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Experimental implementation 
of a neural network optical channel 
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The deployment of artificial neural networks‑based optical channel equalizers on edge‑computing 
devices is critically important for the next generation of optical communication systems. However, 
this is still a highly challenging problem, mainly due to the computational complexity of the artificial 
neural networks (NNs) required for the efficient equalization of nonlinear optical channels with large 
dispersion‑induced memory. To implement the NN‑based optical channel equalizer in hardware, a 
substantial complexity reduction is needed, while we have to keep an acceptable performance level 
of the simplified NN model. In this work, we address the complexity reduction problem by applying 
pruning and quantization techniques to an NN‑based optical channel equalizer. We use an exemplary 
NN architecture, the multi‑layer perceptron (MLP), to mitigate the impairments for 30 GBd 1000 km 
transmission over a standard single‑mode fiber, and demonstrate that it is feasible to reduce the 
equalizer’s memory by up to 87.12%, and its complexity by up to 78.34%, without noticeable 
performance degradation. In addition to this, we accurately define the computational complexity of 
a compressed NN‑based equalizer in the digital signal processing (DSP) sense. Further, we examine 
the impact of using hardware with different CPU and GPU features on the power consumption and 
latency for the compressed equalizer. We also verify the developed technique experimentally, by 
implementing the reduced NN equalizer on two standard edge‑computing hardware units: Raspberry 
Pi 4 and Nvidia Jetson Nano, which are used to process the data generated via simulating the signal’s 
propagation down the optical‑fiber system.

Optical communications form the backbone of the global digital infrastructure. Nowadays, optical networks 
are the main providers of global data traffic, not only interconnecting billions of people, but also supporting the 
life-cycle of a huge number of different autonomous devices, machines, and control systems. One of the major 
factors limiting the throughput of contemporary fiber-optic communication systems is the nonlinearity-induced 
transmission  impairments1,2, emerging from both the fiber media’s nonlinear response and the system’s compo-
nents. The existing and potential solutions to this problem include, e.g., the mid-span optical phase conjugation, 
digital back-propagation (DBP), and inverse Volterra series transfer function, to mention just a few noticeable 
 methods2–4. But, it should be stressed that in the telecommunication industry, the competition between possible 
solutions occurs not only in terms of performance but also in terms of hardware deployment options, operational 
costs, and power consumption.

During the last years, the approaches based on machine learning techniques and, in particular, those utiliz-
ing NNs, have become an increasingly popular topic of research, as the NNs can efficiently unroll both fiber and 
component-induced  impairments5–15. One of the straightforward ways of using an NN for signal’s corruption 
compensation in optical transmission systems is to plug it into the system as a post-equalizer7,10,14, a special signal 
processing device at the receiver side, aimed at counteracting the detrimental effects emerging during the data 
 transmission16. Numerous preceding studies have demonstrated the potential of this type of  solution7,8. A number 
of NN architectures have already been analyzed in different types of optical systems (submarine, long-haul, metro, 
and access). These architectures include the feed-forward NN designs such as the  MLP7,10,14,15, considered in the 
current study, or more sophisticated recurrent-type NN  structures10–12,17. However, the practical deployment of 
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real-time NN-based channel equalizers implies that their computational complexity is, at least, comparable, or, 
desirably lower than that of existing conventional digital signal processing (DSP)  solutions18, and remains a mat-
ter of debate. This is a relevant aspect because the good performance achieved by the NNs is typically linked to the 
use of a large number of parameters and floating-point  operations10. The high computational complexity leads, in 
turn, to high memory and computing power requirements, increasing the energy and resource  consumption19,20. 
Thus, the use of NN-based methods, while being, undoubtedly, promising and attractive, faces a major chal-
lenge in optical channel equalization, where the computational complexity emerges as an important limiting 
real-time deployment  factor10,12,20,21. We notice here that it is, of course, well known that some NN architectures 
can be simplified without significantly affecting their performance, thanks, e.g., to strategies such as pruning 
and  quantization19,20,22–25. However, their application in the experimental environment of the resource-restricted 
hardware has not been fully studied in the context of coherent optical channel equalization yet. It is also necessary 
to understand and further analyze the trade-off between the complexity reduction and the degradation of system 
performance, as well as the complexity reduction impact on the end device’s energy consumption.

In this paper, we apply the pruning and quantization techniques to reduce the hardware requirements of an 
NN-based coherent optical channel equalizer, while keeping its performance at a high level. We also emphasize 
the importance of an accurate evaluation of the equalizer’s computational complexity in the DSP sense. Apart 
from the complexity and inference time study, an additional novelty and advance of our work lies in the energy 
consumption analysis and the study of the impact that the characteristics of both the hardware and the model, 
have on these metrics.

Results
We develop and experimentally evaluate the performance of a low-complexity NN-based equalizer that can be 
deployed on resource-constrained hardware and, at the same time, can successfully mitigate nonlinear transmis-
sion impairments in a simulated optical communication system. This is achieved by applying the pruning and 
quantization techniques to the  NN23, and by studying the optimal trade-off between the complexity of the NN 
solution and its performance. The obtained results can be split into three main categories.

First, we quantify how complexity reduction techniques affect the performance of the NN model and establish 
a compression limit for optimal performance versus complexity trade-off. Second, we analyze the computational 
complexity of the pruned and quantized NN-based equalizer in terms of DSP. Finally, we experimentally evaluate 
the impact that the characteristics of the hardware and the NN model have on the signal processing time and 
energy consumption by deploying the latter on both a Raspberry Pi 4 and a Nvidia Jetson Nano.

