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Abstract 
The widespread Internet of Things (IoT) technologies in day life indoor environments result in an enormous 
amount of daily generated data, which require reliable data analysis techniques to enable efficient 
exploitation of this data. The recent developments in deep learning (DL) have facilitated the processing and 
learning from the massive IoT data and learn essential features swiftly and professionally for a variety of 
IoT applications on smart indoor environments. This study surveys the recent literature on exploiting DL 
for different indoor IoT applications. We aim to give insights into how the DL approaches can be employed 
from various viewpoints to develop improved Indoor IoT applications in two distinct domains: indoor 
positioning/tracking and activity recognition. A primary target is to effortlessly amalgamate the two 
disciplines of IoT and DL, resultant in a broad range of innovative strategies in indoor IoT applications, 
such as health monitoring, smart home control, robotics, etc. Further, we have derived a thematic taxonomy 
from the comparative analysis of technical studies of the three beforementioned domains. Eventually, we 
proposed and discussed a set of matters, challenges, and some new directions in incorporating DL to 
improve the efficiency of indoor IoT applications, encouraging and stimulating additional advances in this 
auspicious research area. 
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I. INTRODUCTION 

The continuous increase of population resided in urban areas where everyone has a busy, stressful day life 
that makes everyone looking forward to some comfortability and effortless life in their home and with the 
matter of fact that most of the people spend around 80% of their time indoors imposes many challenges on 
enhancing the day life quality of urban citizens. The idea of developing a smart building system is to exploit 
smart appliances to enhance the superiority of life quality of citizens in the indoor environment [1]. 
Accordingly, we have multiple smart home applications to improve residents' indoor life, such as 
controlling indoor appliances remotely, indoor fire detection, gas leakage, saving electricity, elderly 
monitoring, kids care, and gesture control [2]. These varieties of applications collectively provide use with 
a smart indoor system that is helpful in everyday life activities in terms of reducing human workload and 
revealing fears about home issues or nasty situations. In recent times, and broad proliferation and prominent 
improvements in sensing methods, Internet of Things (IoT) technologies, and communication techniques 
have brought us with a diverse set of data about the human especially in indoor environments. This large 
diversity in data can be collected, cleaned, and analyzed to offer a wide range of indoor services or 
applications to assist the living of human beings [3].  

The development of intelligent IoT applications increases the feasibility of designing a smart system to 
improve the quality of human lives in an indoor environment. To the end, it is commonly accepted - with 
minor variations with other work- that the idea of analyzing smart indoor data can be summarized in the 
five-step workflow as shown in Fig.1: problem formulation, data collection, data preprocessing, data 
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analysis, service provision [4]. Firstly, in the problem formulation step, we specify the problem and 
different aspects to consider. Secondly, the data collection step is responsible for gathering and acquiring 
various smart indoor data from different devices and IoT sources. Thirdly, in the data preprocessing step, 
the acquired data is prepared in different ways (e.g., data filtering, segmentation, and scaling) to improve 
the quality of data for subsequent- steps, as IoT data, often encompasses missing values, noise, uncertainty. 
Fourthly, the data analysis steps include using mathematical, machine learning (ML), or deep learning (DL) 
techniques to carry out complex analysis for learning and extracting higher-order patterns and features from 
previously preprocessed to provide beneficial insights suitable to a diverse set of smart indoor applications. 
(e.g., elderly monitoring, smoke detection and predicting human fall). Fifthly, the production step is to 
deploy the output of analysis (DL model) into smart services and applications as a solution for the problem 
specified in the first layer. 

Concerning the steps mentioned above, data analysis is the most significant and vital as it is responsible for 
processing the data to obtain informative knowledge necessary to make the final decision in any IoT systems 
[5]. Whereas conventional techniques generally integrate specialized knowledge with ML models (e.g., 
linear regression, Naïve Bayes, and Decision tree) to perform clustering, classification, or prediction using 
human-related IoT data. However, the performance of ML models gets declined with high dimensional, 
heterogeneous, and large-scale data amount, which is often available in indoor scenarios. More, the ML 
algorithms often require robust feature engineering techniques (automatic or handcrafted) and the 
performance of algorithms heavily hangs on the efficiency of these techniques.  

Recently, deep learning (DL) has been demonstrated as an efficient solution for the limitations of ML 
approaches and showed excellent performance in different research areas such as natural language 
processing (NLP), computer vision (CV), speech recognition, and time-series analysis [6],[7]. The primary 
advantages of DL that lead to this success include 1) DL incorporates deeper neural network architectures 
capable of extracting sophisticated hidden patterns from the enormous real-time raw data in various IoT 
devices compared to machine learning shallow models. 2) DL data processing capability is controlled 
mainly by the depth and the type of learning models. 3)  DL can learn effective features from complex raw 
data without the participation of the inefficient handcrafted feature specification. Motivated by this, the 
research community decided to take advantage of DL models and the associated powerful learning 
capabilities to develop more efficient and effective approaches for different human-centered Indoor IoT 
applications, i.e., indoor localization [8], fall detection [9], Activity monitoring [10], energy control [11], 
and robotic control [14]. Therefore, this study emphasizes studying the contribution of a different kind of 
DL to improving the efficiency of IoT applications, focusing on indoor located ones. 

Fig.1.The workflow of human-centric IoT applications in indoor mart environments 
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The indoor IoT applications can be categorized according to device dependency into two main groups: 

device-based (device-dependent) and device-free (device-independent) applications. DL model input data 

obtained from a physical device directly connected to the human beings in device-dependent systems. The 

device-dependent indoor applications can be divided into two classes based on the sensing modality, 

particularly vision-based and sensor-based. Vision-based approaches are extensively exploited DL 

capabilities to analyze images and videos captured by a camera in smart indoors for varieties of indoor 

applications. Yet, these approaches still suffer from some obstacles regarding illumination, power 

consumption, and computational complexity. By contrast, Sensor-based approaches are more powerful in 

an irregular environment and can facilitate developing a portable system. Meanwhile, the data can be 

aggregated from a wearable sensor (e.g., data glove), smartphone sensor (accelerometer, gyroscope, and 

magnetometer), or temperature sensors [12]. However, the requirement of firm attachment and accurate 

placement make these approaches more incompatible with the nature of indoor life as the devices/sensors 

might be damaged, lost, misplaced or necessitate regular battery recharges/changes. On the other hand, 

device-independent applications overcome privacy and intrusive issues as they primarily depend on 

sensing components situated in the indoor environments, which can act as the fundamental data source for 

developing human/robot-centered applications without necessitating direct contact or attachment to a 

particular sensor or device. Unlike previous surveys that only focus on one of the before mentioned 

categories of IoT applications, this study considers surveying the DL studies for both device-dependent and 

device-independent scenarios [5], [13]. 

A. Study Contribution  

To sum up, this study contributes by providing a comprehensive view of the role of DL methods in indoor 
IoT applications according to the following points: 

– This study presents a thorough overview and categorization of the latest improvements in deep 
learning methods for human-centered IoT applications in Indoor smart environments. Firstly, we 
categorize the current studies based on the device dependency (sensing technique). Secondly, the DL 
models are essentially categorized and contrasted according to the underlying learning strategy. 
Finally, we provide a taxonomy for categorizing the recent literature from an application domain 
perspective.  

– This study also a tabular review of the publicly available datasets/benchmarks, including vision-based 

data, sensor-based, radiofrequency and others. The main target is to inform the researchers about the 

available data that could be readily exploited in evaluating and experimenting with their newly 

developed DL approaches for human-centered indoor IoT applications. 

– We review and analyze DL approaches for different human-centered indoor applications by providing 

a tabular one-to-one comparison. The methods were compared in terms of the proposed DL model, 

accuracy, application, system configuration, and data employed. 

– This study deliberates the contemporary shortcomings, challenges, and chances for future research of 

DL techniques for improving the efficiency and effectiveness of human-centered IoT applications 

aiming to improve the quality of life of humans in an indoor environment. 

B. Study Organization 

We can summarize the structure of our paper as follows. In Section II, we discuss some related work; In 
Section III, we provide a background overview for DL models. In Section IV, we compare recent DL 
models for smart indoor applications in three different domains. In Section IIV, we point out some 
observations and findings. In Section VI, we discuss challenging issues and future directions. Finally, in 
Section VII, we provide a conclusion for our study. 
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II. RELATED SURVEYS  

This section discusses the recent survey of indoor IoT applications, including the device-dependent and the 
device-independent application. 

A. Surveys on Device-Dependent Approaches 

The multiplicity of device-dependent approaches has been developed for different kinds of IoT applications, 

especially those based on camera data or sensory data. In this regard,  Li et al. [14] presented a 

comprehensive overview of the computational techniques of multi-individual activity recognition and the 

relevant applications in a smart IoT environment. They primarily discuss the analysis and fusion of sensory 

data (vision or sensors) and give some insights into the challenges and opportunities for collective activity 

recognition. Abuhamad et al. [15] Reviewed around 140 studies of constant human authentication 

techniques by classifying them into six interactive and physical biometrics classes including, gesture, gait, 

voice, motion, keystroke dynamics, and multimodal. They also compare the relevant studies based on the 

sensors, modality, algorithm, and user data. The authors also discuss the intuitions and challenges of the 

current biometric methods that can be addressed in future work. Dang et al. [12] surveyed and analyzed 

studies for human AR methods and indicates the corresponding merits and demerits, where the AR methods 

are divided into two categories i.e., sensor-based and vision-based methods which are compared based on 

the data aggregation, preprocessing methods, feature extraction, and the training procedures. The authors 

also treat the human activities at different levels of human-object (HO) interactions, human-human (H-H) 

interactions, grouping activities, gestures, and actions. Guo et al. [16] argued the fusion-based localization 

systems and methods from different sources of various networking frameworks, including Homogeneous 

systems, Heterogeneous systems, and Hybrid systems. However, the device-dependent approaches are 

obtrusive and not user-friendly as it necessitates the human and device to be attached or located in the same 

place. They are greatly affected by environmental obstacles. 

B. Surveys on Device-Independent Approaches 

In an attempt to address the beforementioned limitations of device-dependent approaches, device-

independent sensing technologies emerged to enable the design of indoor IoT applications without reliance 

on attached devices or monitoring cameras. Hussain et al. [13] reviewed the device-free approaches for 

recognizing different categories of indoor human activities, including action-based activities, motion-based 

activities, and interaction-based activities. They also provided a taxonomy for this activity recognition task 

into ten different subcategories. Zhu et al. [17] surveyed the  ML and intelligent methods for indoor 

localization using different kinds of fingerprints and introduced a new framework for intelligent 

localization. They also discuss the main issues of designing intelligent localization in the real world and 

accordingly discuss the possible improvements and future solutions. Alam [8] Presented an extensive 

overview of the non-RF-based approaches for device-independent indoor positioning in the IoT 

environment. The authors consider light-based studies, infrared-based studies, physical excitation-based 

studies, and electric field sensing-based studies, then discuss the main limitations of each kind of those 

studies and the promising research directions. Deep et al. [18] overviewed the research studies of anomalous 

behaviors for elderly caring within indoor IoT environments while emphasizing dense sensing-based 

methods due to their robustness to the situational variations, non-intrusive nature and sociability. The 

authors also provided an overview of the main issues and associations between human activity and 

anomalous behavior. Nirmal et al. [19] presented a complete review and taxonomy of DL studies for RF-

based human sensing by comparing different types of algorithms and offering a more detailed view of the 

DL for human-centric RF-based sensing. They also reviewed 20 released benchmarks of labeled radio 

signals of human activities. He et al. [2] investigated the recent innovations in WiFi vision tasks, including 

the sensing, recognition, and detection from channel state information (CSI) of the commodity WiFi 

devices. They emphasize using these tasks in 9 essential applications of IoT environments, involving WiFi 
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imaging, vital sign observing, human identification, indoor localization, gesture analysis, gait analysis, 

daily AR, fall detection, and human detection. Liu et al. [20] surveyed the wireless sensing approaches in 

the context of their fundamental preliminaries, methods, and system constructions. Then, discuss how the 

wireless signals can be used to ease the design of different IoT applications containing indoor localization 

anomaly detection, room tenancy observing, daily AR, gesture recognition, vital signs observing, and 

human identification. They also outlined the future opportunities of exploiting wireless signals for human-

centered applications. Thariq Ahmed [21] argued the gesture recognition approaches in the context of 

device-independent sensing based on CSI measurements, which can be categorized into model-based and 

learning-based approaches. They also discuss data preparations, employed feature engineering and 

classification models, and the environmental considerations that impact the performance. Furthermore, 

Zhang [5] surveyed ML- and DL-aided wireless sensing for detecting humans from Red Green Blue 

(RGB)/Depth imaged and radar data by merging and fusing information from the heterogeneous kinds of 

sensors as a way to  enhance the total performance of realistic human detection approaches.  

III. OVERVIEW OF DEEP LEARNING METHODS 

DL belongs to a category of artificial intelligence that hires a deeper neural network with many layers of 

interrelated neurons to extricate pertinent and valuable representations from large-scale and high-

dimensional data. Basically, the neurons in each layer get activated to generate a production signal based 

on a group of weighted values received from the previous layers. Effective learning of such models could 

be realized by the iterative update of neurons’ weights in accordance with the extra training data passed as 

a network’s input. In the past, such DL models were not believed desirable owing to their substantial 

computation and time requirement. Recently, the great improvements in computational design bring us to 

more powerful computational agents i.e., graphical processing units (GPUs), and Tensor Processing Unit 

(TPU) which make the DL development less costly. Accordingly, the research attention moved toward 

investigating the potential of DL models and their applications in a wide variety of domains. 

The massive research in the latest times has generated an abundance of DL models with a wide variety 

of traits and benefits. These have been generally adopted for various application domains; meanwhile, only 

some are mainly concentrated pursuing IoT environments. This section presents a concise introduction to 

the commonly studied DL models, which have been effectively employed for indoor IoT applications. The 

studies under the umbrella of DL can be categorized according to the learning strategy into three primary 

categories, namely supervised, unsupervised, semi-supervised, and reinforcement learning models. This 

section mainly investigates the usages and attributes of different categories of DL models as discussed in 

subsequent subsections. For additional detailed information concerning the construction and 

implementation of these models, the readers should refer to original studies of these models. The relevant 

indoor IoT applications are completely discussed in Section III. 

A. Deep Supervised Learning Models 

The supervised models are referred to as DL models that are trained to learn the inherent representations 

from labeled datasets, where the main target is to minimize the difference between the model's estimated 
output and the actual data labels, which is computed using a predefined loss function. 

1) Multilayer Perceptron (MLP) 
The MLP is considered the fundamental supervised DL model is comprising of an input layer, an output 

layer, and single or numerous completely linked hidden layers. Each layer comprises single or multiple 

perceptrons. The input layer is responsible for receiving the input data, where the number of input 

perceptrons is mounted to cope with the size of the input vector of the underlying problem. The hidden 

layer’s neurons receive received input weights, then get activated by a non-linear function to generate 

output values, which are followingly passed to the subsequent layer (forward propagation). The training 
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procedure happens incrementally by renovating the learned parameters after each training batch is handled, 

according to the difference (i.e., loss) between the estimated and the actual output (backward propagation). 

The activation function of the output layer is usually determined by the based type of problem (prediction, 

classification, etc.) [5]. 

