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Abstract
We use ideas from computable analysis to formalize exact real number computation in the Coq proof
assistant. Our formalization is built on top of the Incone library, a Coq library for computable
analysis. We use the theoretical framework that computable analysis provides to systematically
generate target specifications for real number algorithms. First we give very simple algorithms that
fulfill these specifications based on rational approximations. To provide more efficient algorithms, we
develop alternate representations that utilize an existing formalization of floating-point algorithms
and interval arithmetic in combination with methods used by software packages for exact real
arithmetic that focus on execution speed. We also define a general framework to define real number
algorithms independently of their concrete encoding and to prove them correct. Algorithms verified
in our framework can be extracted to Haskell programs for efficient computation. The performance
of the extracted code is comparable to programs produced using non-verified software packages.
This is without the need to optimize the extracted code by hand.

As an example, we formalize an algorithm for the square root function based on the Heron
method. The algorithm is parametric in the implementation of the real number datatype, not
referring to any details of its implementation. Thus the same verified algorithm can be used with
different real number representations. Since Boolean valued comparisons of real numbers are not
decidable, our algorithms use basic operations that take values in the Kleeneans and Sierpinski
space. We develop some of the theory of these spaces. To capture the semantics of non-sequential
operations, such as the “parallel or”, we use multivalued functions.
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1 Introduction

Computable analysis is a formal model for computation on real numbers and other spaces of
interest in analysis [25, 9]. It extends classical computability theory from discrete structures
to continuous ones. The model of computation used in computable analysis operates on
properly infinite data while being realistic in the sense that proofs of computability specify
algorithms that can in principle be implemented. Software for computation on the reals
based on ideas from computable analysis is often labeled as exact real computation as such
software allows to approximate real number outputs up to any desired precision. In practice,
this can be realized in different ways and several implementations exist [22, 17, 3, 13]. In
contrast to implementations using floating-point arithmetic, algorithms from computable
analysis have sound compositional semantics and come with a mathematical correctness
proof, making them well-suited for safety-critical applications. Proof assistants and formal
methods are increasingly used to verify the correctness of such software and computable
analysis goes well with this kind of verification.

In this work we present a new and fully formally verified implementation of exact real
computation in Coq that makes use of Coq’s code extraction features to generate efficient
Haskell code for algorithms written and verified inside the proof assistant. The work builds
on the Incone library, a formalization of ideas from computable analysis in Coq [24].
Implementations of exact real computation usually hide the internal details of the encoding
from the user and instead provide a set of basic operations on real numbers that can be
used to build more complicated algorithms. We follow this approach by defining a structure
for basic operations on real numbers. Instantiating this structure means to explicitly give
an encoding of the reals and algorithms for the basic operations and proving them correct.
More complicated operations can then be defined using tools for composing functions that
are available in the Incone library. Correctness proofs can be made independent of the
concrete representation and different representations can be exchanged and compared easily.
As algorithms verified in the proof assistant can be extracted to efficient Haskell code we
hope that our work allows developers of exact real computation libraries to verify some
particularly critical fragments and easily integrate the generated code into the library.

Computing with real numbers is central in many applications. It should therefore not
be surprising that a treatment of the reals is available in most modern proof assistants
[6]. In the Coq proof assistant in particular there exist a wide range of work covering the
spectrum from purely mathematical and inherently non-computational [5, 2] to verification
of approximate computations and concrete error bounds [7, 20].

In this work we treat the real numbers as a represented space. A represented space is
an infinite data type that is both exact and fully computational but reasoned about using
classical mathematics. Our work is by far not the first implementation of fully computational
reals in a proof assistant, or even in Coq. A popular implementation is the C-CoRn library
[12] which is based on constructive mathematics. Working constructively has the advantage
that every proof has computational content. A constructive proof of an existential statement,
for instance, gives rise to an algorithm to compute said object. The price to pay is that a
constructive proof is harder to find and this extra effort may not be worthwhile in particular
for proofs of correctness, where the computational content is of little to no interest. Most
mathematicians and computer scientists distinguish formulation of algorithms from proving
its correctness, and prefer the use of classical reasoning for the latter.

Our work and the Incone library are based on computable analysis which is a part
of classical mathematics. For our implementation this means that we use the classical
axiomatization of the reals from Coq’s standard library for specification. Computational
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content is added in a second step through the use of encodings over certain spaces of functions
and the formulation of algorithms on these. Thus, there is a clear separation between the
formulation of an algorithm that operates only on computationally meaningful objects and
its (possibly non-constructive) correctness proof that may involve purely mathematical
objects such as abstract real numbers. We consider this a more pragmatic approach towards
computational reasoning over mathematical structures and hope that it can be appealing
to classically trained mathematicians and computer scientists. There are also some more
practical advantages of our approach. Many Coq libraries are verified against the reals from
the standard library and such libraries can easily be integrated into our development. For
example, we rely on a Coq library for interval arithmetic [21, 20] to be able to imitate how
the most efficient non-verified packages for exact real computation operate [22, 17].

While we consider the Coq formalization one of the main contributions of this work, we
keep the presentation on a more informal mathematical level and only give a short overview
of the implementation in Section 6. The interested reader can find all of the source code as
part of the Incone library [23]. The parts of the library relevant for this paper are listed in
Section 6 as well. A more exhaustive overview of the Incone library can be found in [24].

2 Computable analysis and the Incone library

Computable analysis gives computational meaning to abstract mathematical entities such
as real numbers by use of encodings over Baire space NN called representations [19, 25].
To avoid an overload of coding, here and in our formal development we allow the use of
arbitrary countable sets in place of the two copies of the natural numbers in Baire space.
Let Q and A be two countable sets of questions and answers and let B := AQ be the set
of functions from questions to answers. A representation of a set X is a partial, surjective
function δ : ⊆ B → X. For x ∈ X, each ϕ ∈ B with δ(ϕ) = x is called a name of x and
should be understood to provide on demand information about x by assigning a valid answer
to each question about x. A represented space is a pair X := (X, δX) of a set X and a
representation δX of X.

