
electronics

Article

Event-Based Pedestrian Detection Using Dynamic
Vision Sensors

Jixiang Wan 1,2, Ming Xia 1, Zunkai Huang 1 , Li Tian 1, Xiaoying Zheng 1, Victor Chang 3 , Yongxin Zhu 1,*
and Hui Wang 1,*

����������
�������

Citation: Wan, J.; Xia, M.; Huang, Z.;

Tian, L.; Zheng, X.; Chang, V.; Zhu, Y.;

Wang, H. Event-Based Pedestrian

Detection Using Dynamic Vision

Sensors. Electronics 2021, 10, 888.

https://doi.org/10.3390/

electronics10080888

Academic Editor: Daniel Morris

Received: 1 March 2021

Accepted: 2 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
wanjx@sari.ac.cn (J.W.); xiam@sari.ac.cn (M.X.); huangzk@sari.ac.cn (Z.H.); tianl@sari.ac.cn (L.T.);
zhengxy@sari.ac.cn (X.Z.)

2 School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Computing & Digital Technologies, Teesside University, Middlesbrough TS1 3JN, UK;

V.Chang@tees.ac.uk
* Correspondence: zhuyongxin@sari.ac.cn (Y.Z.); wanghui@sari.ac.cn (H.W.)

Abstract: Pedestrian detection has attracted great research attention in video surveillance, traffic
statistics, and especially in autonomous driving. To date, almost all pedestrian detection solutions
are derived from conventional framed-based image sensors with limited reaction speed and high
data redundancy. Dynamic vision sensor (DVS), which is inspired by biological retinas, efficiently
captures the visual information with sparse, asynchronous events rather than dense, synchronous
frames. It can eliminate redundant data transmission and avoid motion blur or data leakage in
high-speed imaging applications. However, it is usually impractical to directly apply the event
streams to conventional object detection algorithms. For this issue, we first propose a novel event-
to-frame conversion method by integrating the inherent characteristics of events more efficiently.
Moreover, we design an improved feature extraction network that can reuse intermediate features
to further reduce the computational effort. We evaluate the performance of our proposed method
on a custom dataset containing multiple real-world pedestrian scenes. The results indicate that our
proposed method raised its pedestrian detection accuracy by about 5.6–10.8%, and its detection speed
is nearly 20% faster than previously reported methods. Furthermore, it can achieve a processing
speed of about 26 FPS and an AP of 87.43% when implanted on a single CPU so that it fully meets
the requirement of real-time detection.

Keywords: dynamic vision sensor; event data; pedestrian detection; autonomous driving

1. Introduction

As one of the popular research branches in object detection, pedestrian detection
has encountered a significant boost with the tremendous development of deep learning
algorithms in the last decade. It is mainly applied in the fields of human behavior analy-
sis, gait recognition, and person re-identification [1–3]. Moreover, it provides important
contributions to video surveillance, traffic statistics, and especially in autonomous driving.
For automatic driving systems, accurate and rapid detection means drivers have more
reaction time to avoid collisions. To date, research on pedestrian detection has made
great progress. In general, these detection algorithms are based on time-of-flight sensors
or frame-based imaging sensors. The cost issue is the main obstacle to the large-scale
deployment of time-of-flight sensor-based systems involving LiDAR [4]. Conventional
image sensor generally scans the entire scene at a predetermined frame rate and outputs a
sequence of static frames with fixed intervals, regardless of any target activity in the scene.
Moreover, what happens between adjacent frames is not captured by the camera, leading
to undersampling of information, which cannot completely satisfy the requirements of
rapid analysis or real-time monitoring in autonomous driving applications [5]. In addition,

Electronics 2021, 10, 888. https://doi.org/10.3390/electronics10080888 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7501-8959
https://orcid.org/0000-0002-8012-5852
https://orcid.org/0000-0002-1813-1792
https://doi.org/10.3390/electronics10080888
https://doi.org/10.3390/electronics10080888
https://doi.org/10.3390/electronics10080888
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10080888
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10080888?type=check_update&version=2

Electronics 2021, 10, 888 2 of 15

the response speed of such cameras is usually limited by the frame rate, and the output
continuous video frames are usually highly redundant, resulting in a waste of storage
space, computing power, and time.

Inspired by the principle of the biological retina, researchers have designed a dynamic
vision sensor (DVS) [6,7]. Unlike traditional cameras that continuously measure the abso-
lute luminance of all pixels at a fixed frame rate, the DVS captures each pixel luminance
change at an asynchronous rate and generates an event output only when transient changes
in the scene are captured. Therefore, DVS can output the sensitive motion information
asynchronously with a high temporal resolution, high dynamic range, low latency, and low
bandwidth requirements. The sparse event data captured by DVS reduces the redundancy
of source data, which can greatly reduce the computational complexity of back-end vision
algorithms and improve computing efficiency. Moreover, DVS focuses on the light intensity
changes caused by object motion, and the perception of moving pedestrians focuses on
contour and shape. Its output has no texture or appearance, making it difficult to determine
the pedestrian’s specific identity. In this way, the inevitable privacy problem when using
conventional cameras can be solved.