Now we briefly review the previous results in the field of compression techniques applied to NN-based equal-
izers in optical links, to underline the novelty of our current approach. The use of these techniques to reduce 
the NNs complexity in optical systems is, clearly, not a new  concept25. However, the compression methods have 
recently gained a new wave of attention due to the question of how realistic the hardware implementation of 
NN-based equalizers in optical transmission systems is. In a direct detection transmission system, a parallel-
pruned NN equalizer for a 100-Gbps PAM-4 links were tested experimentally using the enhanced version of the 
one-shot pruning  method26, which decreased by 50% the resource consumption without significant performance 
degradation. When considering coherent optical transmission, the complexity of the so-called learned DBP 
nonlinearity mitigation method was reduced by pruning the coefficients in the finite impulse response  filters27 
(see more technical explanations in “Methods” section below). In that case, using a cascade of three filters, a 
sparsity level of around 92% can be achieved with a negligible impact on the overall performance. Recently, some 
advanced techniques for avoiding multiplications in such equalizers using additive powers-of-two quantization 
were  tested28. In the latter work, 99% of the weights could be removed using advanced pruning techniques, and 
instead of multiplications, just bit-shift operations were required. However, none of those works deal with the 
experimental demonstration of hardware implementation, and our study addresses exactly the latter problem.

So, unlike previous works, in the current study, we implement the compressed NN-based equalizer for the 
coherent optical channel in two different hardware platforms: a Raspberry Pi 4 and a Nvidia Jetson Nano. We 
also evaluate the impact of the compression techniques on the system’s latency for each hardware type and study 
the performance-complexity trade-off. Finally, we carry out an analysis of energy consumption and of the impact 
that the characteristics of the hardware and the NN model have on it.

Optical communication system and equalizer design. To address the use of a MLP as an NN-based 
equalizer, an accurate measurement system for both the inference time and the power consumption, on both a 
Raspberry Pi and a Nvidia Jetson Nano, has been designed, so that the effects that pruning and quantization have 
on these metrics, can be characterized (see “Methods” section below for a detailed explanation). In Refs.10,14, the 
non-compressed MLP post-equalizer was considered, and it was shown that it can successfully compensate for 
the nonlinearity-induced impairments in a coherent optical communication system. We analyze the equalizer’s 
performance in terms of the standard achieved Q-factor, using the simulated data for a 0.1 root-raised cosine 
(RRC) dual-polarization signal, with 30 GBd, and 64-QAM modulation, for the transmission over the 20 × 50 
km links of standard single-mode fiber (SSMF). We used the same simulator as described in Refs.10,29, to generate 
our training and testing datasets, and the same procedure to training the NN-based equalizer (see “Numerical 
setup and neural network model” subsection in “Methods” for more details). In our configuration, the NN is 
placed at the receiver (Rx) side after the Integrated Coherent Receiver (ICR), Analog-Digital Converter (ADC), 
and DSP block. This last block consists of a matched filter and a linear equalizer. Concerning the matched 
filter, it is just the same RRC filter used in the transmitter. Moreover, the linear equalizer is composed of a full 
electronic chromatic dispersion compensation (CDC) stage and a normalization step, see Fig. 1. The CDC uses 
a frequency-domain equalizer and downsampling to the symbol rate, followed by a phase/amplitude normal-
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izer to the transmitted ones. This normalization process can be viewed as its normalization by a constant KDSP 
learned using the following equation:

where constants K, KDSP ∈ C and xh/v is the signal in either h or v polarisation. No other distortions—related 
to the components within the transceiver—were considered.

For this system, the best optimal power occurred at − 1 dBm with the Q-factor being close to 7.8, as it can 
be appreciated in Fig. 2. We then wanted to investigate the 3 next powers (e.g. 0 dBm, 1 dBm, and 2 dBm) going 
towards the higher nonlinear regime, where the task of the NN would be more complicated.

The hyperparameters that define the structure of the NN are obtained using a Bayesian optimizer (BO)10,30, 
where the optimization is carried out with regards to the signal’s restoration quality performance (see “Numerical 
setup and neural network model” subsection in “Methods”). The resulting optimized MLP has three hidden layers 
(we did not optimize the number of layers, but the number of neurons and the activation functions type), with 
500, 10, and 500 neurons, respectively. (These numbers were set as the minimal and maximal weights number 
limits, within which the BO algorithm was searching the optimal configuration). The activation function “ tanh ” 
was chosen by the optimizer and no bias is employed. The NN takes the downsampled signal (1 sample per sym-
bol) and inputs into the equalizer N = 10 neighbors symbols (number of taps) to recover the central one. This 
memory size was defined by the BO procedure. The NN was subjected to pruning and quantization after it had 
been trained and tested. We analyzed the performance of different NN models depending on their sparsity level; 
the latter ranged from 20 to 90%, with a 10% increment. The weights and activations are quantized, converting 
their data type from 32-bit single-precision floating-point (FP32) to 8-bit integer (INT8). The quantization was 
carried out to enable a real-time use of the model as well as its deployment on resource-constrained hardware. 
The final system is depicted in Fig. 1. The inference process (the signal equalization) was, first, carried out using 
a MSI GP76 Leopard personal computer, equipped with  Intel®  CoreTM i9-10870H processor, 32 GB of RAM and 
GPU Nvidia RTX2070. The results obtained on this computer were used as a benchmark and compared to those 
obtained on two small single-board computers: a Raspberry Pi 4 and a Nvidia Jetson Nano.

Finally, the NNs were developed using TensorFlow. The pruning and quantization techniques were imple-
mented using the TensorFlow Model Optimization Toolkit—Pruning API and TensorFlow  Lite31.

(1)KDSP = min
K

∥

∥K× xh/v(z, t)− xh/v(0, t)
∥

∥,

Figure 1.  Structure of a communication channel that is equalized using a pruned and quantized neural network 
deployed on resource-restricted hardware (e.g. a Raspberry Pi 4 or a Nvidia Jetson Nano).