A standard example is the encoding of reals by rational approximations:

I Example 1 (RQ: Reals via rational approximations). We denote by RQ the represented
space of the real numbers together with the representation δRQ : ⊆ QQ → R such that

δRQ(ϕ) = x ⇐⇒ ∀ε > 0: |x− ϕ(ε)| ≤ ε.

While we do not make this a formal requirement, for all of our concrete examples there
exist obvious and explicitly definable bijections of Q and A with the natural numbers. The
skeptical reader can therefore always replace the questions and answers by natural numbers to
regain the classical setting from computable analysis where B is only allowed to be the Baire
space. Whenever we talk about computability, we assume that such bijections were fixed
and refer to the well-established notion of computability of elements and of partial functions
on Baire space. For instance, we call an element x of a represented space X computable if
it has a name that is computable as an element of Baire space.

Let X and X′ be represented spaces and B := AQ denote the space of names of X and
B′ := A′Q′ that of X′. We say that a function f : X→ X′ is realized by a partial operator
F : ⊆ B → B′ if for each name ϕ ∈ B of some x ∈ X the value F (ϕ) is defined and a name
of f(x) ∈ X′. As f can be called continuous resp. computable if it can be realized by
such an operator, it suffices to introduce these notions for the partial operators on Baire
space. For continuity we use the standard topology that Baire space comes with. Thus,
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50:4 Computable Analysis for Verified Exact Real Computation

F : ⊆ B → B′ is continuous if for each q′ ∈ Q′ its return value on a functional input ϕ is
determined by a finite number of ϕ’s values. Formally, we say F is continuous if

∀ϕ ∈ dom(F ), q′,∃L ∈ seq(Q),∀ψ ∈ dom(F ) : ϕ|L = ψ|L ⇒ F (ϕ)(q′) = F (ψ)(q′)

where seq(Q) denotes the set of finite words over Q. Computability is defined using oracle
Turing machines [14], but we refrain from stating this definition here and assume the reader
to fill this gap or use his intuition. This intuition should include that computable operations
can be partial but never discontinuous.

Different representations of the same set can be compared with regards to intertrans-
latability, that is by asking whether the identity function is computable if the source and
target spaces are equipped with the different representations. If there are continuous resp.
computable translations in both directions, the spaces are isomorphic and carry the same
topological resp. computability structure.

2.1 Specification of algorithms with multifunctions
Usually each element of a represented space has many names. Thus, it may happen that an
operator returns on input of each name of an element a name of a solution of a certain problem
but for different names of the same input element returns names of different solutions. In this
case the algorithm solves the problem but does not realize any function on the represented
spaces. This is a situation that is regularly encountered in computable analysis and a popular
tool for capturing the semantics of such algorithms are multivalued functions.

A multivalued function f : X ⇒ Y assigns to each element x ∈ X a possibly empty
set of eligible return values f(x) ⊆ Y . Those x for which f(x) is non-empty constitute
the domain dom(f) ⊆ X of f . The multifunction is called total if its domain is all of X
and single-valued if each value set has at most one element. A partial function can be
considered a single-valued multi-function; this multifunction uniquely specifies the partial
function and is total if and only if the partial function is.

A partial function f is said to choose through a multifunction f if on each x ∈ dom(f)
it returns an eligible return value, i.e. f(x) is defined and an element of f(x). Note that this
allows for the domain of the partial function to be bigger than that of the multifunction. A
multifunction should be considered a specification of all the partial functions that choose
through it and this defines an important ordering on the multifunctions: A multifunction f
is said to tighten another multifunction g, in symbols f ≺ g, if any partial function that is
a choice for f is also a choice for g. This can equivalently be formulated as

f ≺ g ⇐⇒ dom(g) ⊆ dom(f) ∧ ∀x ∈ dom(g), f(x) ⊆ g(x).

If f and g correspond to partial functions f and g then f ≺ g if and only if f is an extension
of g and a partial function chooses through a multifunction if and only if the induced
multifunction tightens it.

The multivalued functions from X to Y are in one-to-one correspondence with the
relations but the natural operations on them differ from those on relations. For instance, for
f : Y ⇒ Z and g : X ⇒ Y the composition as multivalued functions is defined as

f ◦ g(x) := {z ∈ Z | g(x) ⊆ dom(f) ∧ ∃y ∈ g(x) : z ∈ f(y)}.

This defines an associative operation that is asymmetric in contrast to the natural composition
of relations which is symmetric. The multifunction composition has the advantage that
it respects the interpretation as specifications. Namely, if the partial functions f and g



M. Konečný, F. Steinberg, and H. Thies 50:5

choose through f and g respectively, then their composition as partial functions chooses
through the composition of f and g as multifunctions. The multifunction composition can be
characterized as returning the minimal multifunction w.r.t. tightening such that this is true
and not only respects being a choice function but more generally the tightening ordering.

A multifunction f : X⇒ X′ between represented spaces X and X′ is realized by a partial
operator F : ⊆ B → B′ if F chooses through δ−1

X′ ◦ f ◦ δX. Such an f is called continuous or
computable if it can be realized by an operator with that property. The above definition
unfolds to the usual “a realizer translates each name of an element of the domain to a name
of some eligible return value”.

2.2 The Incone library
The Incone library formalizes ideas from computable analysis in the Coq proof assistant
closely following the outline in the previous section. The equivalent of a represented space in
Incone is called a continuity space. A continuity space X is defined as a record consisting
of an abstract type X, a space BX of names that determines a countable inhabited type of
questions QX and a countable type of answers AX and finally a specification of a partial
surjective function δX : ⊆ BX → X referred to as representation.

A number of standard constructions on represented spaces are made available by Incone.
For represented spaces X and Y there exists a represented space X×Y whose underlying
set is the Cartesian product of the sets underlying X and Y. Similarly, there exists a disjoint
union X + Y of spaces and a space Xω of infinite sequences in X. There is also a space
YX of continuous functions, but while this is interesting for possible applications it is of
lesser interest for the current paper. Details about these constructions and instructions for
installation and use of Incone can be found in [24].

