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Principled machine learning
Yordan Raykov and David Saad

Abstract—We introduce the underlying concepts which give
rise to some of the commonly used machine learning methods
ideas, excluding deep-learning machines and neural networks.
We point to their advantages, limitations and potential use in
various areas of photonics. The main methods covered include
parametric and non-parametric regression and classification
techniques, kernel-based methods and support vector machines,
decision trees, probabilistic models, Bayesian graphs, mixture
models, Gaussian processes, message passing methods and visual
informatics.

Index Terms—Statistical machine learning, kernel-based
methods, probabilistic methods, deciion trees, message passing
techniques, dimensionality reduction, visual informatics

I. INTRODUCTION

Engineering successes of Deep Learning Machines (DLM)
have both fascinated and bewildered the engineering and
scientific communities in recent years, drawing attention to
the potential presented by this new form of established
neural network methodology. While there is clear evidence
for the success of DLM, the substantial effort invested in
trying to understand how they work and to establish a clear,
principled and rigorous mathematical framework has had
limited success. Nevertheless, neural networks in general and
DLM in particular have become a ubiquitous and commonly-
used tool in many application domains. So much so, that the
term machine learning has almost become synonymous to
neural networks-based tools.

Machine learning refers to a collection of data-driven
methods, both principled and heuristic, aimed at carrying
out a range of non-trivial tasks including regression,
classification, optimization, forecasting, dimensionality
reduction and visual informatics. Our view is that Artificial
Intelligence encompasses all methods used for carrying
out “intelligent” tasks, including rule-based methods and
heuristics, while machine-learning techniques focus on
data-driven methods, one of which are neural networks and
DLM is a specific manifestation of it.

While neural networks and DLM have gained popularity in
the last decade and are commonly used across a broad range
of applications, there are several reasons to consider more
principled machine learning techniques. Some of the methods
offer interpretability and explainability of the results obtained,
which are particularly important when critical decisions should
be taken and for gaining insight into the rationale behind
the decisions; kernel-based methods extend interpolation

Yordan Raykov is affiliated with the Horizon Digital Economy Research
Institute and the Statistics and Probability Research Group, University of
Nottingham, United Kingdom e-mail: yordan.raykov@nottingham.ac.uk

David Saad is with the Non-linearity and Complexity Research
Group, Aston University, Birmingham B4 7ET, United Kingdom e-mail:
D.Saad@aston.ac.uk

Manuscript received October, 2021.

techniques, allowing one to reflect the nature of the expected
functions through the choice of kernel; probabilistic methods
offer confidence levels, as they estimate the uncertainty in
the outcomes and accommodate noise and missing data in
a principled, natural and controlled way; other probabilistic
methods such as mixture model-based density estimation and
message passing techniques deliver controlled approximations
to hard modeling, inference and optimization tasks; visual
analytics and dimensionality reduction facilitate the mapping
of a high dimensionality data onto a low-dimensinonal space
where they can be intuitively understood by users and decision
makers. Many of the methods are inherently adaptable and do
not require costly retraining when new data isare observed.

The aim of this paper is not to provide a comprehensive
review of machine learning methods, many such reviews exist
already, but to introduce the main concepts behind some of
the pivotal methods in machine learning research, excluding
DLM and neural networks, and point to exemplar potential
applications in photonics. We will provide a brief description
of the principles behind the different methods and refer the
reader to the corresponding literature for the specific details.

Section II reviews the use of established regression and
classification methods and highlights recent advances in
this area, while Sec. III introduces nonparametric regression
and kernel methods followed by the suggestion of decision
trees and clustering techniques. Probabilistic approaches and
reviewed in Sec. IV including Bayesian graphs, mixture
models, Gaussian processes and message-passing techniques.
Finally, we introduce visual informatics methods in Sec. VI
followed by a brief review of the different methods used in
the broad area of photonics in Sec. VII. The conclusions in
Sec. VIII point to material that has not been reviewed in this
tutorial and to the potential use of principled machine learning
in photonics applications.

II. ORDINARY REGRESSION AND BEYOND

The majority of prediction tasks can be efficiently structured
as regression problems in which the aim is to infer the
associative mapping f : RP → R between P -dimensional
data X = {x(n)p }N,Pn=1,p=1 and desired continuous targets
Y = {y(n)}Nn=1; N is the number of observed samples. Once
we have learned to link X and Y , we can make predictions
about Y given X . One way to unify different supervised
(when target data are provided) machine learning paradigms is
to think of them as different ideas for constraining and learning
the approximate mapping f .

The simplest non-trivial1 assumption about f is that it
can be represented as a linear map, i.e. f(x(n)) = β0 +∑P
p=1 βpx

(n)
p . Commonly, we augment the input vector x(n)

1Excluding the constant map f .



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, AUGUST 2021 2

in order to merge the intercept β0 and the linear coefficients
into simple vector form of the map: f(x(i)) = βx̂(n)

with x̂(n) = [1,x(n)]T . In ordinary least squares regression
we assume that the mismatch between a linear model and
the observed targets, can be adequately captured using the
squared Euclidean distance between the two. Determining
the regression parameters from data (commonly termed) as
training) is then achieved by optimizing the objective:

minimize
β

N∑
n=1

(
y(n) − βx̂(n)

)2
(1)

For most applications, the ordinary linear assumption is too
rigid. However, it remains a go-to benchmark in part due to
its simple resulting inference. We can find the parameters
of the optimal least squares regression map f directly by
differentiating Eq. (1) and solving for β. The solution is
available in a closed form:

β̂1 =
(
XTX

)−1
XTY

β̂0 = Y − β1X
(2)

Note that the more flexible regression formalisms we review,
require iterative training procedures. We can rarely hope for
”perfect fit” of a linear model, so it is common to use a random
variable (RV) capturing the residual error of the regression
model, i.e. assuming f(X) = βX + ε. This facilitates
statistical inference of quantities such as confidence intervals,
an estimate expected error or significance of goodness-of-fit.

As long as linearity with respect to the regression
parameters is kept, the optimization objective remains convex
and solvable in closed form. This result is used to motivate
a wider set of regression algorithms, trained by solving the
objective function associated with generalized linear models:

minimize
β

N∑
n=1

(
y(n) − g(βX)

)2
(3)

where g(·) are link functions that take any convenient
parametric form2. Common choices for g(·) include: log,
exponential, logit and other functions [1]. Note that
appropriate choice of a function (such as the logit - log x

1−x )
can be used to constrain the regression to a classification
problem, in a probabilistic setting. In Fig. 1, we display
a simple univariate regression example, approached with
different generalized linear regressions (a)-(c), as well as a
simple nonparametric regression (d), motivated in the next
section. Single layer neural networks can be seen as special
types of generalized linear regression.

1) Interaction effect: The same principle can be used
to construct predictors which reflect pairwise and higher
order interactions between the original variables, for example
assuming ŷ = β0 + β1x1 + β2x2 + β3x1x2. It is easy to
see that the space of potential models (and parameters to
determine) grows as a power low with the order of interactions
which is a particular problem in large dimensional data P .
Even if capture only pairwise interactions, the computational

2The effect of f(·) can be trivially consumed by the pre-processing of our
data, so for brevity we will assume identity.

complexity would be in the order of O(P 2). This challenge
can be addressed implicitly by adopting sparse regression
model, shrinking the data dimensionality [2], [3], or explicitly
using kernel methods to compute more efficiently second
order interactions [4]. Recent work [5] proposes a generic,
fully probabilistic framework for regression, which allows one
to estimate all pairwise significant interactions with linear
complexity in P .

2) Collinearity: The core problem of channel equalization
in digital communication, where the channel affects the
transmitted sequence with different distortions, can be seen
as a regression problem in which one aims to estimate a
map f(·) which predicts samples y(n) from the transmitted
signals using multiple channel responses

{
x
(n)
1 , . . . , x

(n)
m

}
[6].

Assuming a linear model, the estimation task requires learning
a set of weights {β1, . . . , βm} reflecting the individual
contribution of each of the m channels. However, a lot of the
channel responses often reflect the same information about the
transmitted signal at a given time (particularly if one assumes
linear-only distortion). In this scenario, if one uses a large
number m of correlated channels, it leads to redundancy in
the representation and an estimate of more complex regression
models3 than needed. In linear regression, this problem is
known as collinearity which is not just computationally
inconvenient, it also leads to less robust regression models
which are overly confident in their prediction and perform
poorly out-of-sample. Channel variables should have minimal
overlap between the information they carry. This desired
property has motivated multiple studies on sparse regression
techniques [7]–[10], which describe different mechanisms for
controlling the growth of regression models.

One of the most well known and still computationally
simple sparse regression technique is the least absolute
shrinkage and selection operator (LASSO) regression [8].
LASSO augments the defining objective of the least squares
regression with an l1 constraint on the weights β, solving:

minimize
β

N∑
n=1

(
y(n) − g(βX)

)2
subject to

m∑
j=1

|βj | ≤ λ (4)

where λ is a pre-specified free parameter that determines the
degree of regularization.

It is worth highlighting that the sparse linearity assumption
is also exploited in modern neural network architectures where
ReLU (Rectified Linear Unit) dense layers in essence predict
continuous outputs using multiple “nearly linear” regression
with certain input observations suppressed to 0 (i.e. rather then
whole variables).