2) Convolutional Neural Network (CNN) 
The CNN one of the most widely used DL models that achieve powerful results in many research fields, 

especially computer vision and pattern recognition, because of its ability to capture and learn the 

sophisticated pattern in multi-dimensional data. Particularly, CNN hires a stack of convolutional filters that 

convolve over the input vectors to extract spatial representations. Also, it employs different form pooling 

layers to lessen the dimensionality of generated feature maps during training. Remarkably, even though 

CNN initially developed to process the visual data (i.e., image, videos, etc.), it is also observed to be 

efficient in capturing the spatial interactions in sequential data, i.e., textual data, voice data, time series [22]. 

3) Recurrent Neural Network (RNN) 
The RNN is designed based on FFNN architecture for modeling sequential information using a kind of 

feedback structure called recurrent unit, which enables memorizing the temporal relationships within the 

input. Unlike other FFNN, output at any time step depends only on the present input with no dependence 

on previous input/output. Model memorizes the previous output state and uses it as an input in conjunction 

with the current input, which makes RNN extensively used for time series and sequential data like speech 

recognition, sensor data natural language processing. Nevertheless, the RNNs exhibit two critical 

drawbacks. First, the gradient vanishing problem happening because of trivial gradient updates that end the 

learning process. Second, gradient explosion happens due to growing weights' gradients through the 

backward propagation, which causes a big gradient update [23]. These shortcomings limit the RNNs 

capabilities from modeling long-term dependencies. In order to tackle these limitations, long and short time 

memory (LSTM) has been designed to effectively regulate the addition or removal of memory state using 

a simple gating mechanism (input, output, and forget gate) that optionally remembers or forgets the 

information. The main issue with LSTM is the huge number of parameters [5]. This motivates the design 

of another variant of RNN called gated recurrent unit (GRU), which is a simplification of the LSTM 

network by combining the input and output gate in a single gate, the so-called update gate. This makes 

GRU a lightweight and more efficient model for modeling long-term dependencies while maintaining the 

simpler architecture. The idea that learning in the current time step does not depend only on the historical 

information but also on the future information motivated the design of bidirectional RNNs (Bi-RNNs) that 

process the input sequences both forward and backward directions. This encouraged the usage of 

bidirectional LSTM (Bi-LSTM) and bidirectional GRU (Bi-GRU), which have been showing great success 

for a wide variety of applications [19]. 

B. Deep Unsupervised Learning models 
The unsupervised training of DL models is referred to the situations where the DL models are 

trained to learn the inherent representations from an unlabeled set of data. This is usually beneficial under 
circumstances where data labels are unattainable, or the data labeling/annotating is very laborious and time-

consuming. In the following, we overview the most common unsupervised models. 

1) Auto-Encoder (AE) 
An unsupervised DL model is basically used to reduce the dimension of data by performing two 

consecutive tasks, which are encoding and decoding. The encoding operation aims to learn complex implicit 
features from raw input data while compressing it into the lowest dimensional representation called latent 
representation. In the decoding phase, the AE seeks to reconstruct the original data from the compact latent 
representation [24]. Since the input operates like an output, the AE is able to act in a self-supervising manner 
without demanding specific data labeling. The AE has been widely used as an efficient dimensionality 
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reduction tool and has shown great feature extraction capability in hybrid DL models. This great success 
inspired the development of different variants of the AEs network. For example, stacked AE (SAE) extends 
the AE by including a sequence of multiple cascaded hidden layers between input and output layer to extract 
hierarchical feature increasingly from data providing fine-grained data representation as an output. The 
Sparse AE seeks to realize information bottleneck using sparsity conditions which alleviate the need for 
reducing the number of nodes in the hidden layers. Instead, it penalizes per layer activations during the 
encoding and decoding process [25]. Besides, the De-noising AE (DAE) is specifically developed to 
produce a clear and finetuned output based on extracted features from distorted or partially corrupted data 
(i.e., noisy images). The Variational AE (VAE) is an improved variant AE devised to learn and describe an 
input in latent representation probabilistically. In other words, it employs the encoder to define a probability 
distribution for each latent variable rather than generating a single value for portraying each latent variable  
[26]. 
2) Restricted Boltzmann machine (RBM): 
 An unsupervised DL was designed as an extension of the Boltzmann machine (BM), where BM consists 
of circular unidirectional connected nodes trained to determine the nodes to be activated. To overcome the 
overhead incurred by the massive connection among the node makes nodes of BM, the RBM is introduced 
to divide the nodes into two layers (i.e., input layer and one hidden layer) and eliminate the connection 
among nodes of the same layer (intra-layer connection). The RBM has been gained a wide adoption for 
feature extraction, parameter initialization, and collaborative filtering. 
 
3) Deep belief network (DBN) 
An unsupervised DL model designed by stacking multiple RBM networks, where each hidden layer of an 
RBM is considered an input to the next RBM with symmetric connections between them.  Except for the 
foremost and last layers, every layer of DBN has two main roles. First, it acts as a hidden layer with regard 
to the previous layers. Second, it acts as an input layer for the subsequent nodes [27].  The DBN is trained 
in a greedy layer-wise way with optimized weights to conceptualize the learned features drawn from the 
original data. The main goal is to realize faster-unsupervised training by regulating the weights based on 
contrastive convergence of constituting RBM to create a stable approximation of the possible scores. The 
DBNs have been achieving great success in recognizing, generating, and clustering video streams, images, 
and action-catch data [28]. 

 
4) Generative Adversarial Network (GAN) 
The GANs is another example unsupervised DL model intended to acquire the distribution of training data. 
Unlike VAE, the GAN concurrently trains a couple of networks (i.e., generator and discriminator) to act 
like a two-player game (hence called adversarial) to create observations without acquiring the circulation 
parameters promptly. The generator seeks to generate fake observations similar to genuine observations 
and send them to the discriminator. The discriminator is simultaneously trained to recognize the generated 
observations as fake and compute a probabilistic value, representing data authenticity to penalize the 
generator for improbable data. The generators and discriminators are optimized throughout the training 
until the discriminator becomes unable to differentiate the real observations from the generated ones. GANs 
have definitely transformed the DL research with several alternatives of GAN architectures [29]. 

C. Deep semi-supervised learning models 

The spectrum of semi-supervised DL models includes the models that seek to exploit both unlabeled and 
labeled data instances during the training process. The labeled data offer partial supervision, and the 
unlabeled data delivers valuable indications concerning the data distribution, which can empower the model 
capabilities to learn more improved data representations. For instance, an efficient DL model must produce 
steady and soft estimations under arbitrary perturbations (e.g., scaling, rotations, translations, flipping, or 
accidental trepidations) GAN [30] alongside the input space or prevent retaining the judgment factors on 
high-intensity regions of input space distribution. The current semi-supervised models can be reviewed 
from two distinct viewpoints, namely generative models and Teacher-Student models. 



8 

 

 
1) Generative models 
the semi-supervised AEs, RBMs, DBF, and GANs could be obtained from the equivalent unsupervised DL 
models. For example, the semi-supervised GAN gets trained a K+1 classifier with K-provided data labels 
as well as a label of fake samples. Then discovers the distribution of unlabeled observations by handling 
them as a subset of the first K genuine classes, and the competitive capabilities are released via feature 
matching technique [31]. Besides, the semi-supervised AE train a classifier for predicting from the latent 
representation encoded from the labeled and the unlabeled subset of the training data. In contrast, the 
classifier uses the labeled observations.  
2) Teacher-Student models 
The Teacher-Student models are regarded as the type of semi-supervised models that have been realizing 
great success in recent years, in which one or more teacher networks are trained to estimate the labels with 
for unlabeled observations. The estimated labels are employed to regulate the parameters of a student 
network during training. The constancy between the teacher and the student should be boosted to enhance 
the capabilities of the student network in classifying the unlabeled observations [32]. The Teacher-Student 
models have transformed the research in semi-supervised training with a variety of models, including Noisy 
Teachers, Temporal Ensembling [33], Mean Teacher[34], Mixture-Match Teachers [35], Fix-Match 
Teachers [36], and Adversarial Teachers [37]. 

IV. DATA COLLECTION AND BENCHMARKS 

The DL research community is witnessing an increasing demand for open-source datasets to encourage 

reproducibility and accelerate research production. The crucial target is to deliver a wide variety of 

benchmarks to easily experiment and contrast the performance of DL models from different and 

autonomous studies. Unfortunately, the aggregation and annotation of the human-centered dataset is an 

exhaustive task. The data available to the public is not viable every time, especially indoor data, because of 

privacy limitations and maintaining datasets might be expensive. Though most researchers are presently 

accumulating their datasets in the lab to experiment with the proposed DL algorithms, gaining access to 

community/released datasets is potentially ideal for speeding up the deep learning research in the future. 

Thus, this section extensively overviews the publicly available benchmarks for different indoor IoT 

applications and highlights the current data deficiency for those applications that might suggest exploration 

in future research.  

A. Activity Recognition datasets 

 

1) Vision datasets 
The vast improvements and the wide applicability of computer vision models attracted the research 

attention toward the design of innovative AR approaches based on visual datasets. In view of this, the 

vision-based AR  approaches could be categorized according to the type of data to involves RGB data [38], 

[39], [40], and RGB-D data  [41], [42]. Commonly, the RGB-D-based AR approaches result in better 

performance than RGB-based approaches due to the extra information provide by multi-modality and depth 

data. Nevertheless, the RGB-D exhibits high computational and design complexity and excessive expenses, 

making the RGB data dominating the design DL-based AR approached. Table I presents the characteristics 

of current vision-based AR datasets in terms of the type of AR, number of subjects, number of classes, 

number of samples, the presence of depth information, and the number of clips per class. A short description 

of the nature of recorded activities is outlined along with the source of data. 

RGB data: An RGB image comprises red, green, and blue channels in the observable continuum that might 

be filmed utilizing standard cameras. It is broadly accessible, inexpensive, and offers abundant texture data 
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about the human. Nevertheless, the cameras often have a constrained scope, prone to calibration, and are 

severely affected by environmental settings, i.e., such as walls, illumination, and lighting.  

RGB-D data: The emergence of the depth sensors and scope visioning methods brings additional valuable 

information that can improve the capabilities of learning algorithms in recognizing human behaviors and 

actions. Besides, the skeleton data could be captured from the depth information to offer a dense 

interpretation of the human skeleton. The low dimension of skeleton data accelerates the learning of DL 

models. Hence, abusing the joint information obtained from measurements of depth sensors becomes a 

desirable research path as it could be applied in various IoT applications. The RGB-D data has several 

merits, including the robustness against variations in illumination, lighting, colors, and textures, and pitch-

black situations. Nevertheless, RGB-D data exhibit a limited resolution, instituting noise to the images 

owing to quiet compassion, and could be effortlessly disturbed by light-grasping and translucent materials. 

 

Table I. An overview of vision-based indoor activity recognition datasets. 

ID Dataset  Type  #Subj #Act #Samples Depth Clips Description Source 

VA1 HDM05 [41]  5 70 1500  10-50 Body Movements Class recorded 

VA2 Hollywood2 [38] HAR NA 12 3669 × 61-278 
Body Movements 
H-H Interaction 

Movies  

VA3 HMDB51 [39] HAR NA 51 6849 × min. 101 
Body Movements 
H-H Interaction 
H-O Interaction 

YouTube 

VA4 
SBU Kinect 

interaction [42] 
GAR 7 8 300  1,2 H-H Interaction Class recorded 

VA5 UCF101 [40] HAR NA 101 13320 × 4-7 
H-O Interaction 
H-H Interaction 

Sports 
YouTube 

VA6 CAD-120 [43] IAR 4 10 120  NA 
H-O Interaction 

Movements 
Class recorded 

VA7 Berkeley MHAD [44] IAR 12 11 660  5 Body Movements Class recorded 

VA8 Sports-1M [45] GAR NA 487 1,100,000  1000-3000 Sports YouTube 

VA9 UTD-MHAD [46] IAR 8 27 861  NA Body Movements Class recorded 

VA10 NTU RGB + D[47] HAR 40 60 56,880  
NA 

Movements 

H-H Interaction 

Class recorded 

VA11 
NTU RGB+D 120 

[48] 
HAR 106 120 114000  Class recorded 

VA12 ActivityNet [49] HAR NA 200 19,994 × 137 H-O interactions YouTube 

VA13 DALY [50] HAR 1, 2 10 8133 × 51 Daily activities YouTube 

VA14 Charades-Ego [51] IAR 112 157 7860 × 52, 24 Daily activities Class recorded 

VA15 20BN-something [52] IAR 1133 174 220,847 × 115- 4,081 H-O interactions Class recorded 

VA16 MultiTHUMOS [53] GAR >1 65 400 × 15-3.5k Sports internet video 

VA17 Kinetics-700 [54] HAR >1 700 650,000  NA 
Daily activities 

Sports 
YouTube 

VA18 AVA [55] 
GAR, 
HAR 

>1 80 238,906 × 235-10K H-O interactions movie clips 

VA19 
Moments in Time 

[56] 
IAR NA 339 1,000,000 × 1,757 

Events people, 
objects, animals 

Different sources 

VA20 HACS [57] HAR 1> 200 1,550,000 × 1100-6600 
Daily activities 

Sports 

YouTube 

Google Image 

VA21 HAPPEI [58] GAR >1 6 4886 × NA 
face level 
happiness 

Flickr 

VA22 UT-Interaction [59] GAR >1 6 180 × NA H-H Interaction NA 

VA23 BEHAVE [60] GAR 125 6 76800 × 1-43 H-H Interaction NA 

VA24 AIR-Act2Act [61] GAR 100 10 5000  50 H-H Interaction Class recorded 

VA25 CAD [62] GAR 1-18 5 44 × NA H-H Interaction Class recorded 

H-H=”human-human”, H-O=”human-object”, NA=” not exist” 

2) Sensory data 
With the swift progress of wireless sensing, a large number of sensory measurements can be captured from 

a variety of inexpensive and widely available smart sensors to facilitate the development of DL models for 

recognizing human activities in smart indoor environments (i.e., smart home and smart healthcare). The 

current sensory data can be categorized according to the sensor modality into four categories of sensors, 
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namely Ambient sensors (AS), object sensors (OS), Wearable sensors (WS), and hybrid sensors. Table II 

presents a detailed description of four sensor modalities, common sensors, the corresponding data, merits 

and demerits. 

Table II. An overview of characteristics, merits, and demerits of different categories of indoor sensors. 

Modality Sensor Data Merits  Demerits  

Ambient 
sensors 

Barometer 
Atmospheric 

pressure 

- Gauge altitude coordinates  

- Rapid procurement 

- Limited precision 

- Affected by hostile environment 
situations. 

Pressure Pressure 

- less human interference  
- real-time interface 
- Elevated signal-to-noise ratio 

 

- Limited to local sensing 
- More invasive 
- It  needs for the mold 

Microphone  Sound 
- Reasonably Priced 

- less human interference 

- Necessitates more memory.  

- Has limited coverage area 

Temperature Temperature 

- High-temperature scale. 
- Explicit  contact. 
- Inexpensive. 
- Rapid response. 

- Deterioration 
- Difficult to calibrate. 

Object sensors 

Motion Sensor Motion of subject 
Easy to Install. 

Long Lifespan 

- Costly 

-  Cumbersome  

Proximity Sensor 
Presence of 
objects 

- Contactless. 
- Less human interference. 
- Cost and power efficiency. 

- Limited range 
- Impacted by weather conditions. 
- Dedicated for only the metallic 
target. 

 

Wearable 

sensors 

GPS 
Geo-coordinates, 
t iming, and speed 
information 

- Free of charge 
- Enable direct estimation of global 3D 
location. 

- Battery exhaustive  
- Unsuitable for indoor environments. 