While Incone defines continuity as we presented it earlier, computability is not reflected
in a definition but instead captured on the meta level via Coq’s type/prop distinction. That
is, an axiom-free definition of a realizer should be considered a certificate of computability
of a function. While such a realizer is automatically continuous, a proof of this fact would
proceed by induction on the structure of Coq terms and can clearly not be carried out
internally. In principle it would be possible to extract continuity proofs using a tactic but for
now the proofs have to be provided on a case by case basis by hand. Partiality is modeled
using sigma types: A partial function takes as input not only an element of Baire space but
also a proof that the element is contained in the domain which has to be specified beforehand.
This means that the dependent type system of Coq gets involved in a meaningful way.

3 Finite spaces and operations on multifunctions

Besides allowing for computation on spaces of continuum cardinality, the methods of com-
putable analysis can be used to operate on non-discrete finite spaces.

I Example 2 (Sierpinski space). Consider the two-element set {>S,⊥S} with the following
representation: Let the questions and answers be given by Q := N and A := B = {true, false}
and as representation use the total function δS such that

δS(ϕ) = >S ⇐⇒ ∃n, ϕ(n) = true.

The represented space S := ({>S,⊥S}, δS) is called Sierpinski space. The elements of Sier-
pinski space denote convergence and divergence, respectively: For any kind of computational
process with a meaningful notion of basic computational steps, we can obtain a name of an
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element of Sierpinski space by saying ϕ(n) = true if the computation terminates within the
first n steps and ϕ(n) = false otherwise. This reflects the interpretation of >S and ⊥S: we
produce a name of >S if and only if we started out with a terminating computation.

I Example 3 (Kleeneans). Another finite space that is important in computable analysis is
the three-point set {trueK, falseK,⊥K} with names of type N→ optB and representation

δK(ϕ) =
{
bK if ∃n, ϕ(n) = Some b ∧ ∀m < n,ϕ(m) = None
⊥K otherwise.

Here, opt A is the disjoint union of A with a single new element and for each a ∈ A we use
Some a for the corresponding element of opt A and None for the new element. This space
denoted by K is known as the Kleeneans as it models Kleene’s three-valued logic [4].

A continuously realizable multifunction need not have any partial continuous choice function.
As example of such behavior let us consider a version of the parallel or.

I Example 4 (The which function). Consider the multifunction which : S× S⇒ K such that

which(sfalse, strue) :=
{
{bK | sb = >S} if this set is non-empty
{⊥K} otherwise,

This means that the which function specifies the correct answers to the question which of the
input processes terminates. It has many applications including one later in this paper.

A realizer of which can be defined from the projections πi that get names of the components
from a name of a pair via

F (ϕ)(n) :=


Some false if (π0ϕ)(n) = true
Some true if (π1ϕ)(n) = true
None otherwise.

The case distinction above is overlapping and we have to add that if more than one of the
conditions are satisfied we choose the top-most option. This corresponds to a non-canonical
choice and reordering the overlapping cases in the case distinction gives another valid realizer.
Either of the realizers is clearly continuous and even computable and thus, the multivalued
function which is computable and in particular continuous. However, both realizers return
both names of trueK and falseK on input of two converging processes and switch between the
return values depending on the names of these inputs. This is no coincidence, one may verify
that no singlevalued choice function for which is continuously realizable.

The element ⊥K of the Kleeneans stands for being undefined and the case distinction in
the definition of which can be understood as extending a (partial) multivalued function in a
canonical way to a total multivalued function. The use of such extensions is standard in more
order-oriented models of computation [1]. In general, such an extension embodies a stricter
specification than the non-extended version, as a realizer for the latter may behave arbitrarily
on elements outside its domain, while a realizer for the former has to guarantee divergence.
As the which function is computable, there is no difference in this case. Generally, there can
only be a difference if the domain of the non-extended function is sufficiently complicated.

3.1 Operations on multifunctions and multivalued branching
Given f : X⇒ Y and f ′ : X′ ⇒ Y′ consider the multifunction f × f ′ : X×X′ ⇒ Y×Y′ that
on input of a pair returns the Cartesian product of the value sets, i.e.

(f × f ′)(x, x′) := f(x)× f ′(x′).
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As the Cartesian product is empty if one of the value sets is empty, f×f ′ should be understood
as the parallelization of f and f ′. That is, if computable realizers of f and f ′ are given, a
computable realizer for f × f ′ can be specified by running the realizers for f and f ′ in parallel
and returning something once both computations have come to an end.

To appropriately capture multivalued branching we need a similar operation for sums.
Given f : X⇒ Y and f ′ : X′ ⇒ Y′ define a multifunction f + f ′ : X + X′ ⇒ Y + Y′ by

(f + f ′)(p) :=
{
{inl y | y ∈ f(x)} if p = inlx
{inr y′ | y′ ∈ f ′(x′)} if p = inrx′.

Now, while f × f ′ corresponds to parallel execution, f + f ′ corresponds to selective execution.
Next let us formulate branching over multivalued predicates. Consider the function

ifX : B×X→ X + X defined by

ifX(b, x) :=
{

inl x if b = true
inrx if b = false.

Branching over the values of a function b : X → B given f0, f1 : X → Y can be expressed
using the × and + operations and the ifX function:

if b(x) then f1(x) else f0(x) = (∇ ◦ (f1 + f0) ◦ ifX ◦(b× id) ◦∆)(x),

where ∆(x) := (x, x) is the diagonal mapping and ∇ : Y + Y→ Y is the backwards diagonal
that returns y on both of the inputs inl y and inr y. Replacing the functions b, f0 and f1 by
multifunctions is what we use as semantics for multivalued branching. The use of a sum reflects
that only one of the if-statement branches should be evaluated. That is: if b(x) = {true}
the eligible return-values are f1(x) even if f0(x) is empty, but if b(x) = {true, false} the
eligible return-values of the if-statement are empty if either of f0(x) and f1(x) is empty and
f0(x) ∪ f1(x) otherwise. This is the behaviour one would expect from combining realizers.