3) Piecewise linearity: In both of the examples above,
one derives flexible regression maps, keeping the associated
training tractable in closed form. This simplicity largely
stems from the global implicit assumption that the regression
parameters β are shared across all data pairs {x(n), y(n)}Nn=1

3In the context of linear models, complexity is measured with respect to
the number of dimensions.
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Fig. 1. Different regression curves fitted to example synthetic pairs {x(n), y(n)}Nn=1. (a) ordinary least squares fit; (b) log-linear regression; (c) order 3
polynomial regression; (d) locally polynomial regression (or smoother). Confidence intervals are indicated by the shaded areas, with the exception of (d) where
confidence intervals are omitted due to the added complexity.

and β is obtained from a sufficient statistics of the full set
of samples. This means that we cannot account for potential
changes in the regression map, for instance if dependence on
the data is heteroscedastic. Perhaps the simplest examples of
this problem are inference problems where outliers are present
in the data.

In channel equalization, if a small number of channel
responses are large in value and far from the majority of
responses (i.e. for example due to distortion), the estimates
of β would be strongly influenced by an insignificant number
of disproportionately large channel responses x(n). Another
practical scenario is that of stratified regression, where the
expected map behaves differently in different regions of the
input space. For example, if we know of a fixed number of
different environments where one expects different distortion
types in channel responses. The impact of some trivial
statistical outliers can be mitigated by using a robust regression
assumption [11] which uses transformed sufficient statistics
that ignore the tail of the predictor values (i.e. training
values with many standard deviations away from their sample
mean). Given prior information about the partitioning of the
input space, we can derive an explicit stratified regression,
but as we move towards ”local” or piece-wise regression
models, the problem quickly becomes more conceptually and
computationally challenging.

Consider the least squares regression problem of Eq. (3),
a natural way to express the heterogeneity assumption of the
underlying regression map f would be to assume that f is a
weighted superposition of a fixed number of simpler maps:

ŷ(n) =

K∑
k=1

ωkg (βX) (5)

Determining the parameters would require optimization of
an appropriate loss function with respect to ω and β; this
can be done iteratively using more computationally intensive
inference algorithms. Decomposing learnable functions into a
discrete superposition of simpler components is often applied
beyond the scope of simple linear models and is widely
referred to as mixture of experts [12], [13]. In the special linear
case, we refer to the regression approach above as weighted

least squares regression, and depending on the assumption
specified for ω, we can extend this to flexible probabilistic
piece-wise linear regression for a number of underlying
heteroscedasctic components [14]. Assuming K = N one can
derive nonparametric kernel regression variations as discussed
below.

III. NONPARAMETRIC REGRESSION AND KERNEL
METHODS

Nonparametric regression and classification algorithms
allow for inference without making explicit assumptions about
the parametric form of the underlying regression curve f
or decision boundary. This is done by learning observation-
specific contributions towards a target estimator, rather then
inferring some fixed set of parameters describing the shape of
f . Nonparametric regression methods are not parameter free,
but the number of their parameters depends on the number of
training data points, rather then the assumed parametric form
of f . An intuitive example of nonparametric regression are
running average algorithms which estimate new targets as a
weighted superposition of historic values4.

A. Kernel density estimation

Given an observed set of values X = {x(1), . . . ,x(N)}, the
kernel density estimator (KDE) is a nonparametric method to
estimate the probability density of X . We write the KDE as:

f̂σ(x) =
1

N

N∑
n=1

Kσ

(
x− x(n)

)
(6)

where K (·) denotes a kernel function which satisfies
properties of a distance function and is commonly used for
measuring different types of proximity in machine learning
problems; σ denotes the lengthscale of the kernel. The choice
of σ controls the trade-off between the bias of the estimator
and its variance: KDE with smaller σ are less biased, but
likely to overfit the sample set as demonstrated in Fig. 2. The

4Moving averages are a very simple type of kernel smoothers and they have
been used since at least the late 19th century [15].
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Fig. 2. Kernel density estimation of 4-component Gaussian mixture using varying kernel lengthscale and the Nadaraya–Watson kernel estimation. Kernel
lengthscale which is too low leads to overfitting and too high lengthscale leads to underfitting the sample set.

choice of kernel Kσ (·) is often dictated by the measurements
X: polynomial kernel takes into account both individual input
features and combination of features when determining their
similarity; periodic kernel allows one to compare input features
originating from repeating patterns and others [16]. Note that
in the special case where σ → 0 and K (·) becomes a Dirac
delta function, KDE acts as a sample histogram.

1) Kernel regression: The KDE allows one to define a data
driven density model for observed X . Using this definition, it
is possible to construct a model agnostic regression estimator
from an observed set of pairs {x(n), y(n)}Nn=1 for unseen
outputs such that y∗ = f (x∗). The quantity of interest is
the expectation E[Y |X = x] =

∫ P (x,y)
P (x) dy from Bayes rule.

Using the KDE for P (x) from Eq. (6) and the product KDE
for P (x, y) = 1

N

∑N
n=1Kσ

(
x− x(n)

)
Kσ

(
y − y(n)

)
, one

obtains the Nadaraya–Watson kernel regression estimator [17],
[18]:

fσ(x) =

∑N
n=1Kσ(x− x(n))y(n)∑N
n=1Kσ(x− x(n))

(7)

The Nadaraya–Watson kernel estimates unseen targets as
locally weighted averages of known targets, with weights
corresponding to the kernel distance. There are few other
popular ways of deriving nonparametric kernel regression
estimators, where one of the key differences arises from
the distinction between external and internal approaches
for dealing with the unknown mapping f [19]. The
Nadaraya–Watson kernel estimator is the most notable
example of external approaches where data is first smoothed,
before the support at observed targets is computed. In contrast,
methods such as the Priestley–Chao estimator [20] and the
Gasser-Muller estimators [21] are called internal approaches,
where one first modifies the empirical function (i.e. focusing
on unbiasedness) and kernel smoothing is carried out later.

2) K-nearest neighbour regression: A practical downside
of Nadaraya–Watson kernel regression in Eq. (7) is that all
targets y(n) are used to estimate a new target y∗, even though
only the variables x(n) closest to x∗ contribute significantly.
A popular and practical special case of kernel regression is the
K-nearest neighbour regression (KNN), where the estimator

for unseen targets y∗ only uses the closest K-number of known
responses y(1,...,K) measured in terms of distance between
the corresponding samples x(1,...,K) and x∗. Formally, using
Eucledian distance to rank neighbours, the KNN estimator for
unseen y∗ is:

ŷ∗ =

K∑
k=1

‖x(k) − x∗‖y(k)∑K
k=1‖x(k) − x∗‖

(8)

The Euclidean distance in Eq. (8) can be replaced by kernel
distances, similar to Eq. (7). For the classification variant of
KNN, typically the most common class among the top K
neighbours is selected, rather then a weighted average, where
K is subjectively selected using domain knowledge or cross
validation.

3) Kernel ridge regression: A less explicit way to restrict
the complexity of the kernel regression estimator, is to
regularize for the complexity of f̂ :

f̂ = arg min
f∈H

1

2

N∑
n=1

(
y(n) − f

(
x(n)

))2
+
λ

2
‖f‖2H (9)

where H is a reproducing kernel Hilbert space (RKHS) with
kernel K (·) and λ is a regularization parameter penalizing
functions f with too large RKHS norm. Any solution f̂ takes
the form: f̂(·) =

∑N
n=1 αnK(·,x(n)). Substituting this form

in Eq. (9), one gets the training objective of the kernel ridge
regression:

α̂ = arg min
α∈RN

1

2
‖y −Kα‖22 +

λ

2
αTKα (10)

where K denotes the kernel matrix with elements Kij =
K
(
x(i),x(j)

)
and α = [α1, . . . , αN ]. Training of kernel ridge

regression proceeds with standard gradient optimization of
Eq. (10) with respect to α.

B. Support vector machines

In the early days of machine learning, the scientific
community was fascinated by one of the earliest machines
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Fig. 3. (a) Synthetic data of two non-linearly-separable classes; (b) Kernel
expansion of the synthetic data in 3-D using RBF kernel (detailed later), where
the data becomes separable by a plane.

of this type called the perceptron [22], only to discover
that it is highly limited to linearly-separable problems which
represent a diminishing fraction of all classification problems
as the dimension of the system grows (number of free
variables in the input vector to be classified). For a data set
comprising real or binary input vectors of dimensionality D,{
s(1), s(2), . . . , s(N)

}
and the corresponding binary outputs{

t(1), t(2), . . . , t(N)
}

, the perceptron classifies any new input
y = sign (w · s+ b) by determining the weight vector w and
bias b on the basis of the data given.

The concept of Support Vector Machines (SVM) [23]
originated from the idea that mapping any problem to a high-
enough dimensional space facilitates linear separability in high
dimension. Once the separating hyper-plane has been obtained
from data, any new input could be classified at the high
dimensional space. Figure 3 illustrates an example of how
two-class non-linearly-separable observations can be mapped
onto three dimensional space where they are linearly separable.
Moreover, separating the two classes in the high-dimensional
space, one can identify key input vectors that are sufficient for
determining the hyper-plane; they are termed support vectors
as demonstrated in Fig.4 and lie of the most distanced hyper-
planes separating the two classes in the high-dimensional
space. Once these have been established, any new point can be
classified without mapping it to the high dimensional space,
using the corresponding kernel.

