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ABSTRACT 

The aim of this work is to develop practical tools to recognize the average flow rate of physiological fluids in capillaries. 

This tool is represented by classification models in an artificial neural networks form. The flow rate data were obtained 

experimentally. Intralipid was used as the test liquid. Laser speckle contrast imaging was used to obtain images of liquid 

flow in a glass capillary. The experiment was carried out with an average flow rate of 0-2 mm/s with various concentrations 

of intralipid. The results of training of fully connected and convolutional neural networks for processing the received data 

are presented. The accuracy of determining the average flow rate of intralipid with different concentrations was comparable 

to the previously obtained results for a fixed concentration and amounted to approximately 97.5%. 
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1. INTRODUCTION 

The rheological properties of physiological fluids can perform a diagnostic function in determining pathological conditions 

in a wide range of diseases 1–3. In particular, blood viscosity is an important hemorheological parameter that affects blood 

flow and circulation. Monitoring changes in blood viscosity can become an important tool for diagnosing and predicting 

hemorheological changes 4,5. For example, increased blood viscosity is associated with several pathological conditions, 

such as sickle cell anemia and diabetes mellitus, which can contribute to vascular complications and impaired tissue 

perfusion 6,7.  

Non-invasive diagnostic methods are of particular interest. Ref. 8discusses that dynamic light scattering methods can be 

used to register kinematic parameters of physiological fluid flow. Thus, significant advances have been made in the 

application of laser Doppler flowmetry (LDF) 9 and laser speckle contrast imaging (LSCI) 10, which allow in vivo studies.  

The development of machine learning (ML) methods, in particular deep learning, as well as modern ways to speed up 

computations, allow to develop complex models based on big data analysis. Thus, in 11, a model is presented for the 

diagnosis of acute leukemia based on the processing of images of blood cells by a convolutional neural network. In 12, 

various machine learning models are used to detect skin cancer by polarization speckle.  

The model based on feed-forward artificial neural network (ANN) is presented in Ref. 13. This model makes it possible to 

determine the average flow rate of intralipid of fixed concentration, which approximately corresponds to the optical 

scattering properties of blood. However, the value of speckle contrast changes due to changes in the properties of optical 

scattering when studying the flow of various intralipid concentrations by the LSCI method. As a result, this makes it 

difficult to estimate the fluid velocity. 

This article discusses the average flow rate recognizing problem of physiological fluids using ANN. For recognition, the 

images of the intralipid solution flow in the channel obtained by the LSCI method are used. The main difficulty is that 

different intralipid concentrations affect the optical scattering properties. 
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2. EXPERIMENTAL SETUP 

The aim of this work is to research the influence of the intralipid concentration, and the camera positioning on the flow 

rate. The study was implemented with the experimental setup that combines the fluid flow circuit and the LSCI equipment 

(see Fig. 1), designed earlier 10,14,15. The enforced fluid flow through the medical glass capillary with a diameter of 1.6 mm 

was investigated. The studied fluid is 20 % intralipid (Fresenius Kaby, USA). The electric pump DSh-08 (Visma, Belarus) 

provides a flow rate of a known value, while the UI-3360CP-NIR-GL Rev.2 (IDS GmbH, Germany) CMOS camera 

combined with the extension adapter and MVL25TM23 lens (Thorlabs, Inc., USA) records the intralipid flow illuminated 

by a 785 nm laser (LDM785, Thorlabs Inc.).  

 
a) 

 
b) 

Figure. 1. The experimental setup: schematic (a) and photograph (b) 

The study plan consisted of 75 tests including 5 parallel tests at each combination of factors. The tests were performed in 

random order. Each test lasted 1 minute. The camera recorded the flow with the resolution of 2048×512 pixels at the 

frequency of 30 FPS. The flow rate was of 0, 0.5, 1, 1.5, and 2 mm/s. The intralipid was diluted to concentrations of 4, 8, 

and 12 %. The camera exposition time was 15.  

3. METHODOLOGY 

3.1 Laser speckle contrast imaging 

By analyzing the local speckle contrast, the LSCI method allows one to obtain an image of dynamic inhomogeneities 16. 