4 Representations for computation on the reals

The represented space RQ from Section 2 is widely considered to provide the “correct”
computability structure on the reals and is sometimes even used as a benchmark representation
in works that reason about complexity in computable analysis. It provides an easy to
understand question and answer structure that gives concrete meaning to the realizers. For
the sake of automatically obtaining efficient algorithms carrying out a large number of
arithmetic operations, on the other hand, other representations are superior. Such efficient
representations should clearly reproduce the computability structure of RQ.

Our goal is to provide a framework to define operations on real numbers without explicitly
referring to implementation details while still allowing to replace the representations used and
take advantage of some of their properties for improved performance. We therefore specify a
set of operations that are convenient as building-blocks for higher-level operations. This can
be seen as a computational axiomatization of the real numbers. Working relative to such an
axiomatization allows to recompile the same algorithms for a new representation once these
building-blocks, i.e. the axioms have been instantiated natively. Programs obtained this way
can take better advantage of the details of the new representation than programs that just
translate back and forth.

Other formal developments of real numbers such as the C-CoRn library use a constructive
axiomatization. As the setting of our and prior work on real computation is fairly different,
we chose to not directly reuse any of the constructive axiomatizations that can be found
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in the literature [11]. Instead we used work from computable analysis such as [8, 10] and
efficient non-verified software packages like iRRAM and AERN as guideline for choosing
appropriate basic operations. We ended up requiring the following to be implemented:

Arithmetic operations (addition, multiplication, subtraction and division),
The efficient limit limeff : ⊆ Rω → R, that maps any sequence (xi) ∈ Rω that is efficiently
Cauchy, i.e. such that for all i and j, |xi − xj | ≤ 2−i + 2−j , to its limit lim(xi).
The function FtoR : Z × Z → R, (m, e) 7→ m · 2−e that embeds the dyadic rational
numbers, or arbitrary-precision floating-point numbers, into R.
Rational approximation approx : R×Q⇒ Q, where approx(x, ε) := {q | |x− q| ≤ ε}.
The Kleenean comparison function <K of type R × R → K, defined from the Boolean
comparison < on the reals by

x <K y :=
{

(x < y)K if x 6= y

⊥K otherwise.

A clean-up function that realizes the identity function id : R → R. This function can
always be instantiated with the identity function on the corresponding name spaces but in
concrete cases it can be very useful as an optional performance enhancer that translates
names to simpler names for the same object.

An equivalent formulation of the fourth item requires the availability of a translation to the
rational representation from Example 1. The second and third item together are sufficient to
define a translation in the other direction, so that any representation for which the above
are instantiated is equivalent to the rational representation.

For the space RQ from Example 1 we instantiated the above basic operations straight-
forwardly. This does not lead to satisfactory performance and there are several reasons
for the inefficiency; one of these we addressed by providing a clean-up function: Iterated
multiplication of rational numbers leads to huge numerators and denominators and this is
exactly what happens if realizers are implemented using multiplication of rationals and then
composed in a naive way. Efficiency can be recovered by replacing exact operations on rational
numbers by rounded operations. Note that the direct use of rounded rational operations in
the implementation of arithmetic operations would undermine the main advantage of the
rational representation, namely, that the approximations have a nice mathematical structure.
Instead, we round a rational name only when the clean-up operation is explicitly called.

4.1 The interval reals and their arithmetic operations
There are more problems with the rational representation that make it difficult to optimize
in applications. Approximations to the same real number may be required by different parts
of an algorithm with different precision leading to extensive re-evaluation and the backwards
propagation of errors requires building computation trees and results in blowup of time and
space consumption if not done carefully. While these problems are in principle solvable,
we decided to mostly use the rational representation for handling input and output and to
translate to a representation based on sequences of intervals with dyadic endpoints [21]. Such
a representation is commonly used in software packages for exact real arithmetic such as
iRRAM [22]. The developers of C-CoRn made a similar switch in a fully constructive setting,
also for performance reasons [12].

The dyadic numbers are the rational numbers of the form z
2n for some z ∈ Z and

n ∈ N. Let ID be the set of all closed intervals with dyadic endpoints together with the
infinite interval I∞ := (−∞,∞). For an interval I ∈ ID let |I| denote the diameter of I,
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i.e. |[a, b]| := b− a and |I∞| =∞. To define the represented space RID of Interval reals use
QRID := N, ARID := ID and the representation δRID : ⊆ BRID → R uniquely specified by

δRID(In) = x ⇐⇒ x ∈
⋂

n∈N
In and lim

n→∞
|In| = 0.

That is, a sequence of intervals (In)n∈N is a name for x ∈ RID if x is contained in each interval
and the diameter of the intervals approaches zero when n goes to infinity. In particular⋂

n∈N In = {x} and we call the interval with index n the n-th approximation of x. We do
not require the diameter to decrease monotonically as this would complicate operations and
deteriorate performance.

In the formal development we made use of an existing formalization of interval arithmetic
in Coq known as the Coq-interval library [20]. The library provides interval versions for
many standard functions and in particular for arithmetic operations. For example, for any
two intervals I, J ∈ ID and any precision n ∈ N, the Coq-interval function add returns an
interval add(n,I,J) such that for all real numbers x, y with x ∈ I and y ∈ J , x+y ∈ add(n,I,J).
The new endpoints are obtained by using arbitrary-precision floating-point operations with
different rounding modes to compute the upper and lower interval bounds. The parameter n
determines the bits used for the mantissa.

Using the Coq-interval functions, realizers of the arithmetic operations can be defined
in a pointwise manner. The realizer for addition is e.g. defined as the function that maps
(In)n∈N, (Jn)n∈N and a question n ∈ N to add(n, In, Jn). Here, and in other realizer definitions
we round the n-th approximation to n mantissa digits to make the computational effort
for different arithmetic operations on approximations with identical indices comparable.
That these realizers return sequences of intervals each containing the correct result can
be concluded from the inclusion property of the interval operations already proven in the
interval library. Showing that the produced interval sequence converges requires bounds on
the diameters that are not included in Coq-interval as they are not of particular interest
for interval computation. We derive the error bounds from the theorems for the basic
multiple precision floating-point operations from the Flocq library [7]. These operations
use relative error bounds and we need bounds on the absolute error, which makes the proofs
more complicated than one might first expect. The bounds usually depend not only on the
diameter of the intervals but also on the values of the end-points.