The input vectors s are mapped to the high-dimensional space
vectors x and are separated by a hyperplane. The distance
between the two hyperplanes on which the support vectors lie
is 2/‖w‖. Minimizing ‖w‖2

Lp =
‖w‖2

2
−

N∑
n=1

α(n)t(n)(x(n) ·w + b) +

N∑
n=1

α(n)

w.r.t the weight vector in the high-dimensional spacew and the
bias b, given the classification constraints manifested through
Lagrange multipliers α(n) ≥ 0, which maximize the separation
and can be obtained via various numerical methods. This will
help identify the support vectors (SV), the set of vectors closest
to the decision boundary in the high-dimensional space.

2w
||w||
___

Fig. 4. Separation of classes in the high dimensional space, maximizing the
distance between the two groups. Points on the closest hyperplanes, marked by
larger symbols, are termed support vectors and are sufficient for establishing
the two hyperplanes.

The mapping of the input vectors s to the feature space x
can take different forms, for instance polynomial x(ij) = sisj
mapping, which we denote as Φ(s) = x. Classification of a
new vector takes the form

f(s) =

SV∑
n=1

α(n) t(n) Φ(s(n)) · Φ(s) + b.

Exploiting the properties of the mapping Φ(·) and
corresponding kernel K(·) to substitute Φ(s(n)) · Φ(s) =
K(s(n) · s) simplifies the procedure, so that classification
can take place directly without mapping the problem to the
high-dimensional space; for polynomial maps of degree q -
K(s, s′) = (s·s′+1)q . Other mappings can also be considered
resulting in simple kernels, e.g., exp

{
−‖s−s

′‖2
2σ2

}
for Radial

Basis Function mappings and tanh(κs ·s′−δ) for perceptron-
like mappings, where σ2, κ and δ are some coefficients.
Such mappings exist if Mercer’s condition is obeyed [23]
(amounting to positive definiteness of the kernel).

Originally, SVM was offered as a parameterless and
straightforward approach to classification. However,
the presence of noise and the representation of real-
valued functions, necessitate the introduction of additional
parameters, where noise estimation and the nature of the
objective functions for representing real-valued functions
require more information and insight [24]. Arguably, the most
appropriate problems to be studied by SVM are classification
tasks, although they are also being employed as kernel
functions for the representation of real-valued functions.

C. Decision trees

Decision trees isare another class of methods for supervised
learning tasks. Their popularity is due to the fact they can
often be used off-the-shelf. Decision trees rely on small
amount of hyperparameters and are invariant under scaling and
various other transformations. This reduces the importance of
understanding data properties in training decision trees [25].

Single decision trees are among a small family of machine
learning models which are easily interpretable, although
tree ensembles are widely considered as black-box methods.
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Decision trees allow one to construct complex regression
curves f by successively partitioning the input feature space
into many local regions using inductive logic. At the root of a
decision tree are the input variables. Then, rules based on the
variables’ values are selected, to best differentiate observations
based on one or more dependent variable. Decision tree
algorithms vary in their splitting strategies, architecture and
learning mechanisms but some notable examples include:

1) Classification And Regression Tree (CART): Given a
pair of inputs X and responses Y , the leaves in a trained
CART [26] specify a non-overlapping partitioning of {X,Y }
with each pair of values belonging to a single leaf. The data
pairs in different leaves are considered similar in terms of the
prediction task, and hence one trains simple local models (i.e.
such as linear or constant) for each subset of data sharing a
leaf. The prediction of the CART for new data xT+1 depends
on the leaf to which it would be assigned. To construct
a CART, one needs to specify a measure for ranking how
appropriate successive splits are. The most common measures
for this are gini impurity and entropy.

Assuming the responses are categorical and the fraction
of items in class k is denoted by πk, the gini impurity for
each branch is 1 −

∑K
k=1 π

2
k; the weighted sum of the gini

impurities for both branches resulting from a candidate split
are computed. Then, the same procedure is repeated for all
candidate splits and the one with lowest sum of gini impurities
is selected. Using the entropy to measure the quality of splits
results in replacing 1 −

∑K
k=1 π

2
k with −

∑2
k=1 πk log2(πk).

One starts with all the data at the root and at each iteration,
a number of single feature-splits are considered, partitioning
the data into two5 further branches. For example, a branch
with all the data associated with feature value xp· > h for an
arbitrary index p, and another branch with all data for which
xp· ≤ h. For each resulting branch, the same procedure is
repeated recursively, until input constraints on the tree depth,
leaf size or accuracy improvement are satisfied. Note that a
considerable restriction of CARTs is the limited amount of
joint effects between variables captured as the process is done
in a greedy fashion.

2) Multivariate and adaptive regression spline (MARS):
MARS [27] is a non-parametric technique for fitting piecewise
linear regression based on a form of recursive partitioning.
MARS assumes that one can predict responses Y with a model
of the form:

f (X) = β0 +

M∑
m=1

βmhm(X) (11)

where hm(X) are basis functions from the set
{(Xj − t)+ , (t−Xj)+} with t ∈ {x(1)j , . . . , x

(N)
j } for

any feature j = 1, . . . , P . Note that the CART model can
be represented in this framework using the basis functions
I (Xj > h) and I (Xj ≤ h). The first stage of the MARS
algorithm performs a forward pass, which starts with a
constant model f (1) = β0 and iteratively builds up predictive
power by adding the basis β1 (Xj − t) + β2 (t−Xj),

5Most commonly used CARTs offer binary splits, allowing to condition on
the same feature at multiple levels of the tree.

which decreases most the training error. The procedure
is repeated until some preset number of bases has been
reached. After the forward pass, the inferred model is
large and likely to overfit the data. Therefore, a backward
pass which prunes the number of basis functions used
by penalizing the model complexity while keeping the
highest generalized cross-validation score (GCV) [28],
defined as the: GSV = RSS / (N (1-(effective number of
parameters)/N2)). The effective number of parameters is the
(number of MARS terms) + λ× (number of MARS terms−1)

2 .
3) Ensembles of trees: Despite the computational

convenience and interpretable structure of decision trees,
single trees often overfit the data and lead to poor empirical
performance in realistic conditions. This challenge has
motivated ensemble frameworks for training multitude of
decision trees and combining their predictions into a single
model outcome [29], [30]. Whereas complex decision trees
minimize the bias, they lead to large variance when evaluated
on test data. In contrast, tree ensembles tend to reduce
the variance, at the expense of loss of interpretability and
potentially a small increase in the bias.

4) Random forests: Most random forest implementations
train an ensemble of CART trees [31]. Assume one wishes
to train a random forest of B trees. Given pairs of {X,Y },
you can use bootstrapping6 [32] to generate B training sets
{X(1),Y (1)}, . . . , {X(B),Y (B)} with replacement where
each set {X(b),Y (b)} has N samples. The first bagging
(bootstrap aggregating) procedure proceeds with training B of
the trees independently on the generated data. However, this
strategy induces correlation between the different trees in the
ensemble since important predictors will be selected in many
of the B trees. To address this issue, random forest involve
an additional step which is to select only a random subset of
the features in X - a process known as feature bagging [33].
Once the B trees have been trained, the predicted outcome is
most commonly obtained either by averaging the predictions
Ŷ

(1)
, . . . , Ŷ

(B)
for regression tasks or by selecting the most

common class prediction for classification problems.
5) Gradient boosted trees and XGBoost: Gradient boosted

forests (common variation being the Extreme Gradient
Boosting (XGBoost)) are known to typically outperform
classical random forests [25]. Both approaches use the same
model of ensembles of CARTs, but vary in the way the trees
are trained. Whereas in random forests trees are trained in
parallel, after feature bagging, in gradient boosted forest,s
trees are trained one at a time and subsequently a new tree
is added which best optimizes our objective; for manageable
computation the scheme is greedy, so the parameters of the
tree learned at step t are kept fixed for the remaining steps.
The objective which gradient boosted forests optimize takes
the general form:

obj(t) =

N∑
n=1

L
(
y(n), ŷ

(n)
(t−1) + f(t)(x

(n))
)

+Ω
(
f(t)

(
x(n)

))
(12)

6A process whereby new datasets are generated by randomly sampling
subsets from the data.
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where L (·) is a loss function of choice (such as the mean
square error), f(t)

(
x(n)

)
is the function represented by the

CART trees for t = 1, . . . , B and Ω
(
f(t)

(
x(n)

))
is a

regularizer balancing the complexity of individual trees. The
second order Taylor expansion for the loss in Eq. (12),
provides the following objective for new trees:

f̂(t)

(
x(n)

)
= arg min

f(t)

N∑
n=1

[
g(n)f(t)

(
x(n)

)
+

+h(n)f2(t)

(
x(n)

)]
+ Ω

(
f(t)

(
x(n)

)) (13)

where g(n) and h(n) are the first and second derivative of
the loss L

(
y(n), ŷ

(n)
(t−1)

)
with respect to ŷ

(n)
(t−1). Having

optimized one tree at a time, one can represent the function
as a weighted aggregated contribution of the trees, where the
weights correspond to their scores (e.g., gini impurity).

6) Practical limitations: Variants of random forests
algorithms have shown state-of-the-art performance across a
wide range of supervised learning tasks. However, well known
weakness are their lack of interpretability, global structure and
expensive batch training:
• In many applications, the goal is not simply to maximize

empirical performance on the available sample of data,
but also to infer key input features and their structural
relationship to the output. This is particularly important
to ensure the algorithm does not leverage sample-specific
futile causal effects or when one wishes to incorporate
parametric assumptions about changes in the test data
distribution [34].

