
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports

Experimental implementation
of a neural network optical channel
equalizer in restricted hardware
using pruning and quantization
Diego Argüello Ron1*, Pedro J. Freire1,2, Jaroslaw E. Prilepsky1, Morteza Kamalian‑Kopae1,
Antonio Napoli2 & Sergei K. Turitsyn1*

The deployment of artificial neural networks‑based optical channel equalizers on edge‑computing
devices is critically important for the next generation of optical communication systems. However,
this is still a highly challenging problem, mainly due to the computational complexity of the artificial
neural networks (NNs) required for the efficient equalization of nonlinear optical channels with large
dispersion‑induced memory. To implement the NN‑based optical channel equalizer in hardware, a
substantial complexity reduction is needed, while we have to keep an acceptable performance level
of the simplified NN model. In this work, we address the complexity reduction problem by applying
pruning and quantization techniques to an NN‑based optical channel equalizer. We use an exemplary
NN architecture, the multi‑layer perceptron (MLP), to mitigate the impairments for 30 GBd 1000 km
transmission over a standard single‑mode fiber, and demonstrate that it is feasible to reduce the
equalizer’s memory by up to 87.12%, and its complexity by up to 78.34%, without noticeable
performance degradation. In addition to this, we accurately define the computational complexity of
a compressed NN‑based equalizer in the digital signal processing (DSP) sense. Further, we examine
the impact of using hardware with different CPU and GPU features on the power consumption and
latency for the compressed equalizer. We also verify the developed technique experimentally, by
implementing the reduced NN equalizer on two standard edge‑computing hardware units: Raspberry
Pi 4 and Nvidia Jetson Nano, which are used to process the data generated via simulating the signal’s
propagation down the optical‑fiber system.

Optical communications form the backbone of the global digital infrastructure. Nowadays, optical networks
are the main providers of global data traffic, not only interconnecting billions of people, but also supporting the
life-cycle of a huge number of different autonomous devices, machines, and control systems. One of the major
factors limiting the throughput of contemporary fiber-optic communication systems is the nonlinearity-induced
transmission impairments1,2, emerging from both the fiber media’s nonlinear response and the system’s compo-
nents. The existing and potential solutions to this problem include, e.g., the mid-span optical phase conjugation,
digital back-propagation (DBP), and inverse Volterra series transfer function, to mention just a few noticeable
 methods2–4. But, it should be stressed that in the telecommunication industry, the competition between possible
solutions occurs not only in terms of performance but also in terms of hardware deployment options, operational
costs, and power consumption.

During the last years, the approaches based on machine learning techniques and, in particular, those utiliz-
ing NNs, have become an increasingly popular topic of research, as the NNs can efficiently unroll both fiber and
component-induced impairments5–15. One of the straightforward ways of using an NN for signal’s corruption
compensation in optical transmission systems is to plug it into the system as a post-equalizer7,10,14, a special signal
processing device at the receiver side, aimed at counteracting the detrimental effects emerging during the data
 transmission16. Numerous preceding studies have demonstrated the potential of this type of solution7,8. A number
of NN architectures have already been analyzed in different types of optical systems (submarine, long-haul, metro,
and access). These architectures include the feed-forward NN designs such as the MLP7,10,14,15, considered in the
current study, or more sophisticated recurrent-type NN structures10–12,17. However, the practical deployment of

OPEN

1Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK. 2Infinera,
Sankt-Martin-Str. 76, 81541 Munich, Germany. *email: d.arguelloron@aston.ac.uk; s.k.turitsyn@aston.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-12563-0&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

real-time NN-based channel equalizers implies that their computational complexity is, at least, comparable, or,
desirably lower than that of existing conventional digital signal processing (DSP) solutions18, and remains a mat-
ter of debate. This is a relevant aspect because the good performance achieved by the NNs is typically linked to the
use of a large number of parameters and floating-point operations10. The high computational complexity leads, in
turn, to high memory and computing power requirements, increasing the energy and resource consumption19,20.
Thus, the use of NN-based methods, while being, undoubtedly, promising and attractive, faces a major chal-
lenge in optical channel equalization, where the computational complexity emerges as an important limiting
real-time deployment factor10,12,20,21. We notice here that it is, of course, well known that some NN architectures
can be simplified without significantly affecting their performance, thanks, e.g., to strategies such as pruning
and quantization19,20,22–25. However, their application in the experimental environment of the resource-restricted
hardware has not been fully studied in the context of coherent optical channel equalization yet. It is also necessary
to understand and further analyze the trade-off between the complexity reduction and the degradation of system
performance, as well as the complexity reduction impact on the end device’s energy consumption.

In this paper, we apply the pruning and quantization techniques to reduce the hardware requirements of an
NN-based coherent optical channel equalizer, while keeping its performance at a high level. We also emphasize
the importance of an accurate evaluation of the equalizer’s computational complexity in the DSP sense. Apart
from the complexity and inference time study, an additional novelty and advance of our work lies in the energy
consumption analysis and the study of the impact that the characteristics of both the hardware and the model,
have on these metrics.

Results
We develop and experimentally evaluate the performance of a low-complexity NN-based equalizer that can be
deployed on resource-constrained hardware and, at the same time, can successfully mitigate nonlinear transmis-
sion impairments in a simulated optical communication system. This is achieved by applying the pruning and
quantization techniques to the NN23, and by studying the optimal trade-off between the complexity of the NN
solution and its performance. The obtained results can be split into three main categories.

First, we quantify how complexity reduction techniques affect the performance of the NN model and establish
a compression limit for optimal performance versus complexity trade-off. Second, we analyze the computational
complexity of the pruned and quantized NN-based equalizer in terms of DSP. Finally, we experimentally evaluate
the impact that the characteristics of the hardware and the NN model have on the signal processing time and
energy consumption by deploying the latter on both a Raspberry Pi 4 and a Nvidia Jetson Nano.

Now we briefly review the previous results in the field of compression techniques applied to NN-based equal-
izers in optical links, to underline the novelty of our current approach. The use of these techniques to reduce
the NNs complexity in optical systems is, clearly, not a new concept25. However, the compression methods have
recently gained a new wave of attention due to the question of how realistic the hardware implementation of
NN-based equalizers in optical transmission systems is. In a direct detection transmission system, a parallel-
pruned NN equalizer for a 100-Gbps PAM-4 links were tested experimentally using the enhanced version of the
one-shot pruning method26, which decreased by 50% the resource consumption without significant performance
degradation. When considering coherent optical transmission, the complexity of the so-called learned DBP
nonlinearity mitigation method was reduced by pruning the coefficients in the finite impulse response filters27
(see more technical explanations in “Methods” section below). In that case, using a cascade of three filters, a
sparsity level of around 92% can be achieved with a negligible impact on the overall performance. Recently, some
advanced techniques for avoiding multiplications in such equalizers using additive powers-of-two quantization
were tested28. In the latter work, 99% of the weights could be removed using advanced pruning techniques, and
instead of multiplications, just bit-shift operations were required. However, none of those works deal with the
experimental demonstration of hardware implementation, and our study addresses exactly the latter problem.

So, unlike previous works, in the current study, we implement the compressed NN-based equalizer for the
coherent optical channel in two different hardware platforms: a Raspberry Pi 4 and a Nvidia Jetson Nano. We
also evaluate the impact of the compression techniques on the system’s latency for each hardware type and study
the performance-complexity trade-off. Finally, we carry out an analysis of energy consumption and of the impact
that the characteristics of the hardware and the NN model have on it.

