
sensors

Article

Experimental Setup for Investigating the Efficient
Load Balancing Algorithms on Virtual Cloud

Bhavya Alankar 1, Gaurav Sharma 1, Harleen Kaur 1,*, Raul Valverde 2 and Victor Chang 3,*
1 Department of Computer Science and Engineering, School of Engineering Sciences and Technology,

Jamia Hamdard, New Delhi 110062, India; balankar@jamiahamdard.ac.in (B.A.);
gaurav.0004@gmail.com (G.S.)

2 John Molson School of Business, Concordia University, Montreal, QC G1X 3X4, Canada;
raul.valverde@concordia.ca

3 Artificial Intelligence and Information Systems Research Group, School of Computing,
Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK

* Correspondence: harleen@jamiahamdard.ac.in (H.K.); victorchang.research@gmail.com or
V.Chang@tees.ac.uk (V.C.)

Received: 2 November 2020; Accepted: 16 December 2020; Published: 21 December 2020 ����������
�������

Abstract: Cloud computing has emerged as the primary choice for developers in developing
applications that require high-performance computing. Virtualization technology has helped in
the distribution of resources to multiple users. Increased use of cloud infrastructure has led to the
challenge of developing a load balancing mechanism to provide optimized use of resources and better
performance. Round robin and least connections load balancing algorithms have been developed to
allocate user requests across a cluster of servers in the cloud in a time-bound manner. In this paper,
we have applied the round robin and least connections approach of load balancing to HAProxy,
virtual machine clusters and web servers. The experimental results are visualized and summarized
using Apache Jmeter and a further comparative study of round robin and least connections is also
depicted. Experimental setup and results show that the round robin algorithm performs better
as compared to the least connections algorithm in all measuring parameters of load balancer in
this paper.

Keywords: cloud computing; load balancing/balancer; round robin; least connections; virtual
machine; HAProxy; Apache Jmeter

1. Introduction

Technological innovations are surprising the human race every day. Cloud computing is one of
them. It is emerging as a new umbrella field of various new applications as well as services. Rarely any
field remains untouched by it. Its importance is significantly seen and felt today. There is no pre-defined
or standard definition of cloud computing. Usually, it contains a cluster of servers known as controller
servers that necessitate services and assets to different users in a network with scalability and reliability
of the datacenter [1]. Virtualization technology allows us to work with powerful and multiple virtual
machines, tweak-based configurations, and obtain the resources with core, RAM, and storage, to run
on the same physical machine. The cloud provides 24/7 cost-free support, an open-source platform,
automation tools, speed up the delivery, cloud-based applications, and much more. High the demand
for cloud services and high-traffic web applications requires a highly capable well-organized load
balancer for a smooth process of their industry. In a cloud environment, load balancing is applied
on a cluster of servers and is used to achieve a variety of daemons, including Hypertext Transfer
Protocol, Hypertext Transfer Protocol Secure, File Transfer Protocol, Simple Mail Transfer Protocol,
Domain Name System, Post Office Protocol/Internet Message Access Protocol, and other requests [2].

Sensors 2020, 20, 7342; doi:10.3390/s20247342 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20247342
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/24/7342?type=check_update&version=3

Sensors 2020, 20, 7342 2 of 26

Load balancing refers to proficiently allocating incoming network traffic to a cluster of backend
servers. The primary key function of the load balancer is to make sure that each workstation of
the network is utilized with an equally distributed amount of work. The load is not only for the
web application traffic; it has various types like CPU load, network load, memory capacity concerns,
etc. In the cloud computing environment, load balancing is used to allocate virtual machines across
all end-user devices to improve asset utilization and provide high gratification to the audience [3].
This means neither of the workstations in the cloud goes overloaded or underutilized. In general, a load
balancer acts as a reverse proxy that allocates network or web application traffic across a number of
servers. Load balancers endorse three primary purposes. First, refining complete servers’ performance
by accomplishing a high resource consumption ratio. Second, evading the server’s bottleneck that
happens due to improper load balance. Third, it is important to attain high providers’ and audience’s
gratification by increasing the servers’ throughput and decreasing the processing time load balancing
assistances in preserving workstations’ insistence, performance, and security against workstation
failures [4].

Recent high-visitors’ net programs serve more than thousands of concurrent requests from
audiences or clients and return the precise text, photographs, video, or application data, completely short
and consistent. In order to correctly price the scale to satisfy these high potentials, contemporary
computing great practices typically call for including extra servers. A load balancer acts as the “website
visitors cop” sitting in the front of your servers and routing customer requests across all clusters of
servers, proficient in accomplishing one’s requests in a way that will increase pace and capacity usage
and confirm that no one server is overloaded (which could affect overall performance). If a single
server is going down, the load balancer relays traffic to the active closing servers. Whilst a new server
is delivered to the server cluster, the load balancer routinely starts to send requests to it.

In enormous datacenters, an additional quantity of load balancers is essential to balance the work
across various web servers. Different load balancing algorithms like round robin, weighted round
robin, and IP-based hashing are used in load balancers. All these algorithms do not see the live
traffic before accelerating the request to the servers and promise not to run random algorithms on the
load balancers as they are dealer specific and not run on product hardware and custom software [5].
The load balancer equally allocates the information subject to how demanding the server is. Without a
load balancer, the audience would face delays in processing the information that might be annoying.
At the time of load balancing progression, information like incoming tasks and vCPU (virtual CPU)
processing rates are substituted among the vCPUs. Any downtime in the web application of load
balancers can amount to severe penalties such as statistics loss. Several corporations use different types
of load balancers, along with various load balancing algorithms. One of the most commonly used
algorithms is the “round robin” or “least connections” load balancing.

This paper aims to investigate the role of using load balancer algorithms on live cloud infrastructure
and open-source services, which leads to the reduction of the cost of the services. After experimental
results, this paper also suggests that the round robin algorithm gives better performance results that
help users choose the best algorithm for load balancing in their high web traffic applications.

This paper is organized as follows: Section 2 describe the background, types of load balancers,
and its measurement parameters. Section 3 describes related works. Section 4 is on the methodology
and experimental setup and practical implementation of the paper. Section 5 includes comparing
two used load balancing algorithms and shows the results and evaluation of the test cases. The final
Section 6 describes the conclusions of this paper.

2. Background

2.1. Types of Load Balancer

In the Introduction section, we discussed the load balancer. Our main aim is to give a brief idea
of types of load balancers and how cloud users can choose the load balancer in cloud applications

Sensors 2020, 20, 7342 3 of 26

according to their requirements. There are some unique styles of load balancing that exist. We all
know about network infrastructure, inclusive of Maria DB Server or SQL. Server load balancing for a
relational database, worldwide server load balancing for troubleshooting across several geographic
locations, and domain name server load balancing to assure domain name call functionality. We can
also recall varieties of load balancers in phrases of the numerous cloud-based balancers: AWS Elastic
Load Balancer, DigitalOcean Load Balancer, and so forth.

• Network Load Balancer: A network load balancer or Layer 4 Balancer uses the fourth layer of
the OSI Model, which means it picks the information from the network layer for the route the
network visitors that are dead through layer four load balancing and should handle the incoming
request of TCP/UDP website visitors. Among a variety of load balancers, Network Load Balancer
is the quickest load-balancer. Sometimes, it performs incline to drop once it routes the incoming
network visitors across web application servers.

• HTTP(S) Load Balancer: The HTTP(S) Load balancer works on the application layer or seventh
layer of the OSI model. HTTP uses session’s ids, cookies, and HTTP headers to decide how the
network traffic or web visitors will be routed across all the web application clusters.

• Internal Load Balancer: Internal load balancing works on the layer 4 OSI model, similar to network
load balancing. Internal load balancing is mostly implemented in onsite infrastructure to manage,
stabilize, and balance the physical servers and virtual machines, including network area storage.

• Hardware Load Balancer: A hardware load balancer is a physical device that comes with a
pre-installed operating system. Its role is to distribute or allocate the web users’ traffic across all
the web application server farms (A server farm is a collection of webservers with network area
storage on which web application hosted). Hardware Load Balancer requires a minimum of two
virtual machines. It is configured by the system administrator with their custom rules to ensure
the best performance, and the virtual machines are not overloaded. Hardware Load Balancer is
not affordable for every user because it is very expensive, and it is dependent on the architecture
and, hardware appliance of the infrastructure.

• Software Load Balancer: A software load balancer is a software-defined balancer that can be
easily installed and configured on x86/64 bit servers or virtual machines. A minimum of four
virtual machines are required for the software load balancer setup—one VM is used as a software
load balancer and the other three virtual machines are used for web server farms. It is easily
scale-able in real-time traffic and free from the architecture and configuration of virtual machines.
The software load balancer is open-source and falls under commercial service as well.

• Virtual Load Balancer: A virtual load balancer acts as a software load balancer, but it is different
from software load balancers. The virtual load balancer distributes the web traffic by taking the
software program of the hardware load balancer, which was installed on virtual machines.

2.2. Load Balancing Measurement Parameter

The main purpose of this section is to give the idea of which parameters we can measure to gauge
the performance of the load balancing algorithm. There are always some limitations, restrictions,
and some dimension constraints to calculate the load balancing methods, which allow checking
whether the given method is worthy of balancing the load or not, which is given as follows:

• Throughput: This parameter imitates the capability of the server. The capability of the server
means how much weight it can take. It is one of the important parameters that support calculating
the performance of web applications. Maximum throughput is always expected. Throughput is
calculated as the number of requests in a given time or transactions per second.

• Average Response Time: It is the aggregate of time used to start satisfying the request of the user
after the process of the request.

• Fault tolerance: The capability of the load balancing algorithm that permits the structure to work
in some falls down the state of the system.

Sensors 2020, 20, 7342 4 of 26

• Scalability: The algorithm can scale itself according to requisite situations.
• Performance: It is the complete check of the algorithms functioning by seeing precision, price,

and quickness.
• Resource utilization: It is used to retain a check on the consumption of the number of resources.

2.3. Categorization of Load Balancing Algorithms

Load balancing algorithms can be categorized into two types: static and dynamic algorithms.
The static algorithm methodology largely considers the traffic at each instance in the network and
distributes the traffic uniformly between all the instances. Dynamic algorithm methodology conversely
considers only the current state of the system while making verdicts of allocating the load. In cloud
computing, the dynamic algorithm is commonly used for huge networks. round robin and source
hashing algorithms are some static algorithms, whereas least-connection, weighted least connection,
and least bandwidth algorithms are some examples of dynamic algorithms. The summarized features,
advantage, disadvantage and differences of the different load balancing algorithms are presented in
the Table 1.

Table 1. The summarized features, advantage, disadvantage and differences of the different load
balancing algorithms.

Algorithm Request Serve Method Nature Advantage Disadvantage

Round Robin
The request is given to the
server in a rotated
Sequential Manner

Dynamic
Easy to configure,
deploy and widely
used algorithm

Servers can overload and crash if
they have different resources and
processing capacities.