Figure 2.  Performance comparison for the NN-based equalizer with respect to the regular DSP.
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Compressing process for neural network equalizers. When designing an NN for a particular pur-
pose, the traditional approach consists in using dense and over-parametrized models, insofar as it often can 
provide a good model’s performance and learning  capabilities32,33. This is due to the over-parametrization’s 
smoothing effect on the loss function, which benefits the convergence of the gradient descent techniques used 
to optimize the  model32. However, some precautions must be taken while training an over-parametrized model, 
because such models often tend to overfit, and their generalization capability can be  degraded32,34.

The good performance achieved due to over-parameterization comes at the cost of larger computational and 
memory resources. This also results in a longer inference time (latency growth) and higher energy consump-
tion. Note that these costs are the consequence of parameter redundancy and a large number of floating-point 
 operations20,23. Therefore, the capabilities of high-complexity NN-based equalizers do not translate yet into 
end-user applications on resource-constrained hardware. Thus, reducing the gap between the algorithmic solu-
tions and the experimental real-world implementations is an increasingly active topic of research. During the 
past several years, noticeable efforts have been invested in developing techniques that can help to simplify the 
NNs without significantly decreasing their performance. These techniques are grouped under the term “NNs 
compression methods”, and the most common approaches are: down-sizing the models, factorizing the operators, 
quantization, parameter sharing or  pruning20,23,24. When these techniques are applied, the final model typically 
becomes much less complex, and, therefore, its latency, or the time it takes to make a prediction, decreases, 
which also results in a lower energy  consumption20. In this work, we focus on both pruning and quantization for 
compressing our NN equalizer and quantify a trade-off between complexity reduction and system performance, 
see “Methods” section for a detailed description of both approaches.

Performance vs. compression trade‑off. Firstly, we note that the complexity reduction of the equalizer 
must not affect its performance drastically, i.e. the system’s performance is still required to be within an accept-
able range. In Fig. 3a, the Q-factor achieved by the NN equalizer is depicted versus different sparsity values, for 
three launch power levels: 0 dBm, blue; 1 dBm, red; and 2 dBm, green. The results are shown using dotted lines 
and stars, which are those obtained on the PC, Raspberry Pi, and Nvidia Jetson Nano, using the pruned and 
quantized model. For each of these launch powers, two baselines for the Q-factor are depicted: one corresponds 
to the level achieved by the uncompressed model, defined by the straight lines, while the other provides the 
benchmark when we do not employ any NN equalization and use only standard linear chromatic dispersion 
compensation plus phase/amplitude normalization (LE, linear equalization); the latter levels for the three differ-
ent launch powers are marked by dotted lines having the appropriate colors.

Figure 3b quantifies the impact that each compression technique has on the performance: in that figure, we 
plotted the Q-factor achieved by the NN equalizer versus different values of sparsity, for the 1 dBm launch power. 
The blue and red straight lines represent the Q-factor of the original model and the Q-factor achieved by it after 
being quantized. The dotted lines with asterisks, show the performance of a model that has been only pruned 
(blue), and the performance in the case of both pruning and quantization (red). It is seen that a substantial reduc-
tion of the complexity can be achieved without a dramatic degradation of the performance. The sparsity levels at 
which the fast deterioration of the performance occurs, are also clearly seen in this figure.

Figure 3.  (a) Q-factor achieved for pruned and quantized models versus the level of sparsity for datasets 
corresponding to three launch powers: 0 dBm, 1 dBm, and 2 dBm; The solid lines correspond to the Q-factor 
achieved by the original model. The dashed lines show the Q-factor when only linear equalization (LE) is 
implemented. (b) Q-factor achieved after pruning compared to the one achieved after both pruning and 
quantization, for different levels of sparsity and for a dataset corresponding to the 1 dBm launch power. The 
blue and red solid lines correspond to the Q-factor achieved by the original model and the one achieved by this 
model after quantization, respectively.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8713  | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

First, it can be observed from Fig. 3a that the quantization and pruning process does not cause a significant 
performance degradation until a sparsity level equal to 60% is reached, with just a 4% performance reduction. 
However, when we move to sparsity levels around 90%, the performance is close to the one achieved using a 
linear equalization (i.e., the Q-factor curves drop to the levels marked with the dashed lines of the same color).

We can conclude that when the levels of sparsity are above 60%, the decrease in the performance is mainly the 
effect of the quantization process. A nearly 2.5% drop in the Q-factor value has also been observed when quantiz-
ing an already pruned model. Once the levels of sparsity are higher than 60%, the reduction in performance due 
to the quantization gets accelerated. Moreover, we observe that some degree of sparsification can even improve 
the model’s performance with respect to the unpruned model. This behavior has already been reported in other 
studies and it was found that it is specifically pertinent to the over-parametrized models. Thus, the NNs with 
less complex structures do not show up such an increase in performance due to low-sparsity pruning, making 
it impossible to achieve such a good performance-complexity  ratios32,33,35,36.

Computational complexity analysis. Figure 4 depicts the reduction in the size of the model as well as 
the model’s computational complexity for different sparsity values, after having applied quantization. For the 
definition of the metrics used to calculate the computational complexity as well as the size of the models, see 
the subsections “Computational complexity metrics and memory size metrics” in “Methods”. Overall, we have 
achieved an 87.12% reduction in the memory size after pruning 60% of the NN equalizer weights and quantiz-
ing the remaining ones. As a consequence, the size of the model went down from 201.4 to 25.9 kilobytes. For 
the decrease of the model’s computational complexity, it goes from 75,960,427.38 to 16,447,962 bit operations 
(BoPs) after applying the same compression strategy, which is a 78.34% reduction (see the explicit definition of 
BoPs in “Methods” section). We would like to point out once more that sparsity levels of 60% can be reached 
without a substantial performance loss. Therefore, approximately the same high level of performance can be 
achieved with a model that is significantly less complex than the initial NN structure, which is one of the main 
findings of our work.

