−1;i, (5.44)

where f1i(zk−1;i) = a(zk−1;i) + LiiI2×2 with,

a(zk−1;i) =

 −0.5 0.25 +
1

x2,k−1;i
tanh(0.05x1,k−1;i)

0 0.85− 1

x2,k−1;i
tanh(0.05x1,k−1;i + 0.05x2,k−1;i)

 , (5.45)

and I being the identity matrix. Also, f2i(zk−1;i)yk−1;i =
∑

j∈Ni,j 6=i cijxk−1;j where cij is the

inner-coupling matrix and is given by cij = LijI2×2 as explained in Chapter 4. To re-emphasise,

the elements of matrix f2i(zk−1;i) are given by cij , meaning f2i(zk−1;i) = [cij ]j∈Ni,j 6=i. The vector

yk−1;i consists of elements that equate to the states of the neighbouring nodes xk−1;j , in other words,

yk−1;i = [xTk−1;j ]
T
j∈Ni,j 6=i.
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Furthermore, the control matrix gi(zk−1;i) is given by,

gi(zk−1;i) =

1 0

0 1

 . (5.46)

For this simulation, the matrices D1;i and D2;i are chosen to be 0.3I2×2. Moreover, the initial state

values for the simulation example are taken to be,

x0;i =

 5 −2.4 6.5 −7 11.7 −3.8 10.4 −2.5 16.1 4.5

−5 2.6 4 −1.8 −25.2 3.4 −22.4 14.5 −19.6 2

 . (5.47)

The parameters of the distributions given by (5.44) and the matrices D1;i and D2;i are unknown

and are therefore required to be estimated. This process has been outlined in Section 3.5.1. The

external matrix hi(yk−1;i) is initialised randomly at the start and then updated accordingly using

the approach outlined in Section 4.5. Since ten subsystems are required to be controlled such that

they follow the corresponding desired state trajectories, ten randomised local controllers need to be

designed. The dynamics of the reference model are given by,

xr,k−1;i = m̃i(xr,k−1;i)xr,k−1;i + D̃ixr,k−1;ivr,k−1;i, (5.48)

where,

m̃i(xr,k−1;i) =

 −0.5 0.25 +
1

x2r,k−1;i
tanh(0.05x1r,k−1;i)

0 0.85− 1

x2r,k−1;i
tanh(0.05x1,k−1;i + 0.05x2r,k−1;i)

 . (5.49)

The initial value of the desired state is given by xr,0;i =

[
2 −2

]
. The noise intensity of vr,k−1;i is

described by variance Qr;i = 1 where D̃i is chosen to be 0.25I2×2. More importantly, the dynamics

of the reference model given in (5.48) characterises the desired states for all ten subsystems. Finally,
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the Laplacian that describes the connection between the subsystems is given by,

L =



−0.7 0.2 0.3 0 0 0 0 0 0.2 0

0 −0.6 0 0.25 0.25 0.05 0.05 0 0 0

0 0.1 −0.35 0 0 0.1 0 0.1 0 0.05

0 0.1 0 −0.2 0 0 0 0 0.1 0

0.05 0 0 0 −0.25 0.1 0 0 0.1 0

0 0 0 0 0.05 −0.1 0 0.05 0 0

0 0.1 0 0.5 0 0 −0.2 0 0.5 0

0 0 0 0.15 0.05 0 0 −0.35 0 0.15

0 0 0 0.05 0.05 0 0 0 −0.2 0

0.05 0.1 0 0 0.1 0 0 0 0 −0.25



. (5.50)

To re-emphasise, the local controllers are derived by shifting the focus on the dynamics of the track-

ing error which is achieved from the difference between the internal states of node i, xk;i and the

reference model xr,k;i. As discussed before, the parameters of the conditional distribution of the error

terms ek;i are obtained by using the knowledge that is available about the internal dynamics xk;i and

the reference model xr,k;i. It is then possible to obtain the conditional distribution of the tracking

errors ek;i for each subsystem i according to the equations given by (5.22) - (5.24). The ideal covari-

ance matrix of the error is taken to be Σ2,k;i = 0.01×

 2.1 0

0 1.1

 for all ten subsystems.

The ideal covariance Σ2,k;i is allowed to be smaller than the actual covariance Σek;i due to the de-

pendency of the actual covariance on the error values which are expected to converge to zero. In

addition, the covariance of the controller Γk;i for all nodes is chosen to be 10I2×2. Since com-

munication between the nodes is of paramount importance due to the connections between them,

probabilistic message passing is implemented to achieve this (Section 4.5). Given all the information,

the randomised controllers were computed using (5.28) for which the results are displayed in Figures

5.1 - 5.2.
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Figure 5.1: The tracking error e1,k;i for all subsystems. The errors closely oscillates around zero.

Figure 5.2: The tracking error e2,k;i for all subsystems. The errors closely oscillate around zero.

The plots in Fig 5.1 - 5.2 demonstrate the suboptimal controller influencing the pdf of the error
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distribution s(ek;i|uk;i, nk−1;i) to bring it closer to its ideal pdf and hence reducing the Kullback-

Leibler divergence between them. As can be seen, the tracking error has successfully converged to

and is oscillating around zero which is the mean value of the ideal pdf of the tracking error. As a

result, the internal states of all subsystems have followed and achieved the predefined desired state

value, i.e. xi;k − xr,k;i = ek;i = 0 → xi;k = xr,k;i. Therefore, the results have verified that the

FP control design can be successfully implemented for large-scale complex nonlinear systems that

require to follow a predefined state reference stochastic model. Its efficiency can be witnessed from

the fast convergence of the tracking errors ek;i to zero.

5.4 Formation Control

There are numerous objectives of the implementation of control methods of which one is formation

control. Many controllers are required to control multi-agent systems in such a way that they form

a certain shape with their states. The control objective of formation has not been considered for the

FP control approach for neither linear nor nonlinear systems. This section introduces the concept of

formation within the fully probabilistic framework. It is self-evident that formation control involves

the control of a number of subsystems that interact with each other. Hence, the approach considered

involves decentralised control systems. It is important, however, to highlight that formation control

problems consists of multi-agent systems where the coupling between the subsystems does not exist.

5.4.1 Problem Formulation

Following the discussion in Sections 5.2 and 5.3, it is known that the pdf of the system state dynam-

ics need to be considered when the control objective consists of a tracking problem. However, for

formation control, the dynamics of subsystem i are not affected by the dynamics of its neighbouring

subsystems. In other words, the coupling between the agents does not exist. The multi-agent sys-

tems are decomposed using the decentralised framework discussed in Chapter 4 which consists of the

concept of internal and external states. The system state equation of stochastic subsystem i is given

by,

zk;i =F̄i(zk−1;i)zk−1;i + g̃i(zk−1;i)uk;i + εi;k, (5.51)

where the state matrix of state zk;i is given by F̄i(zk−1;i), the control matrix is described by g̃i(zk−1;i)

and the noise is given by εi;k which has mean zero and covariance Qi. The difference between
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equation (5.51) and equation (4.10) can be realised once (5.51) is written in matrix-vector form,

xk;i

yk;i


︸ ︷︷ ︸
zk;i

=

f̄1i(xk−1;i) 0

0 h̄i(yk−1;i)


︸ ︷︷ ︸

= F̃ (zk−1;i)

xk−1;i

yk−1;i


︸ ︷︷ ︸
zk−1;i

+

ḡi(xk−1;i)

0


︸ ︷︷ ︸

g̃i(zk−1;i)

uk;i +

ε1k;i

ε2k;i


︸ ︷︷ ︸
εk;i

. (5.52)

The state matrix f̄1i(xk−1;i) of the internal state xk;i is not anymore a nonlinear function of the

previous internal and external states but is now only dependent on the previous internal states xk−1;i.

Following equation (5.52), the nonlinear dynamics of the internal, xk;i and external, yk;i states for

subsystem i with additive noises, where no coupling exists between the subsystems, can be written

explicitly as follows,

xk;i =f1i(xk−1;i)xk−1;i + gi(xk−1;i)uk;i + ε1k;i, (5.53)

yk;i =hi(yk−1;i)yk−1;i + ε2k;i. (5.54)

The noises ε1k;i and ε2k;i have zero mean and covariances Q1;i and Q2;i, respectively. In addition,

comparing the description of the dynamics of the internal states xk;i of subsystem iwith the dynamics

of the internal states discussed in Section 4.4.1, one can notice that the matrix f2i(.) is equal to zero

in (5.53) in the case of formation control. This emphasises the fact that there is no coupling between

the agents, meaning neighbouring subsystems of node i do not influence the dynamics of the internal

states. However, communication with the neighbouring subsystems is of great significance in order to

form the desired formation. Hence, the probabilistic message passing approach is implemented such

that node i is able to obtain knowledge about the states of the neighbouring subsystems.

Since the dynamics of internal and external states are unknown, the parameters of subsystem i are

estimated online using mlp neural networks following the approach outlined in Section 3.3.2. It is

then possible to specify the conditional Gaussian distribution s(zk;i|uk;i, zk−1;i) as follows,

s(zk;i|uk;i, zk−1;i) ∼ s(xk;i|uk;i, xk−1;i)s(yk;i|yk−1;i), (5.55)

where s(xk;i|uk;i, xk−1;i) and s(yk;i|yk−1;i) are the Gaussian pdfs of the internal xk;i and external

states yk;i. The internal state of node i has mean x̂k;i = f1i(xk−1;i)xk−1;i + gi(xk−1;i)uk;i and

covariance matrix Σx;i. The external state has mean value ŷk;i = hi(yk−1;i)yk−1;i and covariance

Σy;i.

However, formation control requires the subsystems to form a shape which is achieved by fol-

lowing instructions set by the reference model. Note that each agent may track a different reference
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model since the reference will be determined by the states of its neighbouring subsystems, and thus

the control objective would be specific to each individual node. Consequently, the reference signal

subsystem i is described as follows,

xr,k;i = m̃i(xk;j , rk;i), (5.56)

where the function m̃i(xk;j , rk;i) emphasises that the desired reference signal of subsystem i is deter-

mined by the states of the neighbouring agents xk;j and an external signal, rk;i that can be specified

by each individual agent i according to the control objective it wants to achieve. The states xk;j of

the neighbouring agents of agent i enter subsystem i through the defined reference signal in equa-

tion (5.56) and are consequently registered as the external states yk;i of node i.

To re-emphasise, for the tracking of a reference state signal, the main focus is on the tracking

error between the internal states and the reference signal. Therefore, it is key to determine the pdf

of the tracking error. From the reference signal, the tracking error of the system can be obtained as

defined by Equation (5.2) such that,

ek;i =f1i(xk−1;i)xk−1;i + gi(xk−1;i)uk;i + ε1k;i − xr,k;i

=f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i + ε1k;i, (5.57)

where the definition x̃r,k;i = (f1i(xk−1;i)xr,k−1;i − m̃i(xk;j , rk;i)) has been presented.

The pdf of the tracking error between the internal state of node i and the reference state value

can now be determined. The conditional distribution is Gaussian with êk;i and Σek;i as the mean and

covariance respectively such that,

s(ek;i|uk;i, ek−1;i) ∼ N (êk;i,Σek;i), (5.58)

where,

êk;i = f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i, (5.59)

and the covariance matrix Σek;i is the same as the global covariance matrix Σx;i.

5.4.2 Fully Probabilistic Design for Formation Control

This section discusses the control solution of the formation control problem within a decentralised

fully probabilistic framework. The controller is required to reshape the pdf of the tracking error

between the internal state of subsystem i and its corresponding reference signal. The aim is to shape
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it such that the tracking error converges to zero, meaning the internal state of node i converges to

its corresponding reference state trajectory. Hence, the ideal pdf of subsystem i composed of the

tracking error ek;i and the external states yk;i need to be determined which gives,

sI(nk;i|uk;i, nk−1;i) ∼ sI(ek;i|uk;i, ek−1;i)s
I(yk;i|yk−1;i) ∼ N (0,Σek;i)N (ŷk;i,Σy;i). (5.60)

The ideal distribution of the external state yk;i is exactly the same as the actual distribution as we have

no intention of controlling it.

Moreover, another requirement is the specification of the ideal controller,

cI(uk;i|ek−1;i) ∼ N (ûk;i,Γk;i), (5.61)

where the permissible range of control inputs is given by the covariance Γk;i and the mean value ûk;i

is described by,

ûk;i =− g†i (xk−1;i)x̃r,k;i. (5.62)

The formulation of the randomised suboptimal controller for a formation control problem is given

in the following theorem.

Theorem 9. From Definition 5.3.1, the pdfs of the tracking error and external states given by (5.58)

and (5.55), their ideal distribution defined by (5.60) and the pdf of the ideal controller in (5.61), the

suboptimal randomised controller for subsystem i that minimises the KLD in (5.5) with the objective

of formation control is given by,

c∗(uk;i|ek−1;i) = N (µk;i, Γ̄k;i), (5.63)

where,

µk;i =−Kk;ink−1;i − Tk;i, (5.64)

Γ̄k;i =
(

Γ−1
k;i + gTi (xk−1;i)S̃k;igi(xk−1;i)

)−1
, (5.65)

Kk;i =Γ̄k;ig
T
i (xk−1;i)

[
S̃k;if1i(xk−1;i) M2,k;ihi(yk−1;i)

]
, (5.66)

Tk;i =Γ̄k;i(g
T
i (xk−1;i)S̃k;ix̃r,k;i + 0.5gTi (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i), (5.67)

S̃k;i =(Σ−1
ek;i

+M1,k;i). (5.68)

The designed randomised controller with the formation control objective is represented by µk;i in (5.64)
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and the covariance Γ̄k;i is given by (5.65). The elements Kk;i is the control feedback gain and Tk;i

is the linear shift that ensures the tracking of the reference signal is achieved by the internal state of

node i.

Furthermore, the performance index for complex nonlinear subsystems that require the tracking

control of a predefined state trajectory is defined by,

ln(γ(nk;i)) =
1

2
nTk;iMk;ink;i + Pk;ink;i + Vk;i, (5.69)

where,

Mk;i =

M1,k;i M2,k;i

MT
2,k;i M3,k;i

 , (5.70)

Pk;i =

[
P1,k;i P2,k;i

]
, (5.71)
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with,

M1,k−1;i = − fT1i(xk−1;i)S̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)S̃k;if1i(xk−1;i)

+ fT1i(xk−1;i)S̃k;if1i(xk−1;i), (5.72)

M2,k−1;i = − fT1i(xk−1;i)S̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)M2,k;ihi(yk−1;i)

+ fT1i(xk−1;i)M2,k;ihi(yk−1;i), (5.73)

M3,k−1;i = − hTi (yk−1;i)M2,k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)M2,k;ihi(yk−1;i)

+ hTi (yk−1;i)M3,k;ihi(yk−1;i), (5.74)

P1,k−1;i = 2x̃Tr,k;iS̃k;if1i(xk−1;i)− 2x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)S̃k;if1i(xk−1;i)

− 2(0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (xk−1;i)S̃k;if1i(xk−1;i)

+ P1,k;if1i(xk−1;i), (5.75)

P2,k−1;i = 2x̃Tr,k;iM2,k;ihi(yk−1;i) + P2,k;ihi(yk−1;i)

− 2x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)M2,k;ihi(yk−1;i)

− 2(0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (xk−1;i)M2,k;ihi(yk−1;i),

Vk−1;i = Vk;i + x̃Tr,k;iS̃k;ix̃r,k;i + P1,k;ix̃r,k;i + ûTk;iΓ
−1
k;i ûk;i + tr(M1,k;iΣek;i)

+ tr(M3,k;iΣy;i)− x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)S̃k;ix̃r,k;i

− 2x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;i(0.5g
T
i (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i)

− (0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;i(0.5g

T
i (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i)

+ ln |Γk;i|+ ln |Γ−1
k;i + gTi (xk−1;i)S̃k;igi(xk−1;i)|, (5.76)

where M1,k;i is the Riccati equation solution of the error ek;i, M2,k;i is the mixed Riccati equation

solution of the error ek;i and external variables yk;i, M3,k;i is the Riccati equation solution of the

external states yk;i, P1,k;i is the linear term in the error ek;i, P2,k;i is the linear term in the external

states yk;i and Vk;i is a constant term.

The implementation of the suboptimal controller in (5.63) requires the solutions of M1,k;i, M2,k;i

and P1,k;i described by (5.72), (5.73), and (5.75), respectively. Hence, the full block matrix Mk;i and

Pk;i are not required to be computed resulting in a reduction in computational expenses.

5.4.3 Algorithm of the FP Control Solution for a Formation Control Problem

The algorithm of the FP control design for a formation control problem for nonlinear subsystems with

additive noises is summarised in Algorithm 8.
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Algorithm 8 Pseudo-code of randomised controller for formation control problem

1: procedure IMPLEMENTATION OF RANDOMISED FP CONTROL DESIGN FOR A TRACKING CON-
TROL PROBLEM WITH MULTIPLICATIVE NOISES

2: Initialise: x0;i, y0;i,M1,0;i,M2,0;i, P1,k;i, hi(yk−1;i) where i = {1, ..., N}, N being the number
of subsystems.

3: for k = 1→ H do
4: for subsystem i:
5: Estimate fi(xk−1;i), gi(xk−1;i).
6: Compute xr,k;i.
7: Evaluate x̃r,k;i and the mean of the ideal controller, ûk;i using (5.62).
8: Calculate the SS solution of M1;i using (5.72).
9: S̃i ← (Σ−1

ek;i
+M1;i)

10: Γ̄k;i ←
(

Γ−1
k;i + gTi (xk−1;i)S̃igi(xk−1;i)

)−1,

11: Use Steps 7-10 in (5.73) and (5.75) to find the SS solution of M2;i and P1;i.
12: Use Step 7 and the SS values from Steps 8-11 in (5.66) - (5.67) to find the SS solutions

of Ki and Ti.
13: Compute the error value ek−1;i.
14: Calculate µk;i using Steps 12-13 and external states yk−1;i in (5.64).
15: Update the internal states of the subsystems using µk;i from Step 14 .
16: end for
17: for subsystem i:
18: ComputeMj←i(xk;i|zk−1;i) given by (4.34) using (4.35) and (4.36)
19: Update the prior pdf of the external states using (4.38) - (4.41).
20: Update the external state matrices hi(yk−1;i).
21: end for
22: end for

5.4.4 Simulation One: Formation Control for Linear Systems

This section aims to demonstrate the designed FP control solution for a formation control problem

on a kinematic problem which consists of N robots that are moving in a plane with the position

of each robot given by xk;i = [x1,k;i x2,k;i]
T , where x1,k;i and x2,k;i are the positions in the x-

and y-axis, respectively, with i ∈ {1, ..., 5}. This simulation example is taken from [182] of which

the dynamics are linear. Although, the derivation of the optimal randomised controller in Section

5.4 has been demonstrated for nonlinear systems, this can be implemented for linear systems too.

To achieve this, the following substitutions can be made to emphasise that the matrices, defined

in (5.77) below, are constant with no dependency on the states xk−1;i and yk−1;i: A11;i = f1i(xk−1;i),

Bi = gi(xk−1;i) and A22;i = hi(yk−1;i). Also, in [182], the model is deterministic which is not

realistic since stochastic disturbances exist in real-world control problems. Hence, an additive noise

has been added to the model given in equation (5.77) for a more realistic picture.