Least Connections
The request is given to the
server with the lowest
number of connections.

Dynamic

Avoids
overloading a
server by verifying
the number of
server connections

When calculating the number of
existing connections, the server
capacity cannot be considered.

Weighted Round
Robin

Every server is used, in turn,
by weight. Static

Can send more
requests to more
capable and loaded
servers

All the estimation requires
implementing this algorithm, and
this is a major drawback and also
requires estimating IP networks
with different packet sizes, which
are difficult to do.

Source Hash

The source IP address shall
be hashed and divided by
the total number of servers
operating to decide which
server the request receives.

Static

Users connect to a
still active session
after disconnection
and reconnection.
It will increase
performance.

Internet Service Provider (ISP)
provides dynamic IP addresses, so
it is difficult to maintain them.

Least Response
Time

The request is given to the
server with the lowest
response time.

Dynamic

Consider both the
server’s capacity,
response time and
the number of
current connections
to avoid overload
and crash.

Simple performing virtual
machines are used, then the
unequal route of traffic might be
shown and this algorithm is not
recommended for cookie-based
session applications.

Least Bandwidth Every server is used, in turn,
by network bandwidth. Static

Can send more
requests to more
capable and
network
bandwidth loaded
servers.

It requires approximate network
bandwidth, which is difficult to do
in networks where the packet size
of the data varying, and network
bandwidth might be exhausted.

2.3.1. Round Robin Algorithm

The round robin algorithm depends on a rotation system or rotationally selects the servers.
An incoming request is a substitute to the primary reachable server, and then the server is bounced to
the cease of the line, as shown in Figure 1. This algorithm is by and large beneficial while functioning
with servers of identical importance. It is the simplest and easy to implement a load balancing
algorithm, as it performs best when the resources of the virtual machines are the same.

Sensors 2020, 20, 7342 5 of 26

Sensors 2020, 20, x FOR PEER REVIEW 4 of 26

• Average Response Time: It is the aggregate of time used to start satisfying the request of the user
after the process of the request.

• Fault tolerance: The capability of the load balancing algorithm that permits the structure to work
in some falls down the state of the system.

• Scalability: The algorithm can scale itself according to requisite situations.
• Performance: It is the complete check of the algorithms functioning by seeing precision, price,

and quickness.
• Resource utilization: It is used to retain a check on the consumption of the number of resources.

2.3. Categorization of Load Balancing Algorithms

Load balancing algorithms can be categorized into two types: static and dynamic algorithms.
The static algorithm methodology largely considers the traffic at each instance in the network and
distributes the traffic uniformly between all the instances. Dynamic algorithm methodology
conversely considers only the current state of the system while making verdicts of allocating the load.
In cloud computing, the dynamic algorithm is commonly used for huge networks. round robin and
source hashing algorithms are some static algorithms, whereas least-connection, weighted least
connection, and least bandwidth algorithms are some examples of dynamic algorithms. The
summarized features, advantage, disadvantage and differences of the different load balancing
algorithms are presented in the Table 1

2.3.1. Round Robin Algorithm

The round robin algorithm depends on a rotation system or rotationally selects the servers. An
incoming request is a substitute to the primary reachable server, and then the server is bounced to
the cease of the line, as shown in Figure 1. This algorithm is by and large beneficial while functioning
with servers of identical importance. It is the simplest and easy to implement a load balancing
algorithm, as it performs best when the resources of the virtual machines are the same.

Figure 1. Round robin algorithm.

2.3.2. Weighted Round Robin Algorithm

Each weight server, is used in turn. The weighted round robin algorithm is similar to the round
robin one, but is static in nature, so it doesn’t work by changing the weight of the server on the wing.
On the other hand, the number of servers is not limited and frequently replicated immediately after a
full map is re-published when a server increase. It uses less CPU to run too. A weight is allocated to
the respective server established on norms chosen by the cloud system administrator; the most
frequently used ways are the server’s visitors-handling capability. The higher the weight, the higher

Figure 1. Round robin algorithm.

2.3.2. Weighted Round Robin Algorithm

Each weight server, is used in turn. The weighted round robin algorithm is similar to the round
robin one, but is static in nature, so it doesn’t work by changing the weight of the server on the wing.
On the other hand, the number of servers is not limited and frequently replicated immediately after a
full map is re-published when a server increase. It uses less CPU to run too. A weight is allocated
to the respective server established on norms chosen by the cloud system administrator; the most
frequently used ways are the server’s visitors-handling capability. The higher the weight, the higher
the percentage of visitor requests the server accepts, as in Figure 2. For example, server1 is allocated
a weight of 4 and server 2 a weight of 2. The load balancer forwards four requests to server 1 for
each two it sends to server 2. If some virtual machines have more resources in vCPU, Ram, GPU,
and other specifications, then the weighted round robin algorithm is used. With the help of weighted
round robin, cloud admin can easily distribute the web traffic on high resource virtual machines by
defining weight on it. In advance, all the estimation requires implementing this algorithm, and this is a
major drawback.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 26

the percentage of visitor requests the server accepts, as in Figure 2. For example, server1 is allocated
a weight of 4 and server 2 a weight of 2. The load balancer forwards four requests to server 1 for each
two it sends to server 2. If some virtual machines have more resources in vCPU, Ram, GPU, and other
specifications, then the weighted round robin algorithm is used. With the help of weighted round
robin, cloud admin can easily distribute the web traffic on high resource virtual machines by defining
weight on it. In advance, all the estimation requires implementing this algorithm, and this is a major
drawback.

Figure 2. Weighted round robin algorithm.

2.3.3. Source Hash

The source (user’s) IP address absolutely determines which server receives its request on this
sincere load balancing algorithm, as in Figure 3. This algorithm is used when the application provider
wants the same user route to the same server where the last request has been served. It is very difficult
to serve the request of the same server because internet service provider (ISP) provides dynamic IP
addresses, so it is difficult to maintain it.

Figure 3. IP hash algorithm.

2.3.4. Least Connections

As its name states, the least connection algorithm instantly sites visitors to whichever server has
the least extent of active connections that are supportive throughout heavy visitor’s durations. It
facilitates preservation, even distribution amongst all available servers, as shown in Figure 4. Least
connections algorithm widely used when longer sessions are required, like MariaDB or SQL, where
the transaction rate high, active directory, lightweight directory access protocol (LDAP), etc. This
algorithm is not recommended for short sessions applications like HTTP.

Figure 2. Weighted round robin algorithm.

2.3.3. Source Hash

The source (user’s) IP address absolutely determines which server receives its request on this
sincere load balancing algorithm, as in Figure 3. This algorithm is used when the application provider
wants the same user route to the same server where the last request has been served. It is very difficult

Sensors 2020, 20, 7342 6 of 26

to serve the request of the same server because internet service provider (ISP) provides dynamic IP
addresses, so it is difficult to maintain it.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 26

the percentage of visitor requests the server accepts, as in Figure 2. For example, server1 is allocated
a weight of 4 and server 2 a weight of 2. The load balancer forwards four requests to server 1 for each
two it sends to server 2. If some virtual machines have more resources in vCPU, Ram, GPU, and other
specifications, then the weighted round robin algorithm is used. With the help of weighted round
robin, cloud admin can easily distribute the web traffic on high resource virtual machines by defining
weight on it. In advance, all the estimation requires implementing this algorithm, and this is a major
drawback.

Figure 2. Weighted round robin algorithm.

2.3.3. Source Hash

The source (user’s) IP address absolutely determines which server receives its request on this
sincere load balancing algorithm, as in Figure 3. This algorithm is used when the application provider
wants the same user route to the same server where the last request has been served. It is very difficult
to serve the request of the same server because internet service provider (ISP) provides dynamic IP
addresses, so it is difficult to maintain it.

Figure 3. IP hash algorithm.

2.3.4. Least Connections

As its name states, the least connection algorithm instantly sites visitors to whichever server has
the least extent of active connections that are supportive throughout heavy visitor’s durations. It
facilitates preservation, even distribution amongst all available servers, as shown in Figure 4. Least
connections algorithm widely used when longer sessions are required, like MariaDB or SQL, where
the transaction rate high, active directory, lightweight directory access protocol (LDAP), etc. This
algorithm is not recommended for short sessions applications like HTTP.

Figure 3. IP hash algorithm.

2.3.4. Least Connections

As its name states, the least connection algorithm instantly sites visitors to whichever server has the
least extent of active connections that are supportive throughout heavy visitor’s durations. It facilitates
preservation, even distribution amongst all available servers, as shown in Figure 4. Least connections
algorithm widely used when longer sessions are required, like MariaDB or SQL, where the transaction
rate high, active directory, lightweight directory access protocol (LDAP), etc. This algorithm is not
recommended for short sessions applications like HTTP.Sensors 2020, 20, x FOR PEER REVIEW 6 of 26

Figure 4. Least connection algorithm.

2.3.5. Least Response Time

The least response time algorithm directs visitors to the server with the least amount of active
connections and the lowest common response time, as shown in Figure 5. Least connections are used
where two parameters (least active connections and low response time) are combined with per VM.
However, it requires high performing virtual machines; if simple performing virtual machines are
used, then the unequal route of traffic might be shown. This algorithm is not recommended for
cookie-based session applications.

Figure 5. Least response time.

2.3.6. Least Bandwidth Algorithm

This least bandwidth algorithm processes visitors in megabits (Mbps) per second, sending users’
requests to the server with the smallest Mbps of visitors as given in Figure 6. The least bandwidth
algorithm is very handy when all virtual machines in cloud infrastructure have different network
bandwidth. It requires approximate network bandwidth, which is difficult to do in networks where
the packet size of the data varying, and network bandwidth might be exhausted.

Figure 4. Least connection algorithm.

2.3.5. Least Response Time

The least response time algorithm directs visitors to the server with the least amount of active
connections and the lowest common response time, as shown in Figure 5. Least connections are used
where two parameters (least active connections and low response time) are combined with per VM.
However, it requires high performing virtual machines; if simple performing virtual machines are used,
then the unequal route of traffic might be shown. This algorithm is not recommended for cookie-based
session applications.

Sensors 2020, 20, 7342 7 of 26

Sensors 2020, 20, x FOR PEER REVIEW 6 of 26

Figure 4. Least connection algorithm.

2.3.5. Least Response Time

The least response time algorithm directs visitors to the server with the least amount of active
connections and the lowest common response time, as shown in Figure 5. Least connections are used
where two parameters (least active connections and low response time) are combined with per VM.
However, it requires high performing virtual machines; if simple performing virtual machines are
used, then the unequal route of traffic might be shown. This algorithm is not recommended for
cookie-based session applications.

Figure 5. Least response time.