Optical communication system and equalizer design. To address the use of a MLP as an NN-based
equalizer, an accurate measurement system for both the inference time and the power consumption, on both a
Raspberry Pi and a Nvidia Jetson Nano, has been designed, so that the effects that pruning and quantization have
on these metrics, can be characterized (see “Methods” section below for a detailed explanation). In Refs.10,14, the
non-compressed MLP post-equalizer was considered, and it was shown that it can successfully compensate for
the nonlinearity-induced impairments in a coherent optical communication system. We analyze the equalizer’s
performance in terms of the standard achieved Q-factor, using the simulated data for a 0.1 root-raised cosine
(RRC) dual-polarization signal, with 30 GBd, and 64-QAM modulation, for the transmission over the 20 × 50
km links of standard single-mode fiber (SSMF). We used the same simulator as described in Refs.10,29, to generate
our training and testing datasets, and the same procedure to training the NN-based equalizer (see “Numerical
setup and neural network model” subsection in “Methods” for more details). In our configuration, the NN is
placed at the receiver (Rx) side after the Integrated Coherent Receiver (ICR), Analog-Digital Converter (ADC),
and DSP block. This last block consists of a matched filter and a linear equalizer. Concerning the matched
filter, it is just the same RRC filter used in the transmitter. Moreover, the linear equalizer is composed of a full
electronic chromatic dispersion compensation (CDC) stage and a normalization step, see Fig. 1. The CDC uses
a frequency-domain equalizer and downsampling to the symbol rate, followed by a phase/amplitude normal-

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

izer to the transmitted ones. This normalization process can be viewed as its normalization by a constant KDSP
learned using the following equation:

where constants K, KDSP ∈ C and xh/v is the signal in either h or v polarisation. No other distortions—related
to the components within the transceiver—were considered.

For this system, the best optimal power occurred at − 1 dBm with the Q-factor being close to 7.8, as it can
be appreciated in Fig. 2. We then wanted to investigate the 3 next powers (e.g. 0 dBm, 1 dBm, and 2 dBm) going
towards the higher nonlinear regime, where the task of the NN would be more complicated.

The hyperparameters that define the structure of the NN are obtained using a Bayesian optimizer (BO)10,30,
where the optimization is carried out with regards to the signal’s restoration quality performance (see “Numerical
setup and neural network model” subsection in “Methods”). The resulting optimized MLP has three hidden layers
(we did not optimize the number of layers, but the number of neurons and the activation functions type), with
500, 10, and 500 neurons, respectively. (These numbers were set as the minimal and maximal weights number
limits, within which the BO algorithm was searching the optimal configuration). The activation function “ tanh ”
was chosen by the optimizer and no bias is employed. The NN takes the downsampled signal (1 sample per sym-
bol) and inputs into the equalizer N = 10 neighbors symbols (number of taps) to recover the central one. This
memory size was defined by the BO procedure. The NN was subjected to pruning and quantization after it had
been trained and tested. We analyzed the performance of different NN models depending on their sparsity level;
the latter ranged from 20 to 90%, with a 10% increment. The weights and activations are quantized, converting
their data type from 32-bit single-precision floating-point (FP32) to 8-bit integer (INT8). The quantization was
carried out to enable a real-time use of the model as well as its deployment on resource-constrained hardware.
The final system is depicted in Fig. 1. The inference process (the signal equalization) was, first, carried out using
a MSI GP76 Leopard personal computer, equipped with Intel® CoreTM i9-10870H processor, 32 GB of RAM and
GPU Nvidia RTX2070. The results obtained on this computer were used as a benchmark and compared to those
obtained on two small single-board computers: a Raspberry Pi 4 and a Nvidia Jetson Nano.

Finally, the NNs were developed using TensorFlow. The pruning and quantization techniques were imple-
mented using the TensorFlow Model Optimization Toolkit—Pruning API and TensorFlow Lite31.

(1)KDSP = min
K

∥

∥K× xh/v(z, t)− xh/v(0, t)
∥

∥,

Figure 1. Structure of a communication channel that is equalized using a pruned and quantized neural network
deployed on resource-restricted hardware (e.g. a Raspberry Pi 4 or a Nvidia Jetson Nano).

Figure 2. Performance comparison for the NN-based equalizer with respect to the regular DSP.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

Compressing process for neural network equalizers. When designing an NN for a particular pur-
pose, the traditional approach consists in using dense and over-parametrized models, insofar as it often can
provide a good model’s performance and learning capabilities32,33. This is due to the over-parametrization’s
smoothing effect on the loss function, which benefits the convergence of the gradient descent techniques used
to optimize the model32. However, some precautions must be taken while training an over-parametrized model,
because such models often tend to overfit, and their generalization capability can be degraded32,34.

The good performance achieved due to over-parameterization comes at the cost of larger computational and
memory resources. This also results in a longer inference time (latency growth) and higher energy consump-
tion. Note that these costs are the consequence of parameter redundancy and a large number of floating-point
 operations20,23. Therefore, the capabilities of high-complexity NN-based equalizers do not translate yet into
end-user applications on resource-constrained hardware. Thus, reducing the gap between the algorithmic solu-
tions and the experimental real-world implementations is an increasingly active topic of research. During the
past several years, noticeable efforts have been invested in developing techniques that can help to simplify the
NNs without significantly decreasing their performance. These techniques are grouped under the term “NNs
compression methods”, and the most common approaches are: down-sizing the models, factorizing the operators,
quantization, parameter sharing or pruning20,23,24. When these techniques are applied, the final model typically
becomes much less complex, and, therefore, its latency, or the time it takes to make a prediction, decreases,
which also results in a lower energy consumption20. In this work, we focus on both pruning and quantization for
compressing our NN equalizer and quantify a trade-off between complexity reduction and system performance,
see “Methods” section for a detailed description of both approaches.

Performance vs. compression trade‑off. Firstly, we note that the complexity reduction of the equalizer
must not affect its performance drastically, i.e. the system’s performance is still required to be within an accept-
able range. In Fig. 3a, the Q-factor achieved by the NN equalizer is depicted versus different sparsity values, for
three launch power levels: 0 dBm, blue; 1 dBm, red; and 2 dBm, green. The results are shown using dotted lines
and stars, which are those obtained on the PC, Raspberry Pi, and Nvidia Jetson Nano, using the pruned and
quantized model. For each of these launch powers, two baselines for the Q-factor are depicted: one corresponds
to the level achieved by the uncompressed model, defined by the straight lines, while the other provides the
benchmark when we do not employ any NN equalization and use only standard linear chromatic dispersion
compensation plus phase/amplitude normalization (LE, linear equalization); the latter levels for the three differ-
ent launch powers are marked by dotted lines having the appropriate colors.

Figure 3b quantifies the impact that each compression technique has on the performance: in that figure, we
plotted the Q-factor achieved by the NN equalizer versus different values of sparsity, for the 1 dBm launch power.
The blue and red straight lines represent the Q-factor of the original model and the Q-factor achieved by it after
being quantized. The dotted lines with asterisks, show the performance of a model that has been only pruned
(blue), and the performance in the case of both pruning and quantization (red). It is seen that a substantial reduc-
tion of the complexity can be achieved without a dramatic degradation of the performance. The sparsity levels at
which the fast deterioration of the performance occurs, are also clearly seen in this figure.

Figure 3. (a) Q-factor achieved for pruned and quantized models versus the level of sparsity for datasets
corresponding to three launch powers: 0 dBm, 1 dBm, and 2 dBm; The solid lines correspond to the Q-factor
achieved by the original model. The dashed lines show the Q-factor when only linear equalization (LE) is
implemented. (b) Q-factor achieved after pruning compared to the one achieved after both pruning and
quantization, for different levels of sparsity and for a dataset corresponding to the 1 dBm launch power. The
blue and red solid lines correspond to the Q-factor achieved by the original model and the one achieved by this
model after quantization, respectively.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

First, it can be observed from Fig. 3a that the quantization and pruning process does not cause a significant
performance degradation until a sparsity level equal to 60% is reached, with just a 4% performance reduction.
However, when we move to sparsity levels around 90%, the performance is close to the one achieved using a
linear equalization (i.e., the Q-factor curves drop to the levels marked with the dashed lines of the same color).