Accelerometer 
Accelerations 

(gravity, force) 

- Inexpensive 
- long-lasting 

- high compassion 
- high resistivity and high-frequency 
reaction 

- Hypersensitive to temperature 
- Hysteresis error 

- Efficiency diminished throughout 
time 

Gyroscope Angular velocity 
- speedy and lightweight  
- measures rotating movements 

- higher resolution 

- Expensive 
- Reliance on the earth’s rotation  

- Endangered to relation azimuth drift  

Magnetometer 
magnetic field 
and its direction 

- power-efficient 

- Low-priced 
- simple to install 
- wide-ranging magnetic field 

- Hypersensitive 
- Low precision 
- Unsuitable for magneto torquers. 

Hybrid 
sensors 

This refers to the studies that employ a different combination of the beforementioned sensors modality to improve the 
efficiency of indoor IoT application by empowering the representational capabilities of the DL model. 

 

Moreover, Table III reviews the publicly released benchmarks that are typically employed to train the DL 

models for the sensor-dependent approach. It is notable that the majority of the current benchmarks are 

aggregated using WSs, including magnetometer, gyroscope, and accelerometer. Table III also presents the 

number of observations, activities, subjects, and attributes in each dataset. Among the tabulated data, the 

UCI datasets (OPPORTUNITY[63], HAR [64] , M-HEALTH [65] , etc.) and WISDM  datasets are the 

commonly used as a standard datasets  for evaluating the sensor-dependent  deep learning approaches. It is 

also observable that most of the present sensory datasets are aggregated by capturing the activity of single 

individual, meanwhile few of them consider multiple or group activity. Regrettably, the obligation of 

carrying a device or some sort of sensors is burdensome and potentially impractical for humans, so, making 

it difficult to develop ubiquitous IoT applications especially in indoor environments. 

 

 

Table III. An overview of sensor-based indoor activity recognition datasets 
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ID Dataset Type #Subj #Act #Attr #O bs Devices Sensors 
Sampling 

rate  
SA1 WISDM 1 [66] Single 29 6 6 1,098,207 Sw A 20 Hz 

SA2 WISDM 2 [67] Single 36 6 6 2,980,765 Sw A 20 Hz 

SA3 UniMiB-SHAR[68] Single 30 17 6 11,771 Sp A 50 Hz 

SA4 OPPORTUNITY[63] Single 4 16 242 701,366 
WS, OS, 

AS 
A, G, M 32-64 Hz 

SA5 Real world [69] Single 15 8 7 NA Sp & Sw A 50 Hz 

SA6 HAR [64] Single 30 6 561 10,299 Sp A, G 50 Hz 

SA7 M-HEALTH [65] Single 10 12 23 120 WS A, G, M 50 HZ 

SA8 HHAR [70] Single 9 5 16 43,930,257 Sp & Sw A, G 100–200 Hz 

SA9 HASC [71] Single 5 10 4 2,779 Sp A, G, M, 10–100 Hz 

SA10 DaSA [72] Single 8 19 45 9120 IMU A, G, M 25Hz 

SA11 KU-HAR [73] Single 90 18 8 20,750 Sp A, G 100Hz 

SA12 PAMAP2 [74] Single 9 18 52 2,844,868 IMU A, G, M 100Hz 

SA13 DaLiAc [75] Single 23 13 152 8,990 SHIMMER A, G 200Hz 

SA14 DIP[76] Single 10 5 NA 330,178 IMU A, G, M 60Hz 

SA15 BaSA [77] Single 15 7 12 NA SHIMMER A, G 200Hz 
SA16 PUC-Rio [78] Single 4 5 18 165,633 IMU A NA 

SA17 StudentLife [79] Multi 48 4 4 NA Sp A NA 

SA18 DyadHAR [80] Multi 2 6 18 23,934 IMU A, G NA 

SA19 DBAD [81] Multi 10 11 9 598,396 Sp A, M 50 Hz 

SA20 ARAS [82] Multi 4 27 21 5,184,000 WS A, M 10Hz 

SA21 CASAS [83] 
Single 
/Multi 

2 15 NA NA AS AS NA 

A=accelerometer, G=gyroscope, M=magnetometer, OS=object sensor, WS=wearable sensor, AS=ambient sensor, Sp=smartphone, 

Sw=smartwatch, IMU=Inertial Measurement Unit, NA=” not exist” 

3) Radio Frequency data 
The privacy-preserving, contactless and non-LOS characteristics motivated the researchers to exploit RF 
signals to develop an intelligent IoT application. In RF-based applications, the transmitter broadcasts the 
RF signals, preceding the arrival to the receiver, they get regulated by the human beings and their indoor 
behavior. The regulated data can be collected, cleaned, and analyzed using DL models for different purposes 
based on the kind of application. In this regard, the RF data can be divided into three main categories based 
on the communication technology employed. First, Radio frequency identification (RFID) is a favorable 
communication technology that alleviates the need for device attachment (sensor) and has many benefits. 
In Essence, the RFID utilizes electromagnetic fields to instinctively recognize and track the tags affixed to 
different entities, which encompasses electronically collected data. The RFID tags can be active or passive 
tags, where the former ones depend on a small power supply to constantly transmit the detectable RF waves 
from hundreds of far away distances from the RFID reader. Conversely, the latter tags accumulate power 
from a neighboring RFID reader probing RF signals to deliver its collected information. Hence, the passive 
tags of the RFID system are much inexpensive and softer. Second, radar-based, which is considered an 
active sensing technology in which the RF waves are broadcasted, then modulated by target and get received 
in a modulated form. Radar technology has been widely used for outdoor applications such as traffic control 
and remote sensing. Recently, there is a growing interest in exploiting radar technology for indoor 
applications (i.e., indoor positioning, navigation, activity recognition, etc.) due to its contactless nature, 
simple construction, easy deployment, comparatively cheap, etc., inattentiveness to weather and lighting 
state, and penetration ability. To this end, two kinds of radars are currently available, namely Continuous-
Wave (CW) Radar and ultra-wideband (UWB) radar. The CW radar broadcast a notorious constant-
frequency CW ratio signal and accepts the moderated signals by targets (human) on the pathway of the 
signal. The CW radars can operate in either moderated or unmoderated manner, and it includes frequency-
modulated CW (FMCW) radar, and interferometry radar, and Doppler radars. Third, the WiFi networks are 
the most widely used RF technology, mainly in indoor environments because of their cheapness, rapid 
transmission rate, and handy installation.  This result is a new form of data that can be exploited for 
designing human-centric applications, including Received Signal Strength (RSS) and channel state 
information (CSI), where the RSS denoted the mean of amplitude information throughout the entire channel 
bandwidth. Meanwhile, the CSI encapsulates the frequency reaction of the wireless channel, denoting the 
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way the phases of various frequencies get changed and attenuated throughout the broadcast from the 
transmitter to the receiver. Table IV presents the characteristics, measurements, merits, and demerits of 
different RF communication technology.  A wide variety of Human-centric applications can be developed 
based on the beforementioned technologies by extracting different sets of RF measurements, including the 
Angle of Arrival (AOA), Time of Arrival (TOA), Time Difference of Arrival (TDOA), and other similar. 
The downside of such techniques is the low accuracy and high energy consumption. 
 

Table IV. An overview of characteristics, merits, and demerits of different RF communication technologies. 

Technology Device  Data Description Merits  Demerits  

RFID 

- Mobile 
device 
 

CSI, 
Phase, 
RSS, 

TDoA 

It stores and retrieves data 
via the electromagnetic 

broadcast  to an RF 
consistent, cohesive circuit 

- High accuracy 
- Low cost  
- Power-efficient/free 

- Tedious deployment 
- Short distances 
- Portable devices 

Radar 

Doppler radar 
Doppler 

effect  

It  broadcast single-tone RF 

signals without involving 
modulation. 

- simple design 
- power efficient 

- easy to deploy 
- simple  
- penetrative 

- Frequency shift  extremely 
relies on circular velocity 

- Range folding 
- High maintenance 

FMCW radar 

Range and 

doppler 
information 

It  captures doppler and 
range information 

concurrently thereby 
appropriate for multi-
targets scenarios 

 
- Limited range 
- Prone to interference from 

other signals 
- Signal attenuation 
 

Interferometry 

radar 

micro-

Doppler 
signatures 

It  captures angular velocity 
using an interferometric 

receiver consisting of two 
antennas with correlated 
output. 

-  increased noise 

 

UWB radar RF pulses 
It  broadcast Rf signal with 
25% greater fractional 
bandwidth. 

- fine range resolution 
- extricate the target’s 

scattering midpoints 
- penetrative 
- low electromagnetic 
radiation 

- power efficient  

- Higher cost  

- Relative complexity 
- Special equipment  
- Hardly popularized 

WiFi 

- Routers 
- Access point 

- Mobile 
device 

CSI 

- Comprise amplitude and 
phase sub-signals represent 
the signal echoes of the 
human in subcarrier degree 

- Wider range 
- Low cost  
- Comfortable 

- privacy-preserving 

- CSI high granularity 
- Easy to implement 

- High false alarm ratio 
- RSS coarse granularity 
- RSS limited performance 
- Sensitive to slight changes 
in the environment RSS 

- Change in the received 
signal strength in the 
receiver 

 
 
The sensitivity of RF data to the device configurations and experimental conditions has been exhibiting 
many troubles in evaluating and comparing various DL studies. Mercifully, some research studies have 
open-sourced their aggregated RF datasets, offering an opportunity for other researchers to reinvestigate, 
analyze these data, and reuse them to evaluate and compare different DL algorithms fairly. Table V display 
and survey the current datasets in terms of AR level, number of participants, number of classes, number of 
observations, a sensing device, RF signals, and activity description. The reviewed benchmarks lead us to 
some critical insights, which can briefly be discussed as follow.  1) the daily activities, gestures, and gait 
analysis dominate the current datasets, while other applications such as respiratory monitoring, human 
counting, fall detection still have a limited number of benchmarks. 2) the number of subjects varies from 
one subject to 95 subjects, which provides an indication of the limited diversity in the dataset. 3) The 
number of environments considered during the aggregation of datasets is ranging from one to seven, 
necessitating a greater number of distinct indoor environments to increase the variability in data and the 
generalizability of DL models. 4) The CSI is the most common RF signal used for AR and always captures 
with Intel 5300 Network Interface Card (NIC), which indicates its precious value for modeling different 
human activities. 5) the vast majority of the RF datasets for AR are accumulated for single user activity and 
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only one of them [84] considers multi-individual activities. Besides, the data presented in [84] only consider 
the interactions between pairs of subjects, making the group activity RF data still unavailable.  

 
Table V. An overview of RF-based indoor activity recognition datasets 

ID Dataset Level  #Subj #Act #Attr #O bs Devices Signal Description 

RA1 Wiar [85] IAR 10 16 >12 4800 Intel 5300 
CSI 
RSSI 

Daily activities 

RA2 CrossSense [86] IAR 20 40 4 NA 
Intel5300 
XiaoMI 

Note2 

CSI 

RSSI 

Gait & Gesture 

Recognition 

RA3 Experience [87] IAR 20 1 114*8 NA 
Atheros CSI 
Zigbee 

CSI 
RSS 

Respiratory 
Monitoring 

RA4 Data [88] IAR 9 6 1782 407978 
Intel Link 

5300 
CSI  Daily activities  

RA5 Widar 3.0 [89] IAR 16 12 75 258000 Intel5300 
CSI 

RSSI 
Gesture Recognition 

RA6 WiAG [90] IAR 1 6 10 1427 Intel5300 CSI Gesture Recognition 

RA7 SignFi [91] IAR 5 276 30×3 
8280, 
7500 

Intel5300 CSI 
Sign Language 

Gesture Recognition 

RA8 Wisture [92] IAR 1 3 2 1,643 Smartphone RSS 
Gesture 

Recognition 
RA9 FallDeFi [93] IAR 3 11 10 NA Intel5300 CSI Fall Detection 

RA10 RadHAR [94] IAR 2 5 10 15,635 FMCW PC Daily activities  

RA11 CSI-net[95] IAR 1 10 30×3 

43,077 

43,077 
23,896 
24,398 

Intel5300 CSI 

Biometrics estimate. 

Person Recognition 
Sign Recognition 
Falling Detection 

RA12 EHUCOUNT [96] IAR 5 2 10 NA 
Anritsu 

MS2690A 
CSI People Counting 

RA13 mmGaitNet [97] IAR 95 7 10 NA IWR 1443 PC Gait Recognition 

RA14 Alazrai et al[84] GAR 66 13 180 4800 Intel5300 
CSI 
RSSI 

H-H interaction 

RA15 Yousefi et al. [23] IAR 6 6 180 NA Intel5300 CSI Daily activities 

H-H=”human-human”, H-O=”human-object”, NA=” not exist” 

 

B. Indoor positioning and tracking datasets 

In the same way, the publicly released datasets for indoor positioning fall in one of three categories, i.e., 

vision data, sensory data, or RF data. Table VI reviews the different characteristic public indoor poisoning 

benchmarks in terms of dataset name, type of data, number of subjects, number of attributes, number of 

observations, devices included number communicators, frequency bands, and the data measurements. It is 

observable that the RF data (CSI, and RSS) dominate the present benchmarks because of its high efficiency 

for modeling positional information of the humans compared to the sensor or vision-based data. Unlike 

activity recognition benchmarks, there are a limited number of indoor positioning benchmarks and most of 

them are legacy data.    
 

Table VI. An overview of vision-based indoor positioning and tracking datasets. 

ID Dataset  Type  #Subj #Attr #O bs Devices #devices 
Frequency 

bands 
Data 

IL1 Jekabsons [98] RF 1 20 82P/68P 
RBT-1002, 

RBT-4102 
14 APs 2.4 GHz, 5 GHz RSS 

IL2 ARIL [99] RF 1 2 1440 EttusN210 
2 

antennas 
2.4 GHz or 5 

GHz 
CSI 

IL3 IPIN 2016 [100] 

S 
RF 

Non-

RF 

>1 >=1 NA 
Smartphones 

Samsung, 

Sony, Hawaii 

>1 
50 Hz 

<10 Hz 

0.25 to 0.17 Hz 

RSS, 
A, G, M, 

sound, light 

data 

IL4 UJIIndoorLoc[101] RF >20 529 21,049 
Android 

Smartphone 
520 APs NA RSS 
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IL5 
UJIIndoorLoc-Mag 

[102] 
S NA 13 40,195 

Google's 
Nexus 4 

LG G3 

2 SPs 10Hz 
A, O, M 

data 

IL6 IPIN 2016 Tutorial [103] RF NA 177 1629 NA 168 APs NA 
RSS, GPS 

data 

IL7 ALCALA 2017 [103] RF NA 154 1075 NA 152 APs NA 
RSS, GPS 

data 

IL8 crowdsourced[104] RF 8 992 4648 
21 android 

devices 
991 APs 

2.4-GHz and 5-
GHz 

RSS, GPS 
data 

IL9 
Widar 1.0 [105] RF 5 30×3 NA 

3 mini-
desktops 

1AP 5.825 GHz CSI 

IL10 Widar 2.0 [106] RF 6 30×3 NA 2 labptop 1AP 5.825 GHz CSI 

S=”sensor”, SP=”smartphone”,  NA=” not exist” 

 

V. INDOOR IOT APPLICATIONS 

 A smart indoor enables the interconnection of pervasive IoT devices embedded in many indoor 
appliances such as smartphones, smart television, smart fridges. Recent advances in DL motivate the 
researcher to use DL to address many smart indoor issues that help to enhance life quality with different 
applications of smart indoor environments. This section reviews various DL approaches for different 
categories of human-centered IoT applications in smart indoor environments.  
 