2.3.6. Least Bandwidth Algorithm

This least bandwidth algorithm processes visitors in megabits (Mbps) per second, sending users’
requests to the server with the smallest Mbps of visitors as given in Figure 6. The least bandwidth
algorithm is very handy when all virtual machines in cloud infrastructure have different network
bandwidth. It requires approximate network bandwidth, which is difficult to do in networks where
the packet size of the data varying, and network bandwidth might be exhausted.

Figure 5. Least response time.

2.3.6. Least Bandwidth Algorithm

This least bandwidth algorithm processes visitors in megabits (Mbps) per second, sending users’
requests to the server with the smallest Mbps of visitors as given in Figure 6. The least bandwidth
algorithm is very handy when all virtual machines in cloud infrastructure have different network
bandwidth. It requires approximate network bandwidth, which is difficult to do in networks where
the packet size of the data varying, and network bandwidth might be exhausted.Sensors 2020, 20, x FOR PEER REVIEW 7 of 26

Figure 6. Least bandwidth.

Table 1. The summarized features, advantage, disadvantage and differences of the different load
balancing algorithms.

Algorithm Request Serve
Method

Nature Advantage Disadvantage

Round Robin
The request is given to
the server in a rotated
Sequential Manner

Dynamic
Easy to configure,
deploy and widely
used algorithm

Servers can overload and
crash if they have different
resources and processing
capacities.

Least
Connections

The request is given to
the server with the
lowest number of
connections.

Dynamic

Avoids overloading a
server by verifying the
number of server
connections

When calculating the
number of existing
connections, the server
capacity cannot be
considered.

Weighted
Round Robin

Every server is used,
in turn, by weight.

Static

Can send more
requests to more
capable and loaded
servers

All the estimation requires
implementing this
algorithm, and this is a
major drawback and also
requires estimating IP
networks with different
packet sizes, which are
difficult to do.

Source Hash

The source IP address
shall be hashed and
divided by the total
number of servers
operating to decide
which server the
request receives.

Static

Users connect to a still
active session after
disconnection and
reconnection. It will
increase performance.

Internet Service Provider
(ISP) provides dynamic IP
addresses, so it is difficult to
maintain them.

Least
Response

Time

The request is given to
the server with the
lowest response time.

Dynamic

Consider both the
server’s capacity,
response time and the
number of current
connections to avoid
overload and crash.

Simple performing virtual
machines are used, then the
unequal route of traffic
might be shown and this
algorithm is not
recommended for cookie-
based session applications.

Least
Bandwidth

Every server is used,
in turn, by network
bandwidth.

Static

Can send more
requests to more
capable and network
bandwidth loaded
servers.

It requires approximate
network bandwidth, which
is difficult to do in networks
where the packet size of the
data varying, and network

Figure 6. Least bandwidth.

3. Related Works

Some people have been done different kinds of works to evaluate the load balancing performance
of the many load balancing algorithms in cloud computing. We will reflect on some of this work in
this section.

In recent years, result outputs in [6–8] have seen incredible growth in communication and
computing devices and correlated applications. With this, the necessity for CPU, RAM, bandwidth,
storage, and computing power has developed exponentially. In recent times many computing service
providers have moved towards the cloud for enhanced scalability and decreased infrastructure
price. The work presented incorporates a load balancer at cloud infrastructure with software-defined
networking (SDN). The round robin job scheduling is implemented on the load balancer to assign the
tasks to the web servers. Time is analyzed to process the requests of the users with and without a
load balancer and display the results to help in considering the benefits and drawbacks of using load
balancers in the cloud.

Feasibly, the most fascinating part of cloud computing is its flexibility. To be able to use the
flexibility of cloud infrastructure, the scalability of infrastructure needs to be scaled horizontally, i.e.,
it is probably necessary to add and remove assets proposing similar abilities as the existing ones.
In such circumstances, a load balancer is commonly used. In order to balance the physical labor,

Sensors 2020, 20, 7342 8 of 26

the load balancer automatically able to allocate the load to the recently added servers. Authors show
how to renovate the widespread Apache Web Server [9], which is acts as a static load balancer into a
cloud-ready dynamic load balancer [10,11].

In cloud load balancing, allocating computing resources is a vital key. Requests should be assigned
to avoid the overload of virtual machines and improve the average response time of the audience. It is
seen that during hours when request occurrence is high, active VM load balancer (bundled in cloud
Analyst) [12] over-allocates initial virtual machines and under-allocates the next ones forming load
imbalance. This author suggests a novel [13] VM load balancing algorithm that confirms even the
allocation of requests to virtual machines even during hours when requests received in the datacenter
are high to ensure quicker response times to the audience. The analysis results propose that the
algorithm allocates requests to VM uniformly even during uttermost traffic conditions.

In recent years, cloud computing has led to enormous progress in traffic volume and the number
of services demands from cloud servers. This progress leaning of load stances can pose some challenges
to the cloud load balancer in the resourceful balancing of the load, which is already an intimidating
job. Cloud load balancing is an extremely explored field where plentiful solutions to balance load
have been suggested. But no papers provided a wide-ranging review focusing on load balancer as a
service model [14]. The authors understand the theories of load balancing, its significance and desired
features in the cloud and provide a wide-ranging review of the present load balancing approaches,
strengths, and deficiencies. They present a load balancer as a service model adopted by some major
market cloud service providers.

The rapid rise in the demand for methodical, commercial, and web applications has led to large
scale computation [15]. Cloud computing has arisen as a reasonable, accessible, dependable, scalable,
flexible source for web or other applications [16]. To manage web applications requires suitable load
balancing and scheduling methods. The authors propose an algorithm based on-time scheduling
and priority for load balancing. The method involves the partition of time into various portions
and assigning each process to a specific time interval based on priority. The processor attends to
the audience request inside the assigned time period. At the end of the time period, the next line
up audience request is prepared for implementation. The audience request exits from the line upon
accomplishment request; otherwise, the audience waits for its next time period. The rise in waiting
time increases the time period the audience requests get in the VM and moderates the overhead of
context substituting.

Tasks scheduling algorithms [17] reflect the primary and elementary factors in monitoring cloud
computing performance. In this, the authors try to improve scheduling algorithms by emphasizing the
load balance to get the best asset consumption, decreasing waiting and executing time performance.
They attempt to improve the scheduling algorithm’s performance by suggesting a new approach
called “selecting virtual machine with the least load” that can be functional in aggregation with any
assignment. Selecting virtual machine with the least load depends on computing the overall load in
each VM without deliberation the figure of assignments allotted to it. For measuring the performance
accomplished by this technique, it will be applied to conventional simple scheduling algorithms,
such as first come first served, shortest job first, and max-min scheduling algorithms.

In cloud load balancing, the static load balancing algorithms share the user request between virtual
machines in a cloud datacenter for processing. But there are some problems that arise pertaining to the
existing load of each virtual machine. The dynamic algorithms such as “efficient response time load
balancer” and “mini time processing load balancer” demonstrate a solution to such problems [18,19].
The importance of these algorithms, before assigning a task, they search the allocation tables on the
VM, response time, or the processing time. In this paper, the authors propose a new enhancement
of the load balancing by the algorithm “estimated finish time load balancer” [18]. This algorithm
takes account of the existing load of the VM of a cloud datacenter and estimates the processing
completion time of a task before further any distribution, and try to overcome the glitches caused by
static algorithms. The algorithm “estimated finish time load balancer” allows cloud service providers

Sensors 2020, 20, 7342 9 of 26

to expand, develop and increase the performance, accessibility and maximize utilization of the use of
virtual machines in datacenter.

The author suggested a technique for analyzing the conditions and splits the load balancing
methodology into multiple layers. The multi-queue management policy is used to form and split
requests in multiple queues depending upon their execution priorities and the rest of the layer handles
internal requests of the queue in the cloud network with the help of the network administrator [20].
Due to the handling of both segments, the problem of heavy load processing reduces in many terms
like energy utilization, average response time, and network load. All these terms are used to analyze
the performance of a VM along with a heavy load on the network. The planned metrics are designed
on a .net platform and it attains a total 28% approximate improvement in all the cases.

The cloud environment is a modern development in the IT sector field, which provides computing
resources to the users’ on-demand basis. Cloud admin continuously monitors all the computer
resources like RAM, vCPU, storage, network, etc., to maintain the load and usage of the resources,
so they can get optimal performance of the resources. Ref. [21] did the load balancing in two ways,
first non-linear algorithms, and second is scheduling tasks. Non-linear use is for internal load balancing,
and second for allocation of computing resources for optimal performance. The experiment will be
carried out at the CloudSim [12,22], simulator taking more span because of the parameter for evaluating
the outcomes of one of kind algorithm.

Cloud computing is an internet-based methodology where all the IT compute resources are
deployed on a cloud with a different datacenter. The HBB load balancing isn’t assigned the task to the
right virtual gadget and additionally, it does not recall the quality of service. In order to conquer the
disadvantage of the honeybee algorithm, every other algorithm called particle swarm optimization set
of rules is used. In the particle swarm optimization set of rules, the venture might be assigned to the
virtual system appropriately. IE undertaking will test all of the virtual gadgets and assigns the task to
the proper virtual device, which will have minimum memory leak has been considering in quality
of services [23]. And the results of the paper suggest methodology can discover superior trade-off

answers for assignment scheduling troubles that constitute the possible high-quality compromises the
various conflicting objectives.

The author discussed the new hybrid algorithm with the existing load balancing algorithms
such as equally spread current execution load, round robin, bee colony optimization, and ant colony
optimization [24]. The brand-new hybrid algorithm offers a green load balancing of nodes and performs
green scheduling. The hybrid set of rules works on fundamental swarm smart algorithms and ant
colony optimization and priority-based bee colony. The above algorithms for scheduling are carried
out and cargo balanced within a cloud scenario where the overall performance of load balancing
determines which virtual resource is loaded heavily or under loaded. The hybrid algorithm proves to
outperform the prevailing processes like Round Robin, Equally Spread Current Execution and ant
colony optimization.

It highlights the challenges and features of cloud computing. It discusses the various offerings
that cloud computing offers, service layers, virtualization, and load balancing. It introduces the
procedures of load balancing static and dynamic, declaring that static load balancing algorithms
divide the site visitors equivalently among all servers at the same time as dynamic load balancing is a
non-centralized approach. The paper additionally discusses the prevailing load balancing algorithms
together with round robin, opportunistic load balancing, randomized algorithm, min-min algorithm,
max-min algorithm, active clustering, lock-loose multiprocessing answer for load balancer, ant colony
optimization, shortest response time first, based random sampling, active clustering, and honey bee
foraging behavior [25].

Reference [26] investigates the different techniques of load balancing algorithms to find the
solution for the issues associated with load balancing and venture scheduling in cloud computing.
The paper contrasts the static and dynamic load balancing algorithms, pointing out that the static
algorithms in overhead phrases are very efficient because they do not need to screen the assets through

Sensors 2020, 20, 7342 10 of 26

run-time. Therefore, they might work properly in stable surroundings as their operational residences
will not exchange over time and masses are normally regular and unique. On the alternative hand,
the dynamic algorithms give higher solutions in order that the properties of the resources at run time
can be adjusted dynamically at run-time.