• Unlike parametric models and most kernel methods,
regression trees hardly allow us to incorporate global
assumptions about the distribution of the different
features. As such, they can end up learning an overly
complex representation of the data, making the algorithms
slow and sensitive.

• The most popular random forest variants operate on
data batches, making them inappropriate for many
photonics application which require online methods.
There are online random forest methods [35], which
grow trees incrementally, but suffer from inefficient
memory cost and require substantially more training
data then their batch counterpart. Alternatively, instead
of constructing an ensemble of heuristic CARTs, one
can use Mondrian processes [36] (self-consistent hard-
partitioning stochastic process) to specify distributions
over tree structures. Sampling a collection of independent
random trees from a Mondrian process, one can obtain
a variant of random forest known as the Mondrian
forests [37], having the convenient property that their
online distribution is the same as that of batch Mondrian
forests potentially alleviating the batch training challenge.

IV. PROBABILISTIC MODELLING

Despite the heuristic origin of many of the popular pattern
recognition algorithms, often the estimation problem can be
described as finding the joint distribution over all unknown
quantities, from which conditional and marginal probabilities

can be estimated. In classical regression tasks, the RVs to be
considered would be the regression (or kernel) parameters, the
noise and other factors. Specifying a probabilistic model forces
one to make explicit modelling assumptions; it also allows one
to test the statistical significance of the different assumptions,
querying the probability of all unknown quantities in different
scenarios. The probabilistic view of machine learning is
partially motivated by the thesis that human intelligence
is not deterministic, but relies on decision-making under
uncertainty [38].

As a practical example of probabilistic reasoning, consider
the problem of modulation format indentificaiton for square
M -quadrature amplitude modulation automatic modulation
formats identification, in the presence of optical channel
impairments. The input for automatic modulation might be
amplitude histograms (i.e. after analog-to-digital conversion
and chromatic dispersion compensation at the receiver) which
can be written as a vector of D bins x = (x1, . . . , xD)

T ∈
RD. The output is a discrete decision variable, y ∈
{C1, . . . , CM} with Cm, for m = 1, . . . ,M , indicating the
quadrature phase-shift keying formats different modulation
formats (i.e. 16-QAM or 64-QAM 10 Gbps NRZ-OOK, 40
Gbps NRZ-DQPSK etc.). The RVs in the problem are (x, y)
and the joint distribution is:

p (x, y) = p (x1, . . . , xD, y) (14)

In this example, one considers the primary probabilistic
modelling objective to be the estimation of the joint probability
from Eq. (14), or at least finding maximum likelihood estimate
of the joint probability and model parameters, leading to
the most likely estimates. Having estimated p (x, y), one
can directly address standard machine learning objective
such as making predictions about y from x, evaluating
the uncertainty associated with such a prediction, and the
conditions in which the prediction is reliable. Without making
assumptions about the form of Eq. (14), the estimation is
rarely tractable so typically we make some assumptions about
the conditional relations between x, y and other unobserved
latent variables, which help in simplifying the problem.
In modulation format identification, one may assume latent
multimodality in the map between x and y depending on
the different channel impairments, independence between the
different bins x1, . . . , xD, or place higher or lower importance
on certain bins as predictors (i.e. the role of the distribution
matcher in probabilistic constellation). The following section
will provide a basic introduction into probabilistic graphical
models and how they are used to tackle practical machine
learning challenges.

A. Probabilistic graphical models

Estimation of the joint likelihood for all unknown variables
is infeasible for most practical machine learning problems due
to the curse of dimensionality where the number of data needed
for the estimation grows exponentially with the system’s
dimension. This motivates us to specify explicitly how RVs
are conditioned on each other, in the form of a probabilistic
graphical model (PGM). A PGM describes graphically the
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Fig. 5. Illustration of a probabilistic graphical model which specifies the
relationship between five RVs: U, V,X, Y, Z.

conditioning relationships between the RVs in a problem as
edges in a graph where each RV is represented by a node and
arrows (i.e edges for directed graphical models) depicting the
direction of the conditioning.

Consider the model of Fig. 5 which specifies five RVs
U, V,X, Y, Z with the joint distribution p (u, v, x, y, z). Using
the chain rule, the joint probability can be written as:

p (u, v, x, y, z) = p (y|u, v, x, z)×
×p (z|u, v, x) p (x|u, v) p (u|v) p (v)

However, using the conditional relationships represented in the
PGM of Fig. 5, the joint probability simplifies to:

p (u, v, x, y, z) = p (y|x) p (z|u) p (x|u) p (u|v) p (v)

Now, one only needs to estimate a few simpler conditional
probabilities, which is more tractable than estimating the
full joint distribution. Therefore, PGMs allow one to encode
complex dependencies between RVs while mitigating the curse
of dimensionality.

Assume that all the observed data are captured by the RVs
X(1), . . . ,X(N) and the unknown parameters are modelled
using a set of parameters Θ which themselves are RVs. The
process of training can be seen as finding the best parameters
Θ which fit the realizations D =

{
x(1), . . . ,x(N)

}
of the RVs

X(1), . . . ,X(N), which are the observed data samples, given
some functional relationship between Θ and X specified by a
PGM. The likelihood function is a measure of goodness of fit
for a set of parameters Θ and is defined as the conditional
probability: L(Θ = θ) = p

(
x(1), . . . ,x(N)|θ

)
for θ and

x being realizations of the corresponding RVs. Maximization
and inference of L(θ) is typically difficult and a very common
simplification is the assumption that the individual examples
are independent and identically distributed (i.i.d.) given the
model parameters. The joint likelihood can then be factorized
to take the form:

L(θ) =

N∏
n=1

p
(
x(n)|θ

)
(15)

Finding the best parameters θ is often done using maximum
likelihood (ML) or maximum-a-posteriori (MAP) principles.
The ML estimator for parameters θ is the solution of:

θML = arg max
θ

L (θ) = p (D|θ) , (16)

while the MAP estimator for θ also takes into account the
prior belief about the parameters, solving:

θMAP = arg max
θ

p (θ|D) . (17)

Differentiating the negative log of Eq. (15), which is
typically easier to deal with since products over data become
summations, leads to closed form solutions only for a limited
family of simple distributional models p(x(n)|θ), such as a
single Gaussian or Poisson distribution. Even after exploiting
conditional independence, for most practical PGMs the joint
probability of interest p (x,θ) cannot be easily estimated or
maximized. It is possible to draw asymptotically unbiased
samples of the complete joint probability p (x,θ) using
advanced numerical methods such as variants of Markov Chain
Monte Carlo (MCMC) algorithms. An introduction to MCMC
techniques can be found in another tutorial [39].

B. Mixture models

Many complex densities can be approximated using a
superposition of simple building blocks such as exponential
family distributions. The combined probability of M
components takes the form:

p(D|θ) =

N∏
n=1

M∑
j=1

p(j)p(x(n)|θj) , (18)

where p(j) denotes mixing probability associated with
component j with

∑
j p(j) = 1 and θj specifies the

component parameters. The difficulty is in determining
optimal set of parameters θj , jointly for all j components,
which maximize the likelihood. This cannot be trivially done
by maximizing Eq. (18) and requires a numerical iterative
procedure. A good approximate and locally optimal solution
is provided by the Expectation-Maximization algorithm [40],
which first calculates the responsibility of component j for
data x(n) - p(j|x(n)) (the Expectation step):

p(j|x(n)) =
p(j) p(x(n)|θj)∑
k p(k) p

(
x(n)|θk

) , (19)

where in the Gaussian mixture case p(x(n)|θj) is a single
Gaussian probability and θj are the means and variances
associated with a component. The expectation step is followed
by the maximization of the parameters θj and p(j) for all
j = 1, . . . ,M (Maximization step). The Expectation step
facilitates the calculation of the Maximization step and vice
versa, and the iterative process has been proved to converge
to a likelihood minimum value (not necessarily the global
one). In the extreme case where only one component can
be associated to an example, the Expectation-Maximization
algorithm can be reduces to the K-means algorithm [41].
Mixture models have been used as building blocks for complex
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Fig. 6. Modeling the Old Faithful eruption data (duration and waiting
time). Left - final position and variance of the two Gaussians. Right -
the log-likelihood value increasing with each iteration of the Expectation-
Maximization algorithm.

predictive algorithms, via mixture of experts [12]. They have
also been extended to variants allowing for flexible inference
of the number of components [42], [43] and deep generative
models where the shape of the components is described by
neural networks [44].

An example for the way the Expectation-Maximization
algorithm works is presented in Fig. 6, modeling waiting
time between eruptions (y axis) and duration of the eruption
(x axis) of the Old Faithful geyser in Yellowstone National
Park7. A Gaussian mixture model with two components has
been used to model the data. Starting from random location
and parameters for the two components, one can see how
the log-likelihood value is increasing with each iteration of
the Expectation-Maximization algorithm (right), ending with
a good separation of the two components and a reasonable
representation of the data.