4.2 The efficient limit operator and name cleanup
As compared to RQ, an implementation of the limit operator on RID is more complicated.
Recall that one has to transform a name of some efficiently Cauchy sequence (xj) ⊆ R to a
name of its limit x. That is, given a sequence of sequences of intervals (Ii,j)i,j∈N such that
for each j ∈ N, xj is contained in each Ii,j and |Ii,j | → 0 for i→∞ the goal is to return a
sequence (Ji)i∈N such that x ∈ Ji for all i and |Ji| → 0 for i→∞. The double-sequence (Ii,j)
can be thought of as an infinite matrix where each column contains a name, and intuitively it
should be possible to find a name of the limit by traversing this matrix diagonally. However,
it is at least necessary to slightly enlarge each interval to ensure that the limit is contained.
But still after that, naively using the diagonal does not guarantee convergence. There
are several strategies to search through the intervals and extract a name of the limit. In
our implementation, we use a simple strategy known as vertical search. To get the n-th
approximation, we choose the (n+ 1)-st element of the sequence, do an unbounded search
for an interval of size less than 2−(n+1) and extend it by 2−(n+1). An advantage of this
strategy is that it returns names with quickly converging intervals, resetting any precision
loss incurred in other operations.
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On concrete examples one quickly notices that computing a limit at low precisions tends
to return useless results and yet takes a long time. This is because iterated use of arithmetic
operations leads to intervals with large diameter and endpoints with big integer parts. We
avoid this using the heuristic that the diameter of an interval should never be bigger than 1/2

so that at least the integer part of intermediate results is correct. This can be forced using
a clean-up function that replaces any interval whose diameter is too large with the infinite
interval. As the interval operations barely do any computation if one of the input intervals is
infinite, this leads to a considerable speedup at low precision. Another cause for performance
issues is the functional nature of names: Function values are not cached automatically leading
to extensive reevaluation. As the questions are natural numbers in unary, there exists a
simple solution: we internally replace the names by elements of a coinductive datatype of
streams that are treated as lazy lists in evaluation.

5 A verified parametric square root algorithm

As a case study on how the basic operations can be used to define other operations on real
numbers, let us study the example of the square root function in some detail. By the square
root function we mean the partial function from reals to reals whose domain is [0,∞) and
whose return value on input of x ≥ 0 is

√
x. This function is a popular example as it being

continuous but not analytic in 0 is a challenge in providing a good algorithm to compute it.
We aim to recover this function in a compositional way from the basic operations listed in
Section 4. A computable realizer for the square root function can then be extracted almost
automatically by composing the realizers of the relevant basic operations independently from
the exact implementation of the data-type of real numbers.

5.1 Square root approximation using Heron’s method
A well known and efficient way to approximate the square root of a real number x is the
Heron iteration inductively defined by x0 := 1 and xi+1 = 1

2

(
xi + x

xi

)
. Let the function

heron: R→ Rω be defined by heron(x)i := xdlog2 ie. This function can be defined from our
basic operations and returns an efficiently convergent sequence:

I Lemma 5. |heron(x)i −
√
x| ≤ 2−i, whenever 1

4 ≤ x ≤ 2.

Proof Sketch. It is well-known that (xi) converges quadratically to
√
x in the above interval.

This means |xi −
√
x| ≤ 2−2i and thus heron returns an efficiently convergent sequence. J

Thus, the square root of some x ∈ [ 1
4 , 2] can be approximated using heron and the efficient

limit. We aim to extend the scope of this algorithm from the bounded interval [ 1
4 , 2] to all of

[0,∞). Our strategy is to handle 0 as a special case and scale strictly positive numbers to
end up in the interval, apply the method above and then rescale the result appropriately.
The following Lemma follows directly from Lemma 5.

I Lemma 6. Let p ∈ Z such that 4−px ∈ [ 1
4 , 2], then |2pheron(4−px)i+p −

√
x| ≤ 2−i.

Let us call such a p a scale for x. Note that a scale exists if and only if x > 0 and there
always exists more than one possible choice in that case. Since Z is discrete and R connected,
the semantics of an algorithm extracting an appropriate p from x are necessarily multivalued.

The treatment of the special case 0 requires branching. If x ≤ 2−2i then 0 is already an
approximation of the square root with error at most 2−i. Boolean-valued comparisons on
the reals are discontinuous and therefore not computable. We may only use the Kleenean
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x

x+ 2−n
false

true

y

Figure 1 sc(n, x, y)
plotted over y for fixed
x and n.

0 2−n 2 · 2−n 3 · 2−n 2−n+2. . . . . .

2−n <n+2 x may be true

2−n <n+2 x2−n <n+2 x may be false

x <n+2 3 · 2−n + 2−(n+2) may be true

Figure 2 −n ∈ mag(x) if both inequality tests may be true. For
x ∈ (0, 1) there is a number n ∈ N such that both tests have true as
the only valid value.

comparison R× R→ K that we included in our basic operations. Luckily, we do not need
exact comparison but only need to know if either x > 0 or x ≤ 2−2i and such a test can be
implemented from the Kleenean comparison. To disregard the controlled divergence and
define a total function in the end, we also go through multivaluedness.

For each of the previous two paragraphs let us develop some general purpose tools that
may also be useful in other applications. For the branching needed around zero we use soft
comparisons and for obtaining p we use a multivalued magnitude function, both of which we
implement using the basic operations.