It is worth mentioning the individual impact that quantization and pruning have on the computational com-
plexity of the model. When the computational complexity is calculated for a quantized, but unpruned model, 
the number of BOPs is equal to 23,321,563. Therefore, if this value is compared with the already mentioned 
75,960,427 BoPs for the unpruned and unquantized NN, a reduction in complexity of a 69.3% is obtained thanks 
to quantization. As it can be seen in Fig. 4, the remaining gain comes from the pruning technique, and it grows 
linearly as indicated in Eq. (5).

Online latency evaluation. Numerous deep learning applications are latency-critical, and therefore the 
inference time must be within the bounds specified by service level objectives. Optical communication applica-
tions that employ deep learning techniques are a good example of this. Note that the latency is highly dependent 
on the NN model implementation and the hardware employed (e.g., FPGA, CPU, GPU). Please refer to “Meth-
ods” section for more details on the devices’ inference time measurements.

When measuring the inference time for the different types of hardware and the quantized model that has had 
60% of its weights pruned, the results are:

• Latency Raspberry Pi : µ = 0.81 s and σ = ±0.035

• Latency Nvidia Jetson Nano: µ = 0.53 s and σ = ±0.022
• Latency PC: µ = 0.1 s and σ = 0.006

Figure 4.  Complexity and size reduction achieved via pruning and quantization for different levels of sparsity. 
The dashed black line represents the reference complexity when only quantization is applied.
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In the case of the unpruned and unquantized model:

• Latency Raspberry Pi : µ = 1.84 s and σ = ±0.08

• Latency Nvidia Jetson Nano: µ = 1.22 s and σ = ±0.052s
• Latency PC: µ = 0.18 s and σ = ±0.008

Figure 5 shows the latency of the considered NN model before and after quantization. We notice that the results 
are expressed in a way that is more appropriate for the task at hand. Thus, latency is defined as the time it takes 
to process one symbol: we have averaged it over 30 k symbols. With the quantized model, we observe approxi-
mately a 56% reduction in latency for all three values of power, when compared to the original model. We must 
notice that pruning is not taken into account because it does not affect this metric since Tensorflow Lite does 
not support sparse inference yet, which makes the algorithm still use the same amount of cache memory. Also, 
we could observe that Raspberry Pi has the longest inference time among our devices. This is in line with the 
fact that Raspberry is designed as a low-cost and general-purpose single-board  computer37. On the other hand, 
the Nvidia Jetson Nano was developed with GPU capabilities, which makes it more suitable for deep learning 
applications, allowing us to achieve lower latencies.

Online energy consumption evaluation. Within the context of edge computing, not only is speed an 
important factor, but also power efficiency. In this work, the metric used to evaluate the energy consumption 
and compare the different types of hardware for the coherent optical channel equalization task is the energy 
per recovered symbol. When using a quantized model with a pruning level of 60%, the average energy con-
sumed during inference for the Raspberry Pi 4 and the Nvidia Jetson Nano is 2.98 W ( σ = ±0.012 ) and 3.03 W 
( σ = ±0.017 ), respectively. On the other hand, if the original model is employed, there is an increase in energy 
consumption of around 3%, which is congruent with the findings in previous  works23. Thus, during inference, 
the Raspberry Pi 4 consumes 3.06 W ( σ = ±0.011 ) and the Nvidia Jetson Nano 3.13 W ( σ = ±0.015 ), respec-
tively. Multiplying these values by the NN processing times per recovered symbol reported in Fig. 5, we obtain 
the results presented in Fig. 6. We note that Raspberry Pi has the highest energy consumption per recovered 
symbol. This is a consequence of the lack of a GPU, which results in longer inference times. Thus, the Nvidia 
Jetson Nano consumes 33.78% less energy than the Raspberry Pi 4. Regarding pruning and quantization, the use 
of these techniques allows an energy saving of 56.98% for the Raspberry Pi 4 and a 57.76% saving for the Nvidia 
Jetson Nano.

It must be noticed that although TensorFlow Lite does not support sparse inference and therefore pruning 
does not help to reduce the inference time, it affects the size of the model. This has a direct effect on the power 
consumption of the device due to the decrease in the use of resources. In contrast, quantization has a positive 
effect on both of these parameters thanks to employing lower precision formats and reducing the size of the 
model. Therefore, it has a stronger effect on energy consumption. This is reflected in the results exposed in this 
section. Moreover, it is congruent with the findings reported in previous  studies23,38.

See “Methods” section for more details on the energy consumption measurement.

Discussion
In our work, we investigated how we can use pruning and quantization to reduce the complexity of the hardware 
implementation of an NN-based channel equalizer in a coherent optical transmission system. With this, we 
tested the implementation of the designed equalizer experimentally, using a Raspberry Pi 4 and a Nvidia Jetson 

Figure 5.  Summary of the symbol processing (inference) time for the compressed NN models (after pruning 
and quantization) and the original models for three devices under evaluation: a Raspberry Pi 4, a Nvidia Jetson 
Nano, and a standard PC.
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Nano. It was demonstrated that it is possible to reduce the NN’s memory usage by 87.12% , and the NN’s compu-
tational complexity by 78.34% without any serious penalty in performance, thanks to the two aforementioned 
compression techniques.

Moreover, the effect of using different types of hardware was experimentally characterized by measuring the 
inference time and energy consumption in both a Raspberry Pi 4 and a Nvidia Jetson Nano. We note, however, 
that we experimented only with the edge devices, and the data from the communication system were obtained 
via simulations; but we do not expect that the results regarding the performance vs complexity trade-off achieved 
thanks to pruning and quantization for the true optical system would seriously differ. It has been demonstrated 
that the Nvidia Jetson Nano allows 34% faster inference times than the Raspberry Pi, and that, thanks to the 
quantization process, a 56% inference time reduction can be achieved. Finally, due to the use of pruning and 
quantization techniques, we achieve 56.98% energy savings for the Raspberry Pi 4 and 57.76% for the Nvidia 
Jetson Nano; we also observed that the latter device consumes 33.78% less energy.