Spiking neural networks (SNNs) are the most suitable network architecture for process-
ing asynchronous event data due to their unique impulse coding properties and biological
interpretation capabilities. However, SNNs bring the significant drawback of lacking gen-
eral and efficient learning algorithms, such as back-propagation [8]. SNNs usually require
hand-designed feature filters and cannot automatically learn image features as well as con-
volutional neural networks (CNNs), which greatly limits their promotion and application
in real life. The present literature on CNNs focuses on frame-based data that have achieved
outstanding achievement in applications such as object detection, classification, and image
segmentation. Many researchers have found that combining discrete event data received by
DVS with the well-matures CNNs architecture used in traditional vision is a very promising
solution [9]. Chen [10] used a self-supervised learning approach where grayscale images
are fed into a state-of-the-art CNN model to predict results (called “pseudo-labels”) that
are used as ground truth for subsequent training of an event-based object detection model.
This method achieves high-speed detection at 100 FPS in real outdoor scenes. Li [11]
proposes a joint framework combining event-based and frame-based vision for vehicle
detection. They use convolutional SNNs to generate visual attention maps from events
and synchronize them with frame-based data streams synchronization. Jiang [12] designed
a confidence map fusion scheme to integrate the image frames and event streams and
obtained more accurate results than a single data channel. Chen [13] proposed a pedestrian
detection framework that fuses multiple event stream coding methods to achieve excellent
results. Therefore, encoding discrete event streams into frame-like structures and directly
applying them to CNNs is a pressing problem. This is also the main motivation for this
work.

In this paper, to exploit the potential of event data in the field of object detection,
we propose an end-to-end pedestrian detection pipeline that can detect the presence
of pedestrians directly from the event stream from DVS. Its main contribution can be
summarized as follows:

1. We propose an online pedestrian detector for asynchronous event streams. The
approach allowed easy identification of pedestrians directly from the event stream
data collected by DVS;

2. We propose a novel event-to-frame encoding method to encode the event stream
more effectively. Compared with previous methods, our method could thoroughly
integrate the inherent characteristics of the events and improve the performance of
pedestrian detection;

3. We construct an asynchronous feature extracting scheme that could reuse the in-
termediate features to further decrease the calculation amount. This asynchronous
encoding mechanism fits well with the inherent characteristic of asynchronous event
streams;

Electronics 2021, 10, 888 3 of 15

4. We autonomously collected and annotated a custom pedestrian detection dataset
using the DAVIS346 event sensor and further evaluated the performance of our
proposed event-to-frame encoding method and asynchronous pedestrian detection
framework based on the dataset.

The rest of this paper is organized as follows: Section 2 provides the details of ex-
perimental methods, including event-to-frame construction and target detection network.
Section 3 discusses in detail the experimental process and results. This is followed by
Section 4 to conclude the paper.

2. Methodology
2.1. Event-Frame Construction

In the following, we briefly describe several common conversion methods from the
event stream to the event frame.

2.1.1. Event-Stream Encoding Based on Frequency

According to the imaging principle of DVS, more events occur near the edges of
moving objects. Thus, the event frequency can be used to distinguish the contour of a
moving target from the background. Reflected on the image frame plane, the frequency of
events occurring at that pixel location can thus be characterized using the pixel brightness
in the image. Based on this assumption, Chen [10] proposed a representation for frequency-
based event-stream. Specifically, the event data are converted to an image by slicing the
event data at fixed time intervals. Each pixel in the image takes the value calculated by
following normalization Equation (1):

σ(x) = 255× 1
1 + e− x/2 (1)

where x is the total number of events occurred at one pixel during a fixed time interval and
σ(x) is the pixel value, taking values in the range of [0, 255]. This encoding method that
maps event frequency to pixel values can greatly enhance the contrast of edge contours of
the object, which is beneficial to subsequent classification and detection tasks. On the other
hand, this encoding method makes the noise with lower event frequency occupy lower
pixel weights in the event frame, filtering the noise.