C. Other flexible distributions

The presented probabilistic models show how complex
distributions can be represented as a combination of simple
patterns, described in some parametric form, such as Gaussian
density. However, it is worth pointing out that a large
family of complex densities can be constructed using simple
recursive transformations of some parametric density. The
transformations can be guided by some algebraic knowledge
one has about the random variables summarizing the data,
or using some generic recursive principles. The latter is the
motivation behind the growing field of normalizing flows [45]
that are often used to construct arbitrary densities which
serve as building blocks in deep generative models, but in
theory can also be used to construct more flexible interpretable
probabilistic models. For an introduction to the concept
underpinning normalizing flows, we refer the reader to [46].

D. Gaussian processes

One of the difficulties in the Bayesian approach is
choosing the right prior, hyperprior, and their most appropriate

7Figures were plotted using the BRML Matlab toolbox obtained from
http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.Software

parameters. When applied to parameterized models, one ends
up with a posterior distribution of parameter values which
can be used to infer variable states or values (e.g., regression
or classification). The choice of prior has a fundamental
impact on the posterior and the functions generated by the
combination of data (through the likelihood) and prior. Perhaps
a more direct approach would be to select the properties of
the functions we expect to obtain. Additionally, we saw that
Generalized Linear Models with the Gaussian noise-model
assumption and Gaussian prior for the parameters, result in
a Gaussian posterior parameter distribution where computing
with the posterior is easy but may require a huge number of
basis functions to cover a high dimensional space. Gaussian
processes offer an alternative approach for tractable function
interpolation based on the data and the expected function
properties, e.g., being smooth or rugged.

Given N i.i.d. data points x and their corresponding outputs
observations t, D =

{
(x(1), t(1)), . . . , (x(N), t(N))

}
, and a

noise model p(t|y) for the underlying uncorrupted output y,
one would like to infer the y∗ value for a given input x∗.
Writing y = (y(1), . . . , y(N)), x = (x(1), . . . ,x(N)) and t =
(t(1), . . . , t(N)), the corresponding probability becomes:

p(y∗|x∗, D) =

∫
p(y∗,y|x∗,x, t)dy

=

∫
p(t|y∗,y, x∗,x)p(y∗,y|x∗,x)dy

∝
∫

p(t|y)︸ ︷︷ ︸
likelihood

p(y∗,y|x∗,x)︸ ︷︷ ︸
prior

dy . (20)

The Gaussian noise assumption gives the likelihood for the
targets t of the form N

(
y, σ2I

)
. The prior is imposed directly

on the function space, determining the smoothness of the
function. Defining the prior p(y, y∗|x,x∗) to be Gaussian
(zero mean for convenience):

p(y, y∗|x, x∗) = N (0,K(x, x∗)) (21)

one obtains a Gaussian joint posterior over y, y∗ so that
calculating the marginal prediction for y∗ is straightforward.
The properties of the obtained function rely on the
properties of the matrix K; the elements of Kij =
c(x(i),x(j)) represent the covariance of the y values
given the corresponding x values. Two commonly used
covariance matrices are the Ornstein-Uhlenbeck covariance
c(x(i),x(j)) = α exp

(
−λ|x(i) − x(j)|

)
for rugged functions,

where λ relates to the length scale in x space and α a range
variable, and a Gaussian covariance function c(x(i),x(j)) =

α exp
(
−λ
(
x(i) − x(j)

)2)
for smooth functions, where the

parameters play similar roles. Other types of covariance
matrices have also been considered for dedicated tasks [47].
The relation between Gaussian processes, neural networks,
deep learning machines [48], [49], radial basis functions and
generalized linear models are well understood [47], [50].

Having chosen a covariance function one calculates the prior
given data

p(y+) ∝ exp

[
−1

2
yT

+K
−1
+ y+

]
(22)
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where yT
+ =

[
y(x1), y(x(2)), . . . y(x(N)), y(x∗)

]
. Separating

the new data point x∗ from the data, one can write

K+ =

[
Kxx Kxx∗

KT
xx∗ Kx∗x∗

]
where

(Kxx)ij = c(x(i),x(j)) (23)

KT
xx∗ =

[
c(x∗,x(1)), c(x∗,x(2)), . . . c(x∗,x(N))

]
Kx∗x∗ = c(x∗,x∗)

The posterior becomes

p(y+|D) ∝ p(y+)p(D|y+) (24)

∝ exp

[
−1

2
yT

+K
−1
+ y+ −

1

2σ2

N∑
i=1

(ti − yi)2
]

and the calculation of the corresponding output probability
follows straightforwardly p(y∗|x∗, D) = N (m,Σ) where the
mean and covariance are given by

m = Kxx∗
(
Kxx + σ2

)−1
t (25)

Σ = Kx∗x∗ −KT
xx∗
(
Kxx + σ2I

)−1
Kxx∗ .

Gaussian processes provide a simple, principled and
intuitive approach for regression, where the smoothness and
other properties of the resulting functions are determined
through the covariance function elements which constitute
the Gaussian prior matrix. The covariance matrix can
incorporate periodicity, variability depending on input value
(heteroscedastic Gaussian processes) and physical model
insights [47]. While Gaussian processes have been applied for
classification tasks [51], they are naturally more suitable for
regression problems.

To demonstrate the way Gaussian processes operate we have
used 40 data points generated by a noisy sin function using the
Gaussian-like and Ornstein-Uhlenbeck covariances, where the
assumed noise model is of zero mean and variance σ2 = 0.04.
The results are shown in Fig. 7 for both Gaussian-like (top)
and Ornstein-Uhlenbeck (bottom) covariances, where data are
marked by crosses, mean value and standard error bars are
represented by red and blue solid lines, respectively. Clearly
the Gaussian-like covariance elements lead to a smoother
function. Note that the error bars are larger where no data is
present; Gaussian processes can be perceived as a generalized
interpolation method.

The main drawback in the application of Gaussian processes
is the need to invert the large matrix that includes all examples,
as in Eq. (25), which scales cubically with the number of
examples, becoming computationally demanding for large data
sets. Reducing the algorithmic complexity using the sparsity
assumption for approximate inference [52], via methods such
as pseudo-inputs [53] and variational inference [54] reduces
the representational power of Gaussian processes, especially
when the number of training data is large. Sparsifying the
covariance matrix, through setting an effective window or by
diluting the matrix may also reduce the computational cost as
well as an online sample-by-sample inversion [50].

Fig. 7. Data generated by a noisy sin function (40 points, random noise)
modeled by a Gaussian process using Gaussian-like (top) and Ornstein-
Uhlenbeck (bottom) covariances. Data are marked by crosses, mean value and
standard error bars are represented by red and blue solid lines, respectively.

E. Mean field and message passing algorithms

While probabilistic inference has been highly successful
in addressing many inference and optimization problems, it
is generally intractable due to the computational complexity
required for obtaining exact solutions and principled
approximation methods can be helpful for obtaining solutions
in polynomial time. Mean field (MF) methods, originated in
statistical physics and provide a range of approximation tools.
They assume that the inference problem can be described in
the form of minimizing a cost function (Hamiltonian in the
statistical physics terminology [55]) H(x|D) with dynamical
variables x, to be inferred, and predetermined (fixed) RVs or
observations.

The approach is applicable to a variety of systems
including both binary and continuous variables. However, for
simplicity we will restrict the presentation to binary variables
x1, . . . , xP ∈ [−1,+1]. The probability of finding the system
in any state x takes the form

P (x|D, β) =
e−βH(x|D)

Z(D, β)
(26)
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with β being a control parameter (inverse temperature in
physics, the higher β is the more deterministic the state is)
and the normalization Z(D, β) = Trxe−βH(x|D) is termed
the partition function, where the trace represents a summation
over all x values. The exact inference of variable states would
be the MAP estimator x̂ = arg maxx P (x|D, β), which
is intractable as the search increases exponentially with the
number of variables NP . An equally difficult alternative is
the Marginal Posterior Maximizer

x̂i=arg max
xi

P (xi|D, β), (27)

which converts the maximization to a local operation but
requires a global marginalization. The crux behind mean field
methods is to address the global problem by introducing
localized, distributive and scaleable operations.

The family of MF approximations represents one of the
most promising approaches for scalable distributive inference
and optimization. The spirit of the MF is simple; to
approximate a true intractable distribution with a tractable
one, factorized with respect to dynamical variables. Since the
factorized model can usually be calculated quite easily the
required computation becomes significantly less demanding
than that of sampling techniques. MF approaches were
developed within the physics community and include a large
number of variations, depending on the objectives of the
calculation and properties of the system examined.
The simplest approximation is to replace the interaction of
each variable xi with all others by a single effective field hi,
such that

P (x|D, β) ∝
P∏
i=1

e−βxihi (28)

which gives rise to a set of localized equations that can be
solved iteratively. This approximation can also be viewed as a
variational approach where one aims to minimize the distance
between exact and approximate distributions [50].

The shortcoming of naive MF methods is that they
ignore the reciprocal interaction between variables. In densely
connected systems, where each variable interacts weakly with
most of the other variables in the system, simple correction
terms have been added to compensate for the reciprocal
interaction [56]. However, many of the inference and
optimization problems to be solved involve sparsely connected
systems where individual variables interact with a small
number of variables, with respect to the system size. These
include many network based inference tasks, combinatorial
optimization and information theoretical problems.