Overall, our findings demonstrate that the usage of pruning and quantization can be a suitable strategy for 
the implementation of NN-based equalizers that are efficient in high-speed optical transmission systems when 
deployed on resource-restricted hardware. We believe that these model compression techniques can be used 
for the deployment of NN-based equalizers in real optical communication systems, and for the development of 
novel online optical signal processing tools. We hope that our results can also be of interest to the researchers 
developing sensing and laser systems, where the application of machine learning for field processing and char-
acterization is a rapidly developing area of  research39.

Methods
Numerical setup and neural network model. We numerically simulated the dual-polarization (DP) 
transmission of a single-channel signal at 30 GBd. The signal is pre-shaped with a root-raised cosine (RRC) filter 
with 0.1 roll-off at a sampling rate of 8 samples per symbol. In addition, the signal modulation format is 64-QAM. 
We considered the case of transmission over 20 × 50 km links of SMF. The optical signal propagation along the 
fiber was simulated by solving the Manakov equation via split-step Fourier  method40 with the resolution of 1 
km per step. The considered parameters of the TWC fiber are: the attenuation parameter α = 0.23dB/km , the 
dispersion coefficient D = 2.8 ps/(nm × km), and the effective nonlinearity coefficient γ = 2.5 (W × km)−1 . The 
SSMF parameters are: α = 0.2 dB/km, D = 17 ps/(nm × km), and γ = 1.2 (W × km)−1 . Moreover, after each 
span, an optical amplifier with the noise figure NF = 4.5 dB was placed to fully compensate fiber losses and added 
amplified spontaneous emission (ASE) noise. At the receiver, a standard Rx-DSP was employed. It consisted of 
the full electronic chromatic dispersion compensation (CDC) using a frequency-domain equalizer, the applica-
tion of a matched filter, and the downsampling to the symbol rate. Finally, the received symbols were normalized 
(by phase and amplitude) to the transmitted ones. In this work, no additional transceiver distortions were taken 
into account. After the Rx-DSP, the bit error rate (BER) is estimated using the transmitted symbols, received soft 
symbols, and hard decisions after equalization.

The NN receives as input a tensor with a shape defined by three dimensions: (B, M, 4), where B is the mini-
batch size, M is the memory size determined by the number of neighbors N as M = 2N + 1 , and 4 is the number 
of features for each symbol, which correspond to the real and imaginary parts of two polarization components. 
The NN will have to recover the real and imaginary parts of the k-th symbol of one of the polarization. There-
fore the shape of the NN output batch can be expressed as (B, 2). This task can be treated as a regression or 

Figure 6.  Energy consumption for Raspberry Pi 4 and Nvidia Jetson Nano. The blue section represents the 
energy consumption per recovered symbol when using the compressed model, and its relative energy cost is 
expressed as a percentage with respect to the sum of the energy consumed by both the original and compressed 
models. Likewise, the red section describes the energy consumption per recovered symbol when using the 
original model and its relative energy cost.
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classification one. This aspect has been considered in previous studies and stated that the results achieved by 
regression and classification algorithms are similar but fewer epochs are needed in the case of regression. Thus, 
the mean square error (MSE) loss estimator is used in this paper, as it is the standard loss function employed in 
regression  tasks41. The loss function is optimized using the Adam  algorithm42 with the default learning rate equal 
to 0.001. The maximum number of epochs during the training process was 1000, as it was stopped earlier if the 
value of the loss function did not change over 150 epochs. After every training epoch, we calculated the BER 
obtained using the testing dataset. The optimal number of neurons and activation functions in each layer of the 
NN, as well as the memory (input) of the system were inferred employing the Bayesian Optimization algorithm 
(BO). The values tested for the number of neurons were n ∈ [10, 500] . For the activation function, the BO had 
to chose between: “ tanh ”, “ReLu”, “sigmoid” and “LeackyReLu”. The values tested for the memory (input) of the 
system were N ∈ [5, 50] The metric of the BO was the BER, finding the hyperparameters that helped to reduce 
the BER as much as possible with a validation dataset of 217 data points. The final solution was the use of “ tanh ” 
as an activation function and 500, 10, and 500 neurons for the first, second, and third layer, respectively. The 
training and test datasets were composed of independently generated symbols of length 218 each. To prevent any 
possible data periodicity and  overestimation43,44, a pseudo-random bit sequence (PRBS) of order 32 was used to 
generate those datasets with different random seeds for each of them. The periodicity of the data is, therefore, 
212 times higher than our training dataset size. For the simulation, the Mersenne twister  generator45 was used 
with different random seeds. Moreover, the training data was shuffled before being used as an input to the NN.

Finally, we would like to notice an important matter as it is the necessity of the periodical retraining of 
the equalizer on realistic transmission. In this case, it may be a point of concern. This issue has already been 
addressed in previous  studies29, where it has been demonstrated that using transfer learning can drastically reduce 
the training time and training data requirements when changes on the transmission setup occur.

Pruning technique. With pruning, the redundant NN elements can be removed to sparsify the network 
without significantly limiting its ability to carry out a required  task24,32,46. Thus, networks with a reduced size and 
computational complexity are obtained, resulting in lower hardware requirements as well as faster prediction 
 times23,24. Furthermore, pruning acts as a regularization technique, improving the model quality by helping to 
reduce  overfitting32. Moreover, retraining an already pruned NN can help to escape local loss function minima, 
which can lead to a better prediction  accuracy24. Thus, less complex models can often be achieved without a 
noticeable effect on the NN’s  performance32.

Depending on what is going to be pruned, the sparsification techniques can be classified into two types: 
model sparsification and ephemeral  sparsification32. In the first case, the sparsification is permanently applied 
to the model, while in the second case, the sparsification only takes place during the computing process. In our 
work, we will use the model sparsification, because of the effects it has on the final NN’s computing and memory 
hardware requirements. Adding to this, the model sparsification can consist in removing not only weights but 
also larger building blocks, such as neurons, convolutional filters, etc.32. Here we apply pruning to just the weights 
of the network, for the sake of simplicity and as far as it matches the NN structure (the MLP) that is considered.