Thus, the kinematic model of each agent is characterised by,

xk;i = A11;ixk−1;i +Biuk;i + ε1,k;i, (5.77)

A.A.Z.Zafar, PhD Thesis, Aston University 2021 131



where A11;i =

1 0

0 1

, Bi = 0.1

1 0

0 1

, and uk;i = [u1,k;i u2,k;i]
T . The noise ε1,k;i has zero

mean and covariance Q1;i = 0.001I2×2. The equation given in (5.77) describes the internal states

of the robots. The dynamics are identical for all five agents/robots. As mentioned previously, it can

be observed that the internal dynamics are solely dependent on its internal states for the formation

control problem. This is emphasised by having no coupling between the robots. However, the robots

are still required to interact with one another as their desired position depends on the position of other

neighbouring robots. Denote the neighbouring agents of robot i as Ni and the desired distance of

robot i from robot j in a specific formation is described by rji = [r1,ji r2,ji]
T where j ∈ Ni. Hence,

the reference model for this formation control problem which describes the desired position of each

robot i is specified by,

xr,k;i =
1

ni

∑
j∈Ni,i 6=j

(xk;j + rji), (5.78)

where ni is the cardinality of Ni, meaning the number of neighbours of agent i. The control objective

that robot i wants to achieve is specified by the distance that robot i is expected to be from robot j,

where j ∈ Ni. The explanation in Section 5.4.1 can now be understood better by considering (5.78)

in this simulation example which shows that the states xk;j of the neighbouring robots of robot i

enter subsystem i through the defined reference signal in equation (5.78) and are then registered as

the external states yk;i of node i. Figure 5.3 shows the desired formation of the five robots and the

interactions amongst them.

Figure 5.3: This diagram represent the connections between the robots and the desired formation that
the controller needs to achieve. The distances from robot i to its neighbouring robots are given by rji.
It is expected for robot 5 to be surrounded by the other robots.
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The vectors of the desired distances from agent i is given by,

r14 = [5 − 5]T , r43 = [−5 − 5]T , r32 = [−5 5]T , r21 = [5 5]T ,

r51 = [0 5]T , r52 = [−5 0]T , r53 = [0 − 5]T , r54 = [5 0]T ,

r15 = −r15, r25 = −r52, r35 = −r53, r45 = −r54.

From Figure 5.3, it is apparent which robots interact with one another, which is again specified

below for clarification,

zk;1 =[xk;1 yk;2 yk;5]T ,

zk;2 =[xk;2 yk;3 yk;5]T ,

zk;3 =[xk;3 yk;4 yk;5]T ,

zk;4 =[xk;4 yk;1 yk;5]T ,

zk;5 =[xk;5 yk;1 yk;2 yk;3 yk;4]T . (5.79)

In Equation (5.77), only the dynamics of the internal states of the robots have been described. Since

the concept of internal and external states exist in the discussed method, it is also important to take

account of the dynamics of the external states which are given by yk;i = A22;iyk;i, where the external

state matrix A22;i is initially randomly generated and then updated according to the probabilistic

message passing approach explained in Section 4.5. The initial positions of the robots are given by,

x0;1 = [6 − 1]T , x0;2 = [4 4]T , x0;3 = [0 3]T , x0;4 = [0 0]T , x0;5 = [0 6]T .

The developed fully probabilistic control method for a formation control problem focuses on the

ek;i which is obtained from ek;i = xk;i − xr,k;i.

To compliment the stochasticity of the error variable, its conditional distribution needs to be

determined as described by (5.58). Furthermore, the actual and ideal covariance matrices are the

same where the actual global covariance matrix, Σek;i can be estimated as discussed previously. In

addition, the ideal covariance of the controller is Γk;i = 10I2×2.

The validity and efficiency of the proposed method for formation control problems is illustrated in

the plots given by figures 5.4 - 5.6. The figures 5.4 and 5.5 show the error plots of the tracking errors

ek;i between the state values xk;i and the reference models xr,k;i of the five robots. It can be seen that

the error plots converge to and oscillate around zero very quickly which means that the desired state

values are achieved at a very early stage as shown in Figure 5.6. The initial positions of the robots are

given by the crosses and the final positioning of the robots are given by the circles. As expected, the

final formation demonstrates that the randomised local controllers managed to influence the positions
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of the robots and obtain a formation where robot 5 is surrounded by the other four robots.

Figure 5.4: The tracking error e1,k;i for all subsystems. The zoomed-in plot demonstrates that the
tracking errors oscillate around zero due to the presence of noise.

Figure 5.5: The tracking error e2,k;i for all subsystems. The zoomed-in plot demonstrates that the
tracking errors oscillate around zero due to the presence of noise.
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Figure 5.6: The internal states x1,k;i of all subsystems where the dashed black line is the desired
trajectory that the states of the nodes need to follow.

5.4.5 Simulation Two: Formation Control for Nonlinear Systems

The fully probabilistic control design derived in Section 5.4 is also demonstrated on a numerical

formation control problem for nonlinear stochastic systems. The model is motivated from [183] to

which additive noise has been added such that the control problem resembles real-world systems

where noises exist. In this example, the pfd of a nonlinear stochastic system is influenced such that

the final positions of the agents involved forms a triangle. There are a total of three agents involved

for which the parameters of the internal and external conditional distributions, N (x̂k;i,Σx;i) and

N (ŷk;i,Σy;i) respectively, as shown in (5.55), are identical and their mean values are described by,

x̂k;i = f1i(xk−1;i)xk−1;i + gi(xk−1;i)uk;i, (5.80)

where,

f1i(xk−1;i) =

0 1

0
1

1 + x2
1,k−1;i

 , gi(zk−1;i) =

0

1

 , (5.81)

and,

ŷk;i = hi(yk−1;i)yk−1;i, (5.82)
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where hi(yk−1;i) is initialised at the beginning and updated according to the probabilistic message

passing approach as discussed in Section 4.5. It can be seen that the computation of the internal

states xk;i only depend on the previous internal state value xk−1;i and not the external states yk−1;i,

since f2i(zk−1;i) = 0. However, each node i still requires communication with its neighbouring

subsystems since the desired reference models need to have access to the knowledge of the positions

of the neighbouring subsystems. The desired formation and the interaction is illustrated in Figure 5.7.

Figure 5.7: This figure represent the desired formation and connections between the agents. The
distances from agent i to its neighbouring robots are given by rji. It is expected to form an equilateral
triangle with agent 2 at the top.

The set of neighbouring agents of node i is denoted as Ni and the reference model specifies the

desired distance rji = [r1,ji r2,ji]
T between robot i to robot j where j ∈ Ni. The reference model

for this formation is then given by,

xr,k;i =
1

ni

∑
j∈Ni,i 6=j

(xk;j + rji), (5.83)

where ni is the cardinality of Ni. The desired distances rji are given by,

r12 = [0.5 0.5]T , r32 = [−0.5 0.5]T , r21 = −r12 r23 = −r32.

The system state dynamics of the agents are described as follows,

zk;1 =[xk;1 yk;2]T ,

zk;2 =[xk;2 yk;1 yk;2]T ,

zk;3 =[xk;3 yk;2]T . (5.84)

The positions of the agents are initialised as follows,

x0;1 = [1 1]T , x0;2 = [−1 − 1]T , x0;3 = [−3 − 3]T .
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The proposed method considers the distribution of the tracking error for which the ideal covariance

matrix is the same as the actual covariance which is the estimated global covariance Σek;i . The ideal

covariance of the controller is determined to be Γk;i = 10 for this simulation example.

The plots demonstrate that the randomised controllers successfully managed to reshape the pdfs

of the tracking errors of the subsystems such that the tracking errors oscillates closely around zero.

Consequently, the internal states of each subsystems converge to the desired state value. The conver-

gence of the errors to and their oscillation around zero can be seen in plots 5.8 - 5.9. The error plots

display a fast convergence rate which emphasises the efficiency of the proposed method. The initial

and final positions of the agents are illustrated in Figure 5.10 where the hexagrams are the initial

positions of the agents and the circles represent the final positions of the agents. The final formation

is the desired formation demonstrated in Fig 5.7 which is an equilateral triangle with agent 2 at the

top.

Figure 5.8: The tracking error e1,k;i for all subsystems.
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Figure 5.9: The tracking error e2,k;i for all subsystems.

Figure 5.10: The initial positions of the agents are represented by the hexagrams and the final posi-
tions are the circles. The desired formation of forming an equilateral triangle has been achieved by
the final positions of the agents.
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5.5 Convergence Analysis

In this section, the convergence of the developed randomised control strategy in (5.63) for nonlinear

systems with additive noises is analysed.

The dynamics of node i considered for the convergence analysis is given by,

nk;i = fi(zk−1;i)nk−1;i + gi(zk−1;i)uk;i + W̃xr,k−1;i + εk;i, (5.85)

where nk;i =

ek;i

yk;i

 and the state matrix is given by fi(zk−1;i) =

f1i(xk−1;i) 0

0 hi(yk−1;i)

 and

where f1i(xk−1;i) and hi(yk−1;i) are the state matrices for the dynamics of the internal and external

variables. Furthermore, the control matrix is given by gi(zk−1;i) =

gi(xk−1;i)

0

, where gi(xk−1;i) is

the control matrix for the internal variables and 0 for the external variables as the aim is not to control

them. In this analysis, the reference signal is taken to be xr,k;i = m̃(xk;j , rk;i) + εr,k;i, where εr,k;i is

some Gaussian noise with zero mean and variance Qr. Therefore, W̃ =

f1i(xk−1;i)− m̃(xk;j)

0

.

In addition, the Gaussian noise, εk;i =

ε1k;i + εr,k;i

ε2k;i

, has mean zero and variance Qi =

Q1;i

Q2;i

.

The convergence of the developed controller in (5.63) is analysed and presented by the following

theorem.

Theorem 10. The expected value of the error, ek;i is expected to converge to zero, which will make

the internal state xk;i converge to the reference signal xr,k;i, if there exist a positive definite symmetric

matrix Mi which holds the following inequality,

D =


D11 2(fi(zk−1;i)− gi(zk−1;i)Ki)

TMi(W̃ − gi(zk−1;i)Wi) D13

∗ 2(W̃ − gi(zk−1;i)Wi)
TMi(W̃ − gi(zk−1;i)Wi) D23

∗ ∗ D33

 < 0, (5.86)

where D is a symmetric matrix with the elements defined as follows,

D11 =2(fi(zk−1;i)− gi(zk−1;i)Ki)
TMi(fi(zk−1;i)− gi(zk−;1i)Ki)− 2Mi,

D13 =2(fi(zk−1;i)− gi(zk−1;i)Ki)
TMi(I − gi(zk−1;i)Ziε

†
k;i) + (fi(zk−1;i)− gi(zk−1;i)Ki)

TMihiε
†
k;i

−Mihiε
†
k;i,

D23 =2(W̃ − gi(zk−1;i)Wi)
TMi(I − gi(zk−1;i)Ziε

†
k;i) + (W̃ − gi(zk−1;i)Wi)

TMihiε
†
k;i,
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D33 =2(I − gi(zk−1;i)Ziε
†
k;i)

TMi(I − gi(zk−1;i)Ziε
†
k;i). (5.87)

Proof. The proof of Theorem 10 is given in Appendix I.

5.6 Conclusion

This chapter discussed the FP control design with regards to control problems that are required to

follow a certain predefined desired state trajectory. Although, plenty of work has been conducted

on the tracking control problem for the FP control design, the literature has not addressed large-

scale complex systems which have been decomposed into smaller subsystems. Hence, randomised

local controllers that aim the tracking of a reference signal have been designed in order to expand

the horizon of the range of real-world control systems that the FP control design can be applied to.

Nonetheless, the development in this chapter also considers tracking control problems for systems

that are governed by nonlinearities within a FP control design, which is a novel concept in the fully

probabilistic framework. The validity of the proposed method has been verified by the results in the

simulation section.

In addition, the tracking error problem can be implemented for various control objectives of which

one is formation control. Therefore, the probabilistic approach has been studied further with the ob-

jective of controlling multi-agent systems to create a certain formation. The developed control strat-

egy was demonstrated on linear and nonlinear simulation examples where both successfully achieved

the desired formation. Moreover, the convergence analysis of the developed controller for a formation

problem has been implemented in this chapter.
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Chapter 6

Conclusion and Direction for Future

Work

This chapter concludes the thesis and explains potential future work that can be implemented for the

FP control design which can prove to be promising in the field of control.

6.1 Thesis Conclusion

In today’s world, the increasing complexity of real-world control systems is accompanied with chal-

lenges such as high level of uncertainties and noises, nonlinearities, high dimensionality and coupling

between the systems. The importance of developing control strategies that consider these challenges

and as a result facilitate the control of such systems has been emphasised in the control literature.

Therefore, the aim of this thesis involved the analysis of these complexities and the develop-

ment of appropriate control approaches that handle the aforementioned challenges effectively. Con-

sequently, due to its suitability and efficiency regarding control systems that are affected by noises,

the Fully Probabilistic control design has been researched thoroughly and developed further. The

stochasticity is taken into account by the control design which results in the derivation of an optimal

randomised controller. However, this approach has not been considered and demonstrated on non-

linear systems in the previous literature. The multiple integrations that are required to be evaluated

for this control design made it seem impractical to derive an analytic control solution for nonlinear

systems due to the nonlinear dynamics. The solution to this problem has been presented in Chapter

3 where a transformation method has been introduced for the transformation of the nonlinear state

function of the system dynamics to a nonlinear state function which is affine in the state. There-

fore, the first advancement in Chapter 3 is referred to as the conventional SDRE FP control design

since it extended the conventional FP control design to nonlinear systems where the covariance ma-
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trix was estimated as a global covariance. The involvement of the nonlinearities in the FP control

solution resulted in the generation of a SDRE. The efficiency of the proposed randomised controller

was demonstrated on a nonlinear inverted pendulum simulation example and compared to the NQR

SDRE as well as the FP control design that uses the true functions h̄(xk−1) and ḡ(xk−1). The latter

experiment demonstrated that the proposed control design handles the effects of the MLP network

approximation effectively. A number of experiments were conducted which showed the benefits of

the proposed randomised controller with the main benefit being that the parameters of the control

algorithm can be estimated while the NQR SDRE requires the process of trial and error when tuning

the NQR parameters until good convergence is obtained.

In addition, the variety of noises and uncertainties that have an impact on the dynamics of non-

linear systems was also discussed in Chapter 3. The second development consisted of an optimal

randomised controller that takes functional uncertainties into account when regulating nonlinear sys-

tems. This is of paramount importance since realistically, the dynamics of engineered control systems

are unknown, and are thus required to be estimated. It is possible to have a smaller ideal covariance

matrix to reduce the variations in the system state for the FP control design that considers functional

uncertainties. These key considerations led to the generation of a SDRE and an additional linear

term which represents the equation of cautiousness. Furthermore, the suboptimal randomised con-

troller can be classified as being cautious, meaning it takes functional uncertainties into consideration,

since it includes an additional term which considers the equation of cautiousness. A simulation was

presented to demonstrate the performance of the proposed randomised controller against the conven-

tional SDRE FP control design. As expected from a cautious controller, the simulation showed a

reduction in overshoots and better transient response than the conventional SDRE FP controller due

to the consideration of functional uncertainties in the designed controller.

Thirdly, the fully probabilistic control approach was further studied for nonlinear systems with

multiplicative stochastic noises. Although, a SDRE was generated, the solution to this control prob-

lem consisted of a generalised form of the Riccati equation because of the inclusion of an extra term

which exists due to the controller taking multiplicative noises into account. The covariance matrix for

such systems is state and control input dependent which means that it can be driven to a smaller ideal

covariance matrix with the support of the derived controller. For nonlinear systems with multiplicative

noises, the generalised SDRE FP control design has been derived which considers the dependency of

the noise on the states while the conventional SDRE FP controller assume that the variance of the

noise is constant.

Chapter 3 explored the FP control design for systems that can be controlled with a centralised con-
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troller. However, many real-world systems are too complex and large to be controlled by a single

controller. To handle this complexity, the decentralised approach which consists of the decomposi-

tion of the network into smaller subsystems, can be followed for which local optimal randomised

controllers are derived. Therefore, in Chapter 4, the fully probabilistic control framework is extended

to decentralised controllers such that it can be applicable to large-scale complex systems that are

governed by nonlinearities and affected by both, additive and multiplicative noises. Moreover, the

developed control design addressed the challenges that current state-of-the-art methods faced. Since

the smaller subsystems are required to communicate with each other to achieve the global objective,

the concept of probabilistic message passing has been integrated in the design of the control strategy.

In this thesis, only the marginal distributions of the external states are passed to neighbouring sub-

systems. However, if the model representing the actual system involves the passing of control inputs

to other neighbouring subsystems, this can also be achieved by following the probabilistic message

passing approach as explained in [164]. The knowledge that enters the receiving subsystems through

probabilistic message passing is preserved by including it in the state matrix as the dynamics of the

external variables. This means that the subsystem always has some knowledge about neighbouring

subsystems, even if the link between the subsystems may be severed for some time. A core strength

of the FP control design within a decentralised framework is the computational efficiency which can

be recognised from the fact that the full block of the Riccati matrix is not required to be solved. Since

only two elements of the Riccati matrix need to be computed, a reasonable reduction in computational

expenses can be achieved. The effectiveness of the decentralised FP control strategies for nonlinear

systems with both, additive and multiplicative noises, has been verified by simulating two numerical

examples. The results for both control strategies showed a quick and nice convergence of the states

to zero, which confirms their validities.

Finally, there are many control objectives that are implemented for real-world systems. The first

aim of the controller that has been discussed in Chapter 5 is the requirement of the system state to

track a predefined state trajectory. Although, the FP control design has already been considered for a

tracking problem, it has not considered the derivation of an analytic solution for nonlinear systems.

Furthermore, the fully probabilistic framework has also been extended to large-scale complex systems

that have been decomposed into smaller subsystems, where each subsystem is required to track its

corresponding reference model. This is also a novel concept within the fully probabilistic framework.

Consequently, local randomised controllers have been designed to achieve this control objective. A

simulation example has been provided in Chapter 5 to verify the validity of the proposed control

design.

Another control objective is formation control which requires multi-agent systems to create a

A.A.Z.Zafar, PhD Thesis, Aston University 2021 143



certain formation. Previous literature on the fully probabilistic control design has not dealt with for-

mation control and is therefore introduced for the first time in Chapter 5. The proposed method proved

to be successful since the simulation results showed two examples, linear and nonlinear, achieving

the desired formation.

6.2 Future Direction of the FP Control Design

The content of this thesis has demonstrated that the fully probabilistic control design is a promising

method which can be further developed to consider various aspects of real-world control systems. In

Chapter 3, nonlinear systems with additive, multiplicative and functional uncertainties were taken into

account when designing the optimal randomised controllers. As such, different variations of noises

can be exploited in future work. Among these stochastic disturbances, systems are affected by noises

that are described as a multiplication between a nonlinear function of the states and some Gaussian

noise. The FP control design can be further developed such that it considers such systems.

Furthermore, the effects of external disturbances on the dynamics of nonlinear systems have not

been acknowledged in the design process of the FP controller. A disturbance-observer-based fully

probabilistic control approach has been developed and demonstrated on linear systems [184]. This

control strategy can be further developed such that it extends to nonlinear stochastic systems.

Chapters 4 and 5 discussed the FP control strategy within a decentralised framework, for a reg-

ulation, tracking control, and formation control problem. Although the dynamics were assumed to

be unknown and therefore required to be estimated online, the uncertainty from the approximated

parameters of the distributions were not regarded. Therefore, it is beneficial to study and design local

randomised controllers that consider functional uncertainties.

Moreover, complex systems in the world of control consist of a complicated structure and are

therefore more prone to faults in the systems. It is important to consider system performance vari-

ations or degradation because of faults, in the design of controllers to ensure control efficiency and

reliability. Many fault detection and fault-tolerant control approaches have been developed in the

literature [185], [186], [187]. However, the FP control design has yet to see the inclusion of fault

detection in its design process and could be a potential route for the extension of the probabilistic

framework to a wider range of real-world control systems.