When the scattering medium is illuminated with coherent radiation, a random picture of the light intensity arises. This 

pattern is caused by interference within the medium and at its surface. The resulting intensity structure is known as a 

speckle pattern. The movement of particles in the medium leads to blurring in the image due to averaging over the exposure 

time of the camera. Spatial and temporal statistics of speckle patterns are used to extract information about movement in 

the environment under study. Spatial speckle contrast (SSC) is calculated in a small square area of the image. The optimal 

size for this area is a 7×7 pixel window. This window moves horizontally and vertically across the image. The spatial 

speckle contrast in each window is calculated using the formula:  

 ,n

n

K
I


=  (1) 

where 𝑛 is the calculation domain size; 𝜎𝑛 is the intensity standard deviation; ⟨𝐼𝑛⟩ is mean intensity.  

The K value ranges from 0 to 1. Temporal speckle contrast (TSC) is used to calculate the intensity value in one pixel of 

several frames. Space time speckle contrast (STSC) combines the areas previously described.  

3.2 Artificial neural networks 

This article uses supervised learning to solve the average flow rate classification problem. Artificial neural networks 

(ANNs) are used for this problem. The model being trained must determine the relationship between the input set and the 

Proc. of SPIE Vol. 12194  121940D-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

 

target set of classes 𝒀 = ((𝒚(1), … , 𝒚(𝑚))) by finding the parameter values 𝚯 = ((𝚯(1), … , 𝚯(𝑙))), where 𝑚 – is the sample 

index, 𝑙 – is the neural network layer index. This model is a complex function that defines a set of predictions of 

probabilities 𝑯 = 𝑯(𝑿, 𝚯). Data arrays of arbitrary shape are used as samples of the input and target sets.  

The cross-entropy loss is used as an error function 17:  

 ( )( ) ( )

1

( ) ln( ) min,
lnm

i i

j j

i j

L y h
= =

 = −   (2) 

where ℎ𝑗
(𝑖)

 is predicted for a given input 𝑿(𝒊) probability of being assigned to an 𝑗-th class, 𝑦̃𝑗
(𝑖)

 is a target value for a given 

input 𝑿(𝒊) of being assigned to an 𝑗-th class (𝑦̃𝑗
(𝑖)

= 1 if 𝑗 corresponds to the number of the class, and 𝑦̃𝑗
(𝑖)

= 0 otherwise), 

𝑛𝑙 is the number of neurons in the output layer of ANN that is equal to the number of classes.  

ANN computations are of two types: forward propagation to obtain predictions and back propagation to obtain gradient 

components((𝐿𝜃
′ ))of the error function. Back propagation is performed to implement a gradient descent method that 

minimizes the error value L and finds the best values for the parameters 𝚯. In this paper, we use a version of the Adam’s 

method 18.  

The most common neural network is the multilayer perceptron (MLP), which consists of several fully connected layers 

(Fig. 2). The value of neurons in these layers is determined by a non-linear activation function. The argument of this 

function is the weighted sum of the neurons of the previous layer. In this work, the ReLU function is used as the activation 

function for the hidden layer. The input layer takes the values of set X, the samples of which are vectors. The output layer 

is used to predict a specific class using the SoftMax activation function. Also, before activation, a Batch Normalization 

layer is used, which avoids overfitting. When applying this layer, the bias parameter is used only in the output layer. This 

technique helps to increase the accuracy of deep learning models 19.  

 

Figure 2. Architecture of the MLP 

The convolutional neural network (CNN) was originally developed for image processing. They compress pixel intensity 

data and highlight important features. The convolution operation is the complete dot product of the fragments of the input 

image and the corresponding kernel. The kernel components are included in the set of network parameters 𝚯 and their 

values are determined during training. The convolutional layers also use padding to control the size of the output and stride 

to reduce the dimension of the data. The number of kernels in the convolutional layer determines the number of output 

channels. After the convolution operation, the Batch Normalization layers and activation functions are also applied. For 

classification, the CNN output is processed by one or more fully connected layers such as MLP.  

In this work, we use the CNN ResNet18 20 (Fig. 3). The peculiarity of the ResNet architecture is the shortcut connections. 

The Stride in the layers of the network is 2. ResNet 18 accepts an image of arbitrary size and three channels as input.  
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Figure 3. Architecture of ResNet18 

The PyTorch library was used to train the proposed models 21. To speed up the calculations, a GeForce 1660 TI video card 

with CUDA driver support was used.  