5.2 From Kleenean comparisons to soft comparison
Kleenean-valued comparisons are easy to implement but often inconvenient to use for
implementation of total functions as they feature explicit divergence. A popular version of
real number comparison trades off divergence for multivaluedness and is known as ε-test or
soft comparison in numerics. For simplicity, we restrict to ε of the form 2−n and consider
the multi-valued soft comparison sc : N× R× R⇒ B specified by

true ∈ sc(n, x, y)⇔ x < y and false ∈ sc(n, x, y)⇔ y < x+ 2−n. (1)

This multifunction is total and properly multivalued as there is an interval of size 2−n where
both cases overlap (see Figure 1).

Multivaluedness makes moving from prefix to infix notation more complicated. We fix
the following conventions: x <n y without any additions means sc(n, x, y) = {true}, for
true ∈ sc(n, x, y) we state “x <n y may be true” and for false ∈ sc(n, x, y) we write “x <n y

may be false”. This is illustrated by means of an example at the top of Figure 2. For functions
f0, f1 : R⇒ R expressions such as “if x <n 0 then f1(x) else f0(x)” are meaningful as soft
comparison is a multivalued predicate and branching works as explained in Section 3.1.

Soft comparison can be implemented using the Kleenean comparison and the which
function from Example 4. We state this in the next Lemma. We use slightly sloppy notation
as we identify the Booleans with a subspace of the Kleeneans, which in turn we consider
elements of Sierpinski space by identifying trueK with >S and everything else with ⊥S.

I Lemma 7. Soft comparison can be expressed from the which function and <K via

sc(n, x, y) = which(x <K y, y <K x+ 2−n).

Proof. No matter x and y we always have either x <K y = trueK or y <K x+ 2−n = trueK.
Thus the which function on the above input always returns a Boolean. Further, true is a valid
return value if and only if x < y and false is a valid return value if and only if y < x+2−n. J
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5.3 The magnitude function for scaling
Recall that for computation of the value of the square root of a strictly positive real via
rescaling, we needed to find an integer p such that x2p is from a bounded interval and that
such an integer cannot be found algorithmically without introducing multivaluedness. We
thus implement the multifunction mag: R⇒ Z that extracts the magnitude of x in the sense
that z ∈ mag(x) ⇔ 2z < x < 2z+2. Such a z exists whenever x > 0, i.e., the domain of
magnitude are the positive real numbers.

Let us first argue that we may restrict to the case that 0 < x < 1.

I Lemma 8. The function mag can be recovered from its restriction to (0, 1) as

mag(x) = if x <1 2 then mag |(0,1)(x/2) + 1 else −mag |(0,1)(1/x)− 2.

Proof. In the first case x < 2 and therefore x/2 ∈ (0, 1). In the second case x > 3/2 and
therefore 1/x ∈ (0, 1). That the bounds are correct can be checked easily. J

Thus, assume 0 < x < 1 in the following.

I Lemma 9. There always exists an n ∈ N such that 2−n <n+2 x and x <n+2 3·2−n+2−(n+2),
i.e. true is the only possible value for both conditions. Moreover, for any n ∈ N

2−n <n+2 x may be true∧x <n+2 3 · 2−n + 2−(n+2) may be true =⇒ −n ∈ mag(x).

Proof Sketch. 2−n + 2−(n+2) ≤ x implies 2−n <n+2 x and x ≤ 3 · 2−n implies x <n+2
3·2−n+2−(n+2) (see Figure 2) and both these inequalities hold for instance for n = −dlog2( x

3 )e.
Further, the two soft comparisons may only be true if 2−n < x < 3 · 2−n + 2−(n+2) < 2−n+2

and thus −n ∈ mag(x). J

In particular, a linear search for the first n such that the equation holds implemented using the
realizers for the soft-comparison will always terminate and give a realizer for mag |(0,1), which
in turn can be used to implement the full magnitude function via multivalued branching.

5.4 Defining the square root function
For any x > 0 and m ∈ mag(x), dm+1

2 e is a scale for x in the sense of Lemma 6. Thus, we
finally have all tools necessary to define the square root function. We define an approximation
function sqapprox : R⇒ Rω with domain [0,∞) by

sqapprox(x)i := if x <2i+1 2−2i then 0 else 2pheron(4−px)i+p where p is a scale for x.

Correctness is given by the following Lemma.

I Lemma 10. limeff ◦ sqapprox tightens the square root function.

Proof. It suffices to show that for each i ∈ N, sqapprox(x)i is a 2−i approximation of
√
x. If

x <2i+1 2−2i may be true then x < 2−2i and 0 is a 2−i approximation of
√
x. If x <2i+1 2−2i

may be false then 2−(2i+1) ≤ x and thus x ∈ dom(mag) and we can apply Lemma 6. J

This means that any realizer for limeff ◦ sqapprox is also a realizer for the square root function
and can thus be defined only by using realizers for basic operations.
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6 Implementation

All results of this paper have been formally verified in the Coq proof assistant. The
implementation is part of the Incone library. It is in the development branch and will be
featured in a future release. An overview of the library and instructions on how to get started
can be found in [24]. The content of the current work can be found in a folder for examples
about real numbers in the development branch of the library [23]. The real number structure
from Section 4, the treatment of interval reals and the interval representation are each given
their own files in that folder. The error bound estimates for operations from the Coq-interval
library needed for the interval representation have been exported to a separate file so that
the file sizes remain manageable. The content of Section 5 is separated into a file for the soft
comparison, one for the magnitude function and finally one where the square root function is
implemented. The finite spaces from Section 3 have been integrated into Incone and can be
found in the folder for constructions on continuity spaces under the name “hyperspaces”.

Our development uses a fairly small set of axioms, namely those used in the axiomatic
formalization of the reals, the law of excluded middle, functional extensionality and some
choice principles. The reasoning is usually divided into two parts, where the first is coming
by with mathematics and the second part is to define realizers and prove them correct. We
carefully define the realizers such that they do not rely on the non-constructive axioms of
the reals and actually correspond to executable programs.