A. Positioning and Tracking 

Identifying human locations has been shown great importance for human-centered applications. Location-

based services (LBS) describe the services designed to attain the physical location of individuals using 

different localization approaches. Despite the success of outdoor positioning/ navigation technologies and 

the broad adoption in the daily lives of human beings, they fail to keep performing well in the indoor 

environment because of its complexity and the associated environmental conditions. Hence, the real-time 

and efficient identification of indoor positions becomes a vital and challenging research area for future smart 

buildings. Generally, the indoor localization DL approaches could be categorized into three groups: vision-

based, sensor-based, and RF-based. 
1) Vision-based Indoor positioning 

The CV techniques are known to be robust and reliable for a wide variety of applications. In this context,  
Zhao et al. [107] investigated the viability of improving the localization performance by combining the 
camera data with smartphone data and WiFi data to develop a multimodal framework that can help to 
reconstruct the inner vision of building for subsequent positioning or navigation. Ha et al. [108] presented 
a novel visual indoor localization framework that integrates CNN with building information modeling 
(BIM) to create a benchmark of condensed BIM images and then explored the data to find the utmost 
analogous to indoor photographs, in that way approximating the indoor location and direction of the 
photograph. Another study [109] employed CNN for indoor positioning of unmanned Aerial Vehicles 
(UAV) based on transfer learning design, where the genetic algorithm is employed to optimize the model’s 
hyperparameters. However, visual data is not the most suitable option for determining the local coordinates 
and distances. Also, the vision data are known to be privacy obtrusive and obey the LOS restrictions. Thus, 
the vision-based approaches become the non-preferred choice for indoor positioning, tacking, and 
navigation.   
 

2) Sensor-based Indoor Positioning 

To address the limitation of vision-based indoor positioning approaches, the researchers believed 

to exploit the sensory data generated from different sensors embedded in smartphones, smartwatches, etc. 

For example,  the authors of [110] presented a DL framework for indoor localization from geomagnetic 

data captured by magnetometers, then encoded the geomagnetic data into recurrence plot representations, 

which are followingly fed into CNN for automated feature extraction and later for classification. In [111], 
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the authors designed a DL system that uses LSTM to learn to perform indoor positioning based on bimodal 

sensory information, including data sensed by light sensors and magnetometers. The experimental 

evaluations on private datasets validated the practicality and feasibility of using bimodal data in improving 

the localization performance. For exploring more sensor modalities, the authors of [112] introduced a multi-

sensor DL framework that considers learning from multimodal data from light sensors, magnetometers, 

barometric sensors, pressure sensors, and Global Navigation Satellite System (GNSS). The framework 

employed dense convolutions for efficient feature extraction, used LSTM to model temporal dependency, 

and MLP to compute the classification decision. Distinctively, the Pedestrian Dead Reckoning (PDR) is 

recently considered one of the typical approaches for achieving indoor localization as a result wide 

availability of smart devices. In this regard, the SAE network is presented in [25] to estimate the step length 

in the PDR system using smartphone data (Accelerations and gyroscope data).  

In a nutshell, the selection of DL model and sensors to be used for localization heavily depends on various 

considerations, including the efficiency, localization environment, computational resources availability, 

latency issues, etc. For instance, efficient localization can be attained by using acceleration, gyroscope 

sequences, magnetometer sequences. However, carrying or wearing the sensors all time might be extremely 

problematic for humans. In multi-floor environments, the movement of humans between different floors is 

indispensable; hence, being aware of the floor level might improve the positioning or tracking performance. 

Besides, the importance of spatial information or temporal dependency within the data necessitates deciding 

the appropriate DL layers, i.e., convolutional, recurrent, attention layer.   

 
3) RF-based indoor positioning and tracking 

The RF-based indoor localization can be divided into two subcategories, namely fingerprinting and 

triangulation [12]. The fingerprinting approaches entail the online and offline phase CSI information. Where 

the system calculates the CSI reports throughout the offline phase at the targeted positions to construct the 

fingerprint benchmark, meanwhile the gauged CSI measurements are contrasted with the fingerprinting data 

to decide or track the position of the goal throughout the online phase. On the other hand, the 

triangulation/geometric approaches decide and track the position of humans depending on the triangles’ 

geometric attributes. Based on Table VII, it is notable that DL models based on RF signals have gain wide 

adoption compared to the visual or sensory data.  

 

Fingerprinting: The fingerprinting approaches belong to one of two distinct groups, the deterministic and 

probabilistic approaches [95]. The former approaches employ various similarity measures (cosine similarity, 

Manhattan, Euclidean distance, etc.) to contrast the estimated data with the original fingerprints to decide 

the position of humans [73]. For instance,  Wang et al. [113] extracted phase information of CSI data to 

approximate the AoA data, construct AoA images (with size 60 × 60) and pass them to a deep CNN to be 

trained for indoor localization during the offline phase. The Latter approaches usually depend on the 

statistical estimates (i.e., mean absolute error (MAP), mean square error (MSE), root MSE (RMSE)) to 

compare the model outputs with the original fingerprint, and thereby enable modeling the uncertainty 

through a different form of the RF data [95]. This implies predefining and storing the information about the 

distribution of signals across reference points. In [114], the authors integrated the FFNN and decision tree 

algorithm in a single framework to model the location information from the RSS data, where fuzzy learning 

is employed to model uncertainty during the training. 

 

The probabilistic approaches are shown to have a variety of features, evaluation criteria, and localization 

accuracy. However, the most remarkable about them is that the high localization efficiency requires a 

complete inspection of the environment to construct complete fingerprints and necessitate upgrading the 
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fingerprints based on environment alterations. These conditions limit the deployment in the real-world 

indoor environment. Thus, crowdsourcing persons' measurements to construct fingerprint testbed is likely 

to be a viable solution. DRL is suggested to be employed as a second solution where reward and punishment 

can be determined according to the environmental changes. In addition, it could be seen that the deterministic 

fingerprinting localization (Table VII) attain wide adoption in recent studies and achieve promising 

performance.  However, the process of creating a fingerprint database is composite and time-consuming. 

 
Triangulation: The triangulation can be realized in two viable methods, including lateration and angulation. 

The Lateration method seeks to approximate the target's position by computing the corresponding distance, 

such as the TOF, with respect to reference points. Xue et al. [115] employed LSTM architecture to learn 

from erroneous TDOA measurements of UWB signals without degrading the localization performance. He 

et al. [116] employed a DNN model to learn indoor locations from both RSS fingerprints as well as TDoA 

measurements. Angulation methods approximate the target's location by calculating the corresponding 

direction, such as the AoA, concerning the reference points. Wang et al. [117] employed  DNN to design a 

cooperative autonomous generation approach for indoor localization of unmanned Aerial Vehicles (UAV 

not for humans) using AoA data, where the offline/online application regulations are employed to estimate 

the optimal heading angles for UAVs. Several studies have been investigated the effect of modeling AoA 

measurements in improving the performance of indoor localization with around 20% [118], [119]. However, 

the estimation of AoA mainly relies on the spatial variation in the sensing signals. Therefore, the key reason 

that restricts the performance of AoA valuation is the number of sensing parities. Therefore, the 

standardization of new protocols for a huge number of antennas (transmitters or receivers) in the huge MIMO 

systems will enable better approximation of AoA estimation and improve the dependent indoor localization, 

navigation, and tracking. 

 
 

Table VII. An overview of deep Learning studies for indoor Positioning and Tracking 
Ref Model  LS Type Preparation Dataset  Signal PP  Contributions 

[120] DeepMap SU F NA 

Custom 
(WiFi 

3.4), 
IL1 

RSS 

E: 

1:30m, 
1.66m  

1) A DeepMap framework that employs 
a deep Gaussian process (DGP) for 
building a full radio map from sparse 

training samples. 2) Bayesian training 
strategy is employed for parameters 
optimization. 

[26] VSDL SU F 
Segmentation  

 

Custom 

(Intel 
5300) 

CSI 
E: 

0.77m 

A view-selective DL model is presented 
for robust regression performance multi-

view CSI data by modeling the latent 
feature and rejecting the invaluable 
features from different views. 

[121] 
CAE+ 
LSTM 

US F PCA, PCC 
Custom 
(Intel 
5300) 

CSI 
E: 

0.68m 

1) An online DL framework for passive 
human localization by learning the 

associated movement patterns in 
unlabeled CSI data using CAE; 2) An CSI 
embedding layer presented to scale up 

CSI data into a higher-dimensional space;  

[109] CNN SU V  NA 
Custom  

(onboard 
camera) 

35600 of 
images 

MSE: 

0.0082 
MAE: 
0.0243 

1) A CNN for autonomous indoor 

navigation of UAV based on the transfer 
learning technique.2) genetic algorithm 
used for hyperparameter optimization. 

[122] DQN US F  NA 

Custom 

(48 BT5, 
20 APs 

RSS 
E: 

12.2m 

A DRL framework to model a constant 
wireless localization process as a Markov 

Decision Process using only unlabeled 
data 
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[123] CNN SU F 
FFT, 
IFFT 

Custom 
(Intel 
5300) 

CSI, 
AoA 

E: 
0.89m 

1) Employ bimodal CSI data for indoor 
fingerprinting to permit active abuse of 

time and frequency features, while the 
AoA is computed based on amplitude and 
phase difference information. 2) A 
residual learning model to efficiently 

model the location patterns from the CSI 
tensors. 

[24] AE US F  

Linear fit  
removal, 

FFT, 
Normalization 

Custom 

(Intel 
5300) 

CSI 

E: 
1.48m, 

13.5m, 
1.14m 

1) An AE designed to calibrate the 
localization errors reasoned by the 
ecological alterations in the time-reversal 

positioning system. 2) Two AEs designed 
with multi-layer DBN to model location 
information from the amplitude and phase 
of unlabeled CSI. 

[112] 

DenseNe+ 

LSTM+ 
MLP 

SU S 

Subsampling, 

Interpolation, 
Normalization, 
fixed threshold 

Custom 

(Phone, 
WiFi, 

Sensors) 

M, light, 

barometer, 
RSSI, 
GNSS 

A: 
94.6 

Multi-Sensor DL model that uses various 

1D sensor three-layer LSTM and CNN 
for extracting long-term relations and 
high-level features from input data.  

[99] CNN SU F  
Up sampling, 
Interpolation, 

Segmentation 

IL2 CSI 
A: 

95.68 

Apply an improved 1D CNN that sweeps 
along the time dimension of the 

fingerprints to realize both AR and 
indoor localization simultaneously. 

[25] SAE SU S 
Segmentation, 
Interpolation 

Custom 
(phone) 

A, G 
data  

E: 
3.01 

Deep AE for estimating step length by 
considering various walking velocities, 
the way the phone is carried, and the 

subject features. 

[124] 
ResNet+ 
LSTM 

SU F 
Min-max 

normalization  
IL3 RSSI E: 3.20m 

A spatial-temporal DL to learn both the 
spatial and temporal feature using 
residual CNN and LSTM, respectively  

[125] CNN SU S 

Sensor 
calibration 

Coordinate 
transformation 

Custom 

(phone) 

A, G, M 

data 

 

 1.06 m 

A multi-head CNN is presented to extract 
walking patterns from input sequences, 

while the attention layer is employed to 
learn the relevance of convolutional 
features.  

[114] 
FFNN+ 
Fuzzy 

SU F NA Custom RSS 
MSE:3.20 
MAE:1.36 

A deep fuzzy forest model is presented to 
integrate the decision trees with FFNN to 
empower the representation learning 

capability.  

[113] CNN SU F 
Phase 

calibration, 
Imaging  

Custom 
(Intel 
5300) 

CSI 
(AoA) 

E: 1.78m, 
2.38m 

Employ a CNN for indoor localization 
from imaged AoA values extracted from 
the phase of CSI data. 

[115] LSTM SU T  Normalization 
DecaWave 

DW1000 

UWB 

(TDoA) 

AUC 

0.997 

A DL framework to handle the TDOA 
icorrect or missed measurements during 

asynchronous localization called 
DeepTAL. 

[116] DNN SU T  

Kalman filter, 
Distribution 

Judging, 

remove the 
invalids 

Custom  
RSS 

+TDOA 

RMSE: 

0.98 

1) An enhanced RSS extraction 
technique to get more steady RSS values. 
2) TDOA-based rapid discovery 

Procedure to calculate a coarse 
estimation of the target location. 

LS=” Learning Strategy”, SU=”Supervised”, US=”Unsupervised”, SS=”Semi-supervised”, PP= “positioning performance”, 
A=”Accuracy”, E=”Localization error”, F=”fingerprinting”, V=”Vision”, S=”Sensor”, T=”Triangulation”, NA=”not exist” 

 

B. Activity Recognition 

Activity recognition (AR) has been attracting a growing research interest since it offers an efficient 
solution for modeling human-computer interactions in smart human-centered systems, thereby bring 
numerous advantages to surveillance, impaired people care, healthcare systems, etc. With the continuous 
advancement and affordability of IoT devices and smart technologies, AR becomes a vital task for 
enhancing human lives in smart indoor environments. Human activities are known to be deliberate, mindful, 
and personally significant series of acts that can be performed by single or multiple individua ls, which 
might be related or unrelated. Accordingly, the task of AR can be categorized based on the complexity of 
activities into three main levels, namely individual activity recognition (IAR), group activity recognition 
(GAR), and hybrid activity recognition (HAR). In the IAR, the main target is to detect and identify the 
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activities performed by a single subject without considering activities of other subjects in the environment, 
and this is the lowest degree of complexity of AR. Besides, in the GAR, two or more subjects 
simultaneously perform some activities, which can be related or unrelated to each other. The related group 
activities imply that the subjects share the same activity to achieve a joint goal associated with each one of 
them. For example, when several individuals will pick up a heavy item from the floor to a small table, they 
owe to cooperate with each other to accomplish this task. On the other hand, the unrelated group activities 
mean that the subjects perform some actions that are autonomous and irrelevant to other’s actions. As an 
example, when some persons are studying, resting, watching television, etc., and the activity of everyone 
is independent of the others [126]. Moreover, in the HAR, the main goal is to recognize the individual and 
group activities in indoor environments, which is a more complex task. For instance, a residential smart 
home contains three individuals, where a couple of them are washing dishes in the kitchen while the other 
individual is sleeping. Hence there are a mixture of individual and group activities is being performed in 
this place. To this end, the research community determined to take the advantages of deep learning for 
designing efficient and fully automated techniques for recognizing different kinds of human activities using 
various data modalities as previously discussed. 
 

The AR task primarily seeks to detect and recognize human physical activities either from one or multiple 
subjects. However, human activities are numerous, spanning multiple categories and classes. For example, 
some activities require whole-body movements, i.e., running, walking, and lying. Some others required 
moving single parts of the body, i.e., hand gestures. Other activities are obtained as a result of interaction 
with other entities in the surrounding environments. To this end, this study presents a taxonomy for 
classifying the DL-based indoor AR based on the type of the targeted activities. To be more specific, the 
current DL studies for AR falls in one of three classes, namely action-based AR, interaction-based AR, and 
observation-based AR. Then, the systematic categorization AR for each class is presented in Fig. 2.   
 