In addition, hybrid or switched systems have seen an increasing popularity due to its practical-

ity and can be found in applications such as robotics, manufacturing, power electronics, air traffic

management systems, to name a few [188], [189], [190] [191], [192]. The dynamics of these can be

described by an interplay between continuous and discrete dynamics. Furthermore, hybrid control
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depends on the switching between different models and controllers. The inclusion of these features

in the developed framework can provide a more robust control methodology.
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Decentralised control of nonlinear dynamical systems. International Journal of Control,

87(4):827–843, 2014.

[120] Xiang Li, Xiaofan Wang, and Guanrong Chen. Pinning a complex dynamical network to its

equilibrium. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(10):2074–2087,

2004.

[121] Meng Ji, Abubakr Muhammad, and Magnus Egerstedt. Leader-based multi-agent coordination:

Controllability and optimal control. In 2006 American Control Conference, pages 6–pp. IEEE,

2006.

[122] AA Bahnasawi, AS Al-Fuhaid, and MS Mahmoud. Decentralised and hierarchical control of

interconnected uncertain systems. In IEE Proceedings D (Control Theory and Applications),

volume 137, pages 311–321. IET, 1990.

[123] W He and J Cao. Consensus control for high-order multi-agent systems. IET control theory &

applications, 5(1):231–238, 2011.

[124] Gianluca Antonelli. Interconnected dynamic systems: An overview on distributed control.

IEEE Control Systems Magazine, 33(1):76–88, 2013.

[125] J. Lunze. Feedback Control of Large Scale Systems. Ellis Horwood Series in Mechanical

Engineering. Prentice-Hall, 1992.

[126] Carlos Ocampo-Martinez, Samuele Bovo, and Vicenç Puig. Partitioning approach oriented

to the decentralised predictive control of large-scale systems. Journal of Process Control,

21(5):775–786, 2011.

[127] M Ikeda, DD Šiljak, and DE White. Decentralized control with overlapping information sets.

Journal of optimization theory and Applications, 34(2):279–310, 1981.

[128] Mesut E Sezer and DD Šiljak. Nested ε-decompositions and clustering of complex systems.

Automatica, 22(3):321–331, 1986.

[129] Lubomír Bakule and José Rodellar. Decentralized control and overlapping decomposition

of mechanical systems–part 1. system decomposition. International Journal of Control,

61(3):559–570, 1995.

A.A.Z.Zafar, PhD Thesis, Aston University 2021 155



[130] X-B Chen and Srdjan S Stankovic. Overlapping decentralized approach to automation gener-

ation control of multi-area power systems. International Journal of Control, 80(3):386–402,

2007.

[131] Adel Ahmadi and Mohammad Aldeen. Robust overlapping load frequency output feedback

control of multi-area interconnected power systems. International Journal of Electrical Power

& Energy Systems, 89:156–172, 2017.

[132] Doghmane Mohamed Zinelabidine and Kidouche Madjid. Decentralized controller robust-

ness improvement using longitudinal overlapping decomposition-application to web winding

system. Electronics & Electrical Engineering, 24(5), 2018.

[133] D Gray Roberson and Daniel J Stilwell. Decentralized control and estimation for a platoon

of autonomous vehicles with a circulant communication network. In 2006 American Control

Conference, pages 6–pp. IEEE, 2006.

[134] Solmaz S Kia, Jorge Cortés, and Sonia Martínez. Distributed convex optimization via

continuous-time coordination algorithms with discrete-time communication. Automatica,

55:254–264, 2015.

[135] Javier Alonso-Mora, Eduardo Montijano, Tobias Nägeli, Otmar Hilliges, Mac Schwager, and

Daniela Rus. Distributed multi-robot formation control in dynamic environments. Autonomous

Robots, 43(5):1079–1100, 2019.

[136] P Varaiya and J Walrand. Decentralised stochastic control. IFAC Proceedings Volumes,

10(9):97–105, 1977.

[137] Magdi S Mahmoud. Decentralized reliable control of interconnected systems with time-

varying delays. Journal of optimization theory and applications, 143(3):497–518, 2009.

[138] Guang-Hong Yang, Si-Yang Zhang, James Lam, and Jianliang Wang. Reliable control using

redundant controllers. IEEE Transactions on Automatic Control, 43(11):1588–1593, 1998.

[139] G Pujol, J Rodellar, JM Rossell, and F Pozo. Decentralised reliable guaranteed cost control of

uncertain systems: an lmi design. IET Control Theory & Applications, 1(3):779–785, 2007.

[140] Wei Wang and Changyun Wen. Adaptive actuator failure compensation control of uncertain

nonlinear systems with guaranteed transient performance. Automatica, 46(12):2082–2091,

2010.

A.A.Z.Zafar, PhD Thesis, Aston University 2021 156



[141] Karl Worthmann, Christopher M Kellett, Philipp Braun, Lars Grüne, and Steven R Weller. Dis-

tributed and decentralized control of residential energy systems incorporating battery storage.

IEEE Transactions on Smart Grid, 6(4):1914–1923, 2015.

[142] Jacob Burbea and C Radhakrishna Rao. Entropy differential metric, distance and diver-

gence measures in probability spaces: A unified approach. Journal of Multivariate Analysis,

12(4):575–596, 1982.

[143] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86, 1951.

[144] Harold Jeffreys. An invariant form for the prior probability in estimation problems. Pro-

ceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,

186(1007):453–461, 1946.

[145] AM Kagan. On the theory of fisher’s amount of information. In Doklady Academii Nauk SSSR,

volume 151, pages 277–278, 1963.

[146] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

[147] R. Herzallah. Generalised probabilistic control design for uncertain stochastic control systems.

Asian Journal of Control, 20(6):2065–2074, 2018.

[148] José M Bioucas-Dias and Mário AT Figueiredo. Multiplicative noise removal using variable

splitting and constrained optimization. IEEE Transactions on Image Processing, 19(7):1720–

1730, 2010.

[149] Gilles Aubert and Jean-Francois Aujol. A variational approach to removing multiplicative

noise. SIAM journal on applied mathematics, 68(4):925–946, 2008.

[150] Weiwei Li, Emanuel Todorov, and Dan Liu. Inverse optimality design for biological movement

systems. IFAC Proceedings Volumes, 44(1):9662–9667, 2011.

[151] Ning Qian, Yu Jiang, Zhong-Ping Jiang, and Pietro Mazzoni. Movement duration, fitts’s law,

and an infinite-horizon optimal feedback control model for biological motor systems. Neural

computation, 25(3):697–724, 2013.

[152] Roberto Baratti, Stefania Tronci, Alexander Schaum, and Jesus Alvarez. Open and closed-

loop stochastic dynamics of a class of nonlinear chemical processes with multiplicative noise.

Journal of Process Control, 66:108–121, 2018.

A.A.Z.Zafar, PhD Thesis, Aston University 2021 157



[153] Kang-Kang Wang, Hui Ye, Ya-Jun Wang, and Sheng-Hong Li. Time-delay-induced dynamical

behaviors for an ecological vegetation growth system driven by cross-correlated multiplicative

and additive noises. The European Physical Journal E, 41(5):60, 2018.

[154] Nicolas Bousquet, Thierry Duchesne, and Louis-Paul Rivest. Redefining the maximum sus-

tainable yield for the schaefer population model including multiplicative environmental noise.

Journal of Theoretical Biology, 254(1):65–75, 2008.
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Appendix A

Derivation of the FP Control Solution for

Nonlinear Systems

This section demonstrates the derivation of the conventional SDRE FP control solution for nonlinear

systems. The optimal randomised controller is obtained by evaluating Proposition 1 in Chapter 3.

The initial step consists of the evaluation of the performance index given by (3.10) for which (3.8)

and (3.9) need to be computed.

The form of the optimal performance index in (3.37) is justified by backward induction. This means

that for the proof, the optimal performance index specified by (3.37) is assumed to be true, and

thereafter used in β2(uk, xk−1) which is given by equation (3.9). As a result, the derivation of γ(xk−1)

as stated in equation (3.10) can be obtained.

Firstly, the term β1(uk, xk−1) in (3.8) is evaluated by substituting the actual and ideal distributions of

the states given by (3.30) and (3.31) respectively, such that,

β1(uk, xk−1) =

∫
s(xk |uk, xk−1 )

(
ln

s(xk |uk, xk−1 )

sI(xk |uk, xk−1 )

)
dxk,

=

∫
N (x̂k,Σk)

(
ln
N (x̂k,Σk)

N (0,Σk)

)
dxk,

=

∫
N (x̂k,Σk)

{
�
��

�
��

��

ln

(
1

2π
n
2 |Σk|

1
2

)
− 1

2
(xk − x̂k)TΣ−1

k (xk − x̂k)

−
��

��
�
��
�

ln

(
1

2π
n
2 |Σk|

1
2

)
+

1

2
xTk Σ−1

k xk

}
dxk,
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=

∫
N (x̂k,Σk)

([
−1

2
(xk − x̂k)TΣ−1

k (xk − x̂k) +
1

2
xTk Σ−1

k xk

])
dxk,

=

∫
N (x̂k,Σk)

([
1

2

(
2xTk Σ−1

k x̂k − x̂Tk Σ−1
k x̂k

)])
dxk,

=
1

2
x̂Tk Σ−1

k x̂k,

=
1

2

(
h(xk−1)xk−1 + g(xk−1)uk

)T
Σ−1
k

(
h(xk−1)xk−1 + g(xk−1)uk

)
, (A.1)

where equation (3.26) has been used. Similarly, β2(uk, xk−1) as given by equation (3.9) can be

evaluated by making the substitution of the assumed form of − ln(γ(xk)) as specified by (3.37)

which gives,

β2(uk, xk−1) =−
∫
s(xk |uk, xk−1 ) ln(γ(xk))dxk,

=

∫
N (x̂k,Σk)(0.5x

T
kMkxk + 0.5wk)dxk,

= 0.5

∫
N (x̂k,Σk)(x

T
kMkxk)dxk︸ ︷︷ ︸

1©

+ 0.5

∫
N (x̂k,Σk)wkdxk︸ ︷︷ ︸

2©

.

Integral 1© is evaluated as follows,

1© =
1

2

∫
N (x̂k,Σk)(x

T
kMkxk)dxk,

=
1

2

∫
N (x̂k,Σk)

{
(xk − x̂k)TMk(xk − x̂k)

}
dxk

+
1

2

∫
N (x̂k,Σk)

{
2x̂TkMkxk − x̂TkMkx̂k

}
dxk,

=
1

2

{
tr(MkΣk) + x̂TkMkx̂k

}
.

From the second integral, the following is obtained, 2© = 1
2wk.

Hence, combining 1© and 2©, and substituting x̂k = h(xk−1)xk−1 + g(xk−1)uk which has been

obtained from equation (3.26) gives,

β2(uk, xk−1) =
1

2

{
tr(MkΣk) + x̂TkMkx̂k + wk

}
,

=
1

2

{(
h(xk−1)xk−1 + g(xk−1)uk

)T
Mk

(
h(xk−1)xk−1 + g(xk−1)uk

)
+ tr(MkΣk) + wk

}
. (A.2)

Now, the term γ(xk−1) defined by (3.10) can be derived using the evaluated forms of β1(uk, xk−1)
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in (A.1) and β2(uk, xk−1) in (A.2), and the ideal state distribution (3.31) to give,

γ(xk−1) =

∫
cI(uk|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]duk,

=

∫
N (0,Γ) exp

{
−0.5

[
(h(xk−1)xk−1 + g(xk−1)uk)

TΣ−1
k (h(xk−1)xk−1

+ g(xk−1)uk) + (h(xk−1)xk−1 + g(xk−1)uk)
TMk(h(xk−1)xk−1 + g(xk−1)uk)

+ tr(MkΣk) + wk

]}
duk,

=

∫
N (0,Γ) exp

{
−0.5

[
(h(xk−1)xk−1 + g(xk−1)uk)

T (Σ−1
k +Mk)(h(xk−1)xk−1

+ g(xk−1)uk) + tr(MkΣk) + wk

]}
duk,

=

∫
N (0,Γ) exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + 2xTk−1h

T (xk−1)

× (Σ−1
k +Mk)g(xk−1)uk + uTk g

T (xk−1)(Σ−1
k +Mk)g(xk−1)uk + tr(MkΣk)

+ wk

]}
duk,

= exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + tr(MkΣk) + wk

]}
×
∫
N (0,Γ) exp

{
−0.5

[
uTk g

T (xk−1)(Σ−1
k +Mk)g(xk−1)uk + 2xTk−1h

T (xk−1)

× (Σ−1
k +Mk)g(xk−1)uk

]}
duk,

=(2π|Γ|)−
1
2 exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + tr(MkΣk)

+ wk

]}
×
∫

exp

{
−0.5

[
uTk
[
g(xk−1)T (Σ−1

k +Mk)g(xk−1) + Γ−1
]
uk

+ 2xTk−1h
T (xk−1)(Σ−1

k +Mk)g(xk−1)uk

]}
duk, (A.3)

The integral in (A.3) can be solved by completing the square with respect to uk.

The process of completing the square for matrices in general is outlined by Property 1 and is given

below.

Property 1:

An expression given by xTAx+ xT b+ c, can be expressed as,

(x− d)TA(x− d) + s,

where,

d = −1

2
A−1b, s = c− 1

4
bTA−1b.
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Therefore, (A.3) can be rewritten to obtain,

γ(xk−1) =(2π|Γ|)−
1
2 exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + tr(MkΣk) + wk

]}
×
∫

exp

{
−0.5

[(
(uk + [gT (xk−1)(Σ−1

k +Mk)g(xk−1) + Γ−1]−1gT (xk−1)

× (Σ−1
k +Mk)h(xk−1)xk−1

)T
[gT (xk−1)(Σ−1

k +Mk)g(xk−1) + Γ−1]

×
(

(uk + [gT (xk−1)(Σ−1
k +Mk)g(xk−1) + Γ−1]−1gT (xk−1)(Σ−1

k +Mk)

× h(xk−1)xk−1

)]}
duk × exp

{
−0.5

[
−
(
gT (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)T
× [gT (xk−1)(Σ−1 +Mk)g(xk−1) + Γ−1]−1

(
gT (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)]}
.

(A.4)

The following property is used for the simplification of the integral in (A.4),

Property 2: ∫
exp

(
−1

2
xTV x

)
dx = |2π|

1
2 |V |−

1
2 .

Hence, Equation (A.4) is simplified to obtain,

γ(xk−1) =|2π|
1
2 |gT (xk−1)(Σ−1

k +Mk)g(xk−1) + Γ−1|−
1
2 (2π|Γ|)−

1
2

× exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + tr(MkΣk) + wk

−
(
gT (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)T[
gT (xk−1)(Σ−1

k +Mk)g(xk−1) + Γ−1

]−1

×
(
gT (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)]}
,

= exp

{
−0.5xTk−1h

T (xk−1)

[
(Σ−1

k +Mk)− (Σ−1
k +Mk)g(xk−1)[Γ−1 + gT (xk−1)

×(Σ−1
k +Mk)g(xk−1)]−1gT (xk−1)(Σ−1

k +Mk)

]
h(xk−1)xk−1 − 0.5

[
tr(MkΣk)

+wk + ln |Γ|+ ln |Γ−1 + gT (xk−1)(Σ−1
k +Mk)g(xk−1)|

]}
. (A.5)

From the above, the SDRE equation Mk in (3.38) and the constant term wk in (3.39) can be found.

The derivation of randomised optimal controller requires the evaluation of the optimal control law

defined in (3.7) in Proposition 1,

c∗(uk|xk−1) =
cI(uk−1|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]←− 1©

γ(xk−1)←− 2©
.
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First of all, the numerator is solved to obtain,

1© =cI(uk|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)],

=(2π|Γ|)−
1
2 exp

{
−0.5

[
uTk Γ−1uk + (h(xk−1)xk−1 + g(xk−1)uk)

T

× (Σ−1
k +Mk)(h(xk−1)xk−1 + g(xk−1)uk) + tr(MkΣk) + wk

]}
,

=(2π|Γ|)−
1
2 exp

{
−0.5

{
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + tr(MkΣk) + wk

+ uTk

[
Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)

]
uk + 2uTk g

T (xk−1)(Σ−1
k +Mk)

× h(xk−1)xk−1

}}
. (A.6)

Equation (A.6) can be further solved by completing the square over uk which gives,

1© =(2π|Γ|)−
1
2 exp

{
−0.5

{
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + tr(MkΣk) + wk

}}
× exp

{
−0.5

{(
uk + [Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)]−1(gT (xk−1)(Σ−1
k +Mk)

×h(xk−1)xk−1)

)T[
Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)

]
×
(
uk + [Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)]−1(gT (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1)

)
−
(
gT (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)T
[Γ−1 + gT (xk−1)(Σ−1 +Mk)g(xk−1)]−1

×
(
gT (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)}}
. (A.7)

The denominator 2© has already been obtained in (A.5).
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Since
exp(a)

exp(b)
= exp(a− b), we can subtract 2© from 1© which results in,

c∗(uk | xk−1)

= (2π)−
1
2 |Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)|
1
2

× exp

{
−0.5

{
((((

(((
((((

(((
(((

xTk−1h
T (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1 +((((
((((tr(MkΣk) + wk

+

(
uk + [Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)]−1(gT (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1)

)T
×
[
Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)

]
×
(
uk + [Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)]−1(gT (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1)

)

−
(
gT (xk−1)

((((
((((

(((
((((

(((
((((

(((
((

(Σ−1
k +Mk)h(xk−1)xk−1

)T
[Γ−1 + gT (xk−1)(Σ−1 +Mk)g(xk−1)]−1

×
(
(((

((((
(((

((((
(((

gT (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1

)
−
[
xTk−1

((((
((((

((((
((

hT (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1

+((((
((((tr(MkΣk) + wk −

(
gT
((((

((((
(((

((
(xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)T

× [Γ−1 + gT (xk−1)

(((
((((

(((
((((

((((
(((

((((
(

(Σ−1
k +Mk)g(xk−1)]−1

(
gT (xk−1)(Σ−1

k +Mk)h(xk−1)xk−1

)]}}
. (A.8)

From (A.8), the following remains,

c∗(uk|xk−1) =(2π)−
1
2 |Γ−1 + g(xk−1)T (Σ−1

k +Mk)g(xk−1)|
1
2

×
{

exp

{
−0.5

[(
uk + [Γ−1 + gT (xk−1)(Σ−1

k +Mk)g(xk−1)]−1

× (gT (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1)

)T[
Γ−1 + gT (xk−1)(Σ−1

k +Mk)

× g(xk−1)

](
uk + [Γ−1 + g(xk−1)T (Σ−1

k +Mk)g(xk−1)]−1

× (gT (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1)

)]}}
. (A.9)

This is the form of the derived optimal randomised controller given by (3.33) for nonlinear systems

with additive noise as shown in Theorem 1 in Section 3.3.
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Appendix B

Derivation of the FP Control Solution for

Nonlinear Systems with Functional

Uncertainty

The derivation of the FP analytic control solution is discussed here in detail to verify the results in

Theorem 2 in Chapter 3. Again, Proposition 1 which is stated in Chapter 3 forms the foundation to

the process of deriving the optimal randomised controller.

Firstly, the form of the performance index which is given by − ln(γ(xk)) = 0.5xTkMkxk +

0.5Tkxk + 0.5ωk is justified. The terms β1(u,xk−1) in (3.8) and β2(u,xk−1) in (3.9) are required to

be solved for which we obtain,

β1(uk, xk−1) =

∫
s(xk |uk, xk−1 )

(
ln

s(xk |uk, xk−1 )

sI(xk |uk, xk−1 )

)
dxk,

=

∫
N (x̂k, Σk) ln

(
N (x̂k, Σk)

N (0, Σ2)

)
dxk,

=

∫
N (x̂k, Σk)

{
0.5

{
− ln |Σk| − (xk − x̂k)TΣ−1

k (xk − x̂k) + ln |Σ2|

+ xTk Σ−1
2 xk

}}
dxk.