As a concrete example, let us consider some parts of the formalization of the square root
algorithm from Section 5. While the more difficult part and most of the content of the sqrt.v
file constitutes the extension to the whole real line, for simplicity we here only consider the
restriction to the interval [ 1

4 , 2] where the Heron method converges quadratically.
The Coq standard library already defines a function sqrt for the square root built on

the axiomatization of the reals and proves some of its properties. Assume we have fixed
some representation of the reals and denote the spaces of questions and answers by Q and
A, respectively. An algorithm implementing the square root function thus takes and returns
elements of AQ. In a first approximation such an algorithm may be represented by a Coq
function of type sqrt_rlzr: (Q -> A) -> (Q -> A). For this function to actually correspond
to an algorithm, its definition should not involve incomputable axioms. The correctness of
the algorithm is guaranteed by a specification Lemma of the form:

Lemma sqrt_rlzr_spec: sqrt_rlzr \realizes sqrt.

The notation \realizes is part of the Incone library and means that sqrt_rlzr(ϕ) is name
of sqrt(x) whenever ϕ is a name of x. Incone defines several such notations making the
formal statements look very similar to the informal mathematical statements.

Unfortunately, the situation is usually more complicated as the realizer may need to be
partial. Some algorithm can diverge if the input is not a valid name of a real number. In
Coq, all functions are total but partial functions can be modeled using dependent types. A
partial function takes as input a pair consisting of the actual input and a proof that this
input is contained in its domain. Note that Coq’s sqrt function itself is not partial. For
the restriction, as the realized function does not carry computational information, we take a
different approach to partiality here and instead of using the dependent type system we move
to a relational specification right away. That is, we replace the function sqrt by its induced
multifunction F2MF sqrt which can be restricted by adding a domain condition. Finally we
may bundle the realizing function with its correctness proof so that result to be found in
Incone actually takes the following form:

FSTTCS 2020



50:14 Computable Analysis for Verified Exact Real Computation

Lemma sqrt_rlzr_exists :
{f : partial_function | f \solves (F2MF sqrt)|_[/4,2]}.

The partial function itself can be retrieved by (sval sqrt_rlzr_exists) and its correctness
proof by (svalP sqrt_rlzr_exists). The function definition can be extracted to Haskell code
and then be executed. The terms usually fail to reduce internally due to the use of non-
computational real numbers in the specification part that entangled with the definitional
part through the use of partial functions and sigma types.

For broad applicability we do not only work with a specific representation but define a
structure of computable_reals that can be instantiated with different representations. This
structure closely resembles the informal description in Section 4 and serves as an intermediate
level for real number operations. It contains a representation for the reals and partial functions
realizing the basic operations together with correctness proofs. Other operations can be
defined by composition, product, sums and branching on the basic operations. For instance,
the square root function in our implementation has a parameter Rc of type computable_reals
and returns for each instance of this structure an executable program. The actual algorithm is
based on Heron’s method and closely follows the outline in Section 5. Let us list the definition
and specification Lemma of the sqrt_approx function from the paper as an example:

Fixpoint sqrt_approx x0 n x :=
match n with
| 0 => x0
| S n' => let x' := sqrt_approx x0 n' x in (x' + x / x') / 2
end.

Lemma sqrt_approx_correct x n:
/4 <= x <= 2 -> Rabs (sqrt_approx 1 n x - sqrt x) <= /2^(2^n).

The Incone library equips the space of infinite sequences with the structure of a represented
space again. An algorithm to find the limit of an efficiently convergent sequence as operation
lim_eff: Rcω -> Rc is part of the computable_reals structure. As outlined in Section 5 one
can use the iteration above to obtain a function heron: Rc -> Rcω that returns an efficiently
convergent sequence for certain real numbers. The composition of heron with the limit
operator returns the sqrt function:

Lemma sqrt_as_lim :
(lim_eff \o heron) \tightens (F2MF sqrt)|_[/4,2]

Once this specification is available, a realizer of the right hand side can be obtained from
the realizers of the operations on the left hand side by compositionality. The realizer of the
heron function is obtained by piecing together the realizers for the arithmetic operations.

6.1 Executability and code extraction
As the definitions of the domains of the partial functions we use as realizers involve the
non-computational real numbers, the corresponding functions can not be executed Coq
internally using term reduction. These problems can be worked around for instance by
using a fuel-based approach [18], but in our current implementation this method leads to
considerably worse running times and we therefore refrain from giving details here. An
additional drawback is that extra information about the realizers of the basic operations is
needed and additional work is necessary for propagating this information through operations
such as composition and taking fix points.
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As the main purpose of our implementation is not to do computation inside Coq but
to provide an easy to use interface for developers in exact real computation frameworks
to define and verify their algorithms, we focus on using Coq’s code extraction features to
generate efficient code instead of direct execution inside of Coq. We hope that the extracted
programs can be integrated into other developments for parts where particularly strong
correctness guarantees are needed.

Coq’s code extraction feature can be used to generate executable programs. However, the
performance of the extracted programs depends on how the extraction is done exactly. For
instance, if the basic operations on integers are translated from their Coq implementation
that is targeted towards simple proofs instead of efficiency, the performance will suffer. It is
possible to instruct Coq to extract these operations to native implementations in Haskell
instead. We have extracted all arithmetic operations and comparisons on integer types such
as Z, nat or positive to the corresponding operations on arbitrary-sized integers in Haskell.
Some other operations such as shifting and taking integer logarithms that turned out to be
particularly slow were also replaced by more efficient implementations available in Haskell. Of
course, these Haskell operations are not formally verified and each modification increases the
size of the trusted core and the risk for errors in the final program. As the set of operations
we trust for the extraction is quite small, we believe this risk to be manageable.

The replacement of functions by streams discussed in Section 4.2 can either be done
directly in Coq or in Haskell by adding some instructions for the extraction. The replacement
in Haskell performed slightly better in experiments and we used it as the default option.

7 Conclusion and Future work

On paper the approach of computable analysis is very much in accordance with the spirit
of Coq. In principle it should be possible to parameterize the theories over an abstract
type so that the classical treatment of real numbers and similar structures is hidden in the
propositional layer. In practice there are a lot of additional hurdles in maintaining a clean
mathematical presentation, executability and reuseability of existing work. Much of the
existent infrastructure for computation on the reals such as the Flocq and Interval libraries
are specified against the classical axiomatization of real numbers from the standard library.
This axiomatization of the real numbers states classical properties, such as decidability of
equality, as global facts and makes maintaining executability challenging.