Firstly, Action-based AR considers recognizing the performed by doing some physical actions 
using either the body or a certain organ. This study systematically divides action-based AR into five main 
subcategories: fall detection, daily activity recognition, Gesture recognition, posture recognition, and gait 
recognition. Secondly, interaction-based AR mainly concerns the activities resulting from the interaction 
between humans and the surrounding entities in the indoor environment. Accordingly, the interaction-based 
activities can be divided into three main subcategories, including Human-Human Interaction (H-HI), 

Fig. 2. Taxonomy of classifying the human-centric activity recognition in smart indoor environments. 
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Human-Robot Interaction (H-RI), and Human-Object Interaction (H-OI). The third class of activities is not 
associated with any actions or interaction, yet it relates to observing or detecting the presence or absence 
of humans or observing some aspects of humans. This is greatly beneficial, specifically in security, 
surveillance, and healthcare application in indoor environments. The observation-based AR include the 
subcategories of AR, including human detection (Identification), people counting, and vital sign 
monitoring. The subsequent discussions about the AR consider this taxonomy to survey the DL research 
presented for these subcategories, emphasizing vision-based, sensor-based, RF-based, and Non-RF-based 
approaches.    

 
1) Vision-based activity recognition 
Vision-based DL approaches mainly depend on the visual sensing tools for monitoring and recording 
different kinds of human activities in Indoor environments [2]. The most remarkable about this approach 
is their great dependency on the quality of the captured images or recorded videos. In other words, the 
resolutions, lighting conditions, illumination alterations, and similar graphical elements are the main 
factors for determining the quality of visual data. In view of this, the computer vision researchers strive 
harder to propose a new solution for improving the performance of AR from visual data using reasonable 
computational overhead to cope with the needs of IoT environments. Table VIII overview the recent DL 
work on activity recognition in terms of DL model, learning strategy (LS), the AR level, the data 
preparation (preprocessing and/or feature engineering), dataset identifier, reported accuracy, and 
contributions. 
 

Table VIII. An overview of deep Learning studies for vision-based activity recognition 
Ref Model LS Level Preparation Dataset A (%) Contributions 

[127] GNN SU HAR 

- Difference 

operator 
- Exponential maps 

VA10 96.4 
A multi-branch multi-scale GNN to learn to extract spatial-
temporal features for AR and motion prediction 

[128] 
CNN+Bi-

LSTM 
SU HAR 

- Keyframe 
extraction 

- Depth-Human 
pose model 

VA10 84.1 

1) A DL framework for AR via spatial-temporal Dynamics 
(STD) and motion stream. 2) InceptionV3 employed for 

feature extraction in motion stream. 3)The STD employs 

LSTM and Bi-LSTM to respectively model motion data and 
temporal patterns of human shape dynamics. 

[129] CNN+AE SU HAR 
- Keyframe 
selection 

- feature descriptor 

VA5 96.6  
A lightweight CNN-based framework for segmenting multi-

view videos into snapshots, then calculate joint information 

calculation to generate a video summary. 

[130] GCN SU HAR 
- Resizing  
- Cropping 
- Unifying lengths  

VA10 95.9 

A DL framework employs GCN to learn spatial-temporal 

features of skeleton information that act as a complementary 

of RGB feature to empower the learning of action-related 

information. 

[131] LSTM+AE SU HAR NA 
VA9, 
VA10 

92.33, 
92.25 

A sample fusion model that employs multi -scale 

transformation architecture for efficient data augmentation for 
improving the AR performance.  

[132] LSTM SU GAR 
- Tracklet detection 
- AlexNet feature 

extraction 

VA22, 
VA25 

98.33, 
83.75 

A Hierarchical Long Short-Term Concurrent Memory for 

modeling multi-individual interactions for AR by learning the 

dynamic correlated features from human interaction clips. 

[133] LSTM SU HAR 
- Static features  

- Temporal features 
VA25 94.9 

A graph LSTM-in-LSTM for simultaneous modeling of the 

group and individual activities from videos using graph 

LSTM and person LSTM, respectively. 

[134] LSTM SU GAR 
- Tracklet detection 
- person-level 
features 

VA25 93.0 

- Employ a Global Context Coherence (GCC) and spatial-

temporal Context Coherence (STCC) constraint to seize the 

pertinent actions and estimate its donations to the group 
activity. 

- A Coherence Constrained Graph LSTM presented to model 

the discriminatory representation of human motions while 

ignoring the unrelated actions. 

[135] 

CNN+ 
LSTM+ 

GCN+ 
TCN+ 

Attention 

SU GAR 

 

- Generate tacklets 
- Graph construction 

VA25 95.8 

A teacher-student framework that leverage the previous 

semantic knowledge, where the teacher learns judicial 
patterns of various persons via two modules of semantics -

saving attention. The learned knowledge forwarded to the 

student model that obligated to imitate the teacher model. 

[136] GCN SU GAR 
- Generate tacklets  

- CNN features 
VA25 93.0 

A Hierarchical Graph Cross Inference model that combines 

multilevel information and spatiotemporal relationships 
between body organs and persons using a cross inference 

block. 

LS=” Learning Strategy”, SU=” Supervised”, US=”Unsupervised”, SS=”Semi-supervised”, A= “Accuracy” 
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2) Sensor-based activity recognition 
With the recent advancement and wide spreading of sensing technologies, sensor-based AR has become 

a more attractive research area for DL communities. The sensor data is more lightweight, thereby requiring 
less computational overhead. Table IX summarizes the recent DL contribution for modeling different kinds 
of human activities from the sensory data. This includes the DL model, LS, the AR level, the data 
preparation, dataset identifier, reported accuracy, and contributions. 

      It is notable that most of the present studies mainly adopt supervised training for their model. A few 
of them consider learning from unlabeled sensory data, which is large enough and easy to obtain. The 
authors of  [137], [138], and [139] tried to address this issue via semi-supervised training where the limited 
amount of labeled data involved during the training along with a large amount of unannotated data. 
Alternatively, the authors of  [140] presented an online learning LSTM model for unsupervised training 
from the unlabeled sample, where the hierarchical k-medoids clustering (Hk-mC) algorithm was employed 
for automatic labeling of raw signals and building a hierarchical classification. Nevertheless, the potential 
of unsupervised/semi-supervised DL still not fully explored AR. Besides, the vast majority of the reviewed 
studies emphasize the AR in the level of IAR. Exceptionally, the authors of [141] tried to address GAR by 
applying temporal convolution network (TCN) and LSTM network to model multi-user activities from 

custom 2D Light detection and ranging (LiDAR) data. 
 

Table IX. An overview of deep Learning studies for sensor-based activity recognition 
Ref  Model  LS Level Preparation Dataset  A (%) Contributions 

[142] CNN SU  IAR Augmentation SA2 95.7 
A recognition method that uses two-stage CNN to 

learn from augmented sensor data 

[143] NN SU IAR 
Segmentation, feature 

selection 
Custom 91.78 

New online update phase to estimate true labels for 
the new data 

[144] CNN SU IAR 
Segmentation, P ixel 

encoding, handcrafted 

features 

SA5, 
SA10, 

SA13, 

97.4, 
97.2, 

96.1, 

1) Fusion model for combining handcrafted and 
convolutional features. 2) Encode sensor data into 

pixel values. 

[137] CNN SS IAR 
a low-pass filter, 

coordinate change, 

normalization, DAE 

SA14 95.81 
1) New Uncertainty-aware multiple-domain CNN 
framework; 2) A transfer learning employed fro m 

synthetic to real data to improve the recognition 

[145] LSTM SU IAR 
Normalization 

 

Custom, 

SA6,  

SA15 

85.6 

93.5 

80.3 

A cost-effective multi-task LSTM model for activity 

classification and intensity estimation. 

[146] CNN SU IAR NA 
Custom, 

SA6 

94.2 

92.5 

 A new CNN network for real-time AR 

[138] 

CNN+ 

LSTM+ 

Attention 

SS IAR 

-k-means clustering, 

labeling flow, 

glimpse layer. 

SA6, 

SA7,  

SA12 

94.05 

83.42 

81.32 

A pattern-balanced co-training for extracting the 

latent features from imbalanced and limited labeled 

AR data 

[147] CNN SU IAR 
Sliding window, 

imaging 
SA22 

99.23  
 

1) An unobtrusive DL-based AR for monitoring 

elderly peoples; 2) a method for encoding binary 

sensor logs into images. 

[22] CNN SU IAR 

linear interpolation 

normalization 

Sliding window 

SA4 89.6 

Interpretable CNN for better classification based 

important sensor signals using spatially sparse 

convolutions 

[148] 

 

PSDRNN 

(LSTM) 

SU IAR 

sliding window, PSD 

features, 
time and frequency 

features. 

SA3 94.66 

1) Extract PSD features from linear accelerations and 

tri-axle accelerations; 2) employ LSTM to learn these 
features. 

[141] 
TCN, 
LSTM 

SU GAR 

trajectory 

segmentation, 
augmentation, 

sliding window 

Custom 
99.49, 
99.39 

1) A LIDAR point is clustered with the DBSCAN to 
carry out personal and object classification based on 

geometric features; 2) Employ TCN /LSTM to track 

multi-person concurrently and aggregate the 

corresponding trajectories from a 2D LiDAR. 

[140] LSTM US IAR 

Segmentation, 

compression, 
L1-norm, 

low-pass elliptical 

filter, 

AHRS filter 

Custom  95.15 

1) A new unsupervised online learning scheme to 

avoid the constraints on the number of class 
constraints. 2) the Hk-mC algorithm is employed to 

label raw signals and build a hierarchical 

classification automatically. 

[149] ResNet SU IAR 
GADF Imaging, 

GASF Imaging 

SA7, 

SA8 

9676, 

99.2 

1) A method for encoding sensory data into image 

representations; 2) A ResNet designed for extracting 
activity features from the encoded images. 

[150] RNN SU IAR 

Statistical features, 

Augmentation, 
KPCA finetuning. 

SA7, 

SA16, 
 

99.3 

99.1 

1) An RNN based on effective features from the 

various wearable sensor; 2) employ KPCA to 
project features into a nonlinear space. 

[151] 
CNN+ 

Attention 
SU IAR 

Sliding window 

Segmentation  
SA1 96.4  

1) A multi-head CNN introduced for robust feature 
extraction; 2) Attention mechanism designed for 

extra valuable feature selection. 
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[139] 

LSTM 

+ 

DQN 

SS IAR 

Cleaning incomplete, 

incorrect pieces 

auto-segmentation 

SA3, 

SA5 

97.0  

 

1) A semi-supervised framework is designed with 
LSTM for classifying sensory data; 2) A smart auto-

labeling method based on DQN with a distance-

based reward rule. 

[152] 
LSTM+ 

TE 
SS IAR 

Augmentation, time, 

and frequency 

statistical features 

SA6 97.11 

1) A temporal ensembling of LSTM is designed for 

AR from huge and low-cost labeled and unlabeled 

sensor data. 

LS=” Learning Strategy”, SU=” Supervised”, US=” Unsupervised”, SS=”Semi-supervised”, A= “Accuracy” 

 

3) RF-based activity recognition 
The adoption of radio signals for recording human activities offers distinctive advantages because of the 

ubiquitous availability, which alleviates the privacy concerns incurred by vision-based and sensor-based 

approaches. The RF signals are also affected by the obstacles (walls) or by the darkness, which makes them 

perfect for modeling human activities, especially in indoor environments. Indeed, RF-based AR has come 

to be an enthusiastic research area in the latest years. A variety of commercial RF solutions have been 

presented for sensing, detecting, and recognizing different kinds of human activities. Table x overviews the 

recent research on DL for AR from different RF signals.  

It can be observed that all of the reviewed DL studies emphasize recognizing the single-user activities (IAR 

level), making the GAR and HAR remain unexplored areas. This might be caused by the complexity of 

capturing the fluctuations of multi-user activities in radio signals. Similar to sensor-based approaches, the 

RF-based approaches are trained in a supervised manner,  while semi-supervised training is employed using 

GAN designed for fall and gesture recognition [153]. Learning from unlabeled RF data can be improved 

by further exploration of the semi-supervised and unsupervised models.  Besides, most of the reviewed 

studies experiment and evaluate their model on their custom datasets despite which necessitate reproducing 

their results on public data to understand the advantages and weakness of their models. Moreover, among 

the different kinds of RF data, the CSI has gained wide adoption in recognizing human activities, where 

most of them are collected using Intel 5300 NIC.       

Table X. An overview of deep Learning studies for RF-based activity recognition 

Ref  Model LS Level Preparation Dataset Signal 
A 

(%) 
Contributions 

[154] LSTM SU IAR 
Denoising 

Augmentation 
Custom 

(Atheros) 
CSI 97.8 

An LSTM is employed for extracting features and 

for recognizing activities from differential CSI 
data. 

[155] CNN SU IAR 

Butterworth 

filter, 

Segmentation 

Custom 

(Intel 5300) 
CSI 97.6 

A two-stream CNN framework for learning the 
spatial and temporal patterns from CSI clips. 

[156] ABLSTM SU IAR 
sliding window 

segmentation 

Custom 
(Intel 

5300), 

RA15 

CSI 

 

97.3, 
97.0 

1) leverage the BLSTM for extracting the 
sequential features from CSI streams in both 
forward and backward directions. 2) employ the 
attention layer to capture the significance of 

features learned by the BLSTM. 

[157] CNN SU IAR 

Interpolation, 

Butterworth 

filter, 

Phase 
calibration, 

PCA, DTW 

Custom 

(Intel 5300) 
CSI 

97-

99.23 

 

A three-phase framework to recognize multi-

individual activities, where the layout of each 
phase depends on the size of the dataset. 

[158] LSTM SU IAR 

sliding window 

segmentation, 

transformation, 
data denoising, 

PCA, DTW 

Custom 

(Intel 5300) 
CSI 90.64 

1) An LSTM is employed to recognize 
handwriting actions from CSI data. 2) An CSI-
Ratio model and relevant activity factor can be 
introduced to extract the segments of handwriting 

activity. 

[159] 
CNN+ 

Bi-LSTM 
SU IAR 

data denoising, 

data 

segmentation, 
Snippet Action 

Acquisition 

Custom 

(Intel 5300) 
CSI 97.0 

1) A DL framework employs CNN subnetwork to 
learn spatial dependencies, while Bi-LSTM is used 
to capture temporal information simultaneously. 2) 
A transfer learning scheme is presented to finetune 

the model performance in a new environment. 

[160] 
CNN+ 

LSTM 
SU IAR 

Butterworth 
filter, 

PCA, STFT 

Custom 

(Intel 5300) 
CSI 96 

A pattern-balanced co-training for extracting the 
latent features from imbalanced and limited 
labeled AR data 
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[161] CNN SU IAR 

phase 
processing, 

KL-divergence 

segmentation, 

PCA, STFT 

Custom 

(M6e UHF) 
RFID 95 

A DL model for activity recognition from RFID 

spectrograms, which entail three modules namely 
CNN for feature encoding, dense module for 
activity classification, and a domain discriminator. 

[153] GAN SS IAR NA 
RA7, 

RA9 
CSI 

84.17, 

 84.09 

1) A GAN-based model to solve the performance 

declination of leave-out validation for AR. 2) 
Generator, loss term, and Manifold regularization 
are used to learn from unlabeled data. 

[162] CNN SU IAR 
sliding window, 

state inference 
Custom 

(Intel 5300) 
CSI >91 

1) A DL-based activity segmentation to lessen the 
reliance on knowledge and improve AR 

performance for blended activities. 2) A feedback 
system relating the segmentation with the 
classification method by jointly training them. 