After having defined what to prune, it is necessary to define when the pruning occurs. Based on this, there are 
two main types of pruning: static and  dynamic24. In the static case, the elements are removed from the NN after 
the training, and in this work, to demonstrate the effect, we use the static pruning variant because of its simplicity.

The static pruning is generally carried out in three steps. First, we decide upon what requires to be pruned. 
A simple approach to define the pruning objects can be to evaluate the NN’s performance with and without 
particular (pruned) elements. However, this poses scalability problems: we have to evaluate the performance 
when pruning each particular NN’s parameters, and there may be millions of these.

Alternatively, it is possible to select the elements to be removed randomly, which can be done  faster32,47,48. 
Following this latter approach, we beforehand decided to prune the weights. Once it has been decided which 
elements are to be pruned, it is necessary to establish the criteria for how the elements are to be removed from the 
NN, ensuring that high levels of sparsity are achieved without a significant loss in performance. When pruning 
the weights of the NN, it is possible to remove them based on different aspects: considering their magnitude (i.e., 
the weights having values close to zero are to be pruned, with the pruning percentage is defined by the sparsity 
level we aim to achieve), or their similarity (if two weights have a similar value, only one of those is kept); we 
mention that the other selection procedures also  exist32,48. Here, we pick the relatively simple weights pruning 
strategy based on their magnitude. In Fig. 7 we show the impact when we have pruned our NN equalizer by 40%. 
When comparing the weight distributions of the original and pruned models, it is clear that the sparsity level 
defines the number of weights that need to be pruned. Thus, the pruning process starts by removing the smallest 
weight and continues until the desired sparsity level is reached. Finally, a retraining or fine-tuning phase should 
be done, to reduce the degradation in the modified NN  performance24.

When carrying out pruning using the Tensorflow Model Optimization API, it is necessary to define a pruning 
Schedule to control this process by notifying at each step the level at which the layer should be  pruned49. In this 
work, the schedule known as Polynomial Decay is employed. The main characteristic of this type of schedule is 
that a polynomial sparsity function is built. In this case, the power of the function is equal to 3 and the pruning 
takes place every 50 steps. This means that during the last steps higher ratios of sparsification are employed (e.g. 
more weights are removed), speeding up the pruning process. On the other hand, if the power of the function 
were negative, pruning would be slowed-down. The model starts with a 0% sparsity and the process takes place 
during 300 epochs. This is approximately 35 % of the number of iterations required for training the original 
model. It is the objective of future works to optimize the hyperparameters of the pruning process, improve its 
efficiency and reduce the cost related to a high number of iterations.
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Quantization technique. Besides the reduction in the number of operations involved in the NN signal 
processing, the precision of such arithmetic operations is another crucial factor when determining the model’s 
complexity and, therefore, the inference latency, as well as equalizer’s memory and energy  requirements23,50–52. 
The process of approximating a continuous variable with a specified set of discrete values is known as quantiza-
tion. The number of discrete values will determine the number of bits necessary to represent the data. Thus, when 
applying this technique in the context of deep learning, the objective is decreasing the numeric precision used to 
encode the weights and activations of the models, avoiding a noticeable decrease in the NN’s  performance20,52.

Using low-precision formats allows us to speed up math-intensive operations, such as convolution and matrix 
 multiplication52. On the other hand, the inference (signal processing) time depends not only on the format 
representation of the digits involved in the mathematical operations but is also affected by transporting the 
data from memory to the computing  elements23,38. Moreover, heat is generated during the latter process and, 
therefore, using a lower-precision representation can result in energy  savings23. Finally, another benefit of using 
low-precision formats is that a reduced number of bits is needed to store the data, which reduces the memory 
footprint and size  requirements23,52.

FP32 has been traditionally used as the numerical format for encoding weights and activations (output of the 
neurons) in an NN, to take advantage of a wider dynamic range. However, as it has already been mentioned, this 
results in higher inference times, which is an important factor when a real-time signal processing is  considered20. 
A variety of alternatives to the FP32 numerical format for NN’s elements representation have been proposed 
lately, to reduce the inference time, as well as to decrease the hardware requirements. For example, it is becom-
ing popular to train NNs in FP16 formats, as it is supported by most deep learning  accelerators20. On the other 
hand, math-intensive tensor operations executed on INT8 types can see up to a 16× speed-up compared to the 
same operations in FP32. Moreover, memory-limited operations could see up to a 4 × speed-up compared to the 
FP32  version22–24,52. Therefore, in addition to pruning, we will reduce the precision of the weights and activations 
to further decrease the computational complexity of the equalizer, employing the technique known as integer 
 quantization52.

The integer quantization maps a floating point value x ∈ [α, β] to a bit integer xq ∈ [αq, βq] . This mapping 
can be defined mathematically using the following formula: xq = round

(

1
s x + z

)

 , where s (a positive floating 
point number) is known as the scale, and z is the zero point (an integer). The scaling factor basically divides 
a range of real values, in this case those within the clipping range [α, β] , into a number of partitions. Thus, it 
can be expressed as s = β−α

2b−1
 where b is the the quantization bit width. On the other hand, the zero point can 

be defined as z = α(1−2b)
β−α

 . Therefore, it will be 0 in the case of symmetric quantization. Moreover, the previous 
mapping can be refactored in order to take into account that if x is outside of the range [α, β] , then xq is outside 
of [αq, βq] . Thus, it is necessary to clip the values when this happen; as a consequence, the mapping formula 
becomes: xq = clip(round

[

1
s x + z

]

,αq,βq) , where the clip function takes the  values24,53:

Integer quantization can take different forms, depending on the spacing between quantization levels and the 
symmetry of the clipping range (determined by the value of the zero-point z)53. For the sake of simplicity, in this 
work, we used symmetric and uniform integer quantization.