We can conclude that when the levels of sparsity are above 60%, the decrease in the performance is mainly the
effect of the quantization process. A nearly 2.5% drop in the Q-factor value has also been observed when quantiz-
ing an already pruned model. Once the levels of sparsity are higher than 60%, the reduction in performance due
to the quantization gets accelerated. Moreover, we observe that some degree of sparsification can even improve
the model’s performance with respect to the unpruned model. This behavior has already been reported in other
studies and it was found that it is specifically pertinent to the over-parametrized models. Thus, the NNs with
less complex structures do not show up such an increase in performance due to low-sparsity pruning, making
it impossible to achieve such a good performance-complexity ratios32,33,35,36.

Computational complexity analysis. Figure 4 depicts the reduction in the size of the model as well as
the model’s computational complexity for different sparsity values, after having applied quantization. For the
definition of the metrics used to calculate the computational complexity as well as the size of the models, see
the subsections “Computational complexity metrics and memory size metrics” in “Methods”. Overall, we have
achieved an 87.12% reduction in the memory size after pruning 60% of the NN equalizer weights and quantiz-
ing the remaining ones. As a consequence, the size of the model went down from 201.4 to 25.9 kilobytes. For
the decrease of the model’s computational complexity, it goes from 75,960,427.38 to 16,447,962 bit operations
(BoPs) after applying the same compression strategy, which is a 78.34% reduction (see the explicit definition of
BoPs in “Methods” section). We would like to point out once more that sparsity levels of 60% can be reached
without a substantial performance loss. Therefore, approximately the same high level of performance can be
achieved with a model that is significantly less complex than the initial NN structure, which is one of the main
findings of our work.

It is worth mentioning the individual impact that quantization and pruning have on the computational com-
plexity of the model. When the computational complexity is calculated for a quantized, but unpruned model,
the number of BOPs is equal to 23,321,563. Therefore, if this value is compared with the already mentioned
75,960,427 BoPs for the unpruned and unquantized NN, a reduction in complexity of a 69.3% is obtained thanks
to quantization. As it can be seen in Fig. 4, the remaining gain comes from the pruning technique, and it grows
linearly as indicated in Eq. (5).

Online latency evaluation. Numerous deep learning applications are latency-critical, and therefore the
inference time must be within the bounds specified by service level objectives. Optical communication applica-
tions that employ deep learning techniques are a good example of this. Note that the latency is highly dependent
on the NN model implementation and the hardware employed (e.g., FPGA, CPU, GPU). Please refer to “Meth-
ods” section for more details on the devices’ inference time measurements.

When measuring the inference time for the different types of hardware and the quantized model that has had
60% of its weights pruned, the results are:

• Latency Raspberry Pi : µ = 0.81 s and σ = ±0.035

• Latency Nvidia Jetson Nano: µ = 0.53 s and σ = ±0.022
• Latency PC: µ = 0.1 s and σ = 0.006

Figure 4. Complexity and size reduction achieved via pruning and quantization for different levels of sparsity.
The dashed black line represents the reference complexity when only quantization is applied.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

In the case of the unpruned and unquantized model:

• Latency Raspberry Pi : µ = 1.84 s and σ = ±0.08

• Latency Nvidia Jetson Nano: µ = 1.22 s and σ = ±0.052s
• Latency PC: µ = 0.18 s and σ = ±0.008

Figure 5 shows the latency of the considered NN model before and after quantization. We notice that the results
are expressed in a way that is more appropriate for the task at hand. Thus, latency is defined as the time it takes
to process one symbol: we have averaged it over 30 k symbols. With the quantized model, we observe approxi-
mately a 56% reduction in latency for all three values of power, when compared to the original model. We must
notice that pruning is not taken into account because it does not affect this metric since Tensorflow Lite does
not support sparse inference yet, which makes the algorithm still use the same amount of cache memory. Also,
we could observe that Raspberry Pi has the longest inference time among our devices. This is in line with the
fact that Raspberry is designed as a low-cost and general-purpose single-board computer37. On the other hand,
the Nvidia Jetson Nano was developed with GPU capabilities, which makes it more suitable for deep learning
applications, allowing us to achieve lower latencies.

Online energy consumption evaluation. Within the context of edge computing, not only is speed an
important factor, but also power efficiency. In this work, the metric used to evaluate the energy consumption
and compare the different types of hardware for the coherent optical channel equalization task is the energy
per recovered symbol. When using a quantized model with a pruning level of 60%, the average energy con-
sumed during inference for the Raspberry Pi 4 and the Nvidia Jetson Nano is 2.98 W (σ = ±0.012) and 3.03 W
(σ = ±0.017), respectively. On the other hand, if the original model is employed, there is an increase in energy
consumption of around 3%, which is congruent with the findings in previous works23. Thus, during inference,
the Raspberry Pi 4 consumes 3.06 W (σ = ±0.011) and the Nvidia Jetson Nano 3.13 W (σ = ±0.015), respec-
tively. Multiplying these values by the NN processing times per recovered symbol reported in Fig. 5, we obtain
the results presented in Fig. 6. We note that Raspberry Pi has the highest energy consumption per recovered
symbol. This is a consequence of the lack of a GPU, which results in longer inference times. Thus, the Nvidia
Jetson Nano consumes 33.78% less energy than the Raspberry Pi 4. Regarding pruning and quantization, the use
of these techniques allows an energy saving of 56.98% for the Raspberry Pi 4 and a 57.76% saving for the Nvidia
Jetson Nano.

It must be noticed that although TensorFlow Lite does not support sparse inference and therefore pruning
does not help to reduce the inference time, it affects the size of the model. This has a direct effect on the power
consumption of the device due to the decrease in the use of resources. In contrast, quantization has a positive
effect on both of these parameters thanks to employing lower precision formats and reducing the size of the
model. Therefore, it has a stronger effect on energy consumption. This is reflected in the results exposed in this
section. Moreover, it is congruent with the findings reported in previous studies23,38.

See “Methods” section for more details on the energy consumption measurement.

Discussion
In our work, we investigated how we can use pruning and quantization to reduce the complexity of the hardware
implementation of an NN-based channel equalizer in a coherent optical transmission system. With this, we
tested the implementation of the designed equalizer experimentally, using a Raspberry Pi 4 and a Nvidia Jetson

Figure 5. Summary of the symbol processing (inference) time for the compressed NN models (after pruning
and quantization) and the original models for three devices under evaluation: a Raspberry Pi 4, a Nvidia Jetson
Nano, and a standard PC.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

Nano. It was demonstrated that it is possible to reduce the NN’s memory usage by 87.12% , and the NN’s compu-
tational complexity by 78.34% without any serious penalty in performance, thanks to the two aforementioned
compression techniques.

Moreover, the effect of using different types of hardware was experimentally characterized by measuring the
inference time and energy consumption in both a Raspberry Pi 4 and a Nvidia Jetson Nano. We note, however,
that we experimented only with the edge devices, and the data from the communication system were obtained
via simulations; but we do not expect that the results regarding the performance vs complexity trade-off achieved
thanks to pruning and quantization for the true optical system would seriously differ. It has been demonstrated
that the Nvidia Jetson Nano allows 34% faster inference times than the Raspberry Pi, and that, thanks to the
quantization process, a 56% inference time reduction can be achieved. Finally, due to the use of pruning and
quantization techniques, we achieve 56.98% energy savings for the Raspberry Pi 4 and 57.76% for the Nvidia
Jetson Nano; we also observed that the latter device consumes 33.78% less energy.

Overall, our findings demonstrate that the usage of pruning and quantization can be a suitable strategy for
the implementation of NN-based equalizers that are efficient in high-speed optical transmission systems when
deployed on resource-restricted hardware. We believe that these model compression techniques can be used
for the deployment of NN-based equalizers in real optical communication systems, and for the development of
novel online optical signal processing tools. We hope that our results can also be of interest to the researchers
developing sensing and laser systems, where the application of machine learning for field processing and char-
acterization is a rapidly developing area of research39.