=

∫
N (x̂k, Σk)

{
0.5

{
− ln

(
|Σk|
|Σ2|

)
+ xTk (Σ−1

2 − Σ−1
k )xk

}}
dxk

+

∫
N (x̂k, Σk)

{
0.5

{
−x̂Tk Σ−1

k x̂k + 2xTk Σ−1
k x̂k

}}
dxk,

=0.5x̂kΣ
−1
k x̂k +

∫
N (x̂k, Σk)

0.5

− ln

(
|Σk|
|Σ2|

)
︸ ︷︷ ︸

1©

+xTk (Σ−1
2 − Σ−1

k )xk︸ ︷︷ ︸
2©


 dxk.

(B.1)
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1©−→ To solve ln

(
|Σk|
|Σ2|

}
, a very useful identity from [193], namely,

log(det(H)) = tr(log(H)),

can be used, given the condition that matrix H is positive definite. As the covariance matrices are

positive definite, this rule can be applied to give,

log(|Σk| |Σ2|−1) = log(
∣∣ΣkΣ2

−1
∣∣),

=tr(log(ΣkΣ2
−1)). (B.2)

An important observation is that for the regulation problem considered in the evaluation of the FP

control design, the actual covariance of the dynamics of the system is expected to get closer to the

covariance of the ideal distribution, i.e. ||ΣkΣ
−1
2 || ≈ I .

Considering the Maclaurin series expansion for logarithms, it is known that,

log(H) =
∞∑
j=1

(−1)j+1 (H − I)j

j
= (H − I)− (H − I)2

2
+

(H − I)3

3
...

Exploiting the previous observation namely, ||ΣkΣ
−1
2 || ≈ I and the property, given in [194], which

states that if ||H − I|| � 1, then the higher order terms in the Maclaurin series expansion for

log(H) will become significantly small, and can hence be ignored, leads to the following deduction

of tr(log(ΣkΣ2
−1)) in (B.2).

tr(log(ΣkΣ2
−1)) =tr(ΣkΣ2

−1 − I),

=tr(ΣkΣ2
−1)− n, (B.3)

where n is the dimension of the state xk.

2©−→ This part can be computed by rewriting xTk (Σ−1
2 −Σ−1

k )xk as (xk−x̂k)T (Σ−1
2 −Σ−1

k )(xk−x̂k)
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which gives,

=0.5

∫
N (x̂k,Σk)

[
xTk (Σ−1

2 − Σ−1
k )xk

]
dxk,

=0.5

∫
N (x̂k,Σk)

[
(xk − x̂k)T (Σ−1

2 − Σ−1
k )(xk − x̂k)︸ ︷︷ ︸

a©

− x̂Tk (Σ−1
2 − Σ−1

k )x̂k︸ ︷︷ ︸
b©

+ 2xTk (Σ−1
2 − Σ−1

k )x̂k︸ ︷︷ ︸
c©

]
dxk, (B.4)

where,

a© =0.5tr(Σk(Σ
−1
2 − Σ−1

k )),

=0.5tr(ΣkΣ
−1
2 − I),

=0.5tr(ΣkΣ
−1
2 )− 0.5n, (B.5)

and,

b© = −0.5x̂Tk (Σ−1
2 − Σ−1

k )x̂k, (B.6)

and finally,

c© = x̂Tk (Σ−1
2 − Σ−1

k )x̂k. (B.7)

Thereafter, (B.3), (B.5), (B.6), and (B.7) can be substituted back into (B.1), which along with the

substitution of x̂k = h(xk−1)xk−1 + g(xk−1)uk from equation (3.48) gives,

β1(uk, xk−1) =
1

2
x̂Tk Σ−1

k x̂k +
1

2
x̂Tk (Σ−1

2 − Σ−1
k )x̂k +

1

2
tr(ΣkΣ

−1
2 ) +

1

2
n− 1

2
tr(ΣkΣ

−1
2 )− 1

2
n,

=
1

2
x̂Tk (Σ−1

2 − Σ−1
k + Σ−1

k )x̂k,

=
1

2
(h(xk−1)xk−1 + g(xk−1)uk)

TΣ−1
2 (h(xk−1)xk−1 + g(xk−1)uk). (B.8)
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Furthermore, β2(uk, xk−1) needs to be evaluated which results in,

β2(uk, xk−1) =−
∫
s(xk |uk, xk−1 ) ln(γ(xk))dxk,

=

∫
N (x̂k,Σk)

(
1

2

[
xTkMkxk + Tkxk + ωk

])
dxk,

=
1

2

∫
N (x̂k,Σk)

[
(xk − x̂k)TMk(xk − x̂k) + 2xTkMkx̂k − x̂TkMkx̂k

+ Tkxk

]
dxk +

1

2
ωk,

=
1

2
tr(ΣkMk) +

1

2
x̂TkMkx̂k +

1

2
Tkx̂k +

1

2
ωk,

=
1

2
(h(xk−1)xk−1 + g(xk−1)uk)

TMk (h(xk−1)xk−1 + g(xk−1)uk) +
1

2
tr(ΣkMk)

+
1

2
Tk (h(xk−1)xk−1 + g(xk−1)uk) +

1

2
ωk. (B.9)

Using (3.50), the term tr(ΣkMk) in (B.9) can be written as tr(ΣkMk) = tr([Dxk−1 + Guk]Mk) =

tr(DMk)xk−1 + tr(GMk)uk. Hence, Equation (B.9) now becomes,

β2(uk, xk−1) =
1

2
(h(xk−1)xk−1 + g(xk−1)uk)

TMk (h(xk−1)xk−1 + g(xk−1)uk)

+
1

2
Tk (h(xk−1)xk−1 + g(xk−1)uk) +

1

2
ωk +

1

2
tr(DMk)xk−1 +

1

2
tr(GMk)uk.

(B.10)

The evaluated terms β1(uk, xk−1) and β2(uk, xk−1) can now be substituted in γ(xk−1) which is
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given by (3.10) in Proposition 1 such that,

γ(xk−1) =

∫
cI(uk|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]duk,

=

∫
N (0,Γ) exp

{
−1

2

[
(h(xk−1)xk−1 + g(xk−1)uk)

TΣ−1
2 (h(xk−1)xk−1

+ g(xk−1)uk) + (h(xk−1)xk−1 + g(xk−1)uk)
TMk (h(xk−1)xk−1 + g(xk−1)uk)

+ Tk (h(xk−1)xk−1 + g(xk−1)uk) + ωk + tr(DMk)xk−1 + tr(GMk)uk

]}
duk,

=
1

(2π|Γ|)
1
2

×
∫

exp

{
−0.5

[
uTk Γ−1uk + xTk−1h

T (xk−1)(Σ−1
2 +Mk)h(xk−1)xk−1

+ 2xTk−1h
T (xk−1)(Σ−1

2 +Mk)g(xk−1)uk + uTk g
T (xk−1)(Σ−1

2 +Mk)g(xk−1)uk

+ ωk + tr(DMk)xk−1 + tr(GMk)uk + Tkh(xk−1)xk−1 + Tkg(xk−1)uk

]}
duk,

=
1

(2π)
1
2 |Γ|

1
2

×
{

exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + ωk

+ tr(DMk)xk−1 + Tkh(xk−1)xk−1

]}}
×
∫

exp

{
−1

2

[
uTk [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]uk

+ 2uTk [gT (xk−1)(Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk + tr(GMk))]

]}
duk.

(B.11)

The integral in (B.11) can be further simplified by completing the square. This process has been

explained in Appendix A by Property 1 which when applied to (B.11) gives,
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Equation (B.12)

γ(xk−1) =
1

(2π)
1
2 |Γ|

1
2

×
{

exp

{
−1

2

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + ωk

+ tr(DMk)xk−1 + Tkh(xk−1)xk−1

]}}
× exp

{
−1

2

[
−[gT (xk−1)(Σ−1

2 +Mk)h(xk−1)xk−1 +
1

2
(gT (xk−1)T Tk + tr(GMk))]

T

× [Γ−1 + gT (xk−1)(Σ−1
2 +Mk)g(xk−1)]−1[gT (xk−1)(Σ−1

2 +Mk)h(xk−1)xk−1

+
1

2
(gT (xk−1)T Tk + tr(GMk))]

]}
×
∫

exp

{
−1

2

[(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]−1(gT (xk−1)

× (Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk + tr(GMk)))

)T
[Γ−1 + gT (xk−1)

× (Σ−1
2 +Mk)g(xk−1)]

(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]−1

× (gT (xk−1)(Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk + tr(GMk)))

)]}
duk. (B.12)

The integral in B.12 can be solved using Property 2 in Appendix A which results in,

γ(xk−1) =|Γ|−
1
2 |Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)|−
1
2

× exp

{
−1

2

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + ωk + tr(DMk)xk−1

+ Tkh(xk−1)xk−1

]}
× exp

{
−1

2

[
−[gT (xk−1)(Σ−1

2 +Mk)h(xk−1)xk−1

+
1

2
(gT (xk−1)T Tk + tr(GMk))]

T [Γ−1 + gT (xk−1)(Σ−1
2 +Mk)g(xk−1)]−1

× [gT (xk−1)(Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk + tr(GMk))]

]}
. (B.13)

Equation (B.13) can be further expanded to obtain the desired form of the optimal performance index

as stated in (3.60) from which the Riccati equation solution Mk, the linear term Tk and the constant

term ωk can be obtained as specified by (3.61), (3.62) and (3.63), respectively.
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γ(xk−1) =

{
exp

{
−1

2

[
xTk−1

(
hT (xk−1)(Σ−1

k +Mk)h(xk−1)− hT (xk−1)(Σ−1
2 +Mk)g(xk−1)

× [Γ−1 + gT (xk−1)(Σ−1
2 +Mk)g(xk−1)]−1gT (xk−1)(Σ−1

2 +Mk)h(xk−1)

)
xk−1

+

(
tr(DMk) + Tkh(xk−1)− (gT (xk−1)T Tk + tr(GMk))

T [Γ−1 + gT (xk−1)

× (Σ−1
2 +Mk)g(xk−1)]−1gT (xk−1)(Σ−1

2 +Mk)h(xk−1)

)
xk−1

+

(
ωk − (0.5[gT (xk−1)T Tk + tr(GMk)])

T [Γ−1 + gT (xk−1)(Σ−1
2 +Mk)

× g(xk−1)]−1(0.5[gT (xk−1)T Tk + tr(GMk)]) + ln |Γ|+ ln |Γ−1 + gT (xk−1)

× (Σ−1
2 +Mk)g(xk−1)|

)]}
. (B.14)

The final equation γ(xk−1) in (B.14) has justified the form of the performance index as given by (3.84).

In addition, the optimal randomised controller is derived by computing the optimal control law de-

fined in (3.7) in Proposition 1 in Chapter 3 such that,

c∗(uk|xk−1) =
cI(uk−1|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]←− 1©

γ(xk−1)←− 2©
.

Instead of computing the numerator and denominator separately and then making the division between

them (as was shown in Appendix A), it is possible to simplify the process resulting in a reduction in

computational time.

From careful observation, the following can be deduced. The optimal control law is given by,

c∗(uk|xk−1) =
cI(uk−1|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]∫

cI(uk|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]duk ←− γ(xk−1)
, (B.15)

from which it can be seen that the numerator and denominator are the same apart from the fact that

the denominator is integrated over uk.

Since the denominator has already been obtained in (B.14), let us focus on the numerator. The nu-

merator is derived by making the following substitutions: cI(uk|xk−1) = N (0,Γ), and β1(uk, xk−1)

given by (B.8) and β2(uk, xk−1) specified by (B.10), and thereafter, completing the square over uk
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which results in,

1© =
1

(2π|Γ|)
1
2

exp(f) =


×
{

exp

{
−1

2

[
xTk−1h

T (xk−1)(Σ−1
k +Mk)h(xk−1)xk−1 + ωk + tr(DMk)xk−1

+Tkh(xk−1)xk−1

]}}

exp(s) =



×exp

{
−1

2

[
−[gT (xk−1)(Σ−1

2 +Mk)h(xk−1)xk−1 +
1

2
(gT (xk−1)T Tk + tr(GMk))]

T

×[Γ−1 + gT (xk−1)(Σ−1
2 +Mk)g(xk−1)]−1[gT (xk−1)(Σ−1

2 +Mk)h(xk−1)xk−1

+
1

2
(gT (xk−1)T Tk + tr(GMk))]

]}

exp(Y ) =



× exp

{
−1

2

[(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]−1(gT (xk−1)

×(Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk + tr(GMk)))

)T
[Γ−1 + gT (xk−1)

×(Σ−1
2 +Mk)g(xk−1)]

(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]−1(gT (xk−1)

×(Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk + tr(GMk)))

)]}
,

where the substitutions exp(f), exp(s) and exp(Y ) are made such that,

1© =
1

(2π|Γ|)
1
2

exp(f) exp(s) exp(Y ). (B.16)

The factors exp(Y ) and exp(s) arose from computing the square over uk and exp(Y ) is the exponen-

tial that depends on uk.

Although the final form of the denominator has already been derived in (B.14), it is worth going

a few steps back to Equation (B.12) (highlighted), where the integration over uk has not been carried

out yet. It is possible then to rewrite Equation (B.12) in terms of exp(f), exp(s) and exp(Y ) such

that,

2© = γ(xk−1) =
1

(2π|Γ|)
1
2

exp(f) exp(s)

∫
exp(Y )duk. (B.17)

Finally, from the derived results in (B.16) and (B.17), the optimal randomised controller is sim-

plified to,

c∗(uk|xk−1) =
1©
2©

=
��

��(2π|Γ|)−
1
2 ���

�exp(f)���
�exp(s) exp(Y )

���
�(2π|Γ|)−

1
2 ��

��exp(f)���
�exp(s)
∫

exp(Y )duk
, (B.18)
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and can now be represented by Definition 1 as follows,

Definition 1: Updated optimal control law c∗(uk|xk−1).

c∗(uk|xk−1) =
exp(Y )∫

exp(Y )duk
,

where,

exp(Y ) = exp

{
−1

2

[(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]−1(gT (xk−1)(Σ−1
2 +Mk)

× h(xk−1)xk−1 +
1

2
(gT (xk−1)T Tk + tr(GMk)))

)T
[Γ−1 + gT (xk−1)(Σ−1

2 +Mk)

× g(xk−1)]

(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]−1(gT (xk−1)(Σ−1
2 +Mk)

× h(xk−1)xk−1 +
1

2
(gT (xk−1)T Tk + tr(GMk)))

)]}
, (B.19)

and
∫

exp(Y )duk is solved using Property 2 such that,

∫
exp(Y )duk =|2π|

1
2 |Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)|−
1
2 . (B.20)

Hence, for nonlinear systems with functional uncertainties, the optimal controller is given by,

c∗(uk|xk−1) =|2π|−
1
2 |Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)|
1
2

× exp

{
−1

2

[(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]−1(gT (xk−1)

× (Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk + tr(GMk)))

)T
× [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)g(xk−1)]

(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 +Mk)

× g(xk−1)]−1(gT (xk−1)(Σ−1
2 +Mk)h(xk−1)xk−1 +

1

2
(gT (xk−1)T Tk

+ tr(GMk)))

)]}
. (B.21)

From (B.21), the mean and variance of the Gaussian distribution of the optimal randomised controller

can be obtained as specified by (3.55) in Theorem 2 in Section 3.4.
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Appendix C

Derivation of the FP Control Solution for

Nonlinear Systems with Multiplicative

Noise

The designation of an optimal controller for nonlinear systems with multiplicative stochastic distur-

bances is demonstrated in this appendix. The first step towards achieving the optimal control solution

to the FP design consists of the evaluation of the optimal performance index given by (3.10) in Propo-

sition 1 in Chapter 3.

The term γ(xk−1) is based on the terms β1(uk, xk−1) and β2(uk, xk−1). Hence, the term β1(uk, xk−1)

is computed first using equations (3.79) and (3.53) such that,

β1(uk, xk−1) =

∫
s(xk |uk, xk−1 )

(
ln

s(xk |uk, xk−1 )

sI(xk |uk, xk−1 )

)
dxk,

=

∫
N (x̂k, Σk) ln

(
N (x̂k, Σk)

N (0, Σ2)

)
dxk,

=0.5

[
x̂Tk Σ−1

k x̂k +

∫
N (x̂k, Σk)

{
− ln

(
|Σk|
|Σ2|

)
+ xTk (Σ−1

2 − Σ−1
k )xk

}
dxk

]
,

=0.5x̂Tk Σ−1
k x̂k + 0.5tr(ΣkΣ

−1
2 ) + 0.5n− 0.5tr(ΣkΣ

−1
2 )− 0.5n

+ 0.5x̂Tk (Σ−1
2 − Σ−1

k )x̂k,

= 0.5x̂Tk (Σ−1
2 − Σ−1

k + Σ−1
k )x̂k,

where (3.75) is substituted in x̂k to give,

=0.5(h(xk−1)xk−1 + g(xk−1)uk)
TΣ−1

2 (h(xk−1)xk−1 + g(xk−1)uk). (C.1)

If the reader wants a more detailed derivation of the above, please refer to the derivation of β1(uk, xk−1)

in Appendix B.
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Similary, β2(uk, xk−1) can be evaluated using equation (3.84) as follows,

β2(uk, xk−1) =−
∫
s(xk|uk, xk−1) ln(γ(xk))dxk,

=

∫
N (x̂k,Σk)

[
0.5
(
xTk Skxk + ωk

)]
dxk,

=0.5

∫ {
N (x̂k,Σk)

[
(xk − x̂k)TSk(xk − x̂k) + 2xTk Skx̂k − x̂Tk Skx̂k

]
dxk

}
+ 0.5ωk,

=0.5tr(ΣkSk) + 0.5x̂Tk Skx̂k + 0.5ωk,

=0.5(h(xk−1)xk−1 + g(xk−1)uk)
TSk (h(xk−1)xk−1 + g(xk−1)uk)

+ 0.5tr(ΣkSk) + 0.5ωk. (C.2)

Using (3.78), the term tr(ΣkSk) can be further evaluated to give,

tr(ΣkSk) =tr(SkDxk−1Qx
T
k−1D

T ),

=xTk−1D
TSkQDxk−1.