Message-passing or belief propagation [57] is a commonly
used method of reduced computational complexity foraimed at
reducing the computational complexity of inferring variable
values on sparsely interacting variables (e.g., on graphs). It
has been developed independently in physics [58], computer
science [59] and information theory [60]. Being directly
linked to established statistical physics methodology [61], the
approach also facilitates the analysis of the system’s behavior
at a macroscopic level, identifying the emergence of collective
behavior. At the heart of the approach is the assumption that
variable values are mostly affected by those of their immediate
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Fig. 8. An example bipartite graph representation, where variable nodes x
appear on the left and factor nodes Z, representing the interaction between
them, on the right. Lines represent interaction between variables at the factor
nodes; arrows are example messages from variable to factor (µxj→Za ) and
vice versa (µZa→xj

). The neighboring nodes to factor a are marked by L(a)
(in the figure for a = 1), while the neighboring factors to node j are marked
by M(j) (in the figure for j = 1).

neighbours due to the sparsity of the interactions and of
the negligible role played by long-range correlations. The
method is therefore based on passing messages - conditional
probabilities - iteratively between interacting variables until
they stabilize and then inferring the variable values from the
converged messages.

There are different ways to explain message passing
methods [55], [57], through approximate minimization of the
Bethe free energy using a variational approach, modeling the
joint probability of the system using factorized interactions
between variable groups and others [57]. The explanation
provided here relies on mapping the problem onto a bipartite
graph, where variable nodes appear on the left and factor
nodes, representing the interaction between them, on the right,
as shown in Fig. 8. Factors can represent validating a rule (e.g.,
two neighboring nodes having different colors in the graph
coloring problem), observations that depend on the interacting
variable values or some probability of the interacting variables
to be in a given state. The factors variable j interacts with
are denoted by M(j) and the set of variables interacting
through factor a as L(a). The messages represent conditional
probabilities of variable Sj assuming a certain state given
all the factors in M(j) except factor a - µxj→Za

and the
probability of factor Za given that variable xj is in some state
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- µZa→xj
. This gives rise to a closed set of equations

µxj→Za = P (xj | {Zb : b ∈M(j)/a})
= αaj p(xj)

∏
b∈M(j)\a

µZb→xj

µZa→xj
= P (Za|xj)
=

∑
{xi:i∈L(a)\j}

P (Za | xj , {xi : i ∈ L(a) \ j})

×
∏

i∈L(a)\j

µxi→Za

that can be iterated until the messages stop changing. The
coefficient αaj is a normalization factor obtained by summing
over all possible xj values. The derivation is based on simple
identities and hinges on the assumption the due to the sparse
nature of the interactions, the joint probabilities P ({Zb : b ∈
M(j)/a} | xj) and P ({xi : i ∈ L(a) \ j} | {Zb : b ∈
M(j)/a} can be factorised. This is exact on trees and works
well on locally tree-like graphs.

Once the messages have converged, one can calculate the
marginal values for the variables

P (xj |{Zb : b ∈M(j)}) = αj p(xj)
∏

b∈M(j)

µZb→xj ,

αj being a normalization coefficient, to infer variable values.
Many variants of message passing methods exist, that deal

with densely connected graphs [62], that provide an even
simpler approximation (Approximate Message Passing) [63]
and that can account for short loops [64], [65] and the
emergence of long range correlations [66].

Message-passing methods have been useful in solving hard
combinatorial problems [55], decoding in low-density error
correcting codes [67], [68], compressed sensing [69], resource
allocation [70] and routing [71]–[73]. Of particular interest to
optical communication networks is addressing edge-disjoint
routing [74] and resource allocation. They work effectively
and scale well, typically linearly or quadratically, with respect
to the number of free variables, but break down in the hard
regime where long-range correlations between variables are
formed.

V. COMPUTATIONAL COMPLEXITY

When navigating through the modelling choices presented
in the sections above, one is often driven by the limited
computational resources and scale of the problem, rather
then seeking the most appropriate formalism. Whereas there
are some notable cases in which a-priori computational
complexity figures are very difficult to estimate, we list few
examples from each family of algorithms. As a benchmark,
note that, in principle, the task of training neural networks
is NP-hard [75] and requires exponential time with respect
to the number of free variables. Nevertheless, for obtaining
an acceptable approximation, one typically considers the
computational time complexity of neural networks trained with
standard back-propagation as the product of the complexity

per epoch and the undetermined number of epochs: the time
complexity for two layer multilayer perceptron is therefore:

O(number of epochs ·N · number of nodes in layer 1·
· number of nodes in layer 2)

(29)

Unlike neural networks, parametric methods and kernel
methods are commonly trained using variety of inference
paradigms which would largely determine their computational
complexity. Ordinary linear regression can be trained in
linear complexity in terms of the number of data points
N with complexity O

(
N · P 2 + P 3

)
. The complexity of

linear models can grows exponentially although if we
consider pairwise interactions linear models the complexity
becomes: O

(
N2 · P 2 + P 3

)
. Using the kernel trick [76]

showed how smarter training could limit the time complexity
to O

(
N · P 2 + P 3

)
, even for pairwise interaction models.

The training of piecewise linear models introduces a
non-convex optimization problem which whose complexity
is difficult to estimate, as it typically involves approximate
inference strategies such as the expectation maximization
algorithms introduced in Sec. IV. Training kernel regression
methods as well as probabilistic extensions such as Gaussian
processes involves prohibitive cubic complexity O

(
N3
)

when approached naively. This has historically slowed
down the adoption of many methods from these families.
However, inducing variables [77] and sparse Gaussian
process approximations [78], [79] can be used to reduce
this complexity to O

(
N ·M2

)
with M denoting the

number of the inducing variables. For more rigid but
scalable supervised methods, we have K-nearest neighbour
regression and classifiers with complexity constrained by
the number of neighbours with O (N ·K). Maximum
margin methods such as the support vector machines
exhibit minimum time complexity of O

(
N2
)
. Decision trees

introduced in Section III-C are trained with efficient gradient
descent algorithms making their complexity proportionate to
O (N · log(N)) and the number of trees and their maximum
depth: CART trees require O (depth of tree ·N · log(N)),
whereas random forests and XGboost can be trained at
O (depth of tree · log(N) · number of trees) . However, since
training individual trees in tree ensembles can be distributed
efficiently across multiple cores, inference in different random
forest algorithms is considered quite scalable. Finally, being
mostly applied to sparse graphs, message passing techniques
presented in Sec. IV-E, scales linearly with the number of
variables O (P ) although the number of iterations required
for convergence is unspecified, but is typically much smaller
than P .

VI. VISUAL INFORMATICS AND DIMENSIONALITY
REDUCTION

The ability to appropriately represent information from high
dimensional structures is central to many of the success stories
in statistical machine learning. Structured data objects such
as spectograms, images or voice recordings can be efficiently
represented in lower dimensional spaces, with minimal loss of
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information provided that we utilize some defining properties
of these input types. For instance, that pixel intensities are
predictive of their immediate neighbours and periodic signals
are encoded in the first few harmonics.

Dimensionality reduction unifies a wide set of algorithms
for utilizing specific properties of the data to map it onto a
lower dimensional and simpler representation. They can then
form a part of the: (1) exploratory analysis stage by facilitating
complex data visualization; (2) simplify the classification
or clustering stages by reducing the dimensionality of the
problem, or (3) be utilized for noise removal (i.e. including
removal of outliers) or for removing data redundancy. Despite
the plethora of algorithms and heuristics which are in this
family, many statistical machine learning tools can be stratified
into one of the following categories: (1) interpretable and
generative dimensionality reduction; (2) manifold embedding
methods and (3) neural network methods.

A. Generative models in visual informatics

In this broad class of methods, explicit assumptions about
the underlying data structure are made, as well as, the
functional form of the mapping f : RD → RP that relates
the lower dimensional latent (i.e. P -dimensional) space with
the original D-dimensional data space. The detailed modelling
assumptions will allow us to formally test different aspects of
model selection and infer missing data.

1) Linear dimensionality reduction: Assume a linear map
f which transforms input data into scalar latent variables z =
yTw where w ∈ RD is a projection vector. If the input y has
variance Σ, one can write the variance of the latent z as:

var [z] = E
[
z2
]
− E [z]

2 (30)

= wTE
[
yyT

]
w −wTE [y]E

[
yT
]
w = wTΣw

A common goal is then to find w that maximizes var [z]; to
make this a well-posed problem we may assume unit length.
This can be written formally as the optimization problem:

maximize wTΣw (31)
subject to ‖w‖ = 1 ,

or as maximizing the Lagrangian L (w, λ) = wTΣw +
λ
(
wTw − 1

)
. The gradient is ∇wL (w, λ) = 2Σw −

2λw such that the solution to the optimization problem is:
Σw = λw. This is just the eigenvector equation for the
covariance of y, so it follows that var [z] = λwTw = λ.
The maximum-variance solution is obtained by finding the
largest eigenvalue and corresponding eigenvector of Σ. The
vector w is known as the first principal component (PC)
w1 of y and λ1 the largest eigenvalue. Inductively, a high-
dimensional z can be obtained with z ∈ RD, if P = D we
use projection matrix W ∈ RD×D which in fact does not
reduce dimensionality, but only whitens the data (see Fig. 9).
In principal component analysis (PCA) [80], the columns of
W are assumed orthogonal, which is implied when taking the
eigenvectors of the covariance matrix as PCs. Each component
is a different eigenvector of the sample covariance and
components are ranked by their corresponding eigenvalues.
The relative size of the eigenvalue reflects the ratio of

explained variance by the matching PC. The orthogonality of
the PCs means that PCA projections of the input de-couple
the features and reduce redundancy in multi-channel signals.
An exemplar application of PCA for reducing redundancy in
microwave photonics systems is presented in [81]. Common
uses of PCA beyond dimensionality reduction are (1) feature
whitening and (2) anomaly detection, simple examples of
which are displayed in Fig. 9. Given an input data with
correlated features {x(n)

1 ,x
(n)
2 }Nn=1, PCA estimates PCs w1

and w2 which project the data onto a new uncorrelated space
(i.e. Fig. 9 (a)-(b)). The fact that PCs preserve the direction
of the largest variance makes lower dimensional projections
naturally suitable for separating statistical outliers (i.e. Fig. 9
(c)-(d)).