In cloud computing, managing and allocating the responsibilities are the major and most difficult
tasks. It requires the ideal deployment of computing resources and also monitoring the overload of the
resources. This article uses the ant colony optimization [27] load balancing technique for the route
the incoming traffic load dynamically. They describe the two policies first max-min and the second
ahead-backward ant tool. The ahead-backward ant tool always checks the neighboring resources for a
quick and optimal load transfer process. This paper also shows that pre-planned requirements cannot
route the optimal performance of dynamic load balancer for the cloud with much less time. However,
it also can also bring network routine below average and severely loaded environments.

Cloud computing has developed one of the most noteworthy services for its power in every part
of networking and a new variety of technologies such as security, volume, quality of service, charge,
and availability, etc. The major challenge in the cloud network is load balancing. Multiple algorithms
were proposed to solve the issues. Some measured fixed variables, while others measured through
dynamic variables. In this paper, fixed variables procedures are used with the fresh projected algorithm
“MEMA technique” [28]. In the projected algorithm, a few phases are additional to the weighted round
robin. Moreover, a comparative study is an analysis between the weighted round robin and MEMA
technique is obtainable.

After the evolution of virtualization and cloud infrastructure, cloud computing offers
the pay-as-you-go model. It supports cloud computing infrastructure by enlightening the
overall performance, enhanced computing assets deployment, power consumption administration,
increasing the cloud facilities’ quality of service. In [29,30] the authors study the requirements of
assets, design, and web application architecture. They implement the load balancer using general,
architectural, and artificial intelligence algorithms according to architecture and requirements. In the
end, they evaluate the algorithms and enumerate the positive and negative aspects of the load
balancing algorithm.

In this paper, we investigate the load balancer algorithms round robin and least connection
algorithm with the help of live cloud infrastructure, which was deployed on the DigitalOcean cloud.
We have used open-source services like PHP for a dynamic web application, HAProxy for implementing
load balancer algorithms, MariaDB for database, Cloud Firewall for securing the webservers and
database server, and Apache Jmeter for testing and analyzing the load on the website [31]. Meanwhile,
in the other papers, most authors use the cloud analyst simulation tool to analyze their load balancing
algorithms [2–5]. The Cloud Analyst simulation tool is a pre-defined simulation tool for analyzing
algorithms. The use of the cloud analyst simulation tool is now a very important technique for analyzing
the load test. We use the quality-of-service parameters to compare the performance and analysis of the
algorithms with their overall execution time of each algorithm in milliseconds, average response time,
throughput, network bandwidth, and other parameters. The comparison of the works of different
authors is summarized in Table 2.

Sensors 2020, 20, 7342 11 of 26

Table 2. Comparison of Related Works.

Author (Year) [Reference] Objective Method/Technique/Tool Analysis

Manaseer (2019) [29] Reduce response time for
vital request

Fixed variables
algorithm “MEMA
Technique”

Adding few steps in weighted
round robin (wrr) improves the
distribution of traffic through
servers

Tahani Aladwani. (2017) [17]

Scheduling algorithms
for monitoring and
improve cloud
computing performance.

Selecting Virtual
Machine with the least
load

Get the best assets consumption,
decreasing waiting and executing
time performance.

M. Al-Ayyoub (2016) [20]

Analyses the conditions
and splits the load
balancing methodology
into multiple layers.

Multi-agent framework

Reduces energy utilization,
average response time, and
network load. An approximate
28% improvement showed.

Ren Gao (2015) [28]

Ahead-backward a tool
to find nearest resources
for a quick and optimal
load transfer.

Ant Colony
Optimization

Uses Ant Colony Optimization to
route the incoming traffic load
dynamically.

M. Rahman (2014) [14]

Focus on load balancer
as a business model and
importance in a cloud
environment

Load Balancer as a
Service Model

Present load balancer as a service
model, and adopt the best service
for optimal performance.

Y. Fahim (2014) [18]
Try to overcome the
glitches caused by static
algorithms.

Estimated finish time
load balancer

Increase the performance,
accessibility and maximize
utilization of the use of virtual
machines

H.C. Hsiao (2013) [27]

Reduce the dynamic load
imbalance in a
distributed file system in
a cloud environment

MapReduce
programming paradigm

MapReduce is performed in
parallel over the servers and
improve the performance and
reduce the imbalance of load.

4. Methodology

This section shows a comparative study of two of the most commonly used load balancing
algorithms. We perform an analysis on the round robin and least connections algorithms. The cloud
environment in this paper contains the load balancer server and several target web servers. The virtual
users send requests to the load balancer server, which then forwards the request to the target web
servers following a standing procedure. The target web servers are supposed to be organized in a
parallel topology, which means that once the server finishes processing the requests, it will return the
result straight to the virtual user. We used the HAProxy service to implement the algorithms and the
JMeter tool for analyzing the results of the algorithms.

In the following subcategories, we define the commonly used cloud simulation tool for introduction
purpose only and appropriate comparative research works that apply load balancing algorithms from
the cloud sources or cloud audience perceptions.

4.1. HAProxy

High Availability Proxy is a free or open-source load balancer, which can load balance very
fast, and consistent solutions provide high accessibility, load balancing and a proxy for TCP and
HTTP/HTTPS-created web applications. In recent times, with an increase in user traffic, HAProxy is
the highly demanding load balancer that easily handles a larger number of audiences. It became
the most regular open-source load balancer and distributed with the majority of Linux distributions
like RedHat, CentOS, Ubuntu, Fedora, etc. It is also installed by default in cloud virtual machines.
Each load balancer server has its own public IP address but shares the same fully qualified domain
name. HAProxy [32] backend configuration file is responsible for the load balancing algorithm.
HAProxy has nine algorithms, but in this paper, we are testing the two major load balancer algorithms
widely used by cloud architecture and cloud service providers.

Sensors 2020, 20, 7342 12 of 26

4.2. Round Robin Algorithm

The first and simplest algorithm is Round Robin. We can go on by entering “balance round robin”
in the backend section file of HAProxy. With this selection, HAProxy will forward the request over the
servers and evenly load your “cluster”. The code example:

backend

balance roundrobin
server server1 webserver01:80
server server2 webserver02:80
server server3 webserver02:80

In this case, webserver01, webserver02 and webserver03 are the hostname of the servers, we can
enter IP addresses also instead of hostname.

4.3. Least Connections Algorithm

This load balancer algorithm called “least connections” calculates the number of lively connections
for each server. Thus, each following request is distributed to the server with the lowermost number
of active connections. We can turn this algorithm on by entering “balance leastconn” in the backend
section file of HAProxy. Least Connections is dynamic in nature, which means that server loads may
be adjusted on the gentle starts for nodes:

backend

balance leastconn
server server1 lcserver01:80
server server2 lcserver02:80
server server3 lcserver02:80

In this case, lcserver01, lcserver02, and lcserver03 are the hostnames of the servers; we can enter
IP addresses also instead of hostname.

4.4. Apache Jmeter

Apache JMeter is a free or open-source, pure Java-based, performance, stress and load testing tool
that can be used to analyze the efficient behavior of organizations and calculate the performance of web
applications under various load tests. A load test will simulate end-user behavior that methodology
the bounds of a web application’s conditions. This tool can be used to design varying or heavy loads on
a single or cluster of servers, networks, and concurrent users to test web applications or organizational
structure. The work flow chart of the apache jmeter is shown in Figure 7.

Apache JMeter includes various applications, server/protocols:

• Web—HTTP, HTTPS (Java, NodeJS, PHP, ASP.NET)
• SOAP/REST Web services
• FTP
• Database via JDBC
• LDAP
• Message-oriented middleware (MOM) via JMS
• Mail Services like SMTP, POP3 and IMAP
• Native commands or shell scripts
• TCP
• Java Objects

Sensors 2020, 20, 7342 13 of 26

Sensors 2020, 20, x FOR PEER REVIEW 13 of 26

• SOAP/REST Web services
• FTP
• Database via JDBC
• LDAP
• Message-oriented middleware (MOM) via JMS
• Mail Services like SMTP, POP3 and IMAP
• Native commands or shell scripts
• TCP
• Java Objects

Figure 7. Workflow diagram of Apache Jmeter.

4.5. Cloud Analyst Simulation Tool

Cloud Analyst is a java-based framework designed at the University of Melbourne to support
the regional distribution of users and datacentres to analyze the cloud infrastructure, resources, and
network tools. This simulation tool defines and creates user groups, physical hardware details and
generates high traffic for testing the cloud infrastructure. It offers a virtualization technology with
complete models for virtual infrastructure to be created and operated in a datacentre. This tool
provides an easy to use graphical user interface. The table, diagram and explanation of the potentially
high numbers of statistics earned during simulation is given for graphical results. This effective
presentation helps identify the respective patterns in performance parameters and facilitates
associations between them.

4.6. Experimental Setup

In order to implement the suggested round robin and least connections algorithm and compare
both algorithms’ effectiveness and performance, the HAProxy load balancer has been configured and
utilized. Apache JMeter is used to analyze the results of both algorithms. This section provides
information about the cloud service provider, virtual machines, resources, cost and other software
used for load testing setup. It also explains the design of the HAProxy load balancer and Apache
JMeter and the necessary modules involved, followed by the implementation of the least connection
algorithm and round robin algorithm.

4.6.1. Virtual Machines Setup and Software

Figure 7. Workflow diagram of Apache Jmeter.

4.5. Cloud Analyst Simulation Tool

Cloud Analyst is a java-based framework designed at the University of Melbourne to support the
regional distribution of users and datacentres to analyze the cloud infrastructure, resources, and network
tools. This simulation tool defines and creates user groups, physical hardware details and generates
high traffic for testing the cloud infrastructure. It offers a virtualization technology with complete
models for virtual infrastructure to be created and operated in a datacentre. This tool provides an easy
to use graphical user interface. The table, diagram and explanation of the potentially high numbers
of statistics earned during simulation is given for graphical results. This effective presentation helps
identify the respective patterns in performance parameters and facilitates associations between them.

4.6. Experimental Setup

In order to implement the suggested round robin and least connections algorithm and compare
both algorithms’ effectiveness and performance, the HAProxy load balancer has been configured
and utilized. Apache JMeter is used to analyze the results of both algorithms. This section provides
information about the cloud service provider, virtual machines, resources, cost and other software
used for load testing setup. It also explains the design of the HAProxy load balancer and Apache
JMeter and the necessary modules involved, followed by the implementation of the least connection
algorithm and round robin algorithm.