Hence,

β2(uk, xk−1) =0.5(h(xk−1)xk−1 + g(xk−1)uk)
TSk (h(xk−1)xk−1 + g(xk−1)uk) + 0.5ω̂k. (C.3)

The ω̂k in (C.3) equates to,

ω̂k = xTk−1D
TSkQDxk−1 + ωk. (C.4)

Now that β1(uk, xk−1) and β2(uk, xk−1) have been computed, γ(xk−1) which is given by (3.10) in
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Proposition 1 can be evaluated,

γ(xk−1) =

∫
cI(uk|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]duk,

=

∫
N (0,Γ) exp

[
−0.5(h(xk−1)xk−1 + g(xk−1)uk)

TΣ−1
2 (h(xk−1)xk−1 + g(xk−1)uk)

−0.5(h(xk−1)xk−1 + g(xk−1)uk)
TSk (h(xk−1)xk−1 + g(xk−1)uk)− 0.5ω̂k

]
duk,

=
1

(2π)
1
2 |Γ|

1
2

×
∫

exp

{
−0.5

[
uTk Γ−1uk + xTk−1h

T (xk−1)(Σ−1
2 + Sk)h(xk−1)xk−1

+2xTk−1h
T (xk−1)(Σ−1

2 + Sk)g(xk−1)uk + uTk g
T (xk−1)(Σ−1

2 + Sk)g(xk−1)uk + ω̂k

]}
duk,

=
1

(2π)
1
2 |Γ|

1
2

×
{

exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k + Sk)h(xk−1)xk−1 + ω̂k

]}}
×
∫

exp

{
−0.5

[
uTk [Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)]uk

+2uTk g
T (xk−1)(Σ−1

2 + Sk)h(xk−1)xk−1

]}
duk. (C.5)

The integral in (C.5) can be evaluated by completing the square over uk as shown by Property 1 in

Appendix A which gives,

Table A:

γ(xk−1) =
1

(2π)
1
2 |Γ|

1
2

× exp

{
−0.5

[
xTk−1h

T (xk−1)(Σ−1
k + Sk)h(xk−1)xk−1

+ ω̂k

]}
× exp

{
0.5

(
gT (xk−1)(Σ−1

k + Sk)h(xk−1)xk−1

)T
[Γ−1 + gT (xk−1)

× (Σ−1
k + Sk)g(xk−1)]−1

(
gT (xk−1)(Σ−1

k + Sk)h(xk−1)xk−1

)}

∫
exp(Y ) =



×
∫

exp

{
−0.5

{(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)]−1

×(gT (xk−1)(Σ−1
k + Sk)h(xk−1)xk−1)

)T
[Γ−1 + gT (xk−1)(Σ−1

2 + Sk)

×g(xk−1)]

(
uk +

[
Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)
]−1

×(gT (xk−1)(Σ−1
k + Sk)h(xk−1)xk−1)

)}
duk.

The integral
∫

exp (Y ) in Table A can be solved using Property 2 in Appendix A which simplifies

it to,

∫
exp(Y )duk = |2π|

1
2 |Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)|−
1
2 . (C.6)
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Hence, γ(xk−1) is simplified to,

γ(xk−1) =|Γ|−
1
2 |Γ−1 + gT (xk−1)(Σ−1

k + Sk)g(xk−1)|−
1
2

× exp

{
0.5(gT (xk−1)(Σ−1

k + Sk)h(xk−1)xk−1)T [Γ−1 + gT (xk−1)(Σ−1
k + Sk)

×g(xk−1)]−1(gT (xk−1)(Σ−1
k + Sk)h(xk−1)xk−1)− 0.5xTk−1h

T (xk−1)(Σ−1
k + Sk)

×h(xk−1)xk−1 − 0.5ω̂k

}
,

= exp

{
0.5xTk−1h

T (xk−1)(Σ−1
k + Sk)g(xk−1)

(
Γ−1 + gT (xk−1)(Σ−1

k + Sk)g(xk−1)

)−1

×gT (xk−1)(Σ−1
k + Sk)h(xk−1)xk−1 − 0.5xTk−1h

T (xk−1)(Σ−1
k + Sk)h(xk−1)xk−1

−0.5ω̂k − 0.5 ln |Γ| − 0.5 ln |Γ−1 + gT (xk−1)(Σ−1
k + Sk)g(xk−1)|

}
.

By making the substitution of ω̂k = xTk−1D
TSkQDxk−1 + ωk , the following can be obtained,

γ(xk−1) = exp

{
−0.5xTk−1

{
−hT (xk−1)(Σ−1

2 + Sk)g(xk−1)[Γ−1 + gT (xk−1)(Σ−1
2 + Sk)

× g(xk−1)]−1gT (xk−1)(Σ−1
2 + Sk)

Th(xk−1) + hT (xk−1)(Σ−1
2 + Sk)h(xk−1)

−DTSkQD

}
xk−1 − 0.5

{
ωk + ln(|Γ|) + ln |Γ−1 + gT (xk−1)(Σ−1

2 + Sk)

× g(xk−1)|
}}

. (C.7)

From the above, the generalised SDRE in (3.85) and the constant term in (3.86) can be obtained. It is

now possible to derive the optimal control law which is defined in (3.7) in Proposition 1 and repeated

below,

c∗(uk|xk−1) =
cI(uk−1|xk−1) exp[−β1(uk, xk−1)− β2(uk, xk−1)]←− 1©

γ(xk−1)←− 2©
.

However, using the result in Definition 1 in Appendix B, the process of finding the optimal controller

has been tremendously simplified since now c∗(uk|xk−1) = exp(Y )∫
exp(Y )duk

. The exponential exp(Y )

has already been found Table A and its integral over uk has been solved in (C.6). Therefore, the final

control solution of the FP control design for nonlinear systems with functional uncertainties is given
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by,

c∗(uk|xk−1) =|2π|−
1
2 |Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)|
1
2

× exp

{
−0.5

{(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)]−1(gT (xk−1)

× (Σ−1
2 + Sk))h(xk−1)xk−1)

)T
[Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)]

×
(
uk + [Γ−1 + gT (xk−1)(Σ−1

2 + Sk)g(xk−1)]−1(gT (xk−1)(Σ−1
2 + Sk)

× h(xk−1)xk−1)

)}}
, (C.8)

which concludes the proof for Theorem 3.
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Appendix D

Derivation of the Decentralised FP

Control Design for Nonlinear Systems

The derivation of the decentralised FP control solution given by (4.21) for nonlinear stochastic sub-

systems with additive noises is discussed in this appendix. Theorem 4 is proven using Proposition 4

in Chapter 4 for nonlinear systems within a decentralised framework. This is achieved in two parts.

The first part contributes to the justification of the form of − ln(γ(zk;i)) in (4.26) and the Riccati

equations in Theorem 4. The second half of the proof focuses on the proof of the randomised optimal

controller c∗(uk;i|zk−1;i) given by equation (4.21).

D.1 Optimal Performance Index, − ln(γ(zk;i))

The first part is proven by using proof by induction, meaning the form of the optimal performance

index defined in equation (4.26) is assumed to be true and then substituted in β(uk;i, zk−1;i).

In Proposition 4, the optimal performance index is given by γ(zk−1;i) in (4.6) for which the term

β(uk;i, zk−1;i) in (4.7) needs to be solved.

However, the term is evaluated by splitting it into two parts as follows,

β(uk;i, zk−1;i) =

∫
s(xk;i|uk;i, zk−1;i)

[
ln

(
s(xk;i|uk;i, zk−1;i)

sI(xk;i|uk;i, zk−1;i)

)
− ln(γ̃(xk;i, yk−1;i))

]
dxk;i,

=

∫
s(xk;i|uk;i, zk−1;i) ln

(
s(xk;i|uk;i, zk−1;i)

sI(xk;i|uk;i, zk−1;i)

)
dxk;i︸ ︷︷ ︸

1©

−
∫
s(xk;i|uk;i, zk−1;i) ln(γ̃(xk;i, yk−1;i))dxk;i︸ ︷︷ ︸

2©

. (D.1)

First of all, the first integral 1© is solved for which the actual and ideal distributions of the internal
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states given by (4.16) and (4.18) respectively, need to be substituted. This gives,

1© =

∫
s(xk;i|uk;i, zk−1;i) ln

(
s(xk;i|uk;i, zk−1;i)

sI(xk;i|uk;i, zk−1;i)

)
dxk;i,

=

∫
N (x̂k;i,Σx;i)

[
ln(2π|Σx;i|)−

1
2 − 1

2
(xk;i − x̂k;i)

TΣ−1
x;i (xk;i − x̂k;i)− ln(2π|Σx;i|)−

1
2

+
1

2
xTk;iΣ

−1
x;ix

−1
k;i

]
dxk;i,

=

∫
N (x̂k;i,Σx;i)

(
xTk;iΣ

−1
x;i x̂k;i −

1

2
x̂Tk;iΣ

−1
x;i x̂k;i

)
dxk;i,

=
1

2
x̂Tk;iΣ

−1
x;i x̂k;i,

=(fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)
TΣ−1

x;i (fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i), (D.2)

where we used equation (4.14). Secondly, 2© is evaluated for which ln(γ̃(xk;i, yk−1;i)) given by (4.8)

needs to be computed first. To achieve this, the actual distribution of the external states defined

in (4.17) and the assumed form of the performance index in (4.26) are substituted. However, the per-

formance index is written explicitly rather than in matrix format such that− ln(γ(zk;i)) = 1
2z
T
k;iMk;izk;i+

1

2
Vk;i = 1

2(xTk;iM1,k;ixk;i + 2xTk;iM2,k;iyk;i + yTk;iM3,k;iyk;i + Vk;i). Hence, we obtain,

− ln(γ̃(xk;i, yk−1;i))

= −
∫
s(yk;i|yk−1;i) ln(γ(zk;i))dyk;i,

=

∫
N (ŷk;i,Σy;i)

{
1

2

[
xTk;iM1,k;ixk;i + 2xTk;iM2,k;iyk;i + yTk;iM3,k;iyk;i + Vk;i

]}
dyk;i,

=
1

2
xTk;iM1,k;ixk;i + xTk;iM2,k;iŷk;i +

1

2
Vk;i +

1

2

∫
N (ŷk;i,Σy;i)

[
(yk;i − ŷk;i)

TM3,k;i

× (yk;i − ŷk;i) + 2ŷTk;iM3,k;iyk;i − ŷTk;iM3,k;iŷk;i

]
dyk;i,

=
1

2
xTk;iM1,k;ixk;i + xTk;iM2,k;iŷk;i +

1

2

(
tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + Vk;i

)
. (D.3)
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Substituting (D.3) into 2© gives,

2© =

∫
s(xk;i|uk;i, zk−1;i)

[
1

2
xTk;iM1,k;ixk;i + xTk;iM2,k;iŷk;i +

1

2

(
tr(M3,k;iΣy;i) + Vk;i

+ ŷTk;iM3,k;iŷk;i

)]
dxk;i,

=
1

2

∫
N (x̂k;i,Σx;i)

[
xTk;iM1,k;ixk;i + 2xTk;iM2,k;iŷk;i

]
dxk;i +

1

2

(
tr(M3,k;iΣy;i)

+ ŷTk;iM3,k;iŷk;i + Vk;i

)
,

=
1

2

∫
N (x̂k;i,Σx;i)

[
(xk;i − x̂k;i)

TM1,k;i(xk;i − x̂k;i) + 2x̂Tk;iM1,k;ixk;i − x̂Tk;iM1,k;ix̂k;i

+ 2xTk;iM2,k;iŷk;i

]
dxk;i +

1

2

(
tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + Vk;i

)
,

=
1

2

(
x̂Tk;iM1,k;ix̂k;i + 2x̂Tk;iM2,k;iŷk;i + ŷTk;iM3,k;iŷk;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

)
,

=
1

2

(
(fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)

TM1,k;i(fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)

+ 2(fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)
TM2,k;ihi(yk−1;i)yk−1;i

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

)
, (D.4)

where we used (4.14) and (4.15). Now that 1© and 2© have been evaluated in (D.2) and (D.4), respec-

tively, the term β(uk;i, zk−1;i) can be obtained as follows,

β(uk;i, zk−1;i) =
1

2

(
(fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)

T Q̃k;i(fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)

+2(fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)
TM2,k;ihi(yk−1;i)yk−1;i

+yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

)
,

(D.5)

where Q̃k;i = (M1,k;i + Σ−1
k;i ).

Following the evaluation of β(uk;i, zk−1;i) in (D.5), and using cI(uk;i|zk−1;i) = N (0,Γk;i), the

term γ(zk−1;i) in (4.6) can be solved. Also, fi(zk−1;i)zk−1;i is written in terms of the internal and

external states to separate the elements for the Riccati equation solutions in the upcoming derivations
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such that, fi(zk−1;i)zk−1;i = f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i. Therefore, we obtain,

γ(zk−1;i) =

∫
cI(uk;i|zk−1;i) exp(−β(uk;i, zk−1;i))duk;i,

=

∫
N (0,Γk;i) exp(−β(uk;i, zk−1;i))duk;i

= |2πΓk;i|−
1
2

∫
exp

{
− 1

2

[
uTk;iΓ

−1
k;iuk;i + (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i

+ gi(zk−1;i)uk;i)
T Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i)

+ 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i)
TM2,k;ihi(yk−1;i)yk−1;i

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i)

+ Vk;i

]}
duk;i,

= |2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

T Q̃k;i(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i) + 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)
TM2,k;ihi(yk−1;i)yk−1;i

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

]}
×
∫

exp

{
−1

2

[
uTk;i[Γ

−1
k;i + gTi (zk−1;i)Q̃k;igi(zk−1;i)]uk;i + 2uTk;i[g

T
i (zk−1;i)

× Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

]}
.

(D.6)

The integral in (D.6) can be further evaluated by completing the square over uk;i which has been

explained in Appendix A, Property 1.
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Let us define Γ̄k;i = [Γ−1
k;i + gTi (zk−1;i)Q̃k;igi(zk−1;i)]

−1. This gives the following,

Table B:

γ(zk−1;i) = |2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

T Q̃k;i

× (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i) + 2(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i)
TM2,k;ihi(yk−1;i)yk−1;i + yTk−1;ih

T
i (yk−1;i)M3,k;i

× hi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

]}
× exp

{
−1

2

[
−
(
gTi (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)

× yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

)T
Γ̄k;i

(
gTi (zk−1;i)Q̃k;i

× (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;i

× hi(yk−1;i)yk−1;i

)]}

∫
exp(Y )duk;i =



×
∫

exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i

+f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)T
Γ̄−1
k;i

×
(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

+gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)]}
duk;i.

The integral
∫

exp(Y )duk;i can be evaluated using Property 2 in Appendix A such that,

∫
exp(Y )duk;i = |2π|

1
2 |Γ̄k;i|

1
2 . (D.7)
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Hence, we have,

γ(zk−1;i) =|Γk;i|−
1
2 |Γ̄k;i|

1
2 exp

{
−1

2

[
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

T Q̃k;i(f1i(zk−1;i)

× xk−1;i + f2i(zk−1;i)yk−1;i) + 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)
TM2,k;i

× hi(yk−1;i)yk−1;i + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i)

+ tr(M3,k;iΣy;i) + Vk;i

]}
× exp

{
−1

2

[
−
(
gTi (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

+ gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

)T
Γ̄k;i

(
gTi (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

)]}
,

= exp

{
−1

2

[
xTk−1;i

(
−fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)Q̃k;if1i(zk−1;i)

+ fT1i(zk−1;i)Q̃k;if1i(zk−1;i)

)
xk−1;i + 2xTk−1;i

(
fT1i(zk−1;i)Q̃k;if2i(zk−1;i)

+ fT1i(zk−1;i)M2,k;ihi(yk−1;i)− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if2i(zk−1;i)

− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i),

)
yk−1;i

+ yTk−1;i

(
fT2i(zk−1;i)Q̃k;if2i(zk−1;i) + 2fT2i(zk−1;i)M2,k;ihi(yk−1;i) + hTi (yk−1;i)

×M3,k;ihi(yk−1;i)− fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)Q̃k;if2i(zk−1;i)

− hTi (yk−1;i)M2,k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

)
yk−1;i

+

(
Vk;i + tr(Σx;iM1,k;i) + tr(Σy;iM3,k;i) + ln |Γk;i|+ ln |Γ−1

k;i + gTi (xk−1;i)

× Q̃k;igi(xk−1;i)|
)]}

, (D.8)

which justifies the form of the performance index (4.26) and the Riccati equation solutions and con-

stant term given by (4.28) - (4.31).

D.2 Optimal Randomised Controller, c∗(uk;i|zk−1;i)

The optimal randomised controller is obtained by evaluating the optimal control law in (4.5) given by

Proposition 4 in Chapter 4.

Using the same logic as was explained in Appendix B in Definition 1, only exp(Y )∫
exp(Y )duk;i

needs

to be computed to find c∗(uk;i|zk−1;i). The exponential exp(Y ) is obtained from Table B and
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∫
exp(Y )duk;i is solved in (D.7). Thus, the optimal randomised controller is given by

c∗(uk;i|zk−1;i) =(2π)−
1
2 |Γ̄k;i|−

1
2

∫
exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)T
Γ̄−1
k;i

×
(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

+ gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)]}
duk;i, (D.9)

which is the desired form as given by (4.21) in Theorem 4 in Chapter 4.
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Appendix E

Derivation of the Probabilistic Message

Passing Approach

This chapter explains the derivation of the probabilistic message passing approach as outlined in

Theorem 5 and Theorem 6. The evaluation of the two theorems require the implementation of two

identities, namely the Woodbury Identity [195] and the Push-through Identity [196].

The Woodbury Identity is defined as follows,

Property 3:

(Â + ÛĈV̂)−1 = Â−1 − Â−1Û(Ĉ−1 + V̂Â−1Û)−1V̂Â−1.

The push-through identity is given by,

Property 4:

(Γ−1 + BTΣ−1B)BT = ΓBT (Σ + BΓBT )−1Σ.

E.1 Proof of Theorem 5

Theorem 5 is proven by evaluating the integral given by (4.33) in Lemma 1. The integral can be

further evaluated by applying the chain rule for probabilities [163] to the joint pdf to obtain,

Mj←i(xk;i|zk−1;i) =

∫
s(xk;i|zk−1;i, uk;i)s(yk;i|yk−1;i)c(uk;i|zk−1;i)dyk;iduk;i. (E.1)
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The factor s(yk;i|yk−1;i) in (E.1) can be integrated over yk;i which gives a normalisation constant. As

a consequence, we have,

Mj←i(xk;i|zk−1;i) =

∫
s(xk;i|zk−1;i, uk;i)c(uk;i|zk−1;i)duk;i. (E.2)

This can be evaluated by substituting (4.16), (4.14) and (4.21) into (E.2) to obtain,

Mj←i(xk;i|zk−1;i)

=

∫
exp

{
−1

2

[(
xk;i − (fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)

)T
Σ−1
x;i

×
(
xk;i − (fi(zk−1;i)zk−1;i + gi(zk−1;i)uk;i)

)
+

(
uk;i − u∗k;i

)T
Γ̄−1
k;i

(
uk;i − u∗k;i

)]}
duk;i.

