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Size frequency distributions of abnormal protein deposits in 
Alzheimer’s disease and variant Creutzfeldt-Jakob disease
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A b s t r a c t

The size frequency distributions of β-amyloid (Aβ) and prion protein (PrPsc) deposits were studied in Alzheimer’s disease 
(AD) and the variant form of Creutzfeldt-Jakob disease (vCJD) respectively. All size distributions were unimodal and 
positively skewed. Aβ deposits reached a greater maximum size and their distributions were significantly less skewed
than the PrPsc deposits. All distributions were approximately log-normal in shape but only the diffuse PrPsc deposits 
did not deviate significantly from a log-normal model. There were fewer larger classic Aβ deposits than predicted 
and the florid PrPsc deposits occupied a more restricted size range than predicted by a log-normal model. Hence, 
Aβ deposits exhibit greater growth than the corresponding PrPsc deposits. Surface diffusion may be particularly
important in determining the growth of the diffuse PrPsc deposits. In addition, there are factors limiting the maximum 
size of the Aβ and florid PrPsc deposits. 
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Introduction

There are similarities in the pathology of Alzhe-
imer’s disease (AD) and Creutzfeldt-Jakob disease 
(CJD) [7,20]. Both disorders are characterized by the 
deposition of a protease resistant protein aggrega-
te in the form of deposits or plaques, viz., β-amyloid 
(Aβ) in AD and the disease associated form of prion 
protein (PrPsc) in CJD. In some patients, Aβ and prion 
pathology can even coexist [20,32,34], with in one re-
ported family the features of both CJD and AD patho-
logy linked to a presenilin 1 (PSEN1) mutation [19]. In 
addition, Aβ and PrPsc deposits exhibit similarities in 
spatial topography, being distributed in clusters that 

in the cerebral cortex are regularly distributed paral-
lel to the pia mater [7]. 

Aβ is generated via β and γ-secretase cleaving 
of amyloid precursor protein (APP), while PrPsc is an 
abnormal structural conformation of normal cellular 
PrP (PrPc) and results from the autocatalytic conver-
sion of PrPc to PrPsc. The formation of protein aggre-
gates is a nucleated polymerization reaction with an 
initial nucleation event (lag phase) followed by the 
extension of newly formed nuclei into larger aggre-
gates (growth phase) [16,21,29]. Several studies have 
suggested that Aβ deposits grow in the brain. Pseu-
docolour image processing reveals gradients of den-
sity within Aβ deposits consistent with growth from 
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a central point [13]. Radioiodinated human Aβ can 
be deposited experimentally in vitro from a dilute so-
lution onto primitive and diffuse deposits, causing
them to grow [30]. In transgenic mice, Aβ deposits 
appear in clusters which grow in size from 14 µm at 
8 months to 22 µm at 12 months [41]. Transgenic stu-
dies also suggest that increasing accumulation of Aβ 
is largely by growth of existing deposits rather than 
by further nucleation [36]. 

The size frequency distributions of protein depo-
sits in thin sections of tissue have been used to inve-
stigate the growth phase [3,23,38]. Hence, in AD and 
Down’s syndrome (DS), Aβ deposits exhibit a uni-
modal, positively skewed distribution [6,23]. There 
were few deposits in the smallest size class (plaque 
diameter <10 µm), maximum frequency occurred 
between 20 µm and 40 µm (the modal class), and 
the frequency of the larger deposits declined with in-
creasing size. A log-normal model has been fitted to
the size frequency distributions of Aβ deposits in DS 
[23,38]. This model suggests that after nucleation, the 
growth phase of the Aβ deposits can be described by 
a function in which increase in volume of a deposit 
in a time interval is proportional to its volume at the 
beginning of the time interval (dV/dt = K(t)V, where 
V = deposit volume and K(t) is a parameter chan-
ging randomly around a constant positive value) [23]. 
Previous studies also suggest that PrPsc deposits in 
CJD exhibit a size distribution similar to that of Aβ 
deposits in AD [12]. Hence, the present study compa-
red the size frequency distributions in the temporal 
lobe of Aβ deposits in AD with deposits of PrPsc in 
the variant subtype of CJD (vCJD) [8]. Variant CJD is 
a relatively new form of the disease first described
in the UK in 1996 [43] and has protein deposits that 
morphologically resemble those of AD [8]. 