Currently, we have only implemented a few basic operations on real numbers, mostly
to demonstrate that our framework indeed can be used for efficient computation. Adding
further operations such as trigonometric functions should not be too difficult. An interesting
direction for future work is to extend the computation on real numbers to operators on real
functions such as integration and ODE solving. The tools contained in the Incone library
can already be used to automatically generate a representation for real functions from a
representation for real numbers. Ideas from real number complexity theory [16, 15] suggest
that the use of specialized representations over this generic function representation might
yield even better results.
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A Experimental results

To show that our implementation indeed gives a feasible implementation of exact real
computation we did a small experimental study where we compared the running times
to approximate some simple functions using our implementation to an implementation in
the C-CoRn library and non-verified implementations using exact real arithmetic packages.
While the experiments show that our implementation is not yet optimal, the difference in
running time was only by a small factor and we think that it could be further reduced by
optimizing our representation.

For all experiments we extracted Haskell code from the specification in Coq (version
8.9.0) using the code extraction mechanism. Apart from the simple optimizations for the code
extraction mentioned above we did not do any additional changes to increase performance. In
particular we did not change the extracted code except for adding a few includes of standard
Haskell libraries in the beginning of the file. The Haskell code was compiled with GHC version
8.8.1 and profiling options turned on. The running times were taken from the total time
written in the Time and Allocation Profiling Report generated by Haskell. All experiments
were done on a Macbook Pro 2015 model with 16 GB RAM and 2.2 GHz Intel Core i7
processor. We tried the experiments with both the rational and interval representation for
real numbers, however as expected the (non-optimized) rational representation performed
very poorly and we thus focus on the results for the interval representation.

We also compared the running time to computing the same problem with the C-CoRn
library (using the same code extraction techniques) and a (non-verified) C++ implementation
using the iRRAM framework. These comparisons have to be taken with a grain of salt as
many details of the implementations differ. For instance, our implementation outputs the
result as a rational number giving numerator and denominator while iRRAM and C-CoRn
output decimal approximations.

The first experiment is to compute iterations of the logistic map xn+1 = rxn(1− xn) for
x0 = 0.5 and r = 3.75. The logistic map is often used as a benchmark problem in exact real
computation as it exhibits chaotic behavior, i.e., a slight change in the initial condition leads
to completely different values at later iterations. In particular, computations using standard
floating-point methods quickly diverge from the correct solution. While it may be argued
that computing the exact values is not of any practical relevance, it is a popular example for
where floating point computations fail completely, while exact methods can quickly produce
correct results.

In this experiment we output an approximation of the result after several iterations of
the logistic map with error less than 10−1000 (i.e. approximately 1000 decimal digits). In
our experiments our implementation performed quite well (see Table 3a) and was only a
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N Incone iRRAM
100 0.02 0
500 0.1 0.01
1000 0.18 0.01
5000 0.94 0.27
10000 3.03 0.83
20000 12.02 4.32
50000 67.23 38.4

(a) Approximating 1000 digits of the N -th iter-
ation of the logistic map.

n
√

5
√

5
32

10 0.12 0.08
100 0.33 0.23
500 1.05 0.64
1000 1.78 1.12
2000 2.74 1.76
5000 6.33 3.61
10000 8.51 5.13
50000 18.02 10.33
100000 27.93 15.98
500000 91.1 48.72

(b) Computing n digits of the square root.

Figure 3 Running times (seconds) for the different experiments.

factor 2− 5 slower than the iRRAM implementation. A straightforward implementation
in C-CoRn did not give good results as evaluating xn twice in the iteration rule leads to
exponential growth and therefore already computing more than a few iterations takes a very
long time. However, this is probably just due to our naive implementation and it might be
possible to do a more clever implementation in C-CoRn that caches the intermediate values.

Our second experiment was to compute some square roots, i.e., compute the square root
of a given rational number and output an approximation with a certain error bound. We
give the results for

√
5 and

√
5
32 as representatives for numbers that are scaled down resp.

up in our algorithm. Other numbers performed mostly similarly, however as computing the
magnitude uses a linear search for very large numbers the running time gets significantly
worse. Here, while our algorithm is still usable, its performance was far worse than both
the iRRAM and C-CoRn versions. For example iRRAM could still compute 500000 digits
in less than 0.01 seconds. The C-CoRn version was nearly as fast as the iRRAM version
for up to 10000 digits. For higher precision it got significantly slower and for 500000 digits
even performed worse than our implementation. The performance log shows that this is
not a bug in C-CoRn but due to some integer operation being extracted to a sub-optimal
implementation. As C-CoRn is made for execution inside of Coq and not optimized for
Haskell code extraction, it is quite hard to compare these numbers.

Our implementation has similar issues when using the interval library. The Coq interval
library is built for fast execution inside of Coq, however that makes the extracted code quite
complicated and many operations could be implemented much more efficiently in Haskell.
Moving to a simpler implementation of interval arithmetic should therefore lead to a drastic
improvement.

As the performance hugely depends on factors that have mostly to do with code extraction,
it is questionable how valuable a thorough performance comparison of the different frameworks
is. We think the main take-away message from this experimental study should be that while
possibly not as fast as some of the alternatives, our simple implementation still performs
reasonably well and can be used to compute approximations up to very high precision.


	Introduction
	Computable analysis and the Incone library
	Specification of algorithms with multifunctions
	The Incone library

	Finite spaces and operations on multifunctions
	Operations on multifunctions and multivalued branching

	Representations for computation on the reals
	The interval reals and their arithmetic operations
	The efficient limit operator and name cleanup

	A verified parametric square root algorithm
	Square root approximation using Heron's method
	From Kleenean comparisons to soft comparison
	The magnitude function for scaling
	Defining the square root function

	Implementation
	Executability and code extraction

	Conclusion and Future work
	Experimental results