(E.3)

The terms that have no dependency on uk;i can be taken out of the integral such that,

Mj←i(xk;i|zk−1;i)

= exp

{
−1

2

[
(xk;i − fi(zk−1;i)zk−1;i)

TΣ−1
x;i (xk;i − fi(zk−1;i)zk−1;i) + u∗Tk;iΓ̄

−1
k;iu

∗
k;i

]}
×
∫

exp

{
−1

2

[
uTk;i(g

T
i (zk−1;i)Σ

−1
x;igi(zk−1;i) + Γ̄−1

k;i )uk;i − 2uk;i

(
gTi (zk−1;i)Σ

−1
x;i

× (xk;i − fi(zk−1;i)zk−1;i) + Γ̄−1
k;iu

∗
k;i

)]}
duk;i. (E.4)

The integral can be further evaluated by completing the square over uk;i in (E.4), as shown by Property

1 in Appendix A, gives,

Mj←i(xk;i|zk−1;i)

= exp

{
−1

2

[
(xk;i − fi(zk−1;i)zk−1;i)

TΣx;i
−1(xk;i − fi(zk−1;i)zk−1;i) + u∗k;iΓ̄

−1
k;iu

∗
k;i

− (gTi (zk−1;i)Σ
−1
x;i (xk;i − fi(zk−1;i)zk−1;i) + Γ̄−1

k;iu
∗
k;i)

T (gTi (zk−1;i)Σ
−1
x;igi(zk−1;i)

+ Γ̄−1
k;i )
−1(gTi (zk−1;i)Σ

−1
x;i (xk;i − fi(zk−1;i)zk−1;i) + Γ̄−1

k;iu
∗
k;i)

]}
×
∫

exp

{
−1

2

[(
uk;i + (gTi (zk−1;i)Σ

−1
x;igi(zk−1;i) + Γ̄−1

k;i )
−1(gTi (zk−1;i)Σ

−1
x;i

× (xk;i − fi(zk−1;i)zk−1;i)
T + Γ̄−1

k;iu
∗
k;i)

)T
(gTi (zk−1;i)Σ

−1
x;igi(zk−1;i) + Γ̄−1

k;i )

(
uk;i + (gTi (zk−1;i)

× Σ−1
x;igi(zk−1;i) + Γ̄−1

k;i )
−1(gTi (zk−1;i)Σ

−1
x;i (xk − fi(zk−1;i)zk−1;i)

T + Γ̄−1
k;iu

∗
k;i)

)]}
duk;i. (E.5)
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The integral can be solved using Property 2 in Appendix A which results in a normalisation constant

which is disregarded in this proof for the purpose of simplification. Hence, we have,

Mj←i(xk;i|zk−1;i)

= exp

{
−1

2

[
(xk;i − fi(zk−1;i)zk−1;i)

TΣx;i
−1(xk;i − fi(zk−1;i)zk−1;i) + u∗k;iΓ̄

−1
k;iu

∗
k;i

− (gTi (zk−1;i)Σ
−1
x;i (xk;i − fi(zk−1;i)zk−1;i) + Γ̄−1

k;iu
∗
k;i)

T (gTi (zk−1;i)Σ
−1
x;igi(zk−1;i)

+ Γ̄−1
k;i )
−1(gTi (zk−1;i)Σ

−1
x;i (xk;i − fi(zk−1;i)zk−1;i) + Γ̄−1

k;iu
∗
k;i)

]}
. (E.6)

Using the Woodbury Identity [195] defined in Property 3, and the push-through Identity [196] stated

in Property 4, Equation (E.6) can be further evaluated to obtain the following,

Mj←i(xk;i|zk−1;i)

= exp

{
−1

2

[(
xk;i − (fi(zk−1;i)zk−1;i + gi(zk−1;i)u

∗
k;i)

)T[
gi(zk−1;i)Γ̄k;ig

T
i (zk−1;i) + Σx;i

]−1

×
(
xk;i − (fi(zk−1;i)zk−1;i + gi(zk−1;i)u

∗
k;i)

)]}
, (E.7)

which concludes the proof.

E.2 Proof of Theorem 6

Fusing the message that has been passed from node i given by (4.34) with the prior knowledge

that subsystem j already possesses about its external states, s(yk;j |yk−1;j) = N (ŷk;j ,Σy;j), can

be achieved by using the Bayes’ rule. This is obtained from the Bayes’ theorem by using the MAP

estimate. This gives,

s(yk;j;new) =Mj←i(xk;i|zk−1;i)× s(yk;i|yk−1;i)

= exp

{
−1

2
(yk;j − µxk;i)

TP−1
xk;i

(yk;j − µxk;i)−
1

2
(yk;j − ŷk;j)

TΣ−1
y;j(yk;j − ŷk;j)

}
= exp

{
−1

2
yTk;j(P

−1
xk;i

+ Σ−1
y;j)yk;j + yTk;j(P

−1
xk;i

µxk;i + Σ−1
y;j ŷk;j)−

1

2
µTxk;iP

−1
xk;i

µxk;i

− 1

2
ŷTk;jΣ

−1
y;j ŷk;j

}
. (E.8)
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Completing the square allows Equation (E.8) to be further evaluated to obtain,

s(yk;j;new) = exp

{
−1

2
(yk;j − ŷk;j,new)T Σ̄yk;j ,new(yk;j − ŷk;j,new)

+ (P−1
xk;i

µxk;i + Σ−1
y;j ŷk;j)

T Σ̄yk;j ,new(P−1
xk;i

µxk;i + Σ−1
y;j ŷk;j)

− 1

2
µTxk;iP

−1
xk;i

µxk;i −
1

2
ŷTk;jΣ

−1
y;j ŷk;j

}
, (E.9)

where

ŷk;j,new =(P−1
xk;i

+ Σ−1
y;j)
−1(P−1

xk;i
µxk;i + Σ−1

y;j ŷk;j), (E.10)

Σ̄yk;j ,new =(P−1
xk;i

+ Σ−1
y;j)
−1. (E.11)

Equations (E.10) and (E.11) can be further evaluated using the Woodbury identity, and the substitution

of K̄k;j = Σy;j(Σy;j + Pxk;i)
−1 allows the claimed form given by (4.38) - (4.41) to be achieved.
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Appendix F

Derivation of the Decentralised FP

Control Design for Nonlinear Systems

with Multiplicative Noises

Theorem 7 states the decentralised optimal controller for nonlinear systems with multiplicative noises

within a decentralised framework. To prove this, Proposition 4 in Chapter 4 for nonlinear systems

within a decentralised framework is considered.

The proof is split into two parts. The first part contributes to the justification of the form of

− ln(γ(zk;i)) and the Riccati equation solutions in Theorem 7. The second half proves the form of

the randomised optimal controller c∗(uk;i|zk−1;i) given in equation (4.65).

F.1 Optimal Performance Index, − ln(γ(zk;i))

Using proof by induction with the assumption that the form of the quadratic performance index

in (4.70) is true, the forms of the Riccati equation solutions (4.72) - (4.74) and the quadratic cost

functions (4.70) are justified.

In Proposition 4 in Chapter 4, the term β(uk;i, zk−1;i) defined in equation (4.7) needs to be solved in

order to derive the optimal performance index given by γ(zk−1;i) as stated in equation (4.6).

Similar to Appendix D, the term β(uk;i, zk−1;i) is evaluated by splitting it into two parts as fol-
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lows,

β(uk;i, zk−1;i) =

∫
s(xk;i|uk;i, zk−1;i)

[
ln

(
s(xk;i|uk;i, zk−1;i)

sI(xk;i|uk;i, zk−1;i)

)
− ln(γ̃(xk;i, yk−1;i))

]
dxk;i,

=

∫
s(xk;i|uk;i, zk−1;i) ln

(
s(xk;i|uk;i, zk−1;i)

sI(xk;i|uk;i, zk−1;i)

)
dxk;i︸ ︷︷ ︸

1©

−
∫
s(xk;i|uk;i, zk−1;i) ln(γ̃(xk;i, yk−1;i))dxk;i︸ ︷︷ ︸

2©

. (F.1)

First of all, the first integral 1© is solved for which the actual and ideal distributions of the internal

states given by (4.56) and (4.62) need to be substituted. This gives,

1© =

∫
s(xk;i|uk;i, zk−1;i) ln

(
s(xk;i|uk;i, zk−1;i)

sI(xk;i|uk;i, zk−1;i)

)
dxk;i,

=

∫
N (x̂k;i, Rx;i)

[
−1

2
ln(2π|Rx;i|)−

1

2
(xk;i − x̂k;i)

TR−1
x;i (xk;i − x̂k;i) +

1

2
ln(2π|Σx;i|)

+
1

2
xTk;iΣ

−1
x;ixk;i

]
dxk;i,

=

∫
N (x̂k;i, Rx;i)

{
1

2

[
ln

(
|Σx;i|
|Rx;i|

)
− xTk;iR

−1
x;ixk;i + xTk;iΣ

−1
x;ixk;i + 2xTk;iR

−1
x;i x̂k;i

− x̂Tk;iR
−1
x;i x̂k;i

]}
dxk;i,

=

∫
N (x̂k;i, Rx;i)

{
1

2

[
ln

(
|Σx;i|
|Rx;i|

)
+ xTk;i(Σ

−1
x;i −R

−1
x;i )xk;i + 2xTk;iR

−1
x;i x̂k;i

− x̂Tk;iR
−1
x;i x̂k;i

]}
dxk;i,

=
1

2
x̂Tk;iR

−1
x;i x̂k;i +

∫
N (x̂k;i, Rx;i)

{
1

2

[
− ln

(
|Rx;i|
|Σx;i|

)
+ (xk;i − x̂k;i)

T (Σ−1
x;i −R

−1
x;i )

× (xk;i − x̂k;i) + 2xTk;i(Σ
−1
x;i −R

−1
x;i )x̂k;i − x̂Tk;i(Σ

−1
x;i −R

−1
x;i )x̂k;i

]}
dxk;i,

=
1

2

{
x̂Tk;iR

−1
x;i x̂k;i − tr(Rx;iΣ

−1
x;i ) + n+ tr(Rx;i[Σ

−1
x;i −R

−1
x;i ]) + x̂Tk;i(Σ

−1
x;i −R

−1
x;i )x̂k;i

}
,

=
1

2

{
��

���
�

x̂Tk;iR
−1
x;i x̂k;i −���

���tr(Rx;iΣx;i
−1) +�n+���

���tr(Rx;iΣx;i
−1)−�n+ x̂Tk;iΣ

−1
x;i x̂k;i −���

���x̂Tk;iR
−1
x;i x̂k;i

}
,

=
1

2
x̂Tk;iΣ

−1
x;i x̂k;i,

=(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i)
TΣ−1

x;i

× (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i), (F.2)

where equation (4.58) has been used.

Secondly, 2© is evaluated for which ln(γ̃(xk;i, yk−1;i)) defined in (4.8) needs to be solved first.

The actual distribution of the external states defined in (4.57) and the assumed form of the perfor-

mance index− ln(γ(zk;i)) = 1
2(xTk;iM1,k;ixk;i+2xTk;iM2,k;iyk;i+y

T
k;iM3,k;iyk;i+Vk;i) given by (4.70)
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are substituted to solve ln(γ̃(xk;i, yk−1;i)) which gives,

− ln(γ̃(xk;i, yk−1;i)) =−
∫
s(yk;i|yk−1;i) ln(γ(zk;i))dyk;i,

=

∫
N (ŷk;i,Σy;i)

{
1

2

[
xTk;iM1,k;ixk;i + 2xTk;iM2,k;iyk;i + yTk;iM3,k;iyk;i

+ Vk;i

]}
dyk;i,

=
1

2
xTk;iM1,k;ixk;i + xTk;iM2,k;iŷk;i +

1

2
Vk;i +

1

2

∫
N (ŷk;i,Σy;i)

[
(yk;i − ŷk;i)

T

×M3,k;i(yk;i − ŷk;i) + 2ŷTk;iM3,k;iyk;i − ŷTk;iM3,k;iŷk;i

]
dyk;i,

=
1

2
xTk;iM1,k;ixk;i + xTk;iM2,k;iŷk;i +

1

2

(
tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + Vk;i

)
.

(F.3)

Substituting (F.3) into 2© gives,

2© =

∫
s(xk;i|uk;i, zk−1;i)

[
1

2
xTk;iM1,k;ixk;i + xTk;iM2,k;iŷk;i +

1

2

(
tr(M3,k;iΣy;i)

+ ŷTk;iM3,k;iŷk;i + Vk;i

)]
dxk;i,

=
1

2

∫
N (x̂k;i,Σx;i)

[
xTk;iM1,k;ixk;i + 2xTk;iM2,k;iŷk;i

]
dxk;i +

1

2

(
tr(M3,k;iΣy;i)

+ ŷTk;iM3,k;iŷk;i + Vk;i

)
,

=
1

2

∫
N (x̂k;i,Σx;i)

[
(xk;i − x̂k;i)

TM1,k;i(xk;i − x̂k;i) + 2x̂Tk;iM1,k;ixk;i − x̂Tk;iM1,k;ix̂k;i

+ 2xTk;iM2,k;iŷk;i

]
dxk;i +

1

2

(
tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + Vk;i

)
,

=
1

2

(
x̂Tk;iM1,k;ix̂k;i + 2x̂Tk;iM2,k;iŷk;i + ŷTk;iM3,k;iŷk;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

)
,

=
1

2

(
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i)

TM1,k;i(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i) + 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i

+ gi(zk−1;i)uk;i)
TM2,k;ihi(yk−1;i)yk−1;i + yTk−1;ih

T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i

+ tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

)
, (F.4)

where the equations (4.58) and (4.60) have been used. Using equations (4.59) and (4.61), the traces

tr(M1,k;iΣx;i) and tr(M3,k;iΣy;i) can be further evaluated to obtain,

tr(M1,k;iΣx;i) =xTk−1;iD
T
1;iM1,k;iQ1;iD1;ixk−1;i,

tr(M3,k;iΣy;i) =yTk−1;iD
T
2;iM3,k;iQ2;iD2;iyk−1;i. (F.5)
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Therefore, substituting the evaluated terms 1©, 2© and (F.5) into (F.1), the term β(uk;i, zk−1;i) can be

obtained as follows,

β(uk;i, zk−1;i) =
1

2

(
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i)

T Q̃k;i(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i) + 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i

+ gi(zk−1;i)uk;i)
TM2,k;ihi(yk−1;i)yk−1;i

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + ω̂k;i

)
, (F.6)

where Q̃k;i = (M1,k;i + Σ−1
x;i ) and,

ω̂k;i = xTk−1;iD
T
1;iM1,k;iQ1;iD1;ixk−1;i + yTk−1;iD

T
2;iM3,k;iQ2;iD2;iyk−1;i + Vk;i. (F.7)

Following the evaluation of β(uk;i, zk−1;i), and using cI(uk;i|zk−1;i) = N (0,Γk;i) from (4.64),

the term γ(zk−1;i) in (4.6) can be solved as follows,

γ(zk−1;i) =

∫
cI(uk;i|zk−1;i) exp(−β(uk;i, zk−1;i))duk;i,

=

∫
N (0,Γk;i) exp(−β(uk;i, zk−1;i))duk;i

=|2πΓk;i|−
1
2

∫
exp

{
− 1

2

[
uTk;iΓ

−1
k;iuk;i + (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i

+ gi(zk−1;i)uk;i)
T Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i)

+ 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i)
TM2,k;ihi(yk−1;i)yk−1;i

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + ω̂k;i

]}
duk;i,

=|2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

T Q̃k;i(f1i(zk−1;i)

× xk−1;i + f2i(zk−1;i)yk−1;i) + 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)
TM2,k;i

× hi(yk−1;i)yk−1;i + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + ω̂k;i

]}
×
∫

exp

{
−1

2

[
uTk;i[Γ

−1
k;i + gTi (zk−1;i)Q̃k;igi(zk−1;i)]uk;i

+ 2uTk;i[g
T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;i

× hi(yk−1;i)yk−1;i]

]}
. (F.8)

The integral in (F.8) can be further evaluated by completing the square over uk;i which has been

explained by Property 1 in Appendix A. Let us define Γ̄k;i = [Γ−1
k;i + gTi (zk−1;i)Q̃k;igi(zk−1;i)]

−1.

This gives the following,
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Table C:

γ(zk−1;i) = |2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

T Q̃k;i

× (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i) + 2(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i)
TM2,k;ihi(yk−1;i)yk−1;i + yTk−1;ih

T
i (yk−1;i)M3,k;i

× hi(yk−1;i)yk−1;i + ω̂k;i

]}
× exp

{
−1

2

[
−
(
gTi (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)

× yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

)T
Γ̄k;i

(
gTi (zk−1;i)Q̃k;i

× (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;i

× hi(yk−1;i)yk−1;i

)]}

∫
exp(Y )duk;i =



×
∫

exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i

+f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)T
Γ̄−1
k;i

×
(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

+gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)]}
duk;i.

The integral
∫

exp(Y )duk;i in Table C can be evaluated using Property 2 in Appendix A such

that, ∫
exp(Y )duk;i = |2π|

1
2 |Γ̄k;i|

1
2 . (F.9)

After expanding the brackets and making the substitution of ω̂k;i as given by (F.7), the final term
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γ(zk−1;i) is obtained,

γ(zk−1;i) =|Γk;i|−
1
2 |Γ̄k;i|

1
2 exp

{
−1

2

[
(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

T Q̃k;i

× (f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i) + 2(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)

× yk−1;i)
TM2,k;ihi(yk−1;i)yk−1;i + yTk−1;ih

T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i

+ xTk−1;iD
T
1;iM1,k;iQ1;iD1;ixk−1;i + yTk−1;iD

T
2;iM3,k;iQ2;iD2;iyk−1;i + Vk;i

]}
× exp

{
−1

2

[
−
(
gTi (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

+ gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

)T
Γ̄k;i

(
gTi (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

)]}
,

= exp

{
−1

2

[
xTk−1;i

(
−fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)Q̃k;if1i(zk−1;i)

+ fT1i(zk−1;i)Q̃k;if1i(zk−1;i) +DT
1;iM1,k;iQ1;iD1;i

)
xk−1;i + 2xTk−1;i

(
fT1i(zk−1;i)Q̃k;i

× f2i(zk−1;i) + fT1i(zk−1;i)M2,k;ihi(yk−1;i)− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;i

× gTi (zk−1;i)Q̃k;if2i(zk−1;i)− fT1i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;i

× hi(yk−1;i)

)
yk−1;i + yTk−1;i

(
fT2i(zk−1;i)Q̃k;if2i(zk−1;i) + 2fT2i(zk−1;i)M2,k;i

× hi(yk−1;i) + hTi (yk−1;i)M3,k;ihi(yk−1;i)− fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)

× Q̃k;if2i(zk−1;i)− hTi (yk−1;i)M2,k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2fT2i(zk−1;i)Q̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

+DT
2;iM3,k;iQ2;iD2;i

)
yk−1;i +

(
Vk;i + ln |Γk;i|+ ln |Γ−1

k;i + gTi (xk−1;i)

× Q̃k;igi(xk−1;i)|
)]}

, (F.10)

which justifies the form of the performance index (4.70) and the Riccati equation solutions and con-

stant term given by equations (4.72) - (4.75).

F.2 Optimal Randomised Controller, c∗(uk;i|zk−1;i)

The optimal randomised controller is obtained by evaluating the optimal control law in (4.5) given by

Proposition 4 in Chapter 4.

Using the same strategy as was explained in Appendix B in Definition 1, only exp(Y )∫
exp(Y )duk;i

needs

to be computed to find c∗(uk;i|zk−1;i). The exponential exp(Y ) is obtained from Table C and
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∫
exp(Y )duk;i is solved in (F.9). Thus, the optimal randomised controller is given by,

c∗(uk;i|zk−1;i) =|2π|−
1
2 |Γ̄k;i|−

1
2 exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i

+ f2i(zk−1;i)yk−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)T
Γ̄−1
k;i

×
(
uk;i + Γ̄k;i[g

T
i (zk−1;i)Q̃k;i(f1i(zk−1;i)xk−1;i + f2i(zk−1;i)yk−1;i)

+ gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i]

)]}
, (F.11)

which is the desired form as given by (4.65) in Theorem 7, in Chapter 4.
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Appendix G

Derivation of the Randomised Controller

for Tracking Control of Nonlinear

Systems with Multiplicative Noises

The derivation of the FP control design for a tracking control objective is obtained following Propo-

sition 5 in Chapter 5. Theorem 8 describes the local optimal randomised controller for nonlinear

systems with multiplicative noises for subsystem i.

The proof is split into two parts. The first part contributes to the justification of the form of

− ln(γ(nk;i)) as defined in equation (5.34) and the Riccati equation solutions in Theorem 8. The

second half verifies the form of the randomised optimal controller c∗(uk;i|nk−1;i) given by (5.28).

G.1 Optimal Performance Index, − ln(γ(nk;i))

For this proof, the form of the quadratic performance index in (5.34) is assumed to be true, for which

the terms β1(uk;i, nk−1;i) and β2(uk;i, nk−1;i) are evaluated. These terms are then substituted in (5.8)

given by Proposition 5 in Chapter 5 to obtain γ(nk−1;i) with the expectation to justify the Riccati

equations (5.37) - (5.39), the linear terms (5.40) - (5.41) and the quadratic cost function (5.34).