Methods
Numerical setup and neural network model. We numerically simulated the dual-polarization (DP)
transmission of a single-channel signal at 30 GBd. The signal is pre-shaped with a root-raised cosine (RRC) filter
with 0.1 roll-off at a sampling rate of 8 samples per symbol. In addition, the signal modulation format is 64-QAM.
We considered the case of transmission over 20 × 50 km links of SMF. The optical signal propagation along the
fiber was simulated by solving the Manakov equation via split-step Fourier method40 with the resolution of 1
km per step. The considered parameters of the TWC fiber are: the attenuation parameter α = 0.23dB/km , the
dispersion coefficient D = 2.8 ps/(nm × km), and the effective nonlinearity coefficient γ = 2.5 (W × km)−1 . The
SSMF parameters are: α = 0.2 dB/km, D = 17 ps/(nm × km), and γ = 1.2 (W × km)−1 . Moreover, after each
span, an optical amplifier with the noise figure NF = 4.5 dB was placed to fully compensate fiber losses and added
amplified spontaneous emission (ASE) noise. At the receiver, a standard Rx-DSP was employed. It consisted of
the full electronic chromatic dispersion compensation (CDC) using a frequency-domain equalizer, the applica-
tion of a matched filter, and the downsampling to the symbol rate. Finally, the received symbols were normalized
(by phase and amplitude) to the transmitted ones. In this work, no additional transceiver distortions were taken
into account. After the Rx-DSP, the bit error rate (BER) is estimated using the transmitted symbols, received soft
symbols, and hard decisions after equalization.

The NN receives as input a tensor with a shape defined by three dimensions: (B, M, 4), where B is the mini-
batch size, M is the memory size determined by the number of neighbors N as M = 2N + 1 , and 4 is the number
of features for each symbol, which correspond to the real and imaginary parts of two polarization components.
The NN will have to recover the real and imaginary parts of the k-th symbol of one of the polarization. There-
fore the shape of the NN output batch can be expressed as (B, 2). This task can be treated as a regression or

Figure 6. Energy consumption for Raspberry Pi 4 and Nvidia Jetson Nano. The blue section represents the
energy consumption per recovered symbol when using the compressed model, and its relative energy cost is
expressed as a percentage with respect to the sum of the energy consumed by both the original and compressed
models. Likewise, the red section describes the energy consumption per recovered symbol when using the
original model and its relative energy cost.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

classification one. This aspect has been considered in previous studies and stated that the results achieved by
regression and classification algorithms are similar but fewer epochs are needed in the case of regression. Thus,
the mean square error (MSE) loss estimator is used in this paper, as it is the standard loss function employed in
regression tasks41. The loss function is optimized using the Adam algorithm42 with the default learning rate equal
to 0.001. The maximum number of epochs during the training process was 1000, as it was stopped earlier if the
value of the loss function did not change over 150 epochs. After every training epoch, we calculated the BER
obtained using the testing dataset. The optimal number of neurons and activation functions in each layer of the
NN, as well as the memory (input) of the system were inferred employing the Bayesian Optimization algorithm
(BO). The values tested for the number of neurons were n ∈ [10, 500] . For the activation function, the BO had
to chose between: “ tanh ”, “ReLu”, “sigmoid” and “LeackyReLu”. The values tested for the memory (input) of the
system were N ∈ [5, 50] The metric of the BO was the BER, finding the hyperparameters that helped to reduce
the BER as much as possible with a validation dataset of 217 data points. The final solution was the use of “ tanh ”
as an activation function and 500, 10, and 500 neurons for the first, second, and third layer, respectively. The
training and test datasets were composed of independently generated symbols of length 218 each. To prevent any
possible data periodicity and overestimation43,44, a pseudo-random bit sequence (PRBS) of order 32 was used to
generate those datasets with different random seeds for each of them. The periodicity of the data is, therefore,
212 times higher than our training dataset size. For the simulation, the Mersenne twister generator45 was used
with different random seeds. Moreover, the training data was shuffled before being used as an input to the NN.

Finally, we would like to notice an important matter as it is the necessity of the periodical retraining of
the equalizer on realistic transmission. In this case, it may be a point of concern. This issue has already been
addressed in previous studies29, where it has been demonstrated that using transfer learning can drastically reduce
the training time and training data requirements when changes on the transmission setup occur.

Pruning technique. With pruning, the redundant NN elements can be removed to sparsify the network
without significantly limiting its ability to carry out a required task24,32,46. Thus, networks with a reduced size and
computational complexity are obtained, resulting in lower hardware requirements as well as faster prediction
 times23,24. Furthermore, pruning acts as a regularization technique, improving the model quality by helping to
reduce overfitting32. Moreover, retraining an already pruned NN can help to escape local loss function minima,
which can lead to a better prediction accuracy24. Thus, less complex models can often be achieved without a
noticeable effect on the NN’s performance32.

Depending on what is going to be pruned, the sparsification techniques can be classified into two types:
model sparsification and ephemeral sparsification32. In the first case, the sparsification is permanently applied
to the model, while in the second case, the sparsification only takes place during the computing process. In our
work, we will use the model sparsification, because of the effects it has on the final NN’s computing and memory
hardware requirements. Adding to this, the model sparsification can consist in removing not only weights but
also larger building blocks, such as neurons, convolutional filters, etc.32. Here we apply pruning to just the weights
of the network, for the sake of simplicity and as far as it matches the NN structure (the MLP) that is considered.

After having defined what to prune, it is necessary to define when the pruning occurs. Based on this, there are
two main types of pruning: static and dynamic24. In the static case, the elements are removed from the NN after
the training, and in this work, to demonstrate the effect, we use the static pruning variant because of its simplicity.

The static pruning is generally carried out in three steps. First, we decide upon what requires to be pruned.
A simple approach to define the pruning objects can be to evaluate the NN’s performance with and without
particular (pruned) elements. However, this poses scalability problems: we have to evaluate the performance
when pruning each particular NN’s parameters, and there may be millions of these.

Alternatively, it is possible to select the elements to be removed randomly, which can be done faster32,47,48.
Following this latter approach, we beforehand decided to prune the weights. Once it has been decided which
elements are to be pruned, it is necessary to establish the criteria for how the elements are to be removed from the
NN, ensuring that high levels of sparsity are achieved without a significant loss in performance. When pruning
the weights of the NN, it is possible to remove them based on different aspects: considering their magnitude (i.e.,
the weights having values close to zero are to be pruned, with the pruning percentage is defined by the sparsity
level we aim to achieve), or their similarity (if two weights have a similar value, only one of those is kept); we
mention that the other selection procedures also exist32,48. Here, we pick the relatively simple weights pruning
strategy based on their magnitude. In Fig. 7 we show the impact when we have pruned our NN equalizer by 40%.
When comparing the weight distributions of the original and pruned models, it is clear that the sparsity level
defines the number of weights that need to be pruned. Thus, the pruning process starts by removing the smallest
weight and continues until the desired sparsity level is reached. Finally, a retraining or fine-tuning phase should
be done, to reduce the degradation in the modified NN performance24.

When carrying out pruning using the Tensorflow Model Optimization API, it is necessary to define a pruning
Schedule to control this process by notifying at each step the level at which the layer should be pruned49. In this
work, the schedule known as Polynomial Decay is employed. The main characteristic of this type of schedule is
that a polynomial sparsity function is built. In this case, the power of the function is equal to 3 and the pruning
takes place every 50 steps. This means that during the last steps higher ratios of sparsification are employed (e.g.
more weights are removed), speeding up the pruning process. On the other hand, if the power of the function
were negative, pruning would be slowed-down. The model starts with a 0% sparsity and the process takes place
during 300 epochs. This is approximately 35 % of the number of iterations required for training the original
model. It is the objective of future works to optimize the hyperparameters of the pruning process, improve its
efficiency and reduce the cost related to a high number of iterations.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

Quantization technique. Besides the reduction in the number of operations involved in the NN signal
processing, the precision of such arithmetic operations is another crucial factor when determining the model’s
complexity and, therefore, the inference latency, as well as equalizer’s memory and energy requirements23,50–52.
The process of approximating a continuous variable with a specified set of discrete values is known as quantiza-
tion. The number of discrete values will determine the number of bits necessary to represent the data. Thus, when
applying this technique in the context of deep learning, the objective is decreasing the numeric precision used to
encode the weights and activations of the models, avoiding a noticeable decrease in the NN’s performance20,52.