The quantization process can occur after the training or during it. The first case is known as post-training 
quantization (PTQ) and the second one is the quantization aware  training22–24. In PTQ, a trained model has its 
weight and activations quantified. After this, a small unlabelled calibration set is used to determine the activa-
tions’ dynamic  ranges23,52–54. No retraining is needed, which makes this method very popular because of its 
simplicity and lower data  requirements53,54. Nonetheless, when a trained model is directly quantized, this may 

clip(x, l, u) =

{

l if x < l,
x if l ≤ x ≥ u,
u if x > u.

Figure 7.  A typical distribution of the weights of the NN-based MLP equalizer without pruning and with 
pruning when the sparsity level is set to 40%.
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perturb the trained parameters, moving the model away from the convergence point reached during the training 
with a floating-point precision. In other words, we notice that PTQ can have accuracy-related  issues53.

In this work, the quantization is carried out after the training stage, i.e., we use the PTQ. The calibration pro-
cess required to estimate the range, i.e, (min, max) of the activations in the model, is done by running a few infer-
ences with a small portion of the test dataset. In our case, it consisted of 100 samples. When using the Tensorflow 
Lite API, the calibration is carried out automatically, and it is not possible to choose the number of inferences.

Computational complexity metrics. Finally, it is important to discuss how we can correctly evaluate the 
computational complexity of such models. In this regard, we quantitatively evaluate the reduction of computa-
tion complexity achieved by applying pruning and quantization, calculating the number of bits used during an 
inference step. The most common operations in an NN are multiply-and-accumulate operations (MACs). These 
are operations of the form a = a+ w × x , where three terms are involved: firstly, x corresponds to the input 
signal of the neuron; secondly, w refers to the weight; and, finally, the accumulate variable a55. Traditionally, the 
network complexity arithmetic has been measured using the number of MAC operations. However, in terms of 
the DSP processing, the number of BoPs is a more appropriate metric to describe the computational complexity 
of the model, as for low-precision networks composed of integer operations, it is not possible to measure the 
computational complexity using  FLOPS22,56. Thus, in this work, we use BoPs to quantify the complexity of the 
equalizer. It is important to notice that within the context of optical channel non-linear compensation, the com-
plexity of NN-based channel equalizers has been traditionally measured taking into account only the number 
of  multiplications12,44,57. Thus, the accumulator contribution was neglected. However, in this project, we aim to 
have a more general complexity metric and therefore include it in our calculations.

The BOPs measure was proposed for the first time  in56, and defined for a convolutional layer that had been 
quantized as:

In Eq. (2), bw and ba are the weight and activation bit-width, respectively; n is the number of input channels, m 
is the number of output channels, and k defines the filters size (e.g. k × k filters)58. Taking into account that a 
MAC operation takes the form: a = a+ w × x , it is possible to distinguish two contributions in the equation 
above: one corresponding to the nk2 × b0 number of additions, where b0 = ba + bw + log2(nk

2) (e.g. accumula-
tor width in the MAC operations), and the other corresponds to the number of multiplications, e.g. nk2(babw)56.

Equation (2) was further adapted for the case of a dense layer that has been both pruned and  quantized59. 
Thus, it is applicable to our case, as the MLP consists of a series of dense layers arranged one after the other:

In Eq. (3), n and m correspond to the number of inputs and outputs, respectively; bw and ba are the bit widths of 
the weights and activations. The additional term, fpi , is the fraction of pruned layer weights, which allows us to 
take into account the reduction in multiplication operations because of pruning. This is the reason why it only 
relates to the term babw59.

Therefore, in our case of the MLP with 3 hidden layers, the total number of BOPs is:

where i ∈ [1, 2, 3] , BoPsinput and BoPsoutput correspond to the contributions of the input and output layers. Equa-
tion (4) can be written in a less compact way as follows:

where ni , n1 , n2 , n3 ,and no are the number of neurons in the input, first, second, third, and output layers, respec-
tively; bw , ba , bo and bi are the bit width of the weights, activations, output and input, respectively; fp is the fraction 
of the weights that have been pruned in a layer, which, in our case, is the same for every layer.

Memory size metrics. In this work, the size of the model is defined as the number of bytes that it occupies 
in memory. Moreover, we notice the direct correlation between the value of this metric and the format used to 
represent the model. Thus, in contrast to the traditional formats used in Tensorflow (e.g .h5 or HDF5 binary 
data format and .pb or protobuf), a TensorFlow Lite model is represented in a special efficient portable format 
identified by the .tflite file extension. This provides two main advantages: a reduced model’s size and lower 
inference times. Therefore, the deployment of the NN model on a resource-restricted hardware becomes feasible. 
As a consequence, it would not make sense to compare the models saved in the traditional Tensorflow format 
with those that have been pruned and quantized as well as converted into Tensorflow Lite. We were aware of this 
situation during the realization of the procedure and, thus, to avoid overestimating the benefits of pruning and 
quantization, the unpruned and unquantized model were converted to .tflite format. To better understand 
the implications that this step has, the size of the original model in .h5 format would experiment a 96.22% size 
reduction after being converted to .tflite format, quantized and pruned (60% sparsity). On the other hand, 
if the original model has already been converted to .tflite, the size reduction is 87.12%. Of course, based on 
this, always using .tflite format instead of the other conventional ones seems to be the best strategy. The main 
reason behind not doing this is that a graph that is in .tflite format can not be trained again, as it only sup-

(2)BoPs = mnk2(babw + ba + bw + log2(nk
2)).

(3)BoPsi = mini[(1− fpi )bai bwi + bai + bwi + log2(ni)],

(4)BoPs = BoPsinput +
∑

i

BoPsi + BoPsoutput ,

(5)
BoPsMLP = (nin1bi + n1n2ba + n2n3ba + n3noba)(1− fp)bw + (nin1)(bi + bw) log2(ni)

+ (n1n2)(ba + bw) log2(n1)+ (n2n3)(ba + bw) log2(n2)+ (n3no)(ba + bw) log2(n3),
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ports an online inference mode. Nevertheless, a model that is, for example, in .h5 format, can be trained offline. 
Therefore, the .tflite is only intended to be used in the context of edge computing.