Hence, the first step consists of computing β1(uk;i, nk−1;i) defined in (5.9) by substituting the actual
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and ideal distributions of the tracking error ek;i given by (5.22) - (5.25), respectively. This gives,

β1(uk;i, nk−1;i) =

∫
s(ek;i|uk;i, nk−1;i) ln

(
s(ek;i|uk;i, nk−1;i)

sI(ek;i|uk;i, nk−1;i)

)
dek;i,

=

∫
N (êk;i,Σek;i)

[
−1

2
ln(2π|Σek;i |)−

1

2
(ek;i − êk;i)

TΣ−1
ek;i

(ek;i − êk;i)

+
1

2
ln(2π|Σ2,k;i|) +

1

2
eTk;iΣ

−1
2,k;iek;i

]
dek;i,

=

∫
N (êk;i,Σek;i)

{
1

2

[
ln

(
|Σ2,k;i|
|Σek;i |

)
− eTk;iΣ

−1
ek;i
ek;i + eTk;iΣ

−1
2,k;iek;i

+ 2eTk;iΣ
−1
ek;i
êk;i − êTk;iΣ

−1
ek;i
êk;i

]}
dek;i,

=

∫
N (êk;i,Σek;i)

{
−1

2

[
ln

( |Σek;i |
|Σ2,k;i|

)
+ eTk;i(Σ

−1
ek;i
− Σ−1

2,k;i)ek;i − 2eTk;iΣ
−1
ek;i
êk;i

+ êTk;iΣ
−1
ek;i
êk;i

]}
dek;i,

=
1

2
êTk;iΣ

−1
ek;i
êk;i +

∫
N (êk;i,Σek;i)

{
−1

2

[
ln

( |Σek;i |
|Σ2,k;i|

)
+ (ek;i − êk;i)

T

× (Σ−1
ek;i
− Σ−1

2,k;i)(ek;i − êk;i) + 2eTk;i(Σ
−1
ek;i
− Σ−1

2,k;i)êk;i

− êTk;i(Σ
−1
ek;i
− Σ−1

2,k;i)êk;i

]}
dek;i,

=
1

2

{
êTk;iΣ

−1
ek;i
êk;i − tr(Σek;iΣ

−1
2,k;i) + n− tr(Σek;i [Σ

−1
ek;i
− Σ−1

2,k;i])

− êTk;i(Σ
−1
ek;i
− Σ−1

2,k;i)êk;i

}
,

=
1

2

{
���

���êTk;iΣ
−1
ek;i
êk;i −���

���tr(Σek;iΣ
−1
2,k;i) +�n−�n+

���
���tr(Σek;iΣ
−1
2,k;i)

+ êTk;iΣ
−1
2,k;iêk;i −���

���êTk;iΣ
−1
ek;i
êk;i

}
,

=
1

2
êTk;iΣ

−1
2,k;iêk;i,

=(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i)
TΣ−1

2,k;i

× (f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i), (G.1)

where equation (5.23) has been used.

Thereafter, β2(uk;i, nk−1;i) defined in (5.10) is evaluated for which ln(γ̃(ek;i, yk−1;i)) defined

in (5.11) needs to be solved first. The actual distribution of the external states defined in (5.15) and the

assumed form of the performance index, namely− ln(γ(nk;i)) = 1
2(eTk;iM1,k;iek;i+2eTk;iM2,k;iyk;i+

yTk;iM3,k;iyk;i+P1,k;iek;i+P2,k;iyk;i+Vk;i) given by (5.34) are substituted to solve ln(γ̃(ek;i, yk−1;i))
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as follows,

− ln(γ̃(xk;i, yk−1;i)) =−
∫
s(yk;i|yk−1;i) ln(γ(nk;i))dyk;i,

=

∫
N (ŷk;i,Σy;i)

{
1

2

[
eTk;iM1,k;iek;i + 2eTk;iM2,k;iyk;i + yTk;iM3,k;iyk;i

+ P1,k;iek;i + P2,k;iyk;i + Vk;i

]}
dyk;i,

=
1

2

(
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i + Vk;i

)
+

1

2

∫
N (ŷk;i,Σy;i)

×
[
(yk;i − ŷk;i)

TM3,k;i(yk;i − ŷk;i) + 2ŷTk;iM3,k;iyk;i − ŷTk;iM3,k;iŷk;i

+ P2,k;iyk;i

]
dyk;i,

=
1

2

(
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i + Vk;i + tr(M3,k;iΣy;i)

+ ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i

)
. (G.2)

Substituting (G.2) into β2(uk;i, nk−1;i) gives,

β2(uk;i, nk−1;i) =

∫
s(ek;i|uk;i, nk−1;i)

[
1

2

(
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i

+ Vk;i + tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i

)]
dek;i,

=
1

2

∫
N (êk;i,Σek;i)

[
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i

]
dek;i

+
1

2

(
tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i + Vk;i

)
,

=
1

2

∫
N (êk;i,Σek;i)

[
(ek;i − êk;i)

TM1,k;i(ek;i − êk;i) + 2êTk;iM1,k;iek;i

− êTk;iM1,k;iêk;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i

]
dek;i +

1

2

(
tr(M3,k;iΣy;i)

+ ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i + Vk;i

)
,

=
1

2

(
êTk;iM1,k;iêk;i + 2êTk;iM2,k;iŷk;i + P1,k;iêk;i + ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i

+ tr(M1,k;iΣek;i) + tr(M3,k;iΣy;i) + Vk;i

)
,
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β2(uk;i, nk−1;i) =
1

2

(
(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i)

T

×M1,k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i)

+ 2(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i)
T

×M2,k;ihi(yk−1;i)yk−1;i + P1,k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i

+ gi(zk−1;i)uk;i + Cxr,k−1;i) + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i

+ P2,k;ihi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

)
, (G.3)

where we used equations (5.23) and (5.17). In addition, using equations (5.24) and (5.19), the traces

tr(M1,k;iΣek;i) and tr(M3,k;iΣy;i) can be further evaluated to obtain,

tr(M1,k;iΣx;i) =tr
(
M1,k;i

(
eTk−1;iD

T
1;iQ1;iD1;iek−1;i + 2eTk−1;iD

T
1;iQ1;iD1;ixr,k−1;i

+ xTr,k−1;iD
T
1;iQ1;iD1;ixr,k−1;i + xTr,k−1;iD̃

TQr;iD̃xr,k−1;i

))
,

=eTk−1;iD
T
1;iM1,k;iQ1;iD1;iek−1;i + 2eTk−1;iD

T
1;iM1,k;iQ1;iD1;ixr,k−1;i

+ xTr,k−1;iD
T
1;iM1,k;iQ1;iD1;ixr,k−1;i + xTr,k−1;iD̃

T
i M1,k;iQr;iD̃ixr,k−1;i (G.4)

and,

tr(M3,k;iΣy;i) =tr(M3,k;i(y
T
k−1;iD

T
2;iQ2;iD2;iyk−1;i)),

=yTk−1;iD
T
2;iM3,k;iQ2;iD2;iyk−1;i. (G.5)

Therefore, the final term β2(uk;i, nk−1;i) is found to be,

β2(uk;i, nk−1;i) =
1

2

(
(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i)

T

×M1,k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i)

+ 2(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i + Cxr,k−1;i)
T

×M2,k;ihi(yk−1;i)yk−1;i + P1,k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i

+ gi(zk−1;i)uk;i + Cxr,k−1;i) + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i

+ P2,k;ihi(yk−1;i)yk−1;i + ω̂k;i

)
, (G.6)
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where,

ω̂k;i =eTk−1;iD
T
1;iM1,k;iQ1;iD1;iek−1;i + 2eTk−1;iD

T
1;iM1,k;iQ1;iD1;ixr,k−1;i

+ xTr,k−1;iD
T
1;iM1,k;iQ1;iD1;ixr,k−1;i + xTr,k−1;iD̃

T
i M1,k;iQr;iD̃ixr,k−1;i

+ yTk−1;iD
T
2;iM3,k;iQ2;iD2;iyk−1;i + Vk;i. (G.7)

Following the evaluation of β1(uk;i, nk−1;i) in (G.1) and β2(uk;i, nk−1;i) in (G.6), and using cI(uk;i|nk−1;i) =

N (ûk;i,Γk;i) from (5.26), the term γ(nk−1;i) defined in (5.8) can be solved as follows,

γ(nk−1;i) =

∫
cI(uk;i|nk−1;i) exp(−β1(uk;i, nk−1;i)− β2(uk;i, nk−1;i))duk;i,

=|2πΓk;i|−
1
2

∫
exp

{
− 1

2

(
(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i

+ Cxr,k−1;i)
T S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i

+ Cxr,k−1;i) + 2(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + gi(zk−1;i)uk;i

+ Cxr,k−1;i)
TM2,k;ihi(yk−1;i)yk−1;i + P1,k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i

+ gi(zk−1;i)uk;i + Cxr,k−1;i) + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + P2,k;i

× hi(yk−1;i)yk−1;i + ω̂k;i + ûTk;iΓ
−1
k;i ûk;i − 2uTk;iΓ

−1
k;i ûk;i + uTk;iΓ

−1
k;iuk;i

)}
duk;i,

=|2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

T S̃k;i

× (f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i) + 2(f1i(zk−1;i)ek−1;i

+ f2i(zk−1;i)yk−1;i + Cxr,k−1;i)
TM2,k;ihi(yk−1;i)yk−1;i + P1,k;i(f1i(zk−1;i)ek−1;i

+ f2i(zk−1;i)yk−1;i + Cxr,k−1;i) + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i

+ P2,k;ihi(yk−1;i)yk−1;i + ω̂k;i + ûTk;iΓ
−1
k;i ûk;i

]}
×
∫

exp

{
−1

2

[
uTk;i[Γ

−1
k;i + gTi (zk−1;i)S̃k;igi(zk−1;i)]uk;i

+ 2uTk;i[g
T
i (zk−1;i)S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

+ gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i]

]}
, (G.8)

where S̃k;i = (M1,k;i + Σ−1
2,k;i). The integral in (G.8) can be further evaluated by completing the

square over uk;i which has been explained in Appendix A, Property 1. The definition Γ̄k;i = [Γ−1
k;i +

gTi (zk−1;i)S̃k;igi(zk−1;i)]
−1 is introduced for notational convenience. This results into the following,
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Table D:

γ(zk−1;i) = |2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i

+ Cxr,k−1;i)
T S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

+ 2(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)
TM2,k;i

× hi(yk−1;i)yk−1;i + P1,k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i

+ Cxr,k−1;i) + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + P2,k;i

× hi(yk−1;i)yk−1;i + ω̂k;i + ûTk;iΓ
−1
k;i ûk;i

]}
× exp

{
−1

2

[
−
(
gTi (zk−1;i)S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i

+ Cxr,k−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (zk−1;i)P

T
1,k;i

− Γ−1
k;i ûk;i

)T
Γ̄k;i

(
gTi (zk−1;i)S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)

× yk−1;i + Cxr,k−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

+
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i

)]}

∫
exp(Y )duk;i =



×
∫

exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (zk−1;i)S̃k;i(f1i(zk−1;i)ek−1;i

+f2i(zk−1;i)yk−1;i + Cxr,k−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

+
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i]

)T
Γ̄−1
k;i

(
uk;i + Γ̄k;i[g

T
i (zk−1;i)S̃k;i

×(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i) + gTi (zk−1;i)

×M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i]

)]}
duk;i.

(G.9)

The integral
∫

exp(Y )duk;i in Table D can be evaluated using Property 2 in Appendix A such

that,

∫
exp(Y )duk;i = |2π|

1
2 |Γ̄k;i|

1
2 . (G.10)

After expanding the brackets and making the substitution of ω̂k;i as given by (G.7), the final term
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γ(nk−1;i) is obtained as follows,

γ(nk−1;i) =|Γk;i|−
1
2 |Γ̄k;i|

1
2 exp

{
−1

2

[
(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

T

× S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

+ 2(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)
TM2,k;ihi(yk−1;i)yk−1;i

+ P1,k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + P2,k;ihi(yk−1;i)yk−1;i + ûTk;iΓ

−1
k;i ûk;i

+ eTk−1;iD
T
1;iM1,k;iQ1;iD1;iek−1;i + 2eTk−1;iD

T
1;iM1,k;iQ1;iD1;ixr,k−1;i

+ xTr,k−1;iD
T
1;iM1,k;iQ1;iD1;ixr,k−1;i + xTr,k−1;iD̃

T
i M1,k;iQr;iD̃ixr,k−1;i

+ yTk−1;iD
T
2;iM3,k;iQ2;iD2;iyk−1;i + Vk;i

]}
× exp

{
−1

2

[
−
(
gTi (zk−1;i)S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

+ gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i

)T
× Γ̄k;i

(
gTi (zk−1;i)S̃k;i(f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i)

+ gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i

)]}
,

which can be further evaluated to obtain,
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= exp

{
−1

2

[
eTk−1;i

(
−fT1i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)S̃k;if1i(zk−1;i)

+ fT1i(zk−1;i)S̃k;if1i(zk−1;i) +DT
1;iM1,k;iQ1;iD1;i

)
ek−1;i

+ 2eTk−1;i

(
fT1i(zk−1;i)S̃k;if2i(zk−1;i) + fT1i(zk−1;i)M2,k;ihi(yk−1;i)

− fT1i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)S̃k;if2i(zk−1;i)

− fT1i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

)
yk−1;i

+ yTk−1;i

(
fT2i(zk−1;i)S̃k;if2i(zk−1;i) + 2fT2i(zk−1;i)M2,k;ihi(yk−1;i)

+ hTi (yk−1;i)M3,k;ihi(yk−1;i)− fT2i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)

× S̃k;if2i(zk−1;i)− hTi (yk−1;i)M2,k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2fT2i(zk−1;i)S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)M2,k;ihi(yk−1;i) +DT

2;iM3,k;iQ2;iD2;i

)
yk−1;i

+

(
2xTr,k−1;iC

T S̃k;if1i(zk−1;i) + P1,k;if1i(zk−1;i) + 2xTr,k−1;iD
T
1;iM1,k;iQ1;iD1;i

− 2xTr,k−1;iC
T S̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)S̃k;if1i(zk−1;i)

− 2(0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (zk−1;i)S̃k;if1i(zk−1;i)

)
ek−1;i

+

(
2xTr,k−1;iC

T S̃k;if2i(zk−1;i) + 2xTr,k−1;iC
TM2,k;ihi(yk−1;i) + P1,k;if2i(zk−1;i)

+ P2,k;ihi(yk−1;i)− 2xTr,k−1;iC
T S̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)S̃k;if2i(zk−1;i)

− 2(0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (zk−1;i)S̃k;if2i(zk−1;i)

− 2xTr,k;iC
T S̃k;igi(zk−1;i)Γ̄k;ig

T
i (zk−1;i)M2,k;ihi(yk−1;i)

− 2(0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (zk−1;i)M2,k;ihi(yk−1;i)

)
yk−1;i

+

(
Vk;i + xTr,k−1;iC

T S̃k;iCxr,k−1;i + P1,k;iCxr,k−1;i + xTr,k−1;iD
T
1;iM1,k;iQ1;iD1;ixr,k−1;i

+ xTr,k−1;iD̃
T
i M1,k;iQr;iD̃ixr,k−1;i + ûTk;iΓ

−1
k;i ûk;i − xTr,k−1;iC

T S̃k;igi(zk−1;i)Γ̄k;ig
T
i (zk−1;i)

× S̃k;iCxr,k−1;i − 2xTr,k−1;iC
T S̃k;igi(zk−1;i)Γ̄k;i(0.5g

T
i (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i)

− (0.5gTi (zk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;i(0.5g

T
i (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i)

+ ln |Γk;i|+ ln |Γ−1
k;i + gTi (xk−1;i)S̃k;igi(xk−1;i)|

)]}
, (G.11)

which justifies the form of the performance index given by (5.34) and the Riccati equation solu-

tions (5.37) - (5.39), the linear terms (5.40) - (5.41) .
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G.2 Optimal Randomised Controller, c∗(uk;i|nk−1;i)

The optimal randomised controller is obtained by evaluating the optimal control law in (5.7) given by

Proposition 5 in Chapter 5.

Using the same approach as was explained in Appendix B in Definition 1, only exp(Y )∫
exp(Y )duk;i

needs to be computed to find the local randomised controller c∗(uk;i|nk−1;i) for node i. The expo-

nential exp(Y ) is obtained from Table D and
∫

exp(Y )duk;i is solved in (G.10). Thus, the optimal

randomised controller is given by,

c∗(uk;i|zk−1;i) =|2π|−
1
2 |Γ̄k;i|−

1
2 exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (zk−1;i)S̃k;i(f1i(zk−1;i)ek−1;i

+ f2i(zk−1;i)yk−1;i + Cxr,k−1;i) + gTi (zk−1;i)M2,k;ihi(yk−1;i)yk−1;i

+
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i]

)T
Γ̄−1
k;i

(
uk;i + Γ̄k;i[g

T
i (zk−1;i)S̃k;i

× (f1i(zk−1;i)ek−1;i + f2i(zk−1;i)yk−1;i + Cxr,k−1;i) + gTi (zk−1;i)M2,k;i

× hi(yk−1;i)yk−1;i +
1

2
gTi (zk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i]

)]}
, (G.12)

which is the desired form as given by (5.28) in Theorem 8.
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Appendix H

Derivation of the Randomised Controller

for Formation Control of Nonlinear

Systems with Additive Noises

For the derivation of local randomised controllers with the objective of formation control, Proposi-

tion 5 in Chapter 5 is considered. Theorem 9 in Chapter 5 describes the local optimal randomised

controller in (5.63) for nonlinear systems with additive noises for subsystem i where the objective is

formation control.

The first part in this section verifies the form of− ln(γ(nk;i)) in (5.69) and the Riccati equation so-

lutions in Theorem 9. The second half proves the stated randomised optimal controller c∗(uk;i|nk−1;i)

given by (5.63) in Theorem 9.

H.1 Optimal Performance Index, − ln(γ(nk;i))

It is assumed that the form of the quadratic cost function in (5.69) is true, depending on which the

terms β1(uk;i, nk−1;i) and β2(uk;i, nk−1;i) are evaluated. These terms are then substituted in (5.8)

given by Proposition 5 in Chapter 5 to justify Theorem 9.

Firstly, β1(uk;i, nk−1;i) given by (5.9) is evaluated by substituting the actual and ideal distributions
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of the tracking error ek;i given by (5.58) - (5.60), respectively such that,

β1(uk;i, nk−1;i) =

∫
s(ek;i|uk;i, ek−1;i) ln

(
s(ek;i|uk;i, ek−1;i)

sI(ek;i|uk;i, ek−1;i)

)
dek;i,

=

∫
N (êk;i,Σek;i)

[
−1

2
ln(2π|Σek;i |)−

1

2
(ek;i − êk;i)

TΣ−1
ek;i

(ek;i − êk;i)

+
1

2
ln(2π|Σek;i |) +

1

2
eTk;iΣ

−1
ek;i
ek;i

]
dek;i,

=
1

2
êTk;iΣ

−1
ek;i
êk;i,

= (f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i)
TΣ−1

ek;i

× (f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i), (H.1)

where equation (5.59) has been used.