Using low-precision formats allows us to speed up math-intensive operations, such as convolution and matrix
 multiplication52. On the other hand, the inference (signal processing) time depends not only on the format
representation of the digits involved in the mathematical operations but is also affected by transporting the
data from memory to the computing elements23,38. Moreover, heat is generated during the latter process and,
therefore, using a lower-precision representation can result in energy savings23. Finally, another benefit of using
low-precision formats is that a reduced number of bits is needed to store the data, which reduces the memory
footprint and size requirements23,52.

FP32 has been traditionally used as the numerical format for encoding weights and activations (output of the
neurons) in an NN, to take advantage of a wider dynamic range. However, as it has already been mentioned, this
results in higher inference times, which is an important factor when a real-time signal processing is considered20.
A variety of alternatives to the FP32 numerical format for NN’s elements representation have been proposed
lately, to reduce the inference time, as well as to decrease the hardware requirements. For example, it is becom-
ing popular to train NNs in FP16 formats, as it is supported by most deep learning accelerators20. On the other
hand, math-intensive tensor operations executed on INT8 types can see up to a 16× speed-up compared to the
same operations in FP32. Moreover, memory-limited operations could see up to a 4 × speed-up compared to the
FP32 version22–24,52. Therefore, in addition to pruning, we will reduce the precision of the weights and activations
to further decrease the computational complexity of the equalizer, employing the technique known as integer
 quantization52.

The integer quantization maps a floating point value x ∈ [α, β] to a bit integer xq ∈ [αq, βq] . This mapping
can be defined mathematically using the following formula: xq = round

(

1
s x + z

)

 , where s (a positive floating
point number) is known as the scale, and z is the zero point (an integer). The scaling factor basically divides
a range of real values, in this case those within the clipping range [α, β] , into a number of partitions. Thus, it
can be expressed as s = β−α

2b−1
 where b is the the quantization bit width. On the other hand, the zero point can

be defined as z = α(1−2b)
β−α

 . Therefore, it will be 0 in the case of symmetric quantization. Moreover, the previous
mapping can be refactored in order to take into account that if x is outside of the range [α, β] , then xq is outside
of [αq, βq] . Thus, it is necessary to clip the values when this happen; as a consequence, the mapping formula
becomes: xq = clip(round

[

1
s x + z

]

,αq,βq) , where the clip function takes the values24,53:

Integer quantization can take different forms, depending on the spacing between quantization levels and the
symmetry of the clipping range (determined by the value of the zero-point z)53. For the sake of simplicity, in this
work, we used symmetric and uniform integer quantization.

The quantization process can occur after the training or during it. The first case is known as post-training
quantization (PTQ) and the second one is the quantization aware training22–24. In PTQ, a trained model has its
weight and activations quantified. After this, a small unlabelled calibration set is used to determine the activa-
tions’ dynamic ranges23,52–54. No retraining is needed, which makes this method very popular because of its
simplicity and lower data requirements53,54. Nonetheless, when a trained model is directly quantized, this may

clip(x, l, u) =

{

l if x < l,
x if l ≤ x ≥ u,
u if x > u.

Figure 7. A typical distribution of the weights of the NN-based MLP equalizer without pruning and with
pruning when the sparsity level is set to 40%.

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

perturb the trained parameters, moving the model away from the convergence point reached during the training
with a floating-point precision. In other words, we notice that PTQ can have accuracy-related issues53.

In this work, the quantization is carried out after the training stage, i.e., we use the PTQ. The calibration pro-
cess required to estimate the range, i.e, (min, max) of the activations in the model, is done by running a few infer-
ences with a small portion of the test dataset. In our case, it consisted of 100 samples. When using the Tensorflow
Lite API, the calibration is carried out automatically, and it is not possible to choose the number of inferences.

Computational complexity metrics. Finally, it is important to discuss how we can correctly evaluate the
computational complexity of such models. In this regard, we quantitatively evaluate the reduction of computa-
tion complexity achieved by applying pruning and quantization, calculating the number of bits used during an
inference step. The most common operations in an NN are multiply-and-accumulate operations (MACs). These
are operations of the form a = a+ w × x , where three terms are involved: firstly, x corresponds to the input
signal of the neuron; secondly, w refers to the weight; and, finally, the accumulate variable a55. Traditionally, the
network complexity arithmetic has been measured using the number of MAC operations. However, in terms of
the DSP processing, the number of BoPs is a more appropriate metric to describe the computational complexity
of the model, as for low-precision networks composed of integer operations, it is not possible to measure the
computational complexity using FLOPS22,56. Thus, in this work, we use BoPs to quantify the complexity of the
equalizer. It is important to notice that within the context of optical channel non-linear compensation, the com-
plexity of NN-based channel equalizers has been traditionally measured taking into account only the number
of multiplications12,44,57. Thus, the accumulator contribution was neglected. However, in this project, we aim to
have a more general complexity metric and therefore include it in our calculations.

The BOPs measure was proposed for the first time in56, and defined for a convolutional layer that had been
quantized as:

In Eq. (2), bw and ba are the weight and activation bit-width, respectively; n is the number of input channels, m
is the number of output channels, and k defines the filters size (e.g. k × k filters)58. Taking into account that a
MAC operation takes the form: a = a+ w × x , it is possible to distinguish two contributions in the equation
above: one corresponding to the nk2 × b0 number of additions, where b0 = ba + bw + log2(nk

2) (e.g. accumula-
tor width in the MAC operations), and the other corresponds to the number of multiplications, e.g. nk2(babw)56.

Equation (2) was further adapted for the case of a dense layer that has been both pruned and quantized59.
Thus, it is applicable to our case, as the MLP consists of a series of dense layers arranged one after the other:

In Eq. (3), n and m correspond to the number of inputs and outputs, respectively; bw and ba are the bit widths of
the weights and activations. The additional term, fpi , is the fraction of pruned layer weights, which allows us to
take into account the reduction in multiplication operations because of pruning. This is the reason why it only
relates to the term babw59.

Therefore, in our case of the MLP with 3 hidden layers, the total number of BOPs is:

where i ∈ [1, 2, 3] , BoPsinput and BoPsoutput correspond to the contributions of the input and output layers. Equa-
tion (4) can be written in a less compact way as follows:

where ni , n1 , n2 , n3 ,and no are the number of neurons in the input, first, second, third, and output layers, respec-
tively; bw , ba , bo and bi are the bit width of the weights, activations, output and input, respectively; fp is the fraction
of the weights that have been pruned in a layer, which, in our case, is the same for every layer.

Memory size metrics. In this work, the size of the model is defined as the number of bytes that it occupies
in memory. Moreover, we notice the direct correlation between the value of this metric and the format used to
represent the model. Thus, in contrast to the traditional formats used in Tensorflow (e.g .h5 or HDF5 binary
data format and .pb or protobuf), a TensorFlow Lite model is represented in a special efficient portable format
identified by the .tflite file extension. This provides two main advantages: a reduced model’s size and lower
inference times. Therefore, the deployment of the NN model on a resource-restricted hardware becomes feasible.
As a consequence, it would not make sense to compare the models saved in the traditional Tensorflow format
with those that have been pruned and quantized as well as converted into Tensorflow Lite. We were aware of this
situation during the realization of the procedure and, thus, to avoid overestimating the benefits of pruning and
quantization, the unpruned and unquantized model were converted to .tflite format. To better understand
the implications that this step has, the size of the original model in .h5 format would experiment a 96.22% size
reduction after being converted to .tflite format, quantized and pruned (60% sparsity). On the other hand,
if the original model has already been converted to .tflite, the size reduction is 87.12%. Of course, based on
this, always using .tflite format instead of the other conventional ones seems to be the best strategy. The main
reason behind not doing this is that a graph that is in .tflite format can not be trained again, as it only sup-

(2)BoPs = mnk2(babw + ba + bw + log2(nk
2)).