Memory and processor restricted hardware. In many deep learning applications, low power con-
sumption and a reduced inference time are especially desirable. Moreover, the use of graphics processing units 
(GPU) to attain high performance has some costs-related issues which are far from being ultimately  solved37,60. 
Therefore, a small, portable, and low-cost hardware is required to bring the solution to this problem. As a result, 
single-board computers have become popular, and Raspberry Pi 4 and Nvidia Jetson Nano are among the most 
used  ones37. Hence, here we analyse the functioning of our NN-based equalizer using these two aforementioned 
popular hardware types.

Raspberry Pi. Raspberry Pi is a small single-board computer. It is equipped with a Broadcom Video Core VI 
(32-bit) GPU, Quad-core ARM CortexA72 64-bit 1.5 GHz CPU, 2 USB 2.0 ports, and 2 USB 3.0 ports; for data 
storage, it uses a MicroSD card. Moreover, connections are provided through a Gigabit Ethernet/WiFi 802.11ac. 
It uses an OS known as Raspbian and has no GPU capability as well as no specialized hardware  accelerator37,61.

Nvidia Jetson Nano. Nvidia Jetson Nano is a small GPU-based single-board computer that allows the parallel 
operation of multiple NNs. It has a reduced size (100 mm × 80 mm × 29 mm) and is equipped with a Maxwell 
128-core GPU, Quad-core ARM A57 64-bit 1.4 GHz CPU. Like in the case of Raspberry Pi, a MicroSD card is 
used to store the data. Finally, connections are established via Gigabit Ethernet and the OS employed is Linux-
4Tegra, based on Ubuntu 18.0437,60.

Power measurement. In this work, together with the latency and accuracy attributed to each model pro-
cessing, we also address the issue of the power consumption for the NN equalizers implemented in the Nvidia 
Jetson Nano and the Raspberry Pi 4.

It is possible to measure the power consumption of both the Nvidia Jetson Nano and the Raspberry Pi in 
different ways. Regarding Nvidia Jetson Nano, there are three onboard sensors located at the power input, at the 
GPU, and at the CPU. Thus, the precision of the measurements is limited by these sensors. To read the record-
ings of these sensors, it is possible to do it automatically using the tegrastats tool, or manually by reading 
.sys files, a pseudo-file system on Linux. By using both approaches, the information of measurements for the 
power, voltage, and current can be readily  collected62. In contrast, Raspberry Pi 4 has no system to easily provide 
power consumption numbers. Some software-based methods have been developed, as well as some empirical 
 estimations63. However, it has been demonstrated that most of the aforementioned software methods give just an 
approximation that may not be used if very precise results are  required63. On the other hand, the second empiric 
strategy to measure the power consumption on Raspberry Pi is specific for this type of hardware and cannot be 
used in Nvidia Jetson Nano.

To compare the power consumption of the equalizer on these two types of hardware, it is more accurate and 
desirable to use the same method in both of them, to avoid any instrumental bias. In this paper, we developed 
a platform-agnostic method through the use of a digital USB multimeter. The proposed power consumption 
measurement system addresses the problem of these devices having no onboard shunt resistors; such an approach 
allows us to easily measure power with an external energy probe. A schematic of the measurement set-ups is 
given in Fig. 8.

In the case of Raspberry Pi, the power is supplied through a USB type C port via a 5.1 V–2.5 A power adapter. 
For Nvidia Jetson Nano, the power can be supplied through a Micro-USB connector using a 5.1 V–2.5 A power 

Figure 8.  (a) The power measurement set-up for Nivida Jetson Nano, and (b)—the same for Raspberry Pi.
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adapter or a Barrel jack 5 V–4 A (20 W) power supplier. It is possible to change from one configuration to the 
other by setting a jumper and moving from the 5 W Mode to the 10 W one. To use the same source of power as 
in Raspberry Pi, the Micro-USB configuration is used.

As energy is supplied through a USB connection, it is possible to measure the power using a USB digital 
multimeter. The model used in this work is the A3-B/A3 manufactured by Innovateking-EU. It records voltage, 
current, impedance, and power consumption. The input voltage and current ranges are 4.5 V–24 V and 0 A–3 A, 
respectively. Moreover, we can measure the energy in a range that goes from 0 to 99,999 mWh. The voltage and 
current measurement resolution are 0.01 V and 0.001 A, with the measurement accuracies ± 0.2% and ± 0.8%, 
respectively.

The USB digital multimeter A3-B/A3 comes with the software named UM24C PC Software V1.3, which allows 
sending the measured data to a computer in real-time, as it is shown in Fig. 8a,b . During the measurement 
process, no peripherals are connected either to Raspberry Pi or Nvidia Jetson Nano, except for the Ethernet port. 
This is used for communication over SSH, Fig. 8. Moreover, 25 measures were taken for each device. In each of 
them, 100 inferences were run, and the power consumption was averaged over them, not taking into account 
the power consumed during the initialization phase.

Inference time measurement. To evaluate the inference time for each model, no peripherals are con-
nected either to the Raspberry Pi or to the Nvidia Jetson Nano, except the Ethernet port, which is used to 
establish communication over the Secure Shell protocol. Moreover, any initialization time (e.g., library loading, 
data generation, and model weight loading) is ignored because this is a one-time cost that occurs during the 
device’s setup. Furthermore, 25 measures were taken for each device. In each of them, 100 inferences were run 
(in each inference 30 k symbols are recovered) and the inference time was averaged, not taking into account the 
initialization phase.

Data availibility
Data underlying the results presented in this paper are not publicly available at this time, but can be obtained 
from the authors upon request.
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