4.6.1. Virtual Machines Setup and Software

DigitalOcean Inc. [33] is an American cloud infrastructure company. Its headquarters are
situated in New York City and datacenters are present worldwide. DigitalOcean offers creators
cloud facilities that help set up and scale applications that run concurrently on several workstations.
Since January 2018, DigitalOcean was the third-largest cloud hosting provider in the world in positions
of web-facing workstations.

We designed simple cloud architecture for the comparative and analysis of different load balancer
algorithms. we used a total of ten virtual machines for the cloud architecture implemented in
DigitalOcean. Five virtual machines are used for the RR algorithm and the remaining five virtual
machines are used for LC algorithm, as shown in Table 3 The following are the configuration of virtual
machines, which was used in the demonstration.

Sensors 2020, 20, 7342 14 of 26

Table 3. Configuration of virtual machines used in cloud architecture for analysis of load
balancer Algorithm.

S. No. Name vCPU Memory Storage Qty Cost

1 Web Servers for Round Robin 1 Core 2 GB 50 GB SSD 3 $10/month
2 Database Server for Round Robin 1 Core 1 GB 25 GB SSD 1 $5/month

3 Web Servers for Least
Connections 1 Core 2 GB 50 GB SSD 3 $10/month

4 Database Server for Least
Connections 1 Core 1 GB 25 GB SSD 1 $5/month

5 Load Balancer Virtual Machine
for Round Robin 1 Core 2 GB 50GB SSD 1 $10/month

6 Load Balancer Virtual Machine
for Least Connections 1 Core 2 GB 50GB SSD 1 $10/month

4.6.2. Primary Setup of Virtual Machines

The important sections and services are set up in all virtual machines to use for demonstration
and each service is explained in detail below.

Datacentre Regions

This section is used to specify the terrestrial sites of the cloud architecture where the resources are
allotted. In general, DigitalOcean provides eight datacenter regions of different continents in total.
The datacenter provides the infrastructure to the cloud architecture design by audience/users or cloud
design. Each datacenter consists of a number of virtual machines. All the resources: Ram, storage,
IP Address, firewall, core, etc. and virtual machines have their own specifications.

Apache Server

The Apache HTTP Server or Apache is an open-source web server software program, launched
under Apache License 2.0. Apache has been evolved and maintained with the aid of public builders
under the sponsorships of the Apache software program foundation [34]. The large majority of Apache
net Server nodes run on a Linux operating system; however, present variations also run on Microsoft
home windows Server and a varied variety of Unix-like operating systems. Apache permits customers
to serve content like textual content, photographs, audio and video, and so forth on the internet-
therefore the name “webserver”.

PHP

PHP Hypertext Pre-processor is a server-side programming language and a dominant program for
designing the making of dynamic and interactive web applications and pages. PHP is the commonly
used, free, and well-organized scripting language and it is an alternative to challengers such as
Microsoft’s ASP. PHP 7 is the newest stable release.

MariaDB

MariaDB is a community-advanced, commercially supported department of the MySQL Relational
Database Management System (RDBMS), expected to stay unfastened and open-source software beneath
the GNU General Public License. Improvement is led by a number of the unique programmers of
MySQL who left it because of concerns over its getting hold of by way of Oracle organization in 2009.

Cloud Firewall

Firewalls place a barricade between servers and other digital devices or other devices on the
network to guard them against exterior malicious traffic like viruses, DDOS attacks, and hackers.
Firewalls can be host-based, which are constructed on a per-server source using daemons like IPTables
or UFW. Cloud firewalls are network-based and halt traffic at the network layer before it reaches
the server.

Sensors 2020, 20, 7342 15 of 26

4.6.3. Implementation of the Round Robin Algorithm

In this subsection, we described step by step implementation of the round robin algorithm, and the
figure described the basic model of round robin how the requests are served in the backend shown in
Figure 8. The implementation steps of Round Robin Algorithm is given below.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 26

commonly used, free, and well-organized scripting language and it is an alternative to challengers
such as Microsoft’s ASP. PHP 7 is the newest stable release.

MariaDB

MariaDB is a community-advanced, commercially supported department of the MySQL
Relational Database Management System (RDBMS), expected to stay unfastened and open-source
software beneath the GNU General Public License. Improvement is led by a number of the unique
programmers of MySQL who left it because of concerns over its getting hold of by way of Oracle
organization in 2009.

Cloud Firewall

Firewalls place a barricade between servers and other digital devices or other devices on the
network to guard them against exterior malicious traffic like viruses, DDOS attacks, and hackers.
Firewalls can be host-based, which are constructed on a per-server source using daemons like
IPTables or UFW. Cloud firewalls are network-based and halt traffic at the network layer before it
reaches the server.

4.6.3. Implementation of the Round Robin Algorithm

In this subsection, we described step by step implementation of the round robin algorithm, and
the figure described the basic model of round robin how the requests are served in the backend
shown in Figure 8. The implementation steps of Round Robin Algorithm is given below.

1. The first request of users comes to HAPrxoy Load Balancer, as shown in Figure 8.
2. HAProxy Load Balancer selects which VM should get incoming requests.
3. The first request of the user is assigned to any random VM.
4. Once the first request is assigned, virtual machines are ordered in a cyclic manner.
5. Virtual machine which received the first user request is moved back to all virtual machines.
6. The next request of users is assigned to the next VM in cyclic order.
7. Go to Step 3 for each user request until Load Balancer processes all requests.

Figure 8. Model of the round robin algorithm.

4.6.4. Implementation of the Least Connections Algorithm

This subsection described step by step implementation of the least connections algorithm shown
below. The figure described the basic model of least connections how the requests are served by the
least connections in the backend shown in Figure 9. The implementation steps of the Least
Connections Algorithm is given below.

1) The first request of users comes to HAPrxoy Load Balancer, as shown in Figure 8.
2) HAProxy Load Balancer selects which VM should get incoming requests.
3) The first request of the user is assigned to any random virtual machine.

Figure 8. Model of the round robin algorithm.

1. The first request of users comes to HAPrxoy Load Balancer, as shown in Figure 8.
2. HAProxy Load Balancer selects which VM should get incoming requests.
3. The first request of the user is assigned to any random VM.
4. Once the first request is assigned, virtual machines are ordered in a cyclic manner.
5. Virtual machine which received the first user request is moved back to all virtual machines.
6. The next request of users is assigned to the next VM in cyclic order.
7. Go to Step 3 for each user request until Load Balancer processes all requests.

4.6.4. Implementation of the Least Connections Algorithm

This subsection described step by step implementation of the least connections algorithm shown
below. The figure described the basic model of least connections how the requests are served by the
least connections in the backend shown in Figure 9. The implementation steps of the Least Connections
Algorithm is given below.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 26

4) Once the first request is assigned, virtual machines are ordered in the least amount of
connections that have the least amount of requests, then assign the new request to that VM.

5) VM, which received the first user request, is moved back to all virtual machines after completing
all the user requests.

6) The next request of users is assigned to the next VM in the least number of connections.
7) Go to Step 3 for each user’s request until load balancer processes all requests.

Figure 9. Model of the least connections algorithm.

How to configure the round robin and least connections in the algorithm in the HAProxy
configuration file are mentioned in Figure 10.

Figure 10. The configuration code of the RR and LC algorithms.

5. Results & Evaluation

This section features a detailed discussion about the setup of cases for performing load testing
on load balancer servers and explains the results of each case. The quality of service parameters used
to compare the performance and analysis of the suggested algorithms with their overall execution
time of each algorithm in milliseconds, response time, average execution time, 90% percentile, 95%

Figure 9. Model of the least connections algorithm.

Sensors 2020, 20, 7342 16 of 26

(1) The first request of users comes to HAPrxoy Load Balancer, as shown in Figure 8.
(2) HAProxy Load Balancer selects which VM should get incoming requests.
(3) The first request of the user is assigned to any random virtual machine.
(4) Once the first request is assigned, virtual machines are ordered in the least amount of connections

that have the least amount of requests, then assign the new request to that VM.
(5) VM, which received the first user request, is moved back to all virtual machines after completing

all the user requests.
(6) The next request of users is assigned to the next VM in the least number of connections.
(7) Go to Step 3 for each user’s request until load balancer processes all requests.

How to configure the round robin and least connections in the algorithm in the HAProxy
configuration file are mentioned in Figure 10.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 26

4) Once the first request is assigned, virtual machines are ordered in the least amount of
connections that have the least amount of requests, then assign the new request to that VM.

5) VM, which received the first user request, is moved back to all virtual machines after completing
all the user requests.

6) The next request of users is assigned to the next VM in the least number of connections.
7) Go to Step 3 for each user’s request until load balancer processes all requests.

Figure 9. Model of the least connections algorithm.

How to configure the round robin and least connections in the algorithm in the HAProxy
configuration file are mentioned in Figure 10.

Figure 10. The configuration code of the RR and LC algorithms.

5. Results & Evaluation

This section features a detailed discussion about the setup of cases for performing load testing
on load balancer servers and explains the results of each case. The quality of service parameters used
to compare the performance and analysis of the suggested algorithms with their overall execution
time of each algorithm in milliseconds, response time, average execution time, 90% percentile, 95%

Figure 10. The configuration code of the RR and LC algorithms.

5. Results & Evaluation

This section features a detailed discussion about the setup of cases for performing load testing on
load balancer servers and explains the results of each case. The quality of service parameters used to
compare the performance and analysis of the suggested algorithms with their overall execution time of
each algorithm in milliseconds, response time, average execution time, 90% percentile, 95% percentile,
99th percentile throughput, network bandwidth, active threads over time, latency over time and more.

In this task, we set up cloud architecture on DigitalOcean and host one dynamic website to test
RR and LC algorithms, as shown in Figure 11. This experimental result focuses on different cases that
were designed for scheduling incoming requests.

5.1. First Load Test

We perform our test with 1500 samples (samples means users), 1500 samples are divided into
three pages and each page serves 500 samplers and every 20 s, 25 samples are hitting the server.
After completing all samplers’ requests, we generate tabular reports as well as graphs. Performance
analysis with different parameters on two algorithms and their statistical results and graphs obtained
from the first load test are shown in Table 4 and in Figures 12 and 13.

Sensors 2020, 20, 7342 17 of 26

Sensors 2020, 20, x FOR PEER REVIEW 17 of 26

percentile, 99th percentile throughput, network bandwidth, active threads over time, latency over
time and more.

In this task, we set up cloud architecture on DigitalOcean and host one dynamic website to test
RR and LC algorithms, as shown in Figure 11. This experimental result focuses on different cases that
were designed for scheduling incoming requests.

Figure 11. Cloud architecture implementation on DigitalOcean.

5.1. First Load Test

We perform our test with 1500 samples (samples means users), 1500 samples are divided into
three pages and each page serves 500 samplers and every 20 s, 25 samples are hitting the server. After
completing all samplers’ requests, we generate tabular reports as well as graphs. Performance
analysis with different parameters on two algorithms and their statistical results and graphs obtained
from the first load test are shown in Table 4 and in Figures 12 and 13.