(3)BoPsi = mini[(1− fpi)bai bwi + bai + bwi + log2(ni)],

(4)BoPs = BoPsinput +
∑

i

BoPsi + BoPsoutput ,

(5)
BoPsMLP = (nin1bi + n1n2ba + n2n3ba + n3noba)(1− fp)bw + (nin1)(bi + bw) log2(ni)

+ (n1n2)(ba + bw) log2(n1)+ (n2n3)(ba + bw) log2(n2)+ (n3no)(ba + bw) log2(n3),

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

ports an online inference mode. Nevertheless, a model that is, for example, in .h5 format, can be trained offline.
Therefore, the .tflite is only intended to be used in the context of edge computing.

Memory and processor restricted hardware. In many deep learning applications, low power con-
sumption and a reduced inference time are especially desirable. Moreover, the use of graphics processing units
(GPU) to attain high performance has some costs-related issues which are far from being ultimately solved37,60.
Therefore, a small, portable, and low-cost hardware is required to bring the solution to this problem. As a result,
single-board computers have become popular, and Raspberry Pi 4 and Nvidia Jetson Nano are among the most
used ones37. Hence, here we analyse the functioning of our NN-based equalizer using these two aforementioned
popular hardware types.

Raspberry Pi. Raspberry Pi is a small single-board computer. It is equipped with a Broadcom Video Core VI
(32-bit) GPU, Quad-core ARM CortexA72 64-bit 1.5 GHz CPU, 2 USB 2.0 ports, and 2 USB 3.0 ports; for data
storage, it uses a MicroSD card. Moreover, connections are provided through a Gigabit Ethernet/WiFi 802.11ac.
It uses an OS known as Raspbian and has no GPU capability as well as no specialized hardware accelerator37,61.

Nvidia Jetson Nano. Nvidia Jetson Nano is a small GPU-based single-board computer that allows the parallel
operation of multiple NNs. It has a reduced size (100 mm × 80 mm × 29 mm) and is equipped with a Maxwell
128-core GPU, Quad-core ARM A57 64-bit 1.4 GHz CPU. Like in the case of Raspberry Pi, a MicroSD card is
used to store the data. Finally, connections are established via Gigabit Ethernet and the OS employed is Linux-
4Tegra, based on Ubuntu 18.0437,60.

Power measurement. In this work, together with the latency and accuracy attributed to each model pro-
cessing, we also address the issue of the power consumption for the NN equalizers implemented in the Nvidia
Jetson Nano and the Raspberry Pi 4.

It is possible to measure the power consumption of both the Nvidia Jetson Nano and the Raspberry Pi in
different ways. Regarding Nvidia Jetson Nano, there are three onboard sensors located at the power input, at the
GPU, and at the CPU. Thus, the precision of the measurements is limited by these sensors. To read the record-
ings of these sensors, it is possible to do it automatically using the tegrastats tool, or manually by reading
.sys files, a pseudo-file system on Linux. By using both approaches, the information of measurements for the
power, voltage, and current can be readily collected62. In contrast, Raspberry Pi 4 has no system to easily provide
power consumption numbers. Some software-based methods have been developed, as well as some empirical
 estimations63. However, it has been demonstrated that most of the aforementioned software methods give just an
approximation that may not be used if very precise results are required63. On the other hand, the second empiric
strategy to measure the power consumption on Raspberry Pi is specific for this type of hardware and cannot be
used in Nvidia Jetson Nano.

To compare the power consumption of the equalizer on these two types of hardware, it is more accurate and
desirable to use the same method in both of them, to avoid any instrumental bias. In this paper, we developed
a platform-agnostic method through the use of a digital USB multimeter. The proposed power consumption
measurement system addresses the problem of these devices having no onboard shunt resistors; such an approach
allows us to easily measure power with an external energy probe. A schematic of the measurement set-ups is
given in Fig. 8.

In the case of Raspberry Pi, the power is supplied through a USB type C port via a 5.1 V–2.5 A power adapter.
For Nvidia Jetson Nano, the power can be supplied through a Micro-USB connector using a 5.1 V–2.5 A power

Figure 8. (a) The power measurement set-up for Nivida Jetson Nano, and (b)—the same for Raspberry Pi.

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

adapter or a Barrel jack 5 V–4 A (20 W) power supplier. It is possible to change from one configuration to the
other by setting a jumper and moving from the 5 W Mode to the 10 W one. To use the same source of power as
in Raspberry Pi, the Micro-USB configuration is used.

As energy is supplied through a USB connection, it is possible to measure the power using a USB digital
multimeter. The model used in this work is the A3-B/A3 manufactured by Innovateking-EU. It records voltage,
current, impedance, and power consumption. The input voltage and current ranges are 4.5 V–24 V and 0 A–3 A,
respectively. Moreover, we can measure the energy in a range that goes from 0 to 99,999 mWh. The voltage and
current measurement resolution are 0.01 V and 0.001 A, with the measurement accuracies ± 0.2% and ± 0.8%,
respectively.

The USB digital multimeter A3-B/A3 comes with the software named UM24C PC Software V1.3, which allows
sending the measured data to a computer in real-time, as it is shown in Fig. 8a,b . During the measurement
process, no peripherals are connected either to Raspberry Pi or Nvidia Jetson Nano, except for the Ethernet port.
This is used for communication over SSH, Fig. 8. Moreover, 25 measures were taken for each device. In each of
them, 100 inferences were run, and the power consumption was averaged over them, not taking into account
the power consumed during the initialization phase.

Inference time measurement. To evaluate the inference time for each model, no peripherals are con-
nected either to the Raspberry Pi or to the Nvidia Jetson Nano, except the Ethernet port, which is used to
establish communication over the Secure Shell protocol. Moreover, any initialization time (e.g., library loading,
data generation, and model weight loading) is ignored because this is a one-time cost that occurs during the
device’s setup. Furthermore, 25 measures were taken for each device. In each of them, 100 inferences were run
(in each inference 30 k symbols are recovered) and the inference time was averaged, not taking into account the
initialization phase.

Data availibility
Data underlying the results presented in this paper are not publicly available at this time, but can be obtained
from the authors upon request.

Received: 6 January 2022; Accepted: 3 May 2022

References
 1. Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: The previous 20 and the next 20 years.

Opt. Express 26, 24190–24239. https:// doi. org/ 10. 1364/ OE. 26. 024190 (2018).
 2. Cartledge, J. C., Guiomar, F. P., Kschischang, F. R., Liga, G. & Yankov, M. P. Digital signal processing for fiber nonlinearities. Opt.

Express 25, 1916–1936. https:// doi. org/ 10. 1364/ OE. 25. 001916 (2017).
 3. Rafique, D. Fiber nonlinearity compensation: Commercial applications and complexity analysis. J. Lightw. Technol. 34, 544–553.

https:// doi. org/ 10. 1109/ JLT. 2015. 24615 12 (2016).
 4. Dar, R. & Winzer, P. J. Nonlinear interference mitigation: Methods and potential gain. J. Lightw. Technol. 35, 903–930. https:// doi.

org/ 10. 1109/ JLT. 2016. 26467 52 (2017).
 5. Musumeci, F. et al. An overview on application of machine learning techniques in optical networks. IEEE Commun. Surv. Tutor.