[163] 
CNN+ 

Bi-LSTM 
SU IAR 

Butterworth 
filter, 

PCA, STFT, 

Augmentation, 

Deformation  

Custom 

(Intel 5300) 
CSI 90.0 

1) A data augmentation technique for synthesizing 
the CSI spectrogram to mitigate the impact of 

motion inconsistency and subjectivity issues; 2) A 
DL framework dedicated to learning from tiny 
CSI datasets and alleviating the overfitting 
problems. 

LS=” Learning Strategy”, SU=” Supervised”, US=” Unsupervised”, SS=”Semi-supervised”, A= “Accuracy” 

 

VI. EMERGING MATTERS AND FUTURE DIRECTIONS 

This section mainly discusses the most interesting research directions for both device-dependent and 

device-independent approaches in indoor IoT applications. In this regard, Table XI tabulates the key 

challenges facing the development of intelligent indoor IoT applications and the possible solutions based 

on the recent studies of intelligent IoT research.  

Table XI: Challenges and possible solutions for different IoT applications in indoor environments. 

Name Issues Possible Solutions Ref IL AR 

 inter-class 
similarity and 

Intra-class 
variation 

- Similar behavior can vary among 
persons 

- Distinct behavior might cover 
analogous forms. 

- require modeling distinctive and 

exclusive features. 
[93]   

Unsupervised 
learning 

-  Depend greatly on unlabeled data. 
- requires abundant training data is 
expensive and monotonous. 

- Crowdsourcing 
- Deep transfer learning 

[102]   

Standard 

benchmarks 

- lack of publicly acknowledged 
benchmark 

- unable to assess the DL models 
realistically. 

- A standardized performance 
measure to permit fair 

comparative analysis for different 
approaches 

[91]   

Activity 
forecasting 

- Early forecasting is specifically 
essential for CCTV systems 
- Slight specifications in human activities 

necessary to be caught to forecast a 
potential activity 
- Forecast  the incomplete activity with 
constrained remarks 

- Chooses accurate and distinctive 

features. 
 

[92]   

Multi-subject 
interactions 

- The behaviors generally include the 

collaboration between several subjects 
and entities. 
- Identifies and tracks numerous subjects 
simultaneously, such as collective 

activities recognition is difficult . 

- Spatial-temporal associations 

among persons. 
- Design an efficient DL approach 
that  concentrates on 
discriminating higher-level 

behaviors  

[99], 
[100]   

Composite 
activities 

-  Human activities are mostly 
intersecting and simultaneous 
- The identification of combined 
activities generates extra ambiguity 

- Identify human activities via 
heterogeneous modality devices 

[94]   

Non-invasive AR 

- Individuals have to follow sensor-

related restrictions 
- Unpleasant 
 

- intelligent non-invasive method 

requires more investigation 
- proposing an innovative sensing 
technology. 

[95], 
[96] 

  
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Real-world videos 

- Dynamic backgrounds, obstructions, 
brightness divergence, and perspective 

alterations take place regularly. 
- CCTV techniques typically record 
poor-quality videos and obstructions 
might seem in the filmed streams. 

- extra difficulty could be induced when 
the events are happening at a prolonged 
distance. 

- employ the multi-sensor 
technique. 
- Amalgamation of the depth 
sensors and the RGB video. 

[101], 
[102] 

  

Energy and 

resource constrain 

• Device dependent applications often 
necessitate real-time discerning; hence 

they consume a lot of energy. 
• They also need substantial processing 
resources. 

- Adopts a lower sampling 
frequency 

- Think About the adaptable 
segmentation technique. 

[97], 

[98] 
  

 

1)  Transfer learning  
Nowadays, DL approaches have gained control of developing intelligent IoT like the present tendency in 

the computer vision community. Nevertheless, training the new DL techniques from scratch remains a 

challenging mission to develop reliable applications. Consequently, the implementation of the DL 

approaches depending on priorly pre-trained architectures is a respectable strategy as these architectures 

have already experienced the underlying data representations. It is interesting to investigate the concept of 

transfer learning for some indoor trending applications using visual or sensory data streams. 

2) Explainable Deep Learning  
In recent days, the interpretability of visioning models has been becoming an extremely important 

research topic. Nevertheless, few research studies have been performed on explainable video recognition 

models. As clarified in [85,86], only some keyframes are critical for recognizing indoor activities, gestures, 

or indoor positions in a sequence of video frames taken out from the targeted video. Besides, the indoor 

activities/gestures vary in the corresponding temporal features. It is conceivable to recognize some 

activities/gestures utilizing the captured frames at the start or end of the video. The interpretability of 

complex activities/gestures depending on the keyframes is a virtuous research area to respond to the 

following questions, such as the arrangement of frames in the temporal domain? What is the contribution 

of the keyframes in the classification decision? and can these frames be designated for training the DL 

approach rapidly without impacting the efficiency of the Indoor applications? Such kind of understanding 

could help researchers to develop more effective IoT applications in the indoor environment. 

3) Multimodal data  
Indoor environments often contain multimodal data, including daily audio, visual, textual, and signal, 

generated and received by humans to communicate with the surrounding environment. As an example, 

reading allows the rebuilding of the consistent portion of the individual's visual intellect. Thus, it is 

advantageous to exploit multimodal information to understand complex indoor activities because 

multimodal data encompass amusing semantic information [87]. Modeling this kind of data enables 

acquiring the long-standing temporal interdependency among entities from the multimodal data since it  

could be thought-provoking to straightforwardly learn from the multimodal data [88]. This long-standing 

temporal interdependency could show the consecutive order of indoor activities/gestures/positions 

throughout a lengthy sequence similar to how the human brain performs. Once a person recalls somewhat, 

one item induces the following item from the lengthy main sequence, comparable to enduring video. 

Moreover, the interaction among various entities is also significant to comprehend temporal 

interdependency. As an example, predetermined interactions between objects occur in a specific activity 

following certain conditions. Therefore, the indoor DL-based IoT application should consider the 

multimodal information about humans to enable reliable performance, especially in applications that 

depend on long-duration data. 



24 

 

4) The physical aspect of humans. 
Nowadays, there is an increasing curiosity in investigating the bodily facets of human actions, like 

detailed and specific activities/gestures. For instance, authors in [89] presented a 20BN-something-

something as a HAR dataset to inspire the researcher to explore human-object relations. This dataset covers 

class patterns or documentary descriptions, such as "set an entity near to an object" to represent the 

interaction between human and object or between two objects. Such kind of data enables developing an 

indoor IoT application that considers the bodily facets of human movements/actions counting the 

interactions between human and object and the spatial relationships. Although many statistics are detected 

with the Closed-circuit television (CCTV) videos, some bodily facets, like power, speed, movement style, 

and rushing, are difficult to capture. Thus, it is vitally important to develop an IoT benchmark that contains 

such kind of information. 

5) Learning actions without labels  
In an attempt to enlarge the size of the indoor dataset used to train the DL model from any application 

domains, the physical annotation of data samples is labor-intensive, ineffective and expensive. Even though 

the automated annotation exploiting the search engines and video subtitles is realizable in some fields, it 

still requires manual confirmation. Crowdsourcing [104] has been suggested as a healthier solution. 

Nevertheless, it is challenging due to the label multiplicity issue, resulting in an inappropriate outcome. 

Therefore, the research community requires introducing improved and powerful learning techniques that 

inevitably manipulate the unannotated generated indoor data [140]. 

VII. CONCLUSION 

A thorough survey of the recent cutting-edge deep learning approaches accompanied by their positives 

and negatives cons for device-dependent and device-independent has been introduced in this work. These 

approaches have become particularly prominent in the latest years due to their potential integration in 

different IoT applications of smart indoor environments, including positioning and activity recognition 

applications. The comprehensive explanations, analyses, and insights of the corresponding aspects assist 

researchers in enriching their knowledge in the era of human-centered IoT applications with indoor 

environments. 

Several viewpoints have been considered in discussing the current studies, including DL architecture, 

accuracy, application, system configuration, used data, sensors, samples. We put emphasis on the latest 

advancement in both device-dependent and device-independent IoT applications. We provided a novel 

taxonomy for smart indoor DL approaches from a data modality perspective and/or application domain 

perspective. The characteristics, advantages, and flaws of contemporary DL approaches employed in indoor 

IoT applications were also studied. Furthermore, this survey study discusses the most interesting research 

issues facing Indoor IoT applications and presents some potential solutions for these issues.  

Above and beyond the DL applications in different indoor environments, various challenging issues are 

fruitful for future investigation, such as system design, multi-activity tracking, action forecasting, and time 

sensitivity. This study is likely to inspire more research in a wide variety of human-centered IoT 

applications in indoor environments. 

REFERENCES 
[1] J. Bai, S. Lian, Z. Liu, K. Wang, and Di. Liu, “Smart guiding glasses for visually impaired people in indoor environment,” IEEE Trans. 

Consum. Electron., 2017, doi: 10.1109/TCE.2017.014980. 
[2] Y. He, Y. Chen, Y. Hu, and B. Zeng, “WiFi Vision: Sensing, Recognition, and Detection with Commodity MIMO-OFDM WiFi,” IEEE 

Internet Things J., 2020, doi: 10.1109/JIOT.2020.2989426. 

[3] G. Oguntala, Y. F. Hu, A. A. S. Alabdullah, R. Abd-Alhameed, M. Ali, and D. Luong, “Passive RFID Module with LSTM Recurrent 
Neural Network Activity Classification Algorithm for Ambient Assisted Living,” IEEE Internet Things J., 2021, doi: 



25 

 

10.1109/JIOT.2021.3051247. 
[4] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep learning for IoT big data and streaming analytics: A survey,” IEEE 

Communications Surveys and Tutorials. 2018, doi: 10.1109/COMST.2018.2844341. 
[5] R. Zhang, X. Jing, S. Wu, C. Jiang, J. Mu, and F. Richard Yu, “Device-Free Wireless Sensing for Human Detection: The Deep Learning 

Perspective,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3024234. 
[6] J. Zhang and D. Tao, “Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial 

Intelligence of Things,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.3039359. 
[7] C. Yin, S. Zhang, J. Wang, and N. N. Xiong, “Anomaly Detection Based on Convolutional Recurrent Autoencoder for IoT Time Series,” 

IEEE Trans. Syst. Man, Cybern. Syst., 2020, doi: 10.1109/tsmc.2020.2968516. 
[8] F. Alam, N. Faulkner, and B. Parr, “Device-Free Localization: A Review of Non-RF Techniques for Unobtrusive Indoor Positioning,” 

IEEE Internet of Things Journal. 2021, doi: 10.1109/JIOT.2020.3030174. 
[9] N. Lu, Y. Wu, L. Feng, and J. Song, “Deep learning for fall detection: Three-dimensional CNN Combined with LSTM on video kinematic 

data,” IEEE J. Biomed. Heal. Informatics, 2019, doi: 10.1109/JBHI.2018.2808281. 
[10] H. F. Nweke, Y. W. Teh, G. Mujtaba, and M. A. Al-garadi, “Data fusion and multiple classifier systems for human activity detection and 

health monitoring: Review and open research directions,” Inf. Fusion, 2019, doi: 10.1016/j.inffus.2018.06.002. 
[11] Y. Ye, Y. Ye, D. Qiu, X. Wu, G. Strbac, and J. Ward, “Model-Free Real-Time Autonomous Control for a Residential Multi-Energy 

System Using Deep Reinforcement Learning,” IEEE Trans. Smart Grid, 2020, doi: 10.1109/TSG.2020.2976771. 

[12] L. Minh Dang, K. Min, H. Wang, M. Jalil Piran, C. Hee Lee, and H. Moon, “Sensor-based and vision-based human activity recognition: 
A comprehensive survey,” Pattern Recognit., 2020, doi: 10.1016/j.patcog.2020.107561. 

[13] Z. Hussain, Q. Z. Sheng, and W. E. Zhang, “A review and categorization of techniques on device-free human activity recognition,” 
Journal of Network and Computer Applications. 2020, doi: 10.1016/j.jnca.2020.102738. 

[14] Q. Li, R. Gravina, Y. Li, S. H. Alsamhi, F. Sun, and G. Fortino, “Multi-user activity recognition: Challenges and opportunities,” Inf. 
Fusion, 2020, doi: 10.1016/j.inffus.2020.06.004. 

[15] M. Abuhamad, A. Abusnaina, D. Nyang, and D. Mohaisen, “Sensor-Based Continuous Authentication of Smartphones’ Users Using 
Behavioral Biometrics: A Contemporary Survey,” IEEE Internet of Things Journal. 2021, doi: 10.1109/JIOT.2020.3020076. 

[16] X. Guo, N. Ansari, F. Hu, Y. Shao, N. R. Elikplim, and L. Li, “A survey on fusion-based indoor positioning,” IEEE Commun. Surv. 
Tutorials, 2020, doi: 10.1109/COMST.2019.2951036. 

[17] X. Zhu, W. Qu, T . Qiu, L. Zhao, M. Atiquzzaman, and D. O. Wu, “Indoor Intelligent Fingerprint-Based Localization: Principles, 
Approaches and Challenges,” IEEE Commun. Surv. Tutorials, 2020, doi: 10.1109/COMST.2020.3014304. 

[18] S. Deep, X. Zheng, C. Karmakar, D. Yu, L. G. C. Hamey, and J. Jin, “A Survey on Anomalous Behavior Detection for Elderly Care 
Using Dense-Sensing Networks,” IEEE Commun. Surv. Tutorials, 2020, doi: 10.1109/COMST.2019.2948204. 

[19] I. Nirmal, A. Khamis, M. Hassan, W. Hu, and X. Zhu, “Deep Learning for Radio-based Human Sensing: Recent Advances and Future 

Directions,” IEEE Commun. Surv. Tutorials, 2021, doi: 10.1109/COMST.2021.3058333. 
[20] J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang, “Wireless Sensing for Human Activity: A Survey,” IEEE Commun. Surv. Tutorials, 

2020, doi: 10.1109/COMST.2019.2934489. 
[21] H. F. Thariq Ahmed, H. Ahmad, and A. CV, "Device free human gesture recognition using Wi-Fi CSI: A survey," Eng. Appl. Artif. Intell., 

2020, doi: 10.1016/j.engappai.2019.103281. 
[22] E. Kim, “Interpretable and Accurate Convolutional Neural Networks for Human Activity Recognition,” IEEE Trans. Ind. Informatics, 

2020, doi: 10.1109/TII.2020.2972628. 
[23] S. Yousefi, H. Narui, S. Dayal, S. Ermon, and S. Valaee, “A Survey on Behavior Recognition Using WiFi Channel State Information,” 

IEEE Commun. Mag., 2017, doi: 10.1109/MCOM.2017.1700082. 
[24] L. Zheng, B. J. Hu, J. Qiu, and M. Cui, “A Deep-Learning-Based Self-Calibration T ime-Reversal Fingerprinting Localization Approach 

on Wi-Fi Platform,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2981723. 
[25] F. Gu, K. Khoshelham, C. Yu, and J. Shang, “Accurate Step Length Estimation for Pedestrian Dead Reckoning Localization Using 

Stacked Autoencoders,” IEEE Trans. Instrum. Meas., 2019, doi: 10.1109/TIM.2018.2871808. 
[26] M. Kim, D. Han, and J. K. Rhee, “Multiview Variational Deep Learning with Application to Practical Indoor Localization,” IEEE Internet 

Things J., 2021, doi: 10.1109/JIOT.2021.3063512. 
[27] I. Sohn, “Deep belief network based intrusion detection techniques: A survey,” Expert Systems with Applications. 2021, doi: 

10.1016/j.eswa.2020.114170. 
[28] C. Zhang, K. C. Tan, H. Li, and G. S. Hong, “A Cost-Sensitive Deep Belief Network for Imbalanced Classification,” IEEE Trans. Neural 

Networks Learn. Syst., 2019, doi: 10.1109/TNNLS.2018.2832648. 