Table 4. Statistics table of the RR algorithm and LC algorithm for the first load test.

Labe
l.

Sampl

es

Aver
age

Medi
an

90%
Line

95%
Line

99%
Line

Mi
n

M
ax

Error
%

Throug
hput

Received
KB/sec

Sent
KB/sec

RR
Hom

e
500 305 232 519 729 1239

11
9

24
18

0.00
%

19.69047 499.93 2.38

RR
Term

s
500 215 150 441 606 1013 77

22
70

0.00
%

19.9984 466.76 2.62

RR
Cont
act

500 190 137 344 531 748 76
12
81

0.00
%

19.98082 431.23 2.52

TOT
AL

1500 236 181 438 615 1191 76
24
18

0.00
%

58.53202 1371.83 7.37

LC
Hom

e
500 340 246 616 896 1300

12
9

15
19

0.00
%

19.49774 495.04 2.3

LC
Term

s
500 245 172 493 608 1153 80

20
38

0.00
%

19.47268 454.49 2.49

LC
Cont
act

500 229 155 453 565 1141 81
16
01

0.00
%

19.42351 419.2 2.39

TOT
AL

1500 271 208 525 672 1255 80
20
38

0.00
%

57.03205 1336.67 7.02

Figure 11. Cloud architecture implementation on DigitalOcean.Sensors 2020, 20, x FOR PEER REVIEW 18 of 26

Figure 12. Aggregate graph using Table 3 data that shows average response time, median, 90%, 95%,
99%, min, max, and throughput parameter of combined graph of the RR and LC algorithms.

Figure 13 Throughput or transactions per second of the RR and LC algorithms.

5.2. Second Load Test

In the second case, we perform a test with 3000 samples, divided into three pages and each page
serves 1000 samplers and every 40 s, 25 samples are hitting the server. After completing all samplers’
requests, we generate tabular reports as well as graphs. Performance analysis with different
parameters on the two algorithms and their statistical results and graphs obtained from the second
load test are shown in Table 5, Figures 14 and 15 below.

Figure 12. Aggregate graph using Table 3 data that shows average response time, median, 90%, 95%,
99%, min, max, and throughput parameter of combined graph of the RR and LC algorithms.

Sensors 2020, 20, x FOR PEER REVIEW 18 of 26

Figure 12. Aggregate graph using Table 3 data that shows average response time, median, 90%, 95%,
99%, min, max, and throughput parameter of combined graph of the RR and LC algorithms.

Figure 13 Throughput or transactions per second of the RR and LC algorithms.

5.2. Second Load Test

In the second case, we perform a test with 3000 samples, divided into three pages and each page
serves 1000 samplers and every 40 s, 25 samples are hitting the server. After completing all samplers’
requests, we generate tabular reports as well as graphs. Performance analysis with different
parameters on the two algorithms and their statistical results and graphs obtained from the second
load test are shown in Table 5, Figures 14 and 15 below.

Figure 13. Throughput or transactions per second of the RR and LC algorithms.

5.2. Second Load Test

In the second case, we perform a test with 3000 samples, divided into three pages and each page
serves 1000 samplers and every 40 s, 25 samples are hitting the server. After completing all samplers’
requests, we generate tabular reports as well as graphs. Performance analysis with different parameters
on the two algorithms and their statistical results and graphs obtained from the second load test are
shown in Table 5, Figures 14 and 15 below.

Sensors 2020, 20, 7342 18 of 26

Table 4. Statistics table of the RR algorithm and LC algorithm for the first load test.

Label # Samples Average Median 90% Line 95% Line 99% Line Min Max Error % Throughput Received KB/s Sent KB/s

RR
Home 500 305 232 519 729 1239 119 2418 0.00% 19.69047 499.93 2.38

RR
Terms 500 215 150 441 606 1013 77 2270 0.00% 19.9984 466.76 2.62

RR
Contact 500 190 137 344 531 748 76 1281 0.00% 19.98082 431.23 2.52

TOTAL 1500 236 181 438 615 1191 76 2418 0.00% 58.53202 1371.83 7.37
LC

Home 500 340 246 616 896 1300 129 1519 0.00% 19.49774 495.04 2.3

LC
Terms 500 245 172 493 608 1153 80 2038 0.00% 19.47268 454.49 2.49

LC
Contact 500 229 155 453 565 1141 81 1601 0.00% 19.42351 419.2 2.39

TOTAL 1500 271 208 525 672 1255 80 2038 0.00% 57.03205 1336.67 7.02

Table 5. Statistics table of the round robin algorithm and least connection algorithm of the second load test.

Label # Samples Average Median 90% Line 95% Line 99% Line Min Max Error % Throughput Received
KB/s Sent KB/s

RR About Us 1000 428 284 810 1233 2254 136 6512 0.00% 36.70264 727.17 4.87
RR Car
Listing 1000 326 213 617 816 1246 85 5748 0.00% 36.63004 970.62 4.65

RR Terms 1000 330 238 631 786 1439 83 4454 0.00% 36.5992 854.22 4.79
TOTAL 3000 361 245 668 987 1594 83 6512 0.00% 106.37166 2469.61 13.85

LC About Us 1000 627 367 1270 1594 3100 185 8492 0.00% 34.93938 692.24 4.54
LC Car
Listing 1000 538 383 1052 1351 2491 119 4549 0.00% 35.44465 939.21 4.4

LC Terms 1000 604 450 1196 1531 2878 112 5001 0.00% 35.04223 817.88 4.48
TOTAL 3000 590 387 1212 1520 2833 112 8492 0.00% 102.06165 2369.54 12.99

Sensors 2020, 20, 7342 19 of 26

Sensors 2020, 20, x FOR PEER REVIEW 19 of 26

Table 5. Statistics table of the round robin algorithm and least connection algorithm of the second
load test.

Label

Sampl
es

Aver
age

Med
ian

90%
Line

95%
Line

99%
Line

M
in

M
ax

Erro
r %

Throug
hput

Received
KB/sec

Sent
KB/sec

RR
About Us

1000 428 284 810 1233 2254
13
6

65
12

0.00
%

36.7026
4

727.17 4.87

RR Car
Listing

1000 326 213 617 816 1246 85
57
48

0.00
%

36.6300
4

970.62 4.65

RR
Terms

1000 330 238 631 786 1439 83
44
54

0.00
%

36.5992 854.22 4.79

TOTAL 3000 361 245 668 987 1594 83
65
12

0.00
%

106.371
66

2469.61 13.85

LC
About Us 1000 627 367 1270 1594 3100

18
5

84
92

0.00
%

34.9393
8 692.24 4.54

LC Car
Listing

1000 538 383 1052 1351 2491
11
9

45
49

0.00
%

35.4446
5

939.21 4.4

LC
Terms

1000 604 450 1196 1531 2878
11
2

50
01

0.00
%

35.0422
3

817.88 4.48

TOTAL 3000 590 387 1212 1520 2833
11
2

84
92

0.00
%

102.061
65

2369.54 12.99

Figure 14. Aggregate graph using Table 4 data, showing the average response time, median, 90%,
95%, 99%, min, max, and throughput parameter of combined graph of the RR and LC algorithms.
Figure 14. Aggregate graph using Table 4 data, showing the average response time, median, 90%, 95%,
99%, min, max, and throughput parameter of combined graph of the RR and LC algorithms.Sensors 2020, 20, x FOR PEER REVIEW 20 of 26

Figure 15. Throughput or transactions per second of the RR and LC algorithms.

5.3. Third Load Test

In the third case, we test 4500 samples divided into three pages and each page serves 1500
samplers and all samplers’ hitting the server in the span time of 1 min. After completing all samplers’
requests, we generate tabular reports as well as graphs. Performance analysis with different
parameters on two algorithms and their statistical results and graphs obtained from the second load
test are shown in Table 6, Figures 16 and 17.

Table 6. Statistics table of the round robin algorithm and least connection algorithm of the third load
test.

Label

Samp
les

Aver
age

Med
ian

90%
Line

95%
Line

99%
Line

M
in

Ma
x

Erro
r %

Throug
hput

Received
KB/sec

Sent
KB/sec

RR-Vechile-
Detail-01

1500 470 315 933 1299 1762
12
3

513
6

0.00
%

54.5454
5

1391.02 7.56

RR-Vechile-
Detail-02

1500 423 275 817 1164 2269
10
3

481
0

0.00
%

52.9885
5

1391.05 7.35

RR-Vechile-
Detail-03

1500 463 306 901 1214 2377 85
508

1
0.00
%

52.9960
4

1335.3 7.35

TOTAL 4500 452 309 884 1246 2246 85
513

6
0.00
%

156.217
5

4006.99 21.66

LC-Vehicle-
Detail-01

1500 790 435 1495 2224 4379
15
7

180
01

0.00
%

49.6869
7

1267.11 6.74

LC-Vehicle-
Detail-02

1500 726 442 1336 1904 5031
12
7

180
46

0.00
%

47.7874
4

1254.51 6.49

LC-Vehicle-
Detail-03

1500 769 531 1480 2211 4561
11
9

167
27

0.00
%

45.9474
4

1157.7 6.24

TOTAL 4500 762 475 1439 2096 4569 11
9

180
46

0.00
%

132.131
4

3389.18 17.94

Figure 15. Throughput or transactions per second of the RR and LC algorithms.

5.3. Third Load Test

In the third case, we test 4500 samples divided into three pages and each page serves 1500 samplers
and all samplers’ hitting the server in the span time of 1 min. After completing all samplers’ requests,
we generate tabular reports as well as graphs. Performance analysis with different parameters on two
algorithms and their statistical results and graphs obtained from the second load test are shown in
Table 6, Figures 16 and 17.

Sensors 2020, 20, 7342 20 of 26

Table 6. Statistics table of the round robin algorithm and least connection algorithm of the third load test.

Label # Samples Average Median 90% Line 95% Line 99% Line Min Max Error % Throughput Received
KB/s Sent KB/s

RR-Vechile-Detail-01 1500 470 315 933 1299 1762 123 5136 0.00% 54.54545 1391.02 7.56
RR-Vechile-Detail-02 1500 423 275 817 1164 2269 103 4810 0.00% 52.98855 1391.05 7.35
RR-Vechile-Detail-03 1500 463 306 901 1214 2377 85 5081 0.00% 52.99604 1335.3 7.35

TOTAL 4500 452 309 884 1246 2246 85 5136 0.00% 156.2175 4006.99 21.66
LC-Vehicle-Detail-01 1500 790 435 1495 2224 4379 157 18001 0.00% 49.68697 1267.11 6.74
LC-Vehicle-Detail-02 1500 726 442 1336 1904 5031 127 18046 0.00% 47.78744 1254.51 6.49
LC-Vehicle-Detail-03 1500 769 531 1480 2211 4561 119 16727 0.00% 45.94744 1157.7 6.24

TOTAL 4500 762 475 1439 2096 4569 119 18046 0.00% 132.1314 3389.18 17.94

Sensors 2020, 20, 7342 21 of 26

Sensors 2020, 20, x FOR PEER REVIEW 21 of 26

Figure 16. Aggregate graph using Table 5 data. It shows the average response time, median, 90%,
95%, 99%, min & max parameters of the combined graph of the RR and LC algorithms of Table 4.