21, 1383–1408. https:// doi. org/ 10. 1109/ COMST. 2018. 28800 39 (2019).
 6. Nevin, J. W. et al. Machine learning for optical fiber communication systems: An introduction and overview. APL Photon.https://

doi. org/ 10. 1063/5. 00708 38 (2021).
 7. Jarajreh, M. A. et al. Artificial neural network nonlinear equalizer for coherent optical ofdm. IEEE Photon. Technol. Lett. 27,

387–390. https:// doi. org/ 10. 1109/ LPT. 2014. 23759 60 (2015).
 8. Häger, C. & Pfister, H. D. Nonlinear interference mitigation via deep neural networks. In 2018 Optical Fiber Communications

Conference and Exposition (OFC), 1–3 (IEEE) (2018).
 9. Zhang, S. et al. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks. Nat.

Commun. 10, 3033. https:// doi. org/ 10. 1038/ s41467- 019- 10911-9 (2019).
 10. Freire, P. J. et al. Performance versus complexity study of neural network equalizers in coherent optical systems. J. Lightw. Technol.

39, 6085–6096. https:// doi. org/ 10. 1109/ JLT. 2021. 30962 86 (2021).
 11. Deligiannidis, S., Bogris, A., Mesaritakis, C. & Kopsinis, Y. Compensation of fiber nonlinearities in digital coherent systems lev-

eraging long short-term memory neural networks. J. Lightw. Technol. 38, 5991–5999. https:// doi. org/ 10. 1109/ JLT. 2020. 30079 19
(2020).

 12. Deligiannidis, S., Mesaritakis, C. & Bogris, A. Performance and complexity analysis of bi-directional recurrent neural network
models versus volterra nonlinear equalizers in digital coherent systems. J. Lightw. Technol. 39, 5791–5798. https:// doi. org/ 10. 1109/
JLT. 2021. 30924 15 (2021).

 13. Freire, P. J. et al. Experimental study of deep neural network equalizers performance in optical links. In 2021 Optical Fiber Com-
munications Conference and Exhibition (OFC), 1–3 (2021).

 14. Sidelnikov, O., Redyuk, A. & Sygletos, S. Equalization performance and complexity analysis of dynamic deep neural networks in
long haul transmission systems. Opt. Express 26, 32765–32776. https:// doi. org/ 10. 1364/ OE. 26. 032765 (2018).

 15. Sidelnikov, O. S., Redyuk, A. A., Sygletos, S. & Fedoruk, M. P. Methods for compensation of nonlinear effects in multichannel data
transfer systems based on dynamic neural networks. Quantum Electron. 49, 1154. https:// doi. org/ 10. 1070/ QEL17 158 (2019).

 16. Barry, J. R., Lee, E. A. & Messerschmitt, D. G. Digital Communication 3rd edn. (Springer, ***, 2004).
 17. Ming, H. et al. Ultralow complexity long short-term memory network for fiber nonlinearity mitigation in coherent optical com-

munication systems. arXiv: 2108. 10212 (arXiv preprint) (2021).
 18. Kaneda, N. et al. Fpga implementation of deep neural network based equalizers for high-speed pon. In Optical Fiber Communica-

tion Conference (OFC) 2020, T4D.2. https:// doi. org/ 10. 1364/ OFC. 2020. T4D.2 (Optical Society of America, 2020) (2020).
 19. Blalock, D., Ortiz, J. J. G., Frankle, J. & Guttag, J. What is the state of neural network pruning? (2020). arXiv: 2003. 03033.
 20. Han, S., Mao, H. & Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and

huffman coding (2016). arXiv: 1510. 00149.
 21. Srinivas, S., Subramanya, A. & Babu, R. V. Training sparse neural networks. 2017 IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW) 455–462 (2017).

https://doi.org/10.1364/OE.26.024190
https://doi.org/10.1364/OE.25.001916
https://doi.org/10.1109/JLT.2015.2461512
https://doi.org/10.1109/JLT.2016.2646752
https://doi.org/10.1109/JLT.2016.2646752
https://doi.org/10.1109/COMST.2018.2880039
https://doi.org/10.1063/5.0070838
https://doi.org/10.1063/5.0070838
https://doi.org/10.1109/LPT.2014.2375960
https://doi.org/10.1038/s41467-019-10911-9
https://doi.org/10.1109/JLT.2021.3096286
https://doi.org/10.1109/JLT.2020.3007919
https://doi.org/10.1109/JLT.2021.3092415
https://doi.org/10.1109/JLT.2021.3092415
https://doi.org/10.1364/OE.26.032765
https://doi.org/10.1070/QEL17158
http://arxiv.org/abs/2108.10212
https://doi.org/10.1364/OFC.2020.T4D.2
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/1510.00149

13

Vol.:(0123456789)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

 22. Hawks, B. et al. Ps and qs: Quantization-aware pruning for efficient low latency neural network inference. Front. Artif. Intell.https://
doi. org/ 10. 3389/ frai. 2021. 676564 (2021).

 23. Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 105,
2295–2329. https:// doi. org/ 10. 1109/ JPROC. 2017. 27617 40 (2017).

 24. Liang, T., Glossner, J., Wang, L., Shi, S. & Zhang, X. Pruning and quantization for deep neural network acceleration: A survey.
Neurocomputing 2101, 09671 (2021).

 25. Fujisawa, S. et al. Weight pruning techniques towards photonic implementation of nonlinear impairment compensation using
neural networks. J. Lightw. Technol.https:// doi. org/ 10. 1109/ JLT. 2021. 31176 09 (2021).

 26. Li, M., Zhang, W., Chen, Q. & He, Z. High-throughput hardware deployment of pruned neural network based nonlinear equaliza-
tion for 100-gbps short-reach optical interconnect. Opt. Lett. 46, 4980–4983 (2021).

 27. Oliari, V. et al. Revisiting efficient multi-step nonlinearity compensation with machine learning: An experimental demonstration.
J. Lightw. Technol. 38, 3114–3124 (2020).

 28. Koike-Akino, T., Wang, Y., Kojima, K., Parsons, K. & Yoshida, T. Zero-multiplier sparse dnn equalization for fiber-optic qam sys-
tems with probabilistic amplitude shaping. In 2021 European Conference on Optical Communications (ECOC), 1–4 (IEEE) (2021).

 29. Freire, P. J. et al. Transfer learning for neural networks-based equalizers in coherent optical systems. J. Lightw. Technol. 39, 6733–
6745. https:// doi. org/ 10. 1109/ JLT. 2021. 31080 06 (2021).

 30. Pelikan, M., Goldberg, D. E., Cantú-Paz, E. et al. Boa: The bayesian optimization algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference GECCO-99, vol. 1, 525–532 (Citeseer) (1999).

 31. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.
org.

 32. Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N. & Peste, A. Transfer learning for neural networks-based equalizers in coherent
optical systems. J. Mach. Learn. Res. 2102, 00554 (2021).

 33. Allen-Zhu, Z., Li, Y. & Song, Z. A convergence theory for deep learning via over-parameterization. In International Conference on
Machine Learning, 242–252 (PMLR) (2019).