[29] Z. Wang, Q. She, and T . Ward, “Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy,” ACM Comput. Surv., 
2021, doi: 10.1145/3439723. 

[30] N. Gao et al., “Generative adversarial networks for spatio-temporal data: A survey,” arXiv. 2020. 
[31] V. Cheplygina, M. de Bruijne, and J. P. W. Pluim, “Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning 

in medical image analysis,” Med. Image Anal., 2019, doi: 10.1016/j.media.2019.03.009. 
[32] T . Guo, C. Xu, S. He, B. Shi, C. Xu, and D. Tao, “Robust Student Network Learning,” IEEE Trans. Neural Networks Learn. Syst., 2020, 

doi: 10.1109/TNNLS.2019.2929114. 
[33] X. Li, L. Yu, H. Chen, C. W. Fu, L. Xing, and P. A. Heng, “Transformation-Consistent Self-Ensembling Model for Semisupervised 

Medical Image Segmentation,” IEEE Trans. Neural Networks Learn. Syst., 2021, doi: 10.1109/TNNLS.2020.2995319. 
[34] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep 

learning results,” 2017. 
[35] D. Berthelot, N. Carlini, I. Goodfellow, A. Oliver, N. Papernot, and C. Raffel, “MixMatch: A holistic approach to semi -supervised 

learning,” 2019. 
[36] K. Sohn et al., “FixMatch: Simplifying semi-supervised learning with consistency and confidence,” arXiv. 2020. 
[37] H. Zhang, Z. Hu, W. Qin, M. Xu, and M. Wang, “Adversarial co-distillation learning for image recognition,” Pattern Recognit., 2021, 

doi: 10.1016/j.patcog.2020.107659. 
[38] M. Marszałek, I. Laptev, and C. Schmid, “Actions in context,” 2009, doi: 10.1109/CVPRW.2009.5206557. 
[39] H. Kuehne, H. Jhuang, R. Stiefelhagen, and T . Serre Thomas, “Hmdb51: A large video database for human motion recognition,” in High 

Performance Computing in Science and Engineering �12: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 



26 

 

2012, 2013. 
[40] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild,” Dec. 2012, 

[Online]. Available: http://arxiv.org/abs/1212.0402. 
[41] M. Müller, T . Röder, M. Clausen, B. Eberhardt, B. Krüger, and A. Weber, “Documentation mocap database hdm05,” 2007. 
[42] K. Yun, J. Honorio, D. Chattopadhyay, T. L. Berg, and D. Samaras, “Two-person interaction detection using body-pose features and 

multiple instance learning,” 2012, doi: 10.1109/CVPRW.2012.6239234. 

[43] H. S. Koppula, R. Gupta, and A. Saxena, “Learning human activities and object affordances from RGB-D videos,” Int. J. Rob. Res., 2013, 
doi: 10.1177/0278364913478446. 

[44] F. Ofli, R. Chaudhry, G. Kurillo, R. Vidal, and R. Bajcsy, “Berkeley MHAD: A comprehensive Multimodal Human Action Database,”  
2013, doi: 10.1109/WACV.2013.6474999. 

[45] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. F. Li, “Large-scale video classification with convolutional neural 
networks,” 2014, doi: 10.1109/CVPR.2014.223. 

[46] C. Chen, R. Jafari, and N. Kehtarnavaz, “UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 
a wearable inertial sensor,” 2015, doi: 10.1109/ICIP.2015.7350781. 

[47] A. Shahroudy, J. Liu, T . T . Ng, and G. Wang, “NTU RGB+D: A large scale dataset for 3D human activity analysis,” 2016, doi: 
10.1109/CVPR.2016.115. 

[48] J. Liu, A. Shahroudy, M. Perez, G. Wang, L. Y. Duan, and A. C. Kot, “NTU RGB+D 120: A Large-Scale Benchmark for 3D Human 

Activity Understanding,” IEEE Trans. Pattern Anal. Mach. Intell., 2020, doi: 10.1109/TPAMI.2019.2916873. 
[49] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles, “ActivityNet: A large-scale video benchmark for human activity 

understanding,” 2015, doi: 10.1109/CVPR.2015.7298698. 
[50] P. Weinzaepfel, X. Martin, and C. Schmid, “Human Action Localization with Sparse Spatial Supervision,” May 2016, [Online]. Available: 

http://arxiv.org/abs/1605.05197. 
[51] G. A. Sigurdsson, A. Gupta, C. Schmid, A. Farhadi, and K. Alahari, “Actor and Observer: Joint Modeling of First and Third-Person 

Videos,” 2018, doi: 10.1109/CVPR.2018.00772. 
[52] R. Goyal et al., “The ‘Something Something’ Video Database for Learning and Evaluating Visual Common Sense,” 2017, doi: 

10.1109/ICCV.2017.622. 
[53] S. Yeung, O. Russakovsky, N. Jin, M. Andriluka, G. Mori, and L. Fei-Fei, “Every Moment Counts: Dense Detailed Labeling of Actions 

in Complex Videos,” Int. J. Comput. Vis., 2018, doi: 10.1007/s11263-017-1013-y. 
[54] J. Carreira, E. Noland, C. Hillier, and A. Zisserman, “A Short Note on the Kinetics-700 Human Action Dataset,” Jul. 2019, [Online]. 

Available: http://arxiv.org/abs/1907.06987. 
[55] C. Gu et al., “AVA: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions,” 2018, doi: 10.1109/CVPR.2018.00633. 
[56] M. Monfort et al., “Moments in T ime Dataset: One Million Videos for Event Understanding,” IEEE Trans. Pattern Anal. Mach. Intell., 

2020, doi: 10.1109/TPAMI.2019.2901464. 
[57] H. Zhao, A. Torralba, L. Torresani, and Z. Yan, “HACS: Human action clips and segments dataset for  recognition and temporal 

localization,” 2019, doi: 10.1109/ICCV.2019.00876. 
[58] A. Dhall, R. Goecke, and T . Gedeon, “Automatic group happiness intensity analysis,” IEEE Trans. Affect. Comput., 2015, doi: 

10.1109/TAFFC.2015.2397456. 
[59] M. S. Ryoo and J. K. Aggarwal, “Spatio-temporal relationship match: Video structure comparison for recognition of complex human 

activities,” 2009, doi: 10.1109/ICCV.2009.5459361. 
[60] S. Blunsden and R. B. Fisher, “The BEHAVE video dataset: ground truthed video for multi-person behavior classification,” Ann. BMVA, 

2010. 
[61] W. R. Ko, M. Jang, J. Lee, and J. Kim, “AIR-Act2Act: Human–human interaction dataset for teaching non-verbal social behaviors to 

robots,” Int. J. Rob. Res., 2021, doi: 10.1177/0278364921990671. 
[62] W. Choi, K. Shahid, and S. Savarese, “What are they doing?: Collective activity classification using spatio-temporal relationship among 

people,” 2009, doi: 10.1109/ICCVW.2009.5457461. 
[63] R. Chavarriaga et al., “The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition,” Pattern 

Recognit. Lett., 2013, doi: 10.1016/j.patrec.2012.12.014. 
[64] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset for human activity recognition using 

smartphones,” 2013. 
[65] O. Banos et al., “Design, implementation and validation of a novel open framework for agile development of mobile health applications,” 

Biomed. Eng. Online, 2015, doi: 10.1186/1475-925X-14-S2-S6. 

[66] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition using cell phone accelerometers,” ACM SIGKDD Explor. Newsl., 
2011, doi: 10.1145/1964897.1964918. 

[67] G. M. Weiss and J. W. Lockhart, “The impact of personalization on smartphone-based activity recognition,” 2012. 
[68] D. Micucci, M. Mobilio, and P. Napoletano, “UniMiB SHAR: A dataset for human activity recognition using acceleration data from 

smartphones,” Appl. Sci., 2017, doi: 10.3390/app7101101. 
[69] T . Sztyler and H. Stuckenschmidt, “On-body localization of wearable devices: An investigation of position-aware activity recognition,” 

2016, doi: 10.1109/PERCOM.2016.7456521. 
[70] A. Stisen et al., “Smart devices are different: Assessing and mitigating mobile sensing heterogeneities for activity recognition,” 2015, 

doi: 10.1145/2809695.2809718. 
[71] T . Hayashi, M. Nishida, N. Kitaoka, and K. Takeda, “Daily activity recognition based on DNN using environmental sound and 

acceleration signals,” 2015, doi: 10.1109/EUSIPCO.2015.7362796. 
[72] B. Barshan and M. C. Yüksek, “Recognizing daily and sports activities in two open source machine learning environments using body-

worn sensor units,” Comput. J., 2013, doi: 10.1093/comjnl/bxt075. 
[73] N. Sikder and A.-A. Nahid, “KU-HAR: An open dataset for heterogeneous human activity recognition,” Pattern Recognit. Lett., vol. 146, 

pp. 46–54, Jun. 2021, doi: 10.1016/j.patrec.2021.02.024. 

[74] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for activity monitoring,” 2012, doi: 10.1109/ISWC.2012.13. 
[75] H. Leutheuser, D. Schuldhaus, and B. M. Eskofier, “Hierarchical, Multi-Sensor Based Classification of Daily Life Activities: Comparison 

with State-of-the-Art Algorithms Using a Benchmark Dataset,” PLoS One, 2013, doi: 10.1371/journal.pone.0075196. 
[76] Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and G. Pons-Moll, “Deep inertial poser: Learning to reconstruct human 



27 

 

pose from sparse inertial measurements in real time,” 2018, doi: 10.1145/3272127.3275108. 
[77] H. Leutheuser, S. Doelfel, D. Schuldhaus, S. Reinfelder, and B. M. Eskofier, “Performance comparison of two step segmentation 

algorithms using different step activities,” 2014, doi: 10.1109/BSN.2014.37. 
[78] W. Ugulino, D. Cardador, K. Vega, E. Velloso, R. Milidiú, and H. Fuks, “Wearable computing: Accelerometers’ data classification of 

body postures and movements,” 2012, doi: 10.1007/978-3-642-34459-6_6. 
[79] R. Wang et al., “Studentlife: Assessing mental health, academic performance and behavioral trends of college students using smartphones,” 

2014, doi: 10.1145/2632048.2632054. 
[80] S. Rossi, R. Capasso, G. Acampora, and M. Staffa, “A Multimodal Deep Learning Network for Group Activity Recognition,” 2018, doi: 

10.1109/IJCNN.2018.8489309. 
[81] D. Gordon, M. Wirz, D. Roggen, G. Tröster, and M. Beigl, “Group affiliation detection using model divergence for wearable devices,” 

2014, doi: 10.1145/2634317.2634319. 
[82] H. Alemdar, H. Ertan, O. D. Incel, and C. Ersoy, “ARAS human activity datasets in multiple homes with multiple residents,” 2013, doi: 

10.4108/icst.pervasivehealth.2013.252120. 
[83] “CASAS Smart Home Project.” http://casas.wsu.edu/datasets/ (accessed Mar. 25, 2021).  

[84] R. Alazrai, A. Awad, B. Alsaify, M. Hababeh, and M. I. Daoud, “A dataset for Wi-Fi-based human-to-human interaction recognition,” 
Data Br., 2020, doi: 10.1016/j.dib.2020.105668. 

[85] L. Guo et al., “Wiar: A public dataset for wifi-based activity recognition,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2947024. 

[86] J. Zhang, Z. Tang, M. Li, D. Fang, P. Nurmi, and Z. Wang, “CrossSense: Towards cross-site and large-scale WiFi sensing,” 2018, doi: 
10.1145/3241539.3241570. 

[87] P. Hillyard et al., “Experience: Cross-technology radio respiratory monitoring performance study,” 2018, doi: 10.1145/3241539.3241560. 
[88] J. K. Brinke and N. Meratnia, “Dataset: Channel state information for different activities, participants and days,” 2019, doi: 

10.1145/3359427.3361913. 
[89] Y. Zheng et al., “Zero-effort cross-domain gesture recognition with Wi-Fi,” 2019, doi: 10.1145/3307334.3326081. 
[90] A. Virmani and M. Shahzad, “Position and orientation agnostic gesture recognition using WiFi,” 2017, doi: 10.1145/3081333.3081340. 
[91] Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung, “SignFi: Sign Language Recognition Using WiFi,” Proc. ACM Interactive, Mobile, 

Wearable Ubiquitous Technol., 2018, doi: 10.1145/3191755. 
[92] M. A. A. Haseeb and R. Parasuraman, “Wisture: RNN-based learning of wireless signals for gesture recognition in unmodified 

smartphones,” arXiv. 2017. 
[93] S. Palipana, D. Rojas, P. Agrawal, and D. Pesch, “FallDeFi: Ubiquitous Fall Detection using Commodity Wi-Fi Devices,” Proc. ACM 

Interactive, Mobile, Wearable Ubiquitous Technol., 2018, doi: 10.1145/3161183. 
[94] A. D. Singh, S. S. Sandha, L. Garcia, and M. Srivastava, “Radhar: Human activity recognition from point clouds generated through a 

millimeter-wave radar,” 2019, doi: 10.1145/3349624.3356768. 

[95] F. Wang, J. Han, S. Zhang, X. He, and D. Huang, “CSI-Net: Unified Human Body Characterization and Pose Recognition,” arXiv. 2018. 
[96] I. Sobron, J. Del Ser, I. Eizmendi, and M. Velez, “Device-Free People Counting in IoT Environments: New Insights, Results, and Open 

Challenges,” IEEE Internet Things J., 2018, doi: 10.1109/JIOT.2018.2806990. 
[97] Z. Meng et al., “Gait Recognition for Co-Existing Multiple People Using Millimeter Wave Sensing,” vol. 34, no. 01, pp. 849–856, 2020, 

doi: https://ojs.aaai.org/index.php/AAAI/article/view/5430. 
[98] G. Jekabsons and V. Zuravlyovs, “Refining Wi-Fi Based Indoor Positioning,” Aict2010 - Appl. Inf. Commun. Technol. Proc. 4Th Int. Sci. 

Conf., 2010. 
[99] F. Wang, J. Feng, Y. Zhao, X. Zhang, S. Zhang, and J. Han, “Joint activity recognition and indoor localization with WiFi fingerprints,” 

IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2923743. 
[100] J. Torres-Sospedra et al., “The smartphone-based offline indoor location competition at IPIN 2016: Analysis and future work,” Sensors 

(Switzerland), 2017, doi: 10.3390/s17030557. 
[101] J. Torres-Sospedra et al., “UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization 

problems,” 2014, doi: 10.1109/IPIN.2014.7275492. 
[102] J. Torres-Sospedra, D. Rambla, R. Montoliu, O. Belmonte, and J. Huerta, “UJIIndoorLoc-Mag: A new database for magnetic field-based 

localization problems,” 2015, doi: 10.1109/IPIN.2015.7346763. 
[103] R. Montoliu, E. Sansano, J. Torres-Sospedra, and O. Belmonte, “IndoorLoc platform: A public repository for comparing and evaluating 

indoor positioning systems,” 2017, doi: 10.1109/IPIN.2017.8115940. 
[104] E. S. Lohan, J. Torres-Sospedra, H. Leppäkoski, P. Richter, Z. Peng, and J. Huerta, “Wi-Fi crowdsourced fingerprinting dataset for indoor 

positioning,” Data, 2017, doi: 10.3390/data2040032. 