Figure 17. Throughput or transaction per second of the RR and LC algorithms.

5.4. Fourth Load Test

In the fourth case, we perform the test with 6000 samples divided into three pages and each page
serves 2000 samplers and all samplers’ hitting the server at the same time. After completing all
samplers’ requests, we generate tabular reports as well as graphs. Performance analysis with different
parameters on the wo algorithms and the statistical results and graphs obtained from the second load
test are shown in Table 7, Figures 18 and 19.

Figure 16. Aggregate graph using Table 5 data. It shows the average response time, median, 90%, 95%,
99%, min & max parameters of the combined graph of the RR and LC algorithms of Table 4.

Sensors 2020, 20, x FOR PEER REVIEW 21 of 26

Figure 16. Aggregate graph using Table 5 data. It shows the average response time, median, 90%,
95%, 99%, min & max parameters of the combined graph of the RR and LC algorithms of Table 4.

Figure 17. Throughput or transaction per second of the RR and LC algorithms.

5.4. Fourth Load Test

In the fourth case, we perform the test with 6000 samples divided into three pages and each page
serves 2000 samplers and all samplers’ hitting the server at the same time. After completing all
samplers’ requests, we generate tabular reports as well as graphs. Performance analysis with different
parameters on the wo algorithms and the statistical results and graphs obtained from the second load
test are shown in Table 7, Figures 18 and 19.

Figure 17. Throughput or transaction per second of the RR and LC algorithms.

5.4. Fourth Load Test

In the fourth case, we perform the test with 6000 samples divided into three pages and each
page serves 2000 samplers and all samplers’ hitting the server at the same time. After completing all
samplers’ requests, we generate tabular reports as well as graphs. Performance analysis with different
parameters on the wo algorithms and the statistical results and graphs obtained from the second load
test are shown in Table 7, Figures 18 and 19.

Sensors 2020, 20, 7342 22 of 26

Table 7. Statistics table of the round robin and least connections algorithms for the fourth load test.

Label # Samples Average Median 90% Line 95% Line 99% Line Min Max Error % Throughput Received
KB/s Sent KB/s

RR-Search 2000 136 140 185 209 249 81 549 0.00% 65.12113 1446.27 8.59
RR-Privacy 2000 103 97 123 136 170 74 422 0.00% 65.30612 1295.92 8.67

RR-FAQ 2000 103 96 123 138 169 76 383 0.00% 65.29973 1244.07 8.48
TOTAL 6000 114 100 154 175 233 74 549 0.00% 194.1496 3954.47 25.53

LC-Search 2000 200 167 276 388 689 84 2761 0.00% 61.50062 1365.87 7.93
LC-Privacy 2000 147 122 217 281 548 82 1116 0.00% 62.751 1245.22 8.15

LC-FAQ 2000 153 124 216 316 632 82 1244 0.00% 62.81012 1196.64 7.97
TOTAL 6000 167 136 255 336 618 82 2761 0.00% 182.9324 3726 23.52

Sensors 2020, 20, 7342 23 of 26

Sensors 2020, 20, x FOR PEER REVIEW 22 of 26

Table 7. Statistics table of the round robin and least connections algorithms for the fourth load test.

Label

Sampl
es

Aver
age

Med
ian

90%
Line

95%
Line

99%
Line

M
in

M
ax

Error
%

Throug
hput

Received
KB/sec

Sent
KB/sec

RR-
Search

2000 136 140 185 209 249 81
54
9

0.00
%

65.12113 1446.27 8.59

RR-
Privacy

2000 103 97 123 136 170 74
42
2

0.00
%

65.30612 1295.92 8.67

RR-
FAQ 2000 103 96 123 138 169 76

38
3

0.00
% 65.29973 1244.07 8.48

TOTA
L

6000 114 100 154 175 233 74
54
9

0.00
%

194.1496 3954.47 25.53

LC-
Search

2000 200 167 276 388 689 84
27
61

0.00
%

61.50062 1365.87 7.93

LC-
Privacy

2000 147 122 217 281 548 82
11
16

0.00
%

62.751 1245.22 8.15

LC-
FAQ

2000 153 124 216 316 632 82
12
44

0.00
%

62.81012 1196.64 7.97

TOTA
L

6000 167 136 255 336 618 82
27
61

0.00
%

182.9324 3726 23.52

Figure 18. Aggregate graph using Table 6 data, showing the average response time, median, 90%,
95%, 99%, min & max parameter of the combined graphs of the RR and LC algorithms of Table 5.
Figure 18. Aggregate graph using Table 6 data, showing the average response time, median, 90%, 95%,
99%, min & max parameter of the combined graphs of the RR and LC algorithms of Table 5.Sensors 2020, 20, x FOR PEER REVIEW 23 of 26

Figure 19. Throughput or transactions per second of the RR and LC algorithms.

After performing all the sample load tests, we found that the average response time, throughput
time, received KB/sec, Sent KB/sec results show that the round robin algorithm performs better than
the least connections algorithm. Tables 2–5 show that the average response times of the round robin
algorithm are 236, 361, 452 and 114 milliseconds, respectively. In contrast, the least connections times
are 271, 590, 762 and 167 milliseconds, respectively. When comparing average response time, we have
thus found that the round robin algorithm takes less time to serve all sample requests. For the second
parameter, the throughput times of the round robin algorithm are 58.53, 106.37, 156.21 and 194.14
milliseconds, respectively, and for the least connection algorithm they are 57.03, 102.06, 132.13 and
182.92 milliseconds, so in the throughput results, the round robin algorithm also performs better
because a higher throughput value is always better. The third parameter is network bandwidth, and
it includes received KB/sec, and sent KB/sec. The round robin received KB/sec values are 1371.83,
2469.61, 4006.99, 3954.47, and the sent KB/sec values are 7.37, 13.85, 21.66 and 25.53 KB/sec, while for
the least connections algorithm, the receive KB/sec values are 1336.37, 2369.54, 3389.18 and 3726
KB/sec, and the sent KB/sec values are 7.02, 12.99, 17.94 and 23.52 KB/sec. This result also shows that
the round robin algorithm network bandwidth utilization also performs better as compared to the
least connections algorithm. We have also compared the statistics tables and graphs of the different
cases, and the overall average response time of the round robin algorithm is low, and the throughput
is high as compared to the least connections algorithm. The network bandwidth is also high in the
the round robin algorithm. Therefore, the round robin algorithm performs better than the least
connections algorithm. The summarized result analysis is shown in Table 8.

Table 8. The summarized comparison result of the round robin and least connections algorithms.

 Average Response Time
(in milliseconds)

Throughput
(in milliseconds)

Received
(KB/sec) Sent (KB/sec)

Round Robin 290.75 128.815 2950.73 17.10
Least

Connections
447.5 118.54 2705.35 15.37

Desired Value
Lower Value (290.75) is

better
Higher Value

(128.815) is better

Higher Value
(2950.73) is

better

Higher Value
(17.10) is better

Result Round Robin Round Robin Round Robin Round Robin

6. Conclusions

Figure 19. Throughput or transactions per second of the RR and LC algorithms.

After performing all the sample load tests, we found that the average response time, throughput
time, received KB/s, Sent KB/s results show that the round robin algorithm performs better than the
least connections algorithm. Tables 2–5 show that the average response times of the round robin
algorithm are 236, 361, 452 and 114 milliseconds, respectively. In contrast, the least connections
times are 271, 590, 762 and 167 milliseconds, respectively. When comparing average response time,
we have thus found that the round robin algorithm takes less time to serve all sample requests.
For the second parameter, the throughput times of the round robin algorithm are 58.53, 106.37,
156.21 and 194.14 milliseconds, respectively, and for the least connection algorithm they are 57.03,
102.06, 132.13 and 182.92 milliseconds, so in the throughput results, the round robin algorithm also
performs better because a higher throughput value is always better. The third parameter is network
bandwidth, and it includes received KB/s, and sent KB/s. The round robin received KB/s values

Sensors 2020, 20, 7342 24 of 26

are 1371.83, 2469.61, 4006.99, 3954.47, and the sent KB/s values are 7.37, 13.85, 21.66 and 25.53 KB/s,
while for the least connections algorithm, the receive KB/s values are 1336.37, 2369.54, 3389.18 and
3726 KB/s, and the sent KB/s values are 7.02, 12.99, 17.94 and 23.52 KB/s. This result also shows that the
round robin algorithm network bandwidth utilization also performs better as compared to the least
connections algorithm. We have also compared the statistics tables and graphs of the different cases,
and the overall average response time of the round robin algorithm is low, and the throughput is high
as compared to the least connections algorithm. The network bandwidth is also high in the the round
robin algorithm. Therefore, the round robin algorithm performs better than the least connections
algorithm. The summarized result analysis is shown in Table 8.

Table 8. The summarized comparison result of the round robin and least connections algorithms.

Average Response
Time

(in milliseconds)

Throughput
(in milliseconds)

Received
(KB/s) Sent (KB/s)

Round Robin 290.75 128.815 2950.73 17.10
Least Connections 447.5 118.54 2705.35 15.37

Desired Value Lower Value
(290.75) is better

Higher Value
(128.815) is better

Higher Value
(2950.73) is better

Higher Value
(17.10) is better

Result Round Robin Round Robin Round Robin Round Robin

6. Conclusions

Cloud computing is widely used in industry. However, there are numerous standing issues
like server migration, load balancing, power management, network management, virtual machine
relocation, etc. In a cloud infrastructure, load balancing is a major task and a key challenge to distribute
the incoming or dynamic traffic workload proficiently and rightfully to all the cloud datacenters
to achieve audience satisfaction and optimal resource usage apportion. It is a huge challenge to
choose an algorithm that reduces the overall average response time and it should be cost-effective too.
In this paper, a comparison of the two round robin and least connections load balancing algorithms
helps choose the best load balancing algorithm for any particular situation. The statistical results
of the paper showed that if the average response time of the algorithm is low and throughput is
high, that means the algorithm performs better on the provided cloud infrastructure. This research
work can promote a superior algorithm by comparing and adding the different parameters like sticky
sessions, redirection rules, cookie-based sessions, etc. As future work, we will extend the current work
in multiple ways, like comparing existing load balancing algorithms such as weighted round robin,
source hash, least response time, and least bandwidth. We can also use the load balancing algorithms
on the database server where database transactions are high and compare the performance of the
database server with or without a load balancing algorithm. In this manner, the objective is to balance
the audience traffic of the cloud infrastructure while enhancing the execution, reducing the overall
response time, increasing the throughput for a particular number of jobs, and proficiently handle
resource usage.