 34. Neill, J. O. An overview of neural network compression. arXiv: 2006. 03669 (2020).
 35. Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y. & Srebro, N. Towards understanding the role of over-parametrization in gener-

alization of neural networks. arXiv: 1805. 12076 (arXiv preprint) (2018).
 36. Zhu, M. & Gupta, S. To prune, or not to prune: Exploring the efficacy of pruning for model compression. arXiv: 1710. 01878 (arXiv

preprint) (2017).
 37. Hadidi, R. et al. Characterizing the deployment of deep neural networks on commercial edge devices. In 2019 IEEE International

Symposium on Workload Characterization (IISWC), 35–48 (IEEE) (2019).
 38. Yang, T.-J., Chen, Y.-H., Emer, J. & Sze, V. A method to estimate the energy consumption of deep neural networks. In 2017 51st

Asilomar Conference on Signals, Systems, and Computers, 1916–1920 (IEEE) (2017).
 39. Närhi, M. et al. Machine learning analysis of extreme events in optical fibre modulation instability. Nat. Commun. 9, 4923. https://

doi. org/ 10. 1038/ s41467- 018- 07355-y (2018).
 40. Agrawal, G. Chapter 2—pulse propagation in fibers. In Nonlinear Fiber Optics (Fifth Edition), Optics and Photonics (ed. Agrawal,

G.) 27–56 (Academic Press, Bost***on, 2013). https:// doi. org/ 10. 1016/ B978-0- 12- 397023- 7. 00002-4.
 41. Freire, P. J., Prilepsky, J. E., Osadchuk, Y., Turitsyn, S. K. & Aref, V. Neural networks based post-equalization in coherent optical

systems: Regression versus classification. arXiv: 2109. 13843 (arXiv preprint) (2021).
 42. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv: 1412. 6980 (arXiv preprint) (2014).
 43. Eriksson, T. A., Bülow, H. & Leven, A. Applying neural networks in optical communication systems: Possible pitfalls. IEEE Photon.

Technol. Lett. 29, 2091–2094 (2017).
 44. Freire, P. J. et al. Neural networks-based equalizers for coherent optical transmission: Caveats and pitfalls. arXiv: 2109. 14942 (arXiv

preprint) (2021).
 45. Matsumoto, M. & Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number genera-

tor. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998).
 46. Dong, X. & Zhou, L. Understanding over-parameterized deep networks by geometrization. arXiv: 1902. 03793 (2019).
 47. Bondarenko, A., Borisov, A. & Alekseeva, L. Neurons vs weights pruning in artificial neural networks. In ENVIRONMENT.

TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference, vol. 3, 22–28 (2015).
 48. Hu, H., Peng, R., Tai, Y. & Tang, C. Network trimming: A data-driven neuron pruning approach towards efficient deep architectures.

arXiv: 1607. 03250CoRR (2016).
 49. Bartoldson, B., Morcos, A., Barbu, A. & Erlebacher, G. The generalization-stability tradeoff in neural network pruning. Adv. Neural.

Inf. Process. Syst. 33, 20852–20864 (2020).
 50. Choukroun, Y., Kravchik, E., Yang, F. & Kisilev, P. Low-bit quantization of neural networks for efficient inference. arXiv: 1902.

06822 (2019).
 51. Yang, J. et al. Quantization networks. arXiv: 1911. 09464 (2019).
 52. Wu, H., Judd, P., Zhang, X., Isaev, M. & Micikevicius, P. Integer quantization for deep learning inference: Principles and empirical

evaluation. arXiv: 2004. 09602 (arXiv preprint) (2020).
 53. Gholami, A. et al. A survey of quantization methods for efficient neural network inference. arXiv: 2103. 13630 (arXiv preprint)

(2021).
 54. Hubara, I., Nahshan, Y., Hanani, Y., Banner, R. & Soudry, D. Accurate post training quantization with small calibration sets. In

International Conference on Machine Learning, 4466–4475 (PMLR) (2021).
 55. de Lima, T. F. et al. Machine learning with neuromorphic photonics. J. Lightw. Technol. 37, 1515–1534 (2019).
 56. Baskin, C. et al. Uniq: Uniform noise injection for non-uniform quantization of neural networks. ACM Trans. Comput. Syst.https://

doi. org/ 10. 1145/ 34449 43 (2021).
 57. Freire, P. J. et al. Complex-valued neural network design for mitigation of signal distortions in optical links. J. Lightw. Technol. 39,

1696–1705. https:// doi. org/ 10. 1109/ JLT. 2020. 30424 14 (2021).
 58. Albawi, S., Mohammed, T. A. & Al-Zawi, S. Understanding of a convolutional neural network. In 2017 International Conference

on Engineering and Technology (ICET), 1–6 (Ieee) (2017).
 59. Tran, N. et al. Ps and qs: Quantization-aware pruning for efficient low latency neural network inference. Front. Artif. Intell. 4, 94

(2021).
 60. Valladares, S., Toscano, M., Tufiño, R., Morillo, P. & Vallejo-Huanga, D. Performance evaluation of the nvidia jetson nano through

a real-time machine learning application. In International Conference on Intelligent Human Systems Integration, 343–349 (Springer)
(2021).

 61. Tang, R., Wang, W., Tu, Z. & Lin, J. An experimental analysis of the power consumption of convolutional neural networks for
keyword spotting. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5479–5483 (IEEE)
(2018).

 62. Holly, S., Wendt, A. & Lechner, M. Profiling energy consumption of deep neural networks on nvidia jetson nano. In 2020 11th
International Green and Sustainable Computing Workshops (IGSC), 1–6 (IEEE) (2020).

 63. Kaup, F., Gottschling, P. & Hausheer, D. Powerpi: Measuring and modeling the power consumption of the raspberry pi. In 39th
Annual IEEE Conference on Local Computer Networks, 236–243 (IEEE) (2014).

https://doi.org/10.3389/frai.2021.676564
https://doi.org/10.3389/frai.2021.676564
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/JLT.2021.3117609
https://doi.org/10.1109/JLT.2021.3108006
http://arxiv.org/abs/2006.03669
http://arxiv.org/abs/1805.12076
http://arxiv.org/abs/1710.01878
https://doi.org/10.1038/s41467-018-07355-y
https://doi.org/10.1038/s41467-018-07355-y
https://doi.org/10.1016/B978-0-12-397023-7.00002-4
http://arxiv.org/abs/2109.13843
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2109.14942
http://arxiv.org/abs/1902.03793
http://arxiv.org/abs/1607.03250
http://arxiv.org/abs/1902.06822
http://arxiv.org/abs/1902.06822
http://arxiv.org/abs/1911.09464
http://arxiv.org/abs/2004.09602
http://arxiv.org/abs/2103.13630
https://doi.org/10.1145/3444943
https://doi.org/10.1145/3444943
https://doi.org/10.1109/JLT.2020.3042414

14

Vol:.(1234567890)

Scientific Reports | (2022) 12:8713 | https://doi.org/10.1038/s41598-022-12563-0

www.nature.com/scientificreports/

Acknowledgements
SKT and MKK are partially supported by the EPSRC programme Grant TRANSNET, EP/R035342/1. PJF and
DAR acknowledge the support from the EU Horizon 2020 Marie Skodowska-Curie Action projects No. 813144
(REAL-NET) and 860360 (POST-DIGITAL), respectively. JEP and SKT acknowledge the support of the Lever-
hulme Trust project RPG-2018-063.

Author contributions
D.A.R., P.J.F., and J.E.P. conceived the study. D.A.R. and P.J.F. proposed the neural network model. D.A.R. per-
formed the numerical simulations, designed the experimental set-up and obtained the experimental results. P.J.F.
generated the data and performed the architecture optimization. D.A.R. and P.J.F. designed the figures and tables.
D.A.R., P.J.F., and J.E.P. wrote the manuscript, with the assistance of M.K.K. and S.K.T. All authors reviewed
the manuscript. The work of D.A.R. was supervised by M.K.K. and S.K.T. The work of P.J.F. was supervised by
J.E.P., A.N. and S.K.T.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.A.R. or S.K.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Experimental implementation of a neural network optical channel equalizer in restricted hardware using pruning and quantization
	Results
	Optical communication system and equalizer design.
	Compressing process for neural network equalizers.
	Performance vs. compression trade-off.
	Computational complexity analysis.
	Online latency evaluation.
	Online energy consumption evaluation.

	Discussion
	Methods
	Numerical setup and neural network model.
	Pruning technique.
	Quantization technique.
	Computational complexity metrics.
	Memory size metrics.
	Memory and processor restricted hardware.
	Raspberry Pi.
	Nvidia Jetson Nano.

	Power measurement.
	Inference time measurement.

	References
	Acknowledgements