Furthermore, β2(uk;i, nk−1;i) defined in (5.10) is evaluated which requires the computation of

ln(γ̃(ek;i, yk−1;i)) defined in (5.11). The actual distribution of the external states defined in (5.55)

and the assumed form of the performance index, namely,

− ln(γ(nk;i)) = 1
2(eTk;iM1,k;iek;i + 2eTk;iM2,k;iyk;i + yTk;iM3,k;iyk;i + P1,k;iek;i + P2,k;iyk;i + Vk;i)

which is given by (5.69) are substituted to solve ln(γ̃(ek;i, yk−1;i)) as follows,

− ln(γ̃(xk;i, yk−1;i)) =−
∫
s(yk;i|yk−1;i) ln(γ(nk;i))dyk;i,

=

∫
N (ŷk;i,Σy;i)

{
1

2

[
eTk;iM1,k;iek;i + 2eTk;iM2,k;iyk;i + yTk;iM3,k;iyk;i

+ P1,k;iek;i + P2,k;iyk;i + Vk;i

]}
dyk;i,

=
1

2

(
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i + Vk;i

)
+

∫
N (ŷk;i,Σy;i)

×
{

1

2

[
(yk;i − ŷk;i)

TM3,k;i(yk;i − ŷk;i) + 2ŷTk;iM3,k;iyk;i − ŷTk;iM3,k;iŷk;i

+ P2,k;iyk;i

]}
dyk;i,

=
1

2

(
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i + Vk;i + tr(M3,k;iΣy;i)

+ ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i

)
. (H.2)
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Substituting (H.2) into β2(uk;i, nk−1;i) gives,

β2(uk;i, nk−1;i) =

∫
s(ek;i|uk;i, ek−1;i)

[
1

2

(
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i

+ Vk;i + tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i

)]
dek;i,

=
1

2

∫
N (êk;i,Σek;i)

[
eTk;iM1,k;iek;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i

]
dek;i

+
1

2

(
tr(M3,k;iΣy;i) + ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i + Vk;i

)
,

=
1

2

∫
N (êk;i,Σek;i)

[
(ek;i − êk;i)

TM1,k;i(ek;i − êk;i) + 2êTk;iM1,k;iek;i

− êTk;iM1,k;iêk;i + P1,k;iek;i + 2eTk;iM2,k;iŷk;i

]
dek;i +

1

2

(
tr(M3,k;iΣy;i)

+ ŷTk;iM3,k;iŷk;i + P2,k;iŷk;i + Vk;i

)
,

=
1

2

(
êTk;iM1,k;iêk;i + 2êTk;iM2,k;iŷk;i + P1,k;iêk;i + ŷTk;iM3,k;iŷk;i

+ tr(M1,k;iΣek;i) + tr(M3,k;iΣy;i) + P2,k;iŷk;i + Vk;i

)
,

=
1

2

(
(f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i)

TM1,k;i(f1i(xk−1;i)ek−1;i

+ gi(xk−1;i)uk;i + x̃r,k;i) + 2(f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i)
T

×M2,k;ihi(yk−1;i)yk−1;i + P1,k;i(f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i)

+ P2,k;ihi(yk−1;i)yk−1;i + yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i

+ tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

)
, (H.3)

where we used equations (5.59) and (5.55). Since β1(uk;i, nk−1;i) in (H.1) and β2(uk;i, nk−1;i)

in (H.3) have been derived, and since we know that cI(uk;i|zk−1;i) = N (ûk;i,Γk;i) from (5.61),

the term γ(nk−1;i) given in (5.8) can be evaluated such that,
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γ(nk−1;i) =

∫
cI(uk;i|nk−1;i) exp(−β1(uk;i, nk−1;i)− β2(uk;i, nk−1;i))duk;i,

=|2πΓk;i|−
1
2

∫
exp

{
− 1

2

(
(f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i)

T

× S̃k;i(f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i)

+ 2(f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i)
TM2,k;ihi(yk−1;i)yk−1;i

+ P1,k;i(f1i(xk−1;i)ek−1;i + gi(xk−1;i)uk;i + x̃r,k;i) + P2,k;ihi(yk−1;i)yk−1;i

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + tr(M1,k;iΣx;i)

+ tr(M3,k;iΣy;i) + Vk;i + ûTk;iΓ
−1
k;i ûk;i − 2uTk;iΓ

−1
k;i ûk;i + uTk;iΓ

−1
k;iuk;i

)}
duk;i,

=|2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(xk−1;i)ek−1;i + x̃r,k;i)

T S̃k;i

× (f1i(xk−1;i)ek−1;i + x̃r,k;i) + 2(f1i(xk−1;i)ek−1;i + x̃r,k;i)
T

×M2,k;ihi(yk−1;i)yk−1;i + P1,k;i(f1i(xk−1;i)ek−1;i + x̃r,k;i)

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + P2,k;ihi(yk−1;i)yk−1;i

+ tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i + ûTk;iΓ
−1
k;i ûk;i

]}
×
∫

exp

{
−1

2

[
uTk;i[Γ

−1
k;i + gTi (xk−1;i)S̃k;igi(xk−1;i)]uk;i

+ 2uTk;i[g
T
i (xk−1;i)S̃k;i(f1i(xk−1;i)xk−1;i + x̃r,k;i) + gTi (xk−1;i)

×M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i]

]}
, (H.4)

where S̃k;i = (M1,k;i + Σ−1
ek;i

).

The integral in (H.4) can be further evaluated by completing the square over uk;i which has been

explained in Appendix A, Property 1. The definition Γ̄k;i = [Γ−1
k;i + gTi (xk−1;i)S̃k;igi(xk−1;i)]

−1 is

introduced for notational convenience. This results in the following,
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Table E:

γ(xk−1;i) = |2πΓk;i|−
1
2 exp

{
−1

2

[
(f1i(xk−1;i)ek−1;i + x̃r,k;i)

T S̃k;i

× (f1i(xk−1;i)ek−1;i + x̃r,k;i) + 2(f1i(xk−1;i)ek−1;i + x̃r,k;i)
T

×M2,k;ihi(yk−1;i)yk−1;i + P1,k;i(f1i(xk−1;i)ek−1;i + x̃r,k;i)

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + P2,k;ihi(yk−1;i)yk−1;i

+ tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i + ûTk;iΓ
−1
k;i ûk;i

]}
× exp

{
−1

2

[
−
(
gTi (xk−1;i)S̃k;i(f1i(xk−1;i)xk−1;i + x̃r,k;i)

+ gTi (xk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i

)T
× Γ̄k;i

(
gTi (xk−1;i)S̃k;i(f1i(xk−1;i)xk−1;i + x̃r,k;i) + gTi (xk−1;i)

×M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i

)]}

∫
exp(Y )duk;i =



×
∫

exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (xk−1;i)S̃k;i(f1i(xk−1;i)xk−1;i

+x̃r,k;i) + gTi (xk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i

−Γ−1
k;i ûk;i]

)T
Γ̄−1
k;i

(
uk;i + Γ̄k;i[g

T
i (xk−1;i)S̃k;i(f1i(xk−1;i)xk−1;i

+x̃r,k;i) + gTi (xk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i

−Γ−1
k;i ûk;i]

)]}
duk;i.

(H.5)

The integral
∫

exp(Y )duk;i in Table E can be evaluated using Property 2 in Appendix A such

that,

∫
exp(Y )duk;i = |2π|

1
2 |Γ̄k;i|

1
2 . (H.6)
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After expanding the brackets, the final term γ(nk−1;i) is obtained,

γ(nk−1;i) =|Γk;i|−
1
2 |Γ̄k;i|

1
2 exp

{
−1

2

[
(f1i(xk−1;i)ek−1;i + x̃r,k;i)

T S̃k;i

× (f1i(xk−1;i)ek−1;i + x̃r,k;i) + 2(f1i(xk−1;i)ek−1;i + x̃r,k;i)
TM2,k;i

× hi(yk−1;i)yk−1;i + P1,k;i(f1i(xk−1;i)ek−1;i + x̃r,k;i)

+ yTk−1;ih
T
i (yk−1;i)M3,k;ihi(yk−1;i)yk−1;i + P2,k;ihi(yk−1;i)yk−1;i

+ ûTk;iΓ
−1
k;i ûk;i + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i) + Vk;i

]}
× exp

{
−1

2

[
−
(
gTi (xk−1;i)S̃k;i(f1i(xk−1;i)xk−1;i + x̃r,k;i)

+ gTi (xk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i

)T
× Γ̄k;i

(
gTi (xk−1;i)S̃k;i(f1i(xk−1;i)xk−1;i + x̃r,k;i)

+ gTi (xk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i

)]}
,

= exp

{
−1

2

[
eTk−1;i

(
−fT1i(xk−1;i)S̃k;igi(xk−1;i)Γ̄k;ig

T
i (xk−1;i)S̃k;if1i(xk−1;i)

+ fT1i(xk−1;i)S̃k;if1i(xk−1;i)

)
ek−1;i + 2eTk−1;i

(
fT1i(xk−1;i)M2,k;ihi(yk−1;i)

− fT1i(xk−1;i)S̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)M2,k;ihi(yk−1;i),

)
yk−1;i

+ yTk−1;i

(
hTi (yk−1;i)M3,k;ihi(yk−1;i)− hTi (yk−1;i)M2,k;igi(xk−1;i)Γ̄k;i

× gTi (xk−1;i)M2,k;ihi(yk−1;i)

)
yk−1;i

+

(
2x̃Tr,k;iS̃k;if1i(xk−1;i) + P1,k;if1i(xk−1;i)− 2x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;i

× gTi (xk−1;i)S̃k;if1i(xk−1;i)− 2(0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;i

× gTi (xk−1;i)S̃k;if1i(xk−1;i)

)
ek−1;i

+

(
2x̃Tr,k;iM2,k;ihi(yk−1;i) + P2,k;ihi(yk−1;i)

− 2x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)M2,k;ihi(yk−1;i)

− 2(0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;ig

T
i (xk−1;i)M2,k;ihi(yk−1;i)

)
yk−1;i
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+

(
Vk;i + x̃Tr,k;iS̃k;ix̃r,k;i + P1,k;ix̃r,k;i + ûTk;iΓ

−1
k;i ûk;i

− x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;ig
T
i (xk−1;i)S̃k;ix̃r,k;i − 2x̃Tr,k;iS̃k;igi(xk−1;i)Γ̄k;i

× (0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)− (0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i)
T Γ̄k;i

× (0.5gTi (xk−1;i)P
T
1,k;i − Γ−1

k;i ûk;i) + tr(M1,k;iΣx;i) + tr(M3,k;iΣy;i)

+ ln |Γk;i|+ ln |Γ−1
k;i + gTi (xk−1;i)S̃k;igi(xk−1;i)|

)]}
, (H.7)

which verifies the form of the performance index given by (5.69) and the Riccati equation solu-

tions (5.72) - (5.74), and the linear terms (5.75) - (5.76).

H.2 Proof: Optimal Randomised Controller c∗(uk;i|nk−1;i)

The local optimal randomised controller for node i for formation control is obtained by evaluating the

optimal control law in (5.7) given by Proposition 5 in Chapter 5.

Using the same approach as was explained in Appendix B in Definition 1, only exp(Y )∫
exp(Y )duk;i

needs

to be computed to find the local randomised controller c∗(uk;i|nk−1;i) for node i. The exponential

exp(Y ) is obtained from Table E and
∫

exp(Y )duk;i is solved in (H.6). Thus, the optimal randomised

controller for a formation control problem is given by,

c∗(uk;i|zk−1;i) =|2π|−
1
2 |Γ̄k;i|−

1
2 exp

{
−1

2

[(
uk;i + Γ̄k;i[g

T
i (xk−1;i)S̃k;i(f1i(xk−1;i)ek−1;i

+ x̃r,k;i) + gTi (xk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i

− Γ−1
k;i ûk;i]

)T
Γ̄−1
k;i

(
uk;i + Γ̄k;i[g

T
i (xk−1;i)S̃k;i(f1i(xk−1;i)ek−1;i + x̃r,k;i)

+ gTi (xk−1;i)M2,k;ihi(yk−1;i)yk−1;i +
1

2
gTi (xk−1;i)P

T
1,k;i − Γ−1

k;i ûk;i]

)]}
, (H.8)

which is the Gaussian distribution of the controller as described by (5.63) in Theorem 9.
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Appendix I

Convergence Analysis of a Decentralised

Nonlinear System with Additive Noises

This appendix provides the proof of Theorem 10. The equation in (5.85) can be explicitly written as,

ek;i =f1i(xk−1;i)ek + gi(xk−1;i)uk;i + (f1i − m̃(xk;j))xr,k−1;i + ε1k;i + εr,k;i,

=f1i(xk−1;i)ek + gi(xk−1;i)uk;i + W̃xr,k−1;i + ε1k;i + εr,k;i, (I.1)

yk;i =hi(yk−1;i)yk−1;i + ε2k;i. (I.2)

A two-dimensional example is presented to examine the dimensionality of the matrices and vec-

tors and ensuring they align with each other. We have,

nk =



e1,k

e2,k

y1,k

y2,k


=



f1i,1(xk−1;i) f1i,2(xk−1;i) 0 0

f1i,3(xk−1;i) f1i,4(xk−1;i) 0 0

0 0 hi,1(yk−1;i) hi,2(yk−1;i)

0 0 hi,3(yk−1;i) hi,4(yk−1;i)





e1,k−1;i

e2,k−1;i

y1,k−1;i

y2,k−1;i



+



g1i(xk−1;i)

g2i(xk−1;i)

0

0


uk;i +



(f1i,1(xk−1;i)− m̃1(xk;j)) (f1i,2(xk−1;i)− m̃2(xk;j))

(f1i,3(xk−1;i)− m̃3(xk;j)) (f1i,4(xk−1;i)− m̃4(xk;j))

0 0

0 0



×



xr,1,k−1;i

xr,2,k−1;i

0

0





ε1,1,k;i + εr,1,k;i

ε1,2,k;i + εr,2,k;i

ε2,1,k;i

ε2,2,k;i


. (I.3)
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For the convergence analysis, the dynamics given in equation (5.85) are considered. Using the derived

controller (5.63) and assuming that the steady state solution of the optimal controller gain has been

reached, the following can be states,

µk;i =−Kink−1;i −Wixr,k−1;i − Zi, (I.4)

where,

Ki =Γ̄k;ig
T
i (xk−1;i)

[
S̃if1i(xk−1;i) M2;ihi(yk−1;i)

]
, (I.5)

Wi =Γ̄k;ig
T
i (xk−1;i)S̃iW̃ , (I.6)

Zi =Γ̄k;i(0.5g
T
i (xk−1;i)P

T
1;i − Γ−1

k;i ûk;i), (I.7)

and where the definitions of M1;i, M2;i, and P1;i can be found in (5.72), (5.73), and (5.75), respec-

tively.

Let us define a Lyapunov function V̂k, which is positive definite, as follows,

V̂k−1;i =(nk−1;i + hi)
TMi(nk−1;i + hi) + nTk−1;iMink−1;i,

=2nTk−1;iMink−1;i + 2hTi Mink−1;i + hTi Mihi, (I.8)

where hi is some constant term and since it is assumed that steady state solution has been reached for

Mi and constant hi, there is no time dependency.
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The derivative of a Lyapunov function (I.8) is expected to be negative definite, and given by,

4V̂k−1;i = V̂k;i − V̂k−1;i,

=(nk;i + hi)
TMi(nk;i + hi) + nTk;iMink;i − (nk−1;i + hi)

TMi(nk−1;i + hi)− nTk−1;iMink−1;i,

=(fi(zk−1;i)nk−1;i + gi(zk−1;i)uk;i + εk;i + W̃xr,k−1;i + hi)
TMi

×(fi(zk−1;i)nk−1;i + gi(zk−1;i)uk;i + εk;i + W̃xr,k−1;i + hi)

+(fi(zk−1;i)nk−1;i + gi(zk−1;i)uk;i + εk;i + W̃xr,k−1;i)
TMi

×(fi(zk−1;i)nk−1;i + gi(zk−1;i)uk;i + εk;i + W̃xr,k−1;i)

−2nTk−1;iMink−1;i − 2nTk−1;iMihi − hTi Mihi,

using the fact that uk;i = µk;i = −Kink−1;i −Wixr,k−1;i − Zi,

=[fi(zk−1;i)nk−1;i − gi(zk−1;i)Kink−1;i − gi(zk−1;i)Wixr,k−1;i − gi(zk−1;i)Zi + εk;i

+W̃xr,k−1;i + hi]
TMi[fi(zk−1;i)nk−1;i − gi(zk−1;i)Kink−1;i − gi(zk−1;i)Wixr,k−1;i

−gi(zk−1;i)Zi + εk;i + W̃xr,k−1;i + hi]

+[fi(zk−1;i)nk−1;i − gi(zk−1;i)Kink−1;i − gi(zk−1;i)Wixr,k−1;i − gi(zk−1;i)Zi + εk;i

+ W̃xr,k−1;i]
TMi[fi(zk−1;i)nk−1;i − gi(zk−1;i)Kink−1;i − gi(zk−1;i)Wixr,k−1;i

−gi(zk−1;i)Zi + εk;i + W̃xr,k−1;i]− 2nTk−1;iMink−1;i − 2nTk−1;iMihi − hTi Mihi,

=
[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i − gi(zk−1;i)Zi + εk;i + hi

]T
Mi

×
[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i − gi(zk−1;i)Zi + εk;i + hi

]
+
[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i − gi(zk−1;i)Zi + εk;i

]T
Mi

×
[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i − gi(zk−1;i)Zi + εk;i

]
−2nTk−1;iMink−1;i − 2nTk−1;iMihi − hTi Mihi,

=2

[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i − gi(zk−1;i)Ziε

†
k;iεk;i + εk;i

]T
Mi

×
[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i − gi(zk−1;i)Ziε

†
k;iεk;i + εk;i

]
+

[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i − gi(zk−1;i)Ziε

†
k;iεk;i + εk;i

]T
Mihi

+hTi Mihi − 2nTk−1;iMink−1;i − 2nTk−1;iMihi − hTi Mihi,

=2

[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i + [I − gi(zk−1;i)Ziε

†
k;i]εk;i

]T
Mi

×
[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i + [I − gi(zk−1;i)Ziε

†
k;i]εk;i

]
+

[
(fi(zk−1;i)− gi(zk−1;i)Ki)nk−1;i + (W̃ − gi(zk−1;i)Wi)xr,k−1;i + [I − gi(zk−1;i)Ziε

†
k;i]εk;i

]T
Mihiε

†
k;iεk;i

−2nTk−1;iMink−1;i − 2nTk−1;iMihiε
†
k;iεk;i,

=mT
k−1;iDmk−1;i, (I.9)A.A.Z.Zafar, PhD Thesis, Aston University 2021 218



where ε†k;i is the pseudoinverse of εk;i and is defined by ε†k;i = (εTk;iεk;i)
−1εTk;i. The vector mk−1;i is

defined as,

mk−1;i =


nk−1;i

xr,k−1;i

εk;i

 , (I.10)

and matrix D is defined by (5.86) - (5.87).

As the derivative of the defined Lyapunov function (I.9) is negative definite, it can be said that

D < 0.

To satisfy this, let us define a small positive number σ, such that 0 < σ < λmax(Mi). The existence

of this number σ allows the following inequality to hold,

D < −σI, (I.11)

where λmax(Mi) is the maximum eigenvalue of matrix Mi.

The expectation, denoted as E[.], of the derivative of the Lyapunov function can be described by the

following inequality,

E[4V̂k−1;i] ≤ −σE[||mk−1;i||2] ≤ −σE[||ek−1;i||2]. (I.12)

Based on the definition of the Lyapunov function (I.8), the following can be said,

λmin(Mi)E[||ek−1;i||2] ≤ E[V̂k−1;i] ≤ λmax(Mi)E[||ek−1;i||2]. (I.13)

When we combine inequalities (I.12) and (I.13), we obtain,

E[V̂k;i]− E[V̂k−1;i] ≤ −
σ

λmax(Mi)
E[V̂k−1;i], (I.14)

which yields,

E[V̂k;i] ≤ θE[V̂k−1;i], (I.15)

where θ = 1− σ
λmax(Mi)

. From (I.15), we can easily obtain,

E[V̂k−1;i] ≤ θk−1E[V̂1], (I.16)
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which concludes that limk→∞E[V̂k−1;i] = 0.
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