Materials and methods

Cases

Ten cases of sporadic AD (Table I) were obtained 
from the Brain Bank, Department of Neuropatho-
logy, Institute of Psychiatry, King’s College London, 
UK, and 11 vCJD cases from the National CJD Surve-
illance Unit, Western General Hospital, Edinburgh, 
UK. Informed consent was given for the removal of 
all brain tissue according to the 1996 Declaration of 
Helsinki (as modified Edinburgh 2000). The AD cases
were clinically assessed and all fulfilled the National
Institute of Neurological and Communicative Disor-

Table I. Details of the Alzheimer’s disease and 
variant Creutzfeldt-disease cases

Patient 
group

N M:F
Mean age 
(years);

(range, SD)

Mean dura-
tion (years)
(range, SD)

Alzheimer’s 
disease

10 2:8 80.2 (64-93, 
8.5)

5.9 (2-16, 3.3)

Variant 
Creutzfeldt- 
Jakob disease

11 6:5 29.5 (18-48, 
9.13)

1.3 (1-2, 0.47)

N – number of cases studied; M – male; F – female; SD – standard deviation.

ders and Stroke and Alzheimer’s Disease and Rela-
ted Disorders Association (NINCDS/ADRDA) criteria 
for probable AD [39]. The histological diagnosis of 
AD was established by the presence of widespread 
neocortical senile plaques (SP) consistent with the 
Consortium to Establish a Registry of Alzheimer’s Di-
sease (CERAD) criteria [31]. AD cases conformed to 
stages IV to VI of the Braak system [14]. All CJD cases 
fulfilled the neuropathological diagnostic criteria for
vCJD [24]. None of the cases had any of the known 
mutations of the PrP gene or family history of prion 
disease, and there was no evidence of the known 
types of iatrogenic aetiology. The PrPsc characteristic 
of vCJD has a uniform glycotype (PrPsc, Type 4) and is 
distinct from that observed in sporadic CJD [22,24]. 

Histological methods

A block of the temporal cortex was taken from 
each case at the level of the lateral geniculate nuc-
leus to study the superior temporal gyrus (B22), 
inferior temporal gyrus (B20), and parahippocam-
pal gyrus (B28). Tissue was fixed in 10% phospha-
te buffered formal-saline and embedded in paraffin
wax. In AD, coronal 7 µm sections were stained with 
a rabbit polyclonal antibody (provided by Professor 
B.H. Anderton, Institute of Psychiatry, King’s College 
London) raised against the 12-28 amino acid sequ-
ence of the Aβ protein (dilution 1:1200) [37]. In vCJD, 
coronal 7 µm sections were immunostained against 
PrPsc using the monoclonal antibody 12F10 (dilution 
1:250) that binds to residues 142-160 of human PrP 
downstream of the neurotoxic domain adjacent to 
helix region 2 [27] (provided by Prof. G. Hunsmann, 
The German Primate Centre, Gottingen, Germany). 
Immunoreactivity was enhanced by formic acid (98% 
for 5 minutes) and autoclaving (121°C for 10 minutes) 
pretreatment. Sections were treated with Dako Bioti-
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nylated Rabbit anti-Mouse (RAM) (dilution 1:100) and 
Dako ABComplex HRP kit for 45 minutes (Amersham, 
UK). Diaminobenzidine tetrahydrochloride was used 
as the chromogen. All sections were counterstained 
with haematoxylin for 1 minute.

Morphometric methods 

Protein deposits in AD and vCJD have a similar 
morphology [2,9]. In both disorders, there are diffuse
deposits (also known in vCJD as ‘fine feathery diffu-
se deposits’ or ‘fine diffuse plaques’) and more com-
plex deposits in which a distinct central ‘core’ of Aβ 
or PrPsc is present and are termed ‘classical’ plaqu-
es in AD or ‘florid’ plaques in vCJD [9]. Within each
gyrus, the greatest diameter of a sample of diffuse
and classic/florid deposits was measured. Guidelines
were marked on the slide parallel to the pia mater in 
laminae II/III and V/VI, regions that contain the most 
significant numbers of deposits [10]. The maximum
diameter of each protein deposit touching a guide-
line was then measured at a magnification of ×400 
using an eyepiece micrometer. Diffuse Aβ deposits 
were 10-200 µm in diameter, irregular in shape with 
diffuse boundaries and lightly stained, while classic
deposits had a distinct central core surrounded by  
a ‘corona’ of dystrophic neurites [2]. Florid PrPsc de-
posits were unicentric and consisted of a dense core, 
while diffuse deposits were irregularly shaped, more
lightly stained than the florid deposits and always

lacked a solid core [9]. To obtain a sufficiently large
sample of each type of deposit within each disease 
group to fit a log-normal model, measurements were
combined from all brain regions and patients.