4. RESULTS 

4.1 Data preparation 

The first results were obtained for a concentration of 8%. The accuracy of resulting shallow ANN model was about 88.5% 

and that exceed the accuracy of experts. Spatial speckle contrast averaged over 120 frames (mean SSC) was the best 

method for preparing the data. Using this method, the resulting model became resistant to pulsations of the pump used in 

the experiment. The disadvantage of the developed model is that it allows to recognize the flow rate of liquid with a 

constant concentration 13. Thus, the main challenge in this work is the development of a model capable of recognizing the 

flow rate of a liquid with varying reflective properties.  

 

 

 

Figure 4. Training images represent the capillary central part domain of 160×160 pixels 
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The data were pre-cleared of outliers. The images for training were obtained using the mean SSC algorithm. These images 

were cropped to a size of 160×160 pixels so that the center of the capillary is in the center of the resulting image. The 

dataset was divided into 3 parts:  68947 samples for training, 24851 for validation, and 23427 for test. Figure 4 shows 

examples of images for each class and concentration. Standard scale normalization was applied for the training examples.  

Figure 5 shows the average mean SSC values in the capillary central part domain of 40×40 pixels on 120 frames. It can be 

seen that as the speed increases, the value of the speckle contrast decreases. However, the amount of speckle contrast also 

changes with concentration, making it difficult to analyze the images.  

 

Figure 5. Speckle contrasts calculated in the capillary central part domain of 40×40 pixels at the different fluid flow rates 

and concentrations using mean SSC 

4.2 Comparison of architectures 

The shallow ANN was trained with different number of hidden neurons: 𝑙ℎ𝑖𝑑 = [8,16,32,64]. The learning rate and the 

regularization parameter value were also varied in shallow ANN and ResNet 18. The parameters were selected based on 

the validation results. Table 1 shows that the ResNet 18 accuracy is higher than the shallow ANN accuracy. The best 

accuracy for the test set was 88.8%. Figure 6 demonstrates ResNet 18 confusion matrices.  

Table. 1. The ANN and ResNet 18 results 

Model Training 

accuracy 

Validation 

accuracy 

Test accuracy 

Multilayer 

Perceptron 

0.9978 0.9919 0.8382 

ResNet 18 0.9942 0.9988 0.8884 

 

Figure 6. The ResNet 18 confusion matrices 
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4.3 Ensemble of models 

To increase the recognition accuracy, an ensemble of several models is used. For this, the training data was divided into 4 

folds. Each of them was used for validation on the corresponding model. The rest of the data were used for training. The 

test sample remained unchanged. Table 2 shows the learning results for different folds. Figure 7 demonstrates ensemble 

confusion matrices.  

Table. 2. The ensemble results 

Model Training accuracy Validation accuracy Test accuracy 

FOLD 1 0.9976 0.9977 0.8860 

FOLD 2 0.9813 0.9553 0.9369 

FOLD 3 1.0000 0.9484 0.9113 

FOLD 4 0.9754 0.9353 0.9299 

Ensemble 0.9869 0.9759 

 

Figure 7. The ensemble confusion matrices 

The precision of the ensemble in the test set was 97.59%. The F1-score metric for each class was, respectively: 100%, 

100%, 93.38%, 99.99%. The average F1-score is 97.52%. Therefore, the recognition accuracy of the average intralipid 

flow rate with different concentrations was comparable to the accuracy of a fixed concentration.  

5. CONCLUSIONS 

The best accuracy and F1 score are about 97.5% for the test sample was obtained for the case of using the ensemble of 

ResNet 18 models. The developed algorithm and model made it possible to determine the average flow rate of a solution 

of intralipid of various concentrations. In addition, the algorithm proved to be resistant to pulsation of the pump used in 

the experiment. The combination of LSCI and machine learning techniques to study the flow of body fluids holds promise 

for many applications, including health monitoring and diagnostics. Further research will aim to create a compact device 

for measuring the viscosity of physiological fluids. The device will allow to automate calculations of viscosity based on 

the use of deep neural networks. Training data will be received on the same device using the LSCI method. Thus, the 

device will make it possible to diagnose the state of cells of physiological fluids in real time.  
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