Author Contributions: Conceptualization, B.A. and G.S.; methodology, H.K. and V.C.; software, B.A. and G.S.
validation, R.V.; formal analysis, H.K.; investigation, V.C.; resources, B.A. data curation, H.K.; writing—original
draft preparation, H.K.; writing—review and editing, H.K., G.S and V.C.; visualization, B.A.; supervision, B.A.;
project administration, H.K.; funding acquisition, V.C., R.V. All authors have read and agreed to the published
version of the manuscript.

Funding: This research work was catalyzed and supported by the National Council for Science and Technology
Communications (NCSTC), Department of Science and Technology (DST), Ministry of Science and Technology
(Govt. of India), New Delhi, India [grant recipient: Dr. Harleen Kaur and grant No. 5753/IFD/2015-16]. This work
is supported by VC Research (VCR 0000110) for Prof. Chang

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2020, 20, 7342 25 of 26

References

1. Shimonski, R.J. Windows Server (2003) Clustering & Load Balancing; Osborne McGraw-Hill: New York,
NY, USA, 2003; ISBN 0-07-222622-6.

2. Velte, A.T.; Velte, T.J.; Elsenpeter, R. Cloud Computing a Practical Approach; TATA Mc Graw-Hill: New York,
NY, USA, 2009; ISBN 0-07-162694-8.

3. Warneke, D.; Kao, O. Exploiting Dynamic Resource Allocation for Efficient Parallel Data Processing in the
Cloud. IEEE Trans. Parallel Distrib. Syst. 2011, 22, 985–997. [CrossRef]

4. Al-Rayis, E.; Kurdi, H. Performance Analysis of Load Balancing Architectures in Cloud Computing.
In Proceedings of the 2013 European Modelling Symposium, Manchester, UK, 20–22 November 2013;
pp. 520–524. [CrossRef]

5. Calheiros, R.N.; Ranjan, R.; de Rose, C.A.F.; Buyya, R. CloudSim: A Novel Framework for Modeling and Simulation
of Cloud Computing Infrastructure and Services; Technical Report, GRIDS-TR2009-1; Grids Computing and
Distributed Systems Laboratory, The University of Melbourne: Melbourne, Australia, 2009.

6. Wickremasinghe, B. CloudAnalyst: A Cloudsim-Based Tool for Modeling and Analysis of Large Scale Cloud
Computing Environments; MEDC Project Report; The University of Melbourne: Melbourne, Australia, 2009.

7. Tsai, C.W.; Rodrigues, J.J. Metaheuristic scheduling for cloud: A survey. IEEE Syst. J. 2014, 8, 279–291.
[CrossRef]

8. Kaur, H.; Alam, M.A.; Jameel, R.; Mourya, A.K.; Chang, V. A Proposed Solution and Future Direction
for Blockchain-Based Heterogeneous Medicare Data in Cloud Environment. J. Med. Syst. 2018, 42, 156.
[CrossRef] [PubMed]

9. Ramezani, F.; Lu, J.; Hussain, F.K. Task-Based System Load Balancing in Cloud Computing Using Particle
Swarm Optimization. Int. J. Parallel. Prog. 2014, 42, 739–754. [CrossRef]

10. Heinzl, S.; Metz, C. Toward a Cloud-Ready Dynamic Load Balancer Based on the Apache Web Server.
In Proceedings of the 2013 Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises,
Hammamet, Tunisia, 17–20 June 2013; pp. 342–345. [CrossRef]

11. Kaur, H.; Lechman, E.; Marszk, A. Catalyzing Development through ICT Adoption: The Developing World
Experience; Springer Publishers: Cham, Switzerland, 2017; p. 288.

12. Fortino, G.; Russo, W.; Savaglio, C.; Viroli, M.; Zhou, M. Modeling Opportunistic IoT Services in Open IoT
Ecosystems. In Proceedings of the 18th Workshop from Objects to Agents, Scilla, Italy, 15–16 June 2017;
pp. 90–95.

13. Sriram, I. SPECI, a simulation tool exploring cloud-scale data centres. In Proceedings of the IEEE International
Conference on Cloud Computing, Beijing, China, 1–4 December 2009; pp. 381–392.

14. Rahman, M.; Iqbal, S.; Gao, J. Load Balancer as a Service in Cloud Computing. In Proceedings of the 2014
IEEE 8th International Symposium on Service Oriented System Engineering, Oxford, UK, 7–11 April 2014;
pp. 204–211. [CrossRef]

15. Deng, Y.; Lau, R.W. On Delay Adjustment for Dynamic Load Balancing in Distributed Virtual Environments.
IEEE Trans. Vis. Comput. Graph. 2012, 18, 529–537. [CrossRef] [PubMed]

16. Ray, P.P. A survey of IoT cloud platforms. Future Comput. Inform. J. 2016, 1, 35–46. [CrossRef]
17. Aladwani, T. Impact of Selecting Virtual Machine with Least Load on Tasks Scheduling Algorithms in Cloud

Computing. In Proceedings of the 2nd International Conference on Big Data, Cloud and Applications
(BDCA’17), Tetouan, Morocco, 29–30 March 2017.

18. Fahim, Y.; Lahmar, E.B.; Labriji, E.H.; Eddaoui, A. The load balancing based on the estimated finish time
of tasks in cloud computing. In Proceedings of the 2014 Second World Conference on Complex Systems
(WCCS), Agadir, Morocco, 10–12 November 2014; pp. 594–598.

19. Kalsi, S.; Kaur, H.; Chang, V. DNA Cryptography and Deep Learning using Genetic Algorithm with NW
algorithm for Key Generation. J. Med. Syst. 2018, 42, 17. [CrossRef] [PubMed]

20. Al-Ayyoub, M.; Daraghmeh, M.; Jararweh, Y.; Althebyan, Q. Towards improving resource management in
cloud systems using a multi-agent framework. Int. J. Cloud Comput. 2016, 5, 112–133. [CrossRef]

21. Pallis, G. Cloud Computing: The New Frontier of Internet Computing. IEEE J. Internet Comput. 2010,
14, 70–73. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2011.65
http://dx.doi.org/10.1109/EMS.2013.10
http://dx.doi.org/10.1109/JSYST.2013.2256731
http://dx.doi.org/10.1007/s10916-018-1007-5
http://www.ncbi.nlm.nih.gov/pubmed/29987560
http://dx.doi.org/10.1007/s10766-013-0275-4
http://dx.doi.org/10.1109/WETICE.2013.63
http://dx.doi.org/10.1109/SOSE.2014.31
http://dx.doi.org/10.1109/TVCG.2012.52
http://www.ncbi.nlm.nih.gov/pubmed/22402679
http://dx.doi.org/10.1016/j.fcij.2017.02.001
http://dx.doi.org/10.1007/s10916-017-0851-z
http://www.ncbi.nlm.nih.gov/pubmed/29204890
http://dx.doi.org/10.1504/IJCC.2016.075112
http://dx.doi.org/10.1109/MIC.2010.113

Sensors 2020, 20, 7342 26 of 26

22. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; de Rose, C.A.; Buyya, R. CloudSim: A toolkit for modeling
and simulation of cloud computing environments and evaluation of resource provisioning algorithms.
Soft. Pract. Exp. 2011, 41, 23–50. [CrossRef]

23. Dhinesh Babua, L.D.; Venkata Krishna, P. Honey bee behavior inspired load balancing of tasks in cloud
computing environments. Appl. Soft Comput. 2013, 13, 2292–2303.

24. Li, K.; Xu, G.; Zhao, G.; Dong, Y.; Wang, D. Cloud Task Scheduling Based on Load Balancing Ant Colony
Optimization. In Proceedings of the Sixth Annual China grid Conference, Liaoning, China, 22–23 August 2011;
pp. 3–9.

25. Chaisiri, S.; Lee, B.S.; Niyato, D. Optimization of resource provisioning cost in cloud computing. IEEE Trans.
Serv. Comput. 2012, 5, 164–177. [CrossRef]

26. Hsiao, H.C.; Chung, H.Y.; Shen, H.; Chao, Y.C. Load rebalancing for distributed file systems in clouds.
IEEE Trans. Parall. Distribut. Syst. 2013, 24, 951–962. [CrossRef]

27. Gao, R.; Wu, J. Dynamic Load Balancing Strategy for Cloud Computing with Ant Colony Optimization.
Future Internet 2015, 7, 465–483. [CrossRef]

28. Manaseer, S.; Alzghoul, M.; Mohmad, M. An advanced algorithm for load balancing in cloud computing
using MEMA technique. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 36–41.

29. Mesbahi, M.; Rahmani, A.M. Load Balancing in Cloud Computing: A State of the Art Survey. Int. J. Mod.
Educ. Comput. Sci. 2016, 3, 64–78. [CrossRef]

30. Larumbe, F.; Sanso, B. A Tabu search algorithm for the location of data centers and software components in
green cloud computing networks. IEEE Trans. Cloud Comput. 2013, 1, 22–35. [CrossRef]

31. Botta, A.; De Donato, W.; Persico, V.; Pescapé, A. Integration of cloud computing and internet of things:
A survey. Future Gener. Comput. Syst. 2016, 56, 684–700. [CrossRef]

32. HAProxy is Free and Open-Source Load Balancer Website. Available online: http://haproxy.org (accessed on
14 November 2020).

33. DigitalOcean, Inc. Is an American Cloud Infrastructure Provider. Available online: https://digitalocean.com
(accessed on 24 March 2020).

34. Apache the HTTP Server Project. Available online: https://httpd.apache.org (accessed on 5 May 2020).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1109/TSC.2011.7
http://dx.doi.org/10.1109/TPDS.2012.196
http://dx.doi.org/10.3390/fi7040465
http://dx.doi.org/10.5815/ijmecs.2016.03.08
http://dx.doi.org/10.1109/TCC.2013.2
http://dx.doi.org/10.1016/j.future.2015.09.021
http://haproxy.org
https://digitalocean.com
https://httpd.apache.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Types of Load Balancer
	Load Balancing Measurement Parameter
	Categorization of Load Balancing Algorithms
	Round Robin Algorithm
	Weighted Round Robin Algorithm
	Source Hash
	Least Connections
	Least Response Time
	Least Bandwidth Algorithm

	Related Works
	Methodology
	HAProxy
	Round Robin Algorithm
	Least Connections Algorithm
	Apache Jmeter
	Cloud Analyst Simulation Tool
	Experimental Setup
	Virtual Machines Setup and Software
	Primary Setup of Virtual Machines
	Implementation of the Round Robin Algorithm
	Implementation of the Least Connections Algorithm

	Results & Evaluation
	First Load Test
	Second Load Test
	Third Load Test
	Fourth Load Test

	Conclusions
	References