Data analysis 

A log-normal model was fitted to the size distri-
bution of each type of deposit [35] using STATISTICA 
software (Statsoft Inc., 2300 East 14th St, Tulsa, OK 
74104, USA). The log-normal distribution is defined
as that of a variable X such that ln (X-Ø) is normally 
distributed. The distribution has three parameters: Ø 
(where X > Ø), the mean (µ), and the variance (σ2). 
In many applications, the value of Ø can be assumed 
to be zero and a two-parameter model fitted to the
data. Deviations from a log-normal model were te-
sted using the Kolmogorov-Smirnov (KS) goodness-
-of-fit test.

Results

The size frequency distributions of the Aβ deposits 
are shown in Figures 1 and 2 and the PrPsc deposits 
in Figures 3 and 4. The mean size, modal class, stan-
dard deviation, maximum size and degree of skew of 
the distributions are summarised in Table II. All size 
distributions were unimodal and positively skewed. 
There were few deposits represented in the smallest 
size classes, maximum frequency occurred at upper 

Fig. 1. Size frequency distribution of diffuse-type
β-amyloid (Aβ) deposits in the temporal lobe in 
sporadic Alzheimer’s disease (Kolmogorov-Smir-
nov (KS) test of goodness-of-fit to a log-normal
distribution = 0.10, P<0.01) 

Fig. 2. Size frequency distribution of the classic-
-type β-amyloid (Aβ) deposits in the temporal 
lobe in sporadic Alzheimer’s disease (KS=0.09, 
P<0.01) 
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boundary sizes of 30-50 µm (the modal class) for 
the Aβ deposits and 5-25 µm for the PrPsc deposits, 
while the frequency of the larger deposits declined 
rapidly with increasing size. Average and maximum 
diameter of the diffuse Aβ deposits was greater than 
that of the corresponding diffuse PrPsc deposits, and 
similarly, the classic Aβ deposits were larger than the 
florid PrPsc deposits. The PrPsc deposits had smaller 
standard deviations but exhibited a greater degree 
of skew than the Aβ deposits. 

All distributions were approximately log-normal 
in shape. However, with the exception of the diffu-
se deposits in vCJD (Fig. 3), the distributions showed 
some deviations from the expected numbers of de-
posits predicted by the log-normal model. Hence, 
there were more diffuse Aβ deposits (Fig. 1) with an 
upper size limit of <50 µm in diameter and fewer >50 

µm than expected and there were more classic Aβ 
deposits (Fig. 2) <20 µm and fewer between 20 µm  
and 40 µm than expected, while the numbers of 
deposits >60 mm were closer to those predicted by 
the log-normal model. There were fewer florid PrPsc 

deposits (Fig. 4) <4.5 µm, more in the modal class (5 
µm), and fewer >18 µm than predicted by the log-
-normal model.

Discussion

Both Aβ and PrPsc deposits exhibited a unimodal, 
positively skewed size distribution, suggesting simi-
larities in the growth phase of both types of deposit. 
The average and maximum size of the Aβ deposits, 
however, was significantly greater than the analogo-
us PrPsc deposits. Either Aβ deposits increase in size 

Fig. 3. Size frequency distribution of the diffuse-
-type prion protein (PrPsc) deposits in the tem-
poral lobe in variant Creutzfeldt-Jakob disease 
(vCJD) (KS=0.03, P>0.05) 
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Fig. 4. Size frequency distribution of the florid-
-type prion protein (PrPsc) deposits in the tem-
poral lobe in variant Creutzfeldt-Jakob disease 
(vCJD) (KS=0.10, P<0.01) 
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Table II. Summary statistics for the size frequency distributions of the Aβ and prion protein deposits in 
cases of sporadic Alzheimer’s disease (AD) and variant Creutzfeldt-Jakob disease (vCJD) respectively  
(** – P<0.01)

Distribution statistics

Group
Deposit

Type
N

Mean
(µm)

Mode
(µm)

SD
(µm)

Max
(µm)

Degree of 
Skew

AD
Diffuse 715 47.22 50 20.01 150 1.20**

Classic 888 37.02 30 14.52 110 0.88**

vCJD
Diffuse 1782 27.85 25 12.03 100 1.53**

Florid 1887 8.56 5 4.98 37.50 1.62**

N – number of deposits sampled; SD – standard deviation; Max – maximum size of deposit.
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more rapidly or develop over a much longer time pe-
riod than PrPsc deposits. Although vCJD cases have 
a duration of up to two years, considerably longer 
than in sporadic CJD [43], duration of disease is still 
much shorter than in AD. However, in the AD cases 
with a short duration (2-3 yrs), the sizes of the Aβ 
deposits were still significantly greater than those of
the PrPsc deposits, suggesting that Aβ deposits have 
an intrinsically greater growth potential. In addition, 
the PrPsc deposits exhibit a greater degree of skew 
and smaller standard deviations than the Aβ depo-
sits. This suggests that the pattern of growth of the 
PrPsc deposits is less variable than the Aβ deposits 
and that there are factors that restrict the growth of 
the PrPsc deposits to within a certain size range.