So far PCA was derived based on the requirement of
covariance structure preservation, omitting any formal
probabilistic assumptions. Putting PCA into a more
principled probabilistic framework allows for informed model
assumptions. Assume data can be efficiently represented
using a linear Gaussian latent variable model:

y = Wx+ µ+ ε (32)

where the observed data is y ∈ RD, W ∈ RD×K is a
transformation matrix; x ∈ RK are unknown multivariate
Gaussian latent variables; µ ∈ RD is a mean (offset)
vector and ε describes the model noise, typically Gaussian.
Depending on the assumptions made about x, W and ε,
some widely used dimensionality reduction algorithms can be
derived:
• PCA can be derived from Eq. (32) and additional

assumptions that µ = 0, the vectors of W are orthogonal
and the variance of the isotropic noise is 0, i.e. assume
ε ∼ N

(
0, σ2ID

)
and σ → 0.

• Without the small variance asymptotics assumption, but
having W with orthogonal columns and Gaussian noise
ε ∼ N

(
0, σ2ID

)
, one recovers probabilistic PCA

(PPCA) [82].
• In the case where the orthogonality assumption on W

is omitted and a more flexible elliptical noise ε ∼
N (0, diag (σ)) is assumed with σ = (σ1, . . . , σD), one
obtains the classic factor analysis (FA) [83].

• Variants of independent component analysis [84] can
be obtained by assuming flexible elliptical noise ε ∼
N (0, diag (σ)) with σ = (σ1, . . . , σD), but also
assuming a non-Gaussian distribution model for the latent
variables x ∈ RK , for example the multivariate Laplace
distribution [85].

2) Gaussian process latent variable models: Similar to
the way Gaussian processes were used to specify nonlinear
regression approaches, one can also define interpretable
nonlinear dimensionality reduction. To do this take the
likelihood of a linear Gaussian latent variable model:

P
(
y(n)|x(n),W , σI

)
= N

(
y(n)|Wx(n), σI

)
(33)
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Fig. 9. Illustration of principal component analysis: (a) Given some input
space described by correlated features x1 and x2, PCA estimates (b) new
orthogonal axis which uncorrelate the feature space. (c) shows an example
of clustered data with three present outliers; (d) displays a histogram of the
1-dimensional projection of this data onto the direction of its largest variance
where outliers appear on the right edge of the figure.

Fig. 10. Synethetic data generated on a swiss roll with random noise (a)
shows the generated 1000 samples on a 3D scatter plot; (b) displays the top
two latent dimensions of a GPLVM model fitted to the data; (c) displays a
2D projection of the swiss roll data using the eigenvectors with the largest
two corresponding eigenvalues. Clearly, it is difficult to separate the different
groups on the basis of (c).

and integrate out the projection matrix W so that the model
can be expressed only in terms of the latent variables, giving
the following likelihood across each dimension d [86]:

P (Yd|X, σ) = N
(
Yd|0,XXTσI

)
(34)

where note that P (Y |X, σ) =
∏D
d=1 P (Yd|X, σ) and

P (Y |W , σ) =
∏N
i=1 P

(
y(i)|W , σ

)
. The likelihoods from

Eqs. (33) and (34) specify identical assumptions but also allow
to interpret the linear Gaussian model as a special case of the
more general latent variable model which assumes:

P (Yd|X, σ) = N (Yd|0,K) (35)

with K denoting the covariance matrix of the underlying GP,
which depends on the choice of kernel for the GP governing
our model: for linear kernel κ

(
x(i),x(j)

)
=
(
x(i)

)T
x(j) +

β−1δ (i, j) resulting in Eq. (34). Using alternative nonlinear
kernels like the RBF kernel, a rich set of assumptions can be
embedded about the lower dimensional space. Fig. 10 shows
an example toy data generated to lie on a swiss roll surface
in 3-D (Fig. 10(a)). PCA manages to rotate the data and infer
the direction of the maximum variance (i.e. in Fig. 10(c)), but
if the goal is capturing the geodesic distance structure and
project points relative to their distance on the 3-D surface,
the linear assumption falls short. In contrast, Fig. 10(b) shows
the latent space inferred by a Bayesian GP-LVM (using 30
inducing points for training).

Similar to the Gaussian process regression models, GP-
LVMs benefit from recent advances in scaling up inference
in Gaussian processes. GP-LVMs have been augmented to

fully Bayesian specification which allows to infer the kernel
lengthscales [87], [88]; another extension [89] has also been
proposed which allows for the inclusion of external covariates
when learning the lower dimensional representation. Covariate
GP-LVMs allow a user to infer a breakdown of feature-level
variability, while inferring complex reduction of the high-
dimensional input space.

3) Generative topographic mapping: Generative
topographic mapping (GTM) [90] defines a non-linear,
parametric mapping from a p-dimensional latent space
(p = 2, 3 for visualization purposes) to the D-dimensional
data space. Denote the continuous latent variables with
x ∈ Rp and assume the function f(x,W ) to be continuous
and differentiable, GTM assumes that the likelihood of y can
be written as:

P (y|W , β) =
1

K

K∑
k=1

P (y|x,W , β) (36)

where a grid of K densities describing the spread of data in the
lower dimensional space is used. The underlying assumption
is that each grid density is Gaussian with shared variance and
mean determined by the associated embeddings:

P (y|x,W , β) = N (y|f(x,W ), β) (37)

The ordering of the latent points reflects the ordering of
the Gaussian centers in the data space (i.e. for continuous
f (x,W )), which ensures preservation of the local structure in
the input. One can view GTMs as a constrained mixture model
where all components depend on the mapping f(x,W ), the
mixing coefficients are equal and fixed to 1/K, and the
component variance is shared. The motivation behind this
setup can be found in early data visualization technique called
self-organizing maps [91] where the goal is data visualization
which preserves some of the high dimensional heterogeneity,
rather then explicit clustering.

So far the form that f takes, has not been set: f can be
expressed as a linear combination of fixed basis functions,
fd(x,W ) =

∑M
m=1 φm(x)wmd. Common basis choices are:

• non-normalized Gaussian basis functions - φm(x) =

exp
(
−‖x−µm‖

2

2σ2

)
where µm denote the centres of the

Gaussian basis functions and σ is their common width;
• linear basis functions - φm(x) = xp where xp denotes

the p-th feature of x;
• fixed basis functions (i.e. single bias term) that allows for

the corresponding weights to act as biases: φm(x) = 1.

Since GP-LVMs utilize Gaussian processes to specify a
full distribution over the non-linearities, they tend to provide
a more flexible framework for modelling the relationship
between the high-dimensional and low-dimensional spaces.
However, embedding discrete variables allows for efficient
and intepretable representations when it comes to cluster
preservation. The constraints manifested by the K-point grid
makes GTMs less flexible, than a GP-LVM representation, but
also allow for faster inference.
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Fig. 11. Synthetically generated 3-dimensional linear Gaussian data which
inherently lies on one of three 2-dimensional linear subspaces. The colored
planes denote the subspace planes. (a) shows the raw data and the identified
latent subspaces; (b) shows what a PCA transoformation of this data provides.

4) Piecewise linear dimensionality reduction: An
alternative approach for constructing nonlinear dimensionality
reduction is using a collection of local linear sub-models. We
can augment the linear Gaussian model of Eq. (32) with set
of discrete indicators Z =

[
z(1), . . . ,z(N)

]T
that reflect the

assumed clustering topology:

Y = W (X �Z) +E (38)

where � denotes the Hadamard product, also known as the
element-wise or Schur product.

If we assume that data lies on non-overlapping subspaces,
we can adopt a mixture model setup with Z =[
z(1), . . . ,z(N)

]T
being one-hot encoding vectors. The basic

setup would be assuming a mixture of probabilistic PCA
models which would reduce the original D dimensional data
into a set of different Rp lower dimensional representations.
In each subspace, a set of points are modelled with a local
probabilistic PCA where data is also inherently clustered into
regions which can be modelled well with the same PCA.
An illustration is shown in Fig. 11, where 3-dimensional
data lie approximately on three 2-dimensional subspaces (i.e.
each pair of subspaces sharing a single principal axis). The
mixture of probabilistic PCA approach has been extended in a
number of ways: proposing ways to learn the number of PCA
components; learning the size of latent dimensionality p; and
probabilistic priors which capture the uncertainty associated
with transformer matrices W .