[105] K. Qian, C. Wu, Z. Yang, Y. Liu, and K. Jamieson, “Widar: Decimeter-level passive tracking via velocity monitoring with commodity 
Wi-Fi,” 2017, doi: 10.1145/3084041.3084067. 

[106] K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu, “Widar2.0: Passive human tracking with a single Wi-Fi link,” 2018, doi: 
10.1145/3210240.3210314. 

[107] Y. Zhao, J. Xu, J. Wu, J. Hao, and H. Qian, “Enhancing Camera-Based Multimodal Indoor Localization with Device-Free Movement 
Measurement Using WiFi,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2019.2948605. 

[108] I. Ha, H. Kim, S. Park, and H. Kim, “Image retrieval using BIM and features from pretrained VGG network for indoor localization,” 
Build. Environ., 2018, doi: 10.1016/j.buildenv.2018.05.026. 

[109] P. Chhikara, R. Tekchandani, N. Kumar, V. Chamola, and M. Guizani, “DCNN-GA: A Deep Neural Net Architecture for Navigation of 
UAV in Indoor Environment,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3027095. 

[110] N. Lee, S. Ahn, and D. Han, “AMID: Accurate magnetic indoor localization using deep learning,” Sensors (Switzerland), 2018, doi: 
10.3390/s18051598. 

[111] X. Wang, Z. Yu, and S. Mao, “Indoor Localization Using Smartphone Magnetic and Light Sensors: a Deep LSTM Approach,” Mob. 
Networks Appl., 2020, doi: 10.1007/s11036-019-01302-x. 

[112] Y. Zhu, H. Luo, F. Zhao, and R. Chen, “Indoor/Outdoor Switching Detection Using Multisensor DenseNet and LSTM,” IEEE Internet 

Things J., vol. 8, no. 3, pp. 1544–1556, Feb. 2021, doi: 10.1109/JIOT.2020.3013853. 
[113] X. Wang, X. Wang, and S. Mao, “Deep Convolutional Neural Networks for Indoor Localization with CSI Images,” IEEE Trans. Netw. 

Sci. Eng., 2020, doi: 10.1109/TNSE.2018.2871165. 
[114] L. Zhang et al., “WiFi-Based Indoor Robot Positioning Using Deep Fuzzy Forests,” IEEE Internet Things J., 2020, doi: 



28 

 

10.1109/JIOT.2020.2986685. 
[115] Y. Xue, W. Su, H. Wang, D. Yang, and Y. Jiang, “DeepTAL: Deep Learning for TDOA-Based Asynchronous Localization Security with 

Measurement Error and Missing Data,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2937975. 
[116] J. He and H. C. So, “A Hybrid TDOA-Fingerprinting-Based Localization System for LTE Network,” IEEE Sens. J., 2020, doi: 

10.1109/JSEN.2020.3004179. 
[117] W. Wang, P. Bai, Y. Zhou, X. Liang, and Y. Wang, “Optimal Configuration Analysis of AOA Localization and Optimal Heading Angles 

Generation Method for UAV Swarms,” IEEE Access, 2019, doi: 10.1109/ACCESS.2019.2918299. 
[118] A. Khan, S. Wang, and Z. Zhu, “Angle-of-Arrival Estimation Using an Adaptive Machine Learning Framework,” IEEE Commun. Lett., 

2019, doi: 10.1109/LCOMM.2018.2884464. 
[119] Y. Zheng, M. Sheng, J. Liu, and J. Li, “Exploiting aoa estimation accuracy for indoor localization: A weighted aoa-based approach,” 

IEEE Wirel. Commun. Lett., 2018, doi: 10.1109/LWC.2018.2853745. 
[120] X. Wang, X. Wang, S. Mao, J. Zhang, S. C. G. Periaswamy, and J. Patton, “Indoor Radio Map Construction and Localization with Deep 

Gaussian Processes,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2996564. 
[121] M. Chen et al., “MoLoc: Unsupervised Fingerprint Roaming for Device-Free Indoor Localization in a Mobile Ship Environment,” IEEE 

Internet Things J., 2020, doi: 10.1109/JIOT.2020.3004240. 
[122] Y. Li, X. Hu, Y. Zhuang, Z. Gao, P. Zhang, and N. El-Sheimy, “Deep Reinforcement Learning (DRL): Another Perspective for 

Unsupervised Wireless Localization,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2019.2957778. 

[123] X. Wang, X. Wang, and S. Mao, “Indoor Fingerprinting with Bimodal CSI Tensors: A Deep Residual Sharing Learning Approach,” IEEE 
Internet Things J., 2021, doi: 10.1109/JIOT.2020.3026608. 

[124] R. Wang, H. Luo, Q. Wang, Z. Li, F. Zhao, and J. Huang, “A Spatial-Temporal Positioning Algorithm Using Residual Network and 
LSTM,” IEEE Trans. Instrum. Meas., 2020, doi: 10.1109/TIM.2020.2998645. 

[125] Q. Wang et al., “Pedestrian Dead Reckoning Based on Walking Pattern Recognition and Online Magnetic Fingerprint Trajectory 
Calibration,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3016146. 

[126] D. Chen, S. Yongchareon, E. M. K. Lai, J. Yu, and Q. Z. Sheng, “Hybrid Fuzzy C-means CPD-based Segmentation for Improving Sensor-
based Multi-resident Activity Recognition,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2021.3051574. 

[127] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. T ian, “Symbiotic Graph Neural Networks for 3D Skeleton-based Human Action 
Recognition and Motion Prediction,” IEEE Trans. Pattern Anal. Mach. Intell., 2021, doi: 10.1109/TPAMI.2021.3053765. 

[128] C. Dhiman and D. K. Vishwakarma, “View-Invariant Deep Architecture for Human Action Recognition Using Two-Stream Motion and 
Shape Temporal Dynamics,” IEEE Trans. Image Process., 2020, doi: 10.1109/TIP.2020.2965299. 

[129] T . Hussain et al., “Multi-View Summarization and Activity Recognition Meet Edge Computing in IoT Environments,” IEEE Internet 
Things J., 2020, doi: 10.1109/jiot.2020.3027483. 

[130] J. Li, X. Xie, Q. Pan, Y. Cao, Z. Zhao, and G. Shi, “SGM-Net: Skeleton-guided multimodal network for action recognition,” Pattern 

Recognit., 2020, doi: 10.1016/j.patcog.2020.107356. 
[131] F. Meng, H. Liu, Y. Liang, J. Tu, and M. Liu, “Sample Fusion Network: An End-to-End Data Augmentation Network for Skeleton-Based 

Human Action Recognition,” IEEE Trans. Image Process., 2019, doi: 10.1109/TIP.2019.2913544. 
[132] X. Shu, J. Tang, G. J. Qi, W. Liu, and J. Yang, “Hierarchical Long Short-Term Concurrent Memory for Human Interaction Recognition,” 

IEEE Trans. Pattern Anal. Mach. Intell., 2021, doi: 10.1109/TPAMI.2019.2942030. 
[133] X. Shu, L. Zhang, Y. Sun, and J. Tang, “Host-Parasite: Graph LSTM-in-LSTM for Group Activity Recognition,” IEEE Trans. Neural 

Networks Learn. Syst., 2021, doi: 10.1109/TNNLS.2020.2978942. 
[134] J. Tang, X. Shu, R. Yan, and L. Zhang, “Coherence Constrained Graph LSTM for Group Activity Recognition,” IEEE Trans. Pattern 

Anal. Mach. Intell., 2019, doi: 10.1109/tpami.2019.2928540. 
[135] Y. Tang, J. Lu, Z. Wang, M. Yang, and J. Zhou, “Learning Semantics-Preserving Attention and Contextual Interaction for Group Activity 

Recognition,” IEEE Trans. Image Process., 2019, doi: 10.1109/tip.2019.2914577. 
[136] R. Yan, L. Xie, J. Tang, X. Shu, and Q. T ian, “HiGCIN: Hierarchical Graph -based Cross Inference Network for Group Activity 

Recognition,” IEEE Trans. Pattern Anal. Mach. Intell., 2020, doi: 10.1109/tpami.2020.3034233. 
[137] L. Pei et al., “MARS: Mixed Virtual and Real Wearable Sensors for Human Activity Recognition with Multi-Domain Deep Learning 

Model,” arXiv. 2020, doi: 10.1109/jiot.2021.3055859. 
[138] K. Chen, L. Yao, D. Zhang, X. Wang, X. Chang, and F. Nie, “A Semisupervised Recurrent Convolutional Attention Model for Human  

Activity Recognition,” IEEE Trans. Neural Networks Learn. Syst., 2020, doi: 10.1109/TNNLS.2019.2927224. 
[139] X. Zhou, W. Liang, K. I. K. Wang, H. Wang, L. T. Yang, and Q. Jin, “Deep-Learning-Enhanced Human Activity Recognition for Internet 

of Healthcare Things,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2985082. 

[140] W. Qi, H. Su, and A. Aliverti, “A Smartphone-Based Adaptive Recognition and Real-Time Monitoring System for Human Activities,” 
IEEE Trans. Human-Machine Syst., 2020, doi: 10.1109/THMS.2020.2984181. 

[141] F. Luo, S. Poslad, and E. Bodanese, “Temporal Convolutional Networks for Multiperson Activity Recognition Using a 2-D LIDAR,” 
IEEE Internet Things J., vol. 7, no. 8, pp. 7432–7442, Aug. 2020, doi: 10.1109/JIOT.2020.2984544. 

[142] J. Huang, S. Lin, N. Wang, G. Dai, Y. Xie, and J. Zhou, “TSE-CNN: A Two-Stage End-to-End CNN for Human Activity Recognition,” 
IEEE J. Biomed. Heal. Informatics, 2020, doi: 10.1109/JBHI.2019.2909688. 

[143] N. Rashid, M. Dautta, P. Tseng, and M. A. Al Faruque, “HEAR: Fog-Enabled Energy-Aware Online Human Eating Activity Recognition,” 
IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3008842. 

[144] T . Huynh-The, C. H. Hua, N. A. Tu, and D. S. Kim, “Physical Activity Recognition with Statistical-Deep Fusion Model Using Multiple 
Sensory Data for Smart Health,” IEEE Internet Things J., 2021, doi: 10.1109/JIOT.2020.3013272. 

[145] O. Barut, L. Zhou, and Y. Luo, "Multi-task LSTM Model for Human Activity Recognition and Intensity Estimation Using Wearable 
Sensor Data," IEEE Internet Things J., vol. 7, no. 9, pp. 8760–8768, Sep. 2020, doi: 10.1109/JIOT.2020.2996578. 

[146] V. Bianchi, M. Bassoli, G. Lombardo, P. Fornacciari, M. Mordonini, and I. De Munari, “IoT Wearable Sensor and Deep Learning: An 
Integrated Approach for Personalized Human Activity Recognition in a Smart Home Environment,” IEEE Internet Things J., 2019, doi: 
10.1109/JIOT.2019.2920283. 

[147] M. Gochoo, T. H. Tan, S. H. Liu, F. R. Jean, F. S. Alnajjar, and S. C. Huang, “Unobtrusive Activity Recognition of Elderly People Living 
Alone Using Anonymous Binary Sensors and DCNN,” IEEE J. Biomed. Heal. Informatics, 2019, doi: 10.1109/JBHI.2018.2833618. 

[148] X. Li, Y. Wang, B. Zhang, and J. Ma, “PSDRNN: An Efficient and Effective HAR Scheme Based on Feature Extraction and Deep 
Learning,” IEEE Trans. Ind. Informatics, 2020, doi: 10.1109/TII.2020.2968920. 



29 

 

[149] Z. Qin, Y. Zhang, S. Meng, Z. Qin, and K. K. R. Choo, “Imaging and fusing time series for wearable sensor -based human activity 
recognition,” Inf. Fusion, 2020, doi: 10.1016/j.inffus.2019.06.014. 

[150] M. Z. Uddin, M. M. Hassan, A. Alsanad, and C. Savaglio, “A body sensor data fusion and deep recurrent neural network-based behavior 
recognition approach for robust healthcare,” Inf. Fusion, 2020, doi: 10.1016/j.inffus.2019.08.004. 

[151] H. Zhang, Z. Xiao, J. Wang, F. Li, and E. Szczerbicki, “A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using 
Multihead Convolutional Attention,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2019.2949715. 

[152] Q. Zhu, Z. Chen, and Y. C. Soh, “A Novel Semisupervised Deep Learning Method for Human Activity Recognition,” IEEE Trans. Ind. 
Informatics, vol. 15, no. 7, pp. 3821–3830, Jul. 2019, doi: 10.1109/TII.2018.2889315. 

[153] C. Xiao, D. Han, Y. Ma, and Z. Qin, “CsiGAN: Robust Channel State Information -Based Activity Recognition With GANs,” IEEE 
Internet Things J., 2019, doi: 10.1109/JIOT.2019.2936580. 

[154] P. Khan, B. S. K. Reddy, A. Pandey, S. Kumar, and M. Youssef, “Differential Channel-State-Information-Based Human Activity 
Recognition in IoT Networks,” IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2997237. 

[155] B. Sheng, Y. Fang, F. Xiao, and L. Sun, “An Accurate Device-Free Action Recognition System Using Two-Stream Network,” IEEE 
Trans. Veh. Technol., 2020, doi: 10.1109/TVT.2020.2993901. 

[156] Z. Chen, L. Zhang, C. Jiang, Z. Cao, and W. Cui, “WiFi CSI Based Passive Human Activity Recognition Using Attention Based BLSTM,” 
IEEE Trans. Mob. Comput., 2019, doi: 10.1109/TMC.2018.2878233. 

[157] C. Feng, S. Arshad, S. Zhou, D. Cao, and Y. Liu, “Wi-Multi: A Three-Phase System for Multiple Human Activity Recognition with 

Commercial WiFi Devices,” IEEE Internet Things J., 2019, doi: 10.1109/JIOT.2019.2915989. 
[158] Z. Guo, F. Xiao, B. Sheng, H. Fei, and S. Yu, “WiReader: Adaptive Air Handwriting Recognition Based on Commercial WiFi Signal,” 

IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2997053. 
[159] B. Sheng, F. Xiao, L. Sha, and L. Sun, “Deep Spatial-Temporal Model Based Cross-Scene Action Recognition Using Commodity WiFi,” 

IEEE Internet Things J., 2020, doi: 10.1109/JIOT.2020.2973272. 
[160] F. Wang, W. Gong, and J. Liu, “On spatial diversity in wifi-based human activity recognition: A deep learning-based approach,” IEEE 

Internet Things J., 2019, doi: 10.1109/JIOT.2018.2871445. 
[161] F. Wang, J. Liu, and W. Gong, “Multi-Adversarial In-Car Activity Recognition using RFIDs,” IEEE Trans. Mob. Comput., 2020, doi: 

10.1109/tmc.2020.2977902. 
[162] C. Xiao, Y. Lei, Y. Ma, F. Zhou, and Z. Qin, “DeepSeg: Deep Learning-based Activity Segmentation Framework for Activity Recognition 

using WiFi,” IEEE Internet Things J., 2020, doi: 10.1109/jiot.2020.3033173. 
[163] J. Zhang et al., “Data Augmentation and Dense-LSTM for Human Activity Recognition Using WiFi Signal,” IEEE Internet Things J., 

2021, doi: 10.1109/JIOT.2020.3026732. 
 

 

 