Development of protein deposits is characteri-
sed by two processes, viz., growth and removal of 
protein molecules (aggregation/disaggregation) and 
the diffusion of substances into the deposit (surfa-
ce diffusion) [38,41]. The size frequency distribution
approaches log-normal if surface diffusion predo-
minates over that of aggregation/disaggregation. In  
a previous study [12], the distributions of the diffu-
se and the florid PrPsc deposits deviated significantly
from a log-normal model. The present data, compri-
sing a large sample of deposits from the temporal 
lobe, differ in that the diffuse PrPsc deposits did not 
deviate significantly from a log-normal distribution.
Hence, surface diffusion may be important in the de-
velopment of the diffuse deposits. Diffuse deposits
may acquire small molecular weight ligand substan-
ces readily, the substances contributing to growth by 
binding to PrPsc and promoting the formation of pep-
tide bonds [28]. For example, clusterin is a heterodi-
meric glycoprotein which has a propensity to form 
aggregates and which can interact with PrPsc [17]. 
Compliment activation products C1q and C3d, serum 
amyloid P, and activated glial cells may also accumu-
late in prion deposits and influence their growth and
development [42]. These substances are also found 
in diffuse Aβ deposits [4] but may have little effect on
the growth phase.

The remaining size distributions deviated from  
a log-normal model. Most notably, there were far 
fewer florid PrPsc deposits in the smallest size class 
(<4.5 µm) than predicted. Sampling in two dimen-
sions underestimates the frequency of small depo-
sits [6,25] and this sampling error may be particularly 
significant in measuring the small florid deposits. Al-
ternatively, fibril formation is nucleation dependent

and occurs after a lag time which decreases with 
increasing peptide concentration [33]. Once small 
amorphous aggregates are formed and β-sheet for-
mation is initiated there is rapid growth of the stable 
fibrils or protofibrils to form the deposits [33]. Hence,
rapid early growth of the florid deposits could also
explain the low numbers of small deposits observed.

There were fewer of the large diffuse Aβ and flo-
rid PrPsc deposits than predicted by the log-normal 
model, consistent with the suggestion that there is 
an upper limit to the growth of these deposits. Du-
ring the growth phase of Aβ deposits, new amyloid 
fibres are formed at the periphery of existing depo-
sits [44] with specific amyloid aggregate formation
accelerated by the homogeneous association of so-
luble Aβ42 onto existing Aβ42 seeds [18]. By contrast, 
growth of a PrPsc deposit is dependent on the conti-
nued autocatalytic conversion of PrPc. Hence, growth 
of a deposit will depend on a supply of the precur-
sors of Aβ and PrPsc, viz., amyloid precursor protein 
(APP) and PrPc respectively, both of which are neu-
ronal proteins of uncertain function. The size of an 
Aβ deposit is positively correlated with the number 
of associated neuronal perikarya [6]. Hence, deposit 
size may be restricted by the number of immediately 
adjacent neurons that degenerate and secrete the 
proteins necessary to form the deposit (Armstrong 
et al., 1997). Furthermore, both the classic deposits 
in AD [1,5] and the florid deposits in vCJD [11] have
been observed to cluster around the vertically pene-
trating arterioles in the upper laminae of the cerebral 
cortex, suggesting that factors associated with blood 
vessels or blood are important. Substances diffusing
from blood into the brain as a result of an impaired 
blood brain barrier might encourage condensation of 
the protein to form a dense core, thus restricting the 
size of the deposit [11].

The role of aggregated proteins in the pathoge-
nesis of AD and CJD is controversial. The aggregates 
themselves may be toxic and therefore these results 
may be useful in the design of treatments that may 
act to restrict their growth and spread. Alternative-
ly, in AD, Aβ oligomer intermediates may be the to-
xic species [26] and amyloid formation and deposit 
growth could represent a protective mechanism that 
actually removes the toxic species from the brain 
[15]. In this case, studies of the size frequency distri-
butions of protein deposits may be a useful means 
of studying this potentially important protective me-
chanism. 
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