Altogether different piecewise linear assumption would be
that data shares different combinations of linear subspaces.
Assume Z =

[
z(1), . . . ,z(N)

]T
in Eq. (38) is a binary

indicator matrix selecting which of K hidden sources
are active. The resulting models are known as latent
feature models [85], [92], [93] and they provide more
flexible means for structure decomposition by leveraging
specified relationships in the observed data. The clustering
topology in latent feature models can be more complex,
with observations belonging to multiple components. In
the context of visualization, depending on the probabilistic
assumptions embedded in the indicator matrix Z, models
of the form in Eq. (38) capture a range of 1-dimensional
linear subspaces where each data point is represented by
a random combination of them. For example, the adaptive

probabilistic PCA [93], allows for specifying the total number
K of unique components which one thinks summarize the
reduced space and one can also specify L - the smaller number
of components (out of the total K) that each observation is
associated with. In Fig. 11, with K = 3 and L = 2, an adaptive
probabilistic PCA identifies three latent principal components
which span the latent space, whereas a mixture of probabilistic
PCA identifies three subspaces of two components.

B. Manifold embedding methods

Many algorithms focus on preserving the relative distance
between points in the original data space while minimizing
distortion in the low dimensional space. Unlike generative
models, manifold embedding algorithms typically do not
require specifying a full generative process for the data,
but leverage generic assumptions about key information to
be preserved in the dimensionality reduction process. A
unification of many manifold embedding algorithms has been
proposed in [76].

1) Multidimensional scaling: One of the simplest examples
of manifold embedding algorithms is the Multi-dimensional
scaling (MDS) [94]. MDS seeks a lower dimensional
projection which preserves pairwise similarities of the input
data. In the classical MDS, similarity is measured by
Euclidean distances and the methods receive an input of the
dissimilarity matrix d̂ with d̂ij = ‖y(i)−y(j)‖ for each i and
j. MDS then seeks to find lower dimensional embedding of
the data, x(1), . . . ,x(N), minimizing the loss:

L(d̂ij) =


∑
i<j

(
d̂ij − f(dij)

)2
∑
d2ij


1
2

(39)

where we also have dij = ‖x(i)−x(j)‖; for the metric version
of MDS f is a monotone function; non-metric MDS aims to
preserve the relative ordering of the items, rather then pairwise
Euclidean distances. If f(·) is an identity function, the loss can
be optimized in a single step and this is known as the classical
MDS, which infers identical projection to that of PCA.

It is well know that for high-dimensional data, Euclidean
distance is often not a good measure of similarity between
points, which has motivated multiple versions of MDS,
varying in the way similarity matrices are computed. The
most notable extension is the Isomap [95] which starts by
creating a neighborhood graph. The shortest path is found
between all pairs of inputs (using algorithm of choice such
as Dijkstra’s algorithm) and the length of the shortest paths is
used as a measure of proximity between pairs of points, i.e.
geodesic distance. Once the Euclidean distance is replaced
with geodesic distance, Isomap proceeds identically to MDS.

2) t-distributed stochastic neighbourhood embedding:
Somewhat in contrast to MDS and other related schemes,
t-distributed stochastic neighbourhood embedding (t-SNE)
focuses on minimizing the Kullback–Leibler (KL) divergence
measure between the distribution of distances in the high
dimensional inputs space and the distribution of pairwise
distances in the embedding space. t-SNE assumes Gaussian
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densities to capture the joint probability of any two points
in the input space; the conditional probability pj|i of point j
given point i takes the form:

pj|i =
exp(−‖y(i) − y(j)‖2)/2σ2∑
k 6=i exp(−‖y(i) − y(k)‖2/2σ2)

. (40)

The goal of t-SNE is to learn lower dimensional projections
which preserve the structure in pji =

pj|i+pi|j
2N as close

as possible by assuming Student-t distribution capturing the
similarity between pairs of latent variables with:

qij =

(
1 + ‖x(i) − x(j)‖2

)−1∑
k 6=l
(
1 + ‖x(k) − x(l)‖2

)−1 (41)

The training of t-SNE then minimizes the KL divergence
between pij and qij using any standard gradient optimizer.
This cost to be minimized takes the form:

Ct-SNE = C −
∑
i 6=j

pij log (qij) (42)

where C a constant function of the data.
A key advantage of t-SNE is that the distribution matching

allows one to reveal the structure at many scales on a single
map, and in principle display in 2-D (or 3-D) that data lies in
multiple different manifolds, instead of crowding8 all samples
for large D. However, the joint Gaussian probabilities cannot
capture relationship between uncorrelated or far-off points.
This is why t-SNE is known to preserve poorly global structure
in the original data space. Other known downsides of t-SNE
include poor scaling and tendency of producing clustered low
space embedding even for uniformly distributed input.

C. Other manifold embedding methods

Another popular manifold embedding algorithm, the
Uniform Manifold Approximation and Projection (UMAP),
was not covered in this tutorial due to the need to
introduce fuzzy simplicial set representations. UMAP has
similar motivation to t-SNE, but similarity in the high-
dimensional space is measured using local fuzzy simplicial set
memberships based on smooth nearest neighbour distances.
MDS also serves as a basis for flexible dimensionality
reduction algorithms which use splines to preserve nonlinear
structure in the pairwise similarity of the original data
for instance in Neuroscale [96]. Nonlinear PCA was the
motivating objective behind many autoencoder architectures,
a big family of algorithms for visual informatics.

VII. APPLICATIONS TO PHOTONICS

Many of the methods mentioned in this paper have been
used already in various photonics applications [97] but there
is still significant potential for using them more broadly.

8The volume of a sphere scales in higher dimensions D proportionally to
rD with r denoting the radius of the hypersphere. In 2-D there is much less
area available for the same radius r, hence one may place items at a different
relative distance from a reference point. Due to lack of room nearby one may
place high dimensional items in a 2-D space far off than where they should
(intuitively) be. In contrast, some items end up crowded in the center to stay
close to all of the far-off points.

Exemplar applications are the use of Gaussian processes for
image interpolation and for denoising, for division of focal
plane sensors [98], for the optimization of complex optical
structures [99], for modelling optical fiber communication
behavior [100] and for predicting the bit error rate in
Quadrature Phase Shift Keying (QPSK) wavelength-division
multiplexing (WDM) communication system [101].

Bayesian probabilistic techniques, including mixture
models, have been used for amplitude and phase noise
characterization [102], for parameter estimation in a nonlinear
state-space framework [103], for phase estimation [104] and
for failure detection [105]. Linear regression has been used
to estimate the BER of each new service requests [106] and
for sparse identification for nonlinear optical communication
systems using lasso regularization in a perturbative (linear)
model [107].

Kernel based methods have been employed to solve a broad
range of problems in the general area of photonics including,
fibre optic nonlinearity mitigation, using K-means [108]
and support vector machines [109]; support vector machines
were also used for nonlinear phase noise mitigation for
coherent optical systems machines [110], in quality of
transmission prediction of unestablished lightpaths [111],
in failure detection and identification [112] and in fiber
nonlinearity equalization [113].

Message passing techniques have been used for stereo
matching in image postfiltering [114], in pattern division
multiple access in MMW-RoF Systems [115] and in
decoding low-density parity-check decoded signals. Routing
and network design could potentially benefit from message
passing techniques [74] to provide scalable and principled
routing techniques under variable objectives and constraints.

Of particular relevance to performance monitoring is the
area of dimensionality reduction and visual informatics.
While basic methods such as PCA have been used in
many applications, from real-time feature extraction and
dimensionality reduction in hyperspectral imaging [116]
and optical performance monitoring, and modulation format
identification [117] to modal characterization [118], more
advanced techniques have not been used very often.

This is clearly not a comprehensive list of applications but
merely points to a small representative selection. We would
also like to point the reader to other reviews on the use of
machine learning in optical communication that are somewhat
related to the current tutorial [97], [103], [119], [120].

We are fully aware of the significant use of neural network
methods in the area of photonics and their many successes
in addressing some of the most difficult problems in this
area. However, the aim of this review is primarily to explain
the use of principled machine learning techniques and not a
comparison against the performance offered by other methods.
This comparison is problem dependent and hinges on what
exactly constitutes success.

VIII. CONCLUSIONS

The review aims at introducing readers to principled
and established machine learning methods, focusing on
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probabilistic, kernel based and decision tree techniques. It is
not intended to be comprehensive and exhaustive but merely to
explain the underlying fundamental ideas underpinning what
we perceive to be the main directions, motivating their use and
explaining their advantages and shortcomings. This tutorial
should serve as a stepping stone to the use of principled
machine learning algorithms in photonics applications.

Naturally, many methods have not been covered in this
tutorial. Statistical machine learning is an extremely dynamic
field, fueled by innovation. Recent branches of machine
learning which have been omitted include:
• Likelihood free methods - which assume one can easily

generate data samples but cannot construct a reliable
generative model for the data [121]. These methods are
not Bayesian and rely on statistical approaches that do
not require a likelihood.

• Causal inference methods - most of this tutorial
focuses on flexible paradigms for leveraging statistical
associations in the data to do predictions or exploratory
data analysis. The field of causal inference provides tools
for going beyond correlating patterns and studying the
cause-effect estimation tasks in different scenarios [122].
It encompasses assumptions and estimation strategies to
allow one to draw causal relations from data.

• Energy-based models - energy-based learning provides a
unified framework for non-probabilistic training of both
probabilistic and heuristic approaches [123]. Stemming
from statistical physics, they are trained to model an
underlying data distribution from a sample dataset.

We hope the tutorial provides insight into the methods used
in machine learning as well as basic understanding of their
foundations, and that it will stimulate readers to use them for
a variety of applications.
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