2.1.2. Event-Stream Encoding Based on Surface of Active Events

Another common form of representation for event data is to create a structure named
surface of active events (SAE) [14,15]. SAE was proposed to combine spatial and temporal
information of events. Specifically, it records the most recent timestamp of each pixel at
(x, y) of incoming events as the Function (2):

SAE : (x, y) 7→ t (2)

Therefore, the pixel value in the event-frame is directly determined by the latest time t
when the corresponding event occurs. Considering that the timestamp in the event stream
output from the event camera is monotonically increasing, and the timestamp will become
very large over a long period, it is necessary to normalize the SAE. Normalization can be
performed by the following Formula (3):

SAE : (x, y) = 255×
tp − t0

T
(3)

where tp is the latest timestamp of each event, t0 is the initial time and T is the time interval
between each frame. This encoding method is directly related to the original timestamp
of the event data, and it reflects the temporal information well. The pixel value in the
event frame indicates the moment of the event, and their gradients indicate the direction
and speed of the event stream. However, the disadvantage of this method is that it treats

Electronics 2021, 10, 888 4 of 15

camera noise as a normal event, and the pastime information will be overwritten by the
updated timestamp.

2.1.3. Event-Stream Encoding Based on LIF Neuron Model

The leaky integrate-and-fire (LIF) neuron model [16–18] is an integration mechanism
that takes inspiration from the functioning of SNN to maintain the memory of past events.
According to the LIF model, each pixel can be regarded as an independent neuron. The
neuron rose its membrane potential by a fixed increment by receiving input pulses (event
data at this pixel), and the membrane potential will dissipate at a certain rate over time.
When its membrane potential exceeds a set threshold, the neuron sends a pulse and enters
a refractory period (membrane potential returns to zero and fails to respond to any pulses).
After a while, the neuron is reactivated and begins the next round of receiving input pulses.
Within a specific time interval, the total number of pulses emitted by the neuron at each
pixel point can be used as the pixel value of the corresponding frame. This encoding
approach describes the continuous nature of temporal information and the ability of events
to occur with intensity. The individually occurring, discontinuous noise is difficult to
maintain the membrane voltage with the breakthrough threshold, so the noise in the event
frame can be filtered to a great extent.

In Figure 1, we have selected a typical scene to compare the output of the different
event-frame encoding methods mentioned above and give a simple visual analysis. As
shown in Figure 1a, this example includes two pedestrians, the pedestrian with a backpack
in the center of the image (denoted as pedestrian A) and the smaller pedestrian on the top
left (denoted as pedestrian B). It is not difficult to see that all the event-frame encoding
based on frequency (as shown in Figure 1b), SAE (as shown in Figure 1c), and LIF (as
shown in Figure 1d) can clearly reflect the relatively complete outline and walking motion
of the moving pedestrian A. However, the characterization results for pedestrian B, who
in the far position, is not as good as expected. Due to the relatively long distance from
the event camera, the events emitted by pedestrian B are less captured by the sensor (we
call them “sparse events”). Therefore, the performance of this object in the event frames
does not perform as successfully as the previous pedestrian A after the corresponding
encoding. It is important to note that in practical application scenarios, pedestrian B is
still truly present and meaningful even though the number of events it collects is less. It
can be seen that these three encoding methods may be useful in some scenarios that focus
only on the dominant objects. However, they are still inadequate for pedestrian detection
tasks, which require detecting the location of all pedestrians within the scope of vision. In
practice, if these “sparse event” regions cannot be characterized in the event frames, the
subsequent object detection results are bound to have some false detections and missed
detections.

By analyzing the encoding process in detail, it is easy to find out the reason. During
the LIF-based encoding process, due to the sparsity and the discontinuity of the “sparse
events”, it is difficult to maintain the membrane potential state up to the threshold value
and emit the output pulse. The events in these regions behave similarly to camera noise, and
they are “ignored” by the LIF conversion process with powerful noise filtering. For both
Frequency-based and SAE-based encoding methods, we assume that their shortcomings
lie in the normalization method. The normalization operation is performed over the
entire image (the whole field of vision), whether based on the number of events or the
timestamp. Therefore, pixels with higher frequency or newer timestamps necessarily have
higher weights. In contrast, the pixel values of “sparse event” are at a relatively low level.
When there is a large difference between the weights of two parts, the “sparse events”
are greatly “suppressed” by the main part after the full domain normalization. From the
event-frame results, the target in this region behaves very close to the background region,
as if it “disappears”. The key point to solve this problem is to find a solution that balances
the weight of the pixel values encoded in the event frames for event regions of different
densities.

Electronics 2021, 10, 888 5 of 15

Figure 1. Comparison of the result of different event frame encoding methods. (a) The conventional
grayscale frames were provided by the active pixel sensor (APS) channel of the DAVIS camera.
Event-frame reconstruction from the dynamic vision sensor (DVS) channel by (b) frequency [10], (c)
surface of active events (SAE) [15], (d) leaky integrate-and-fire (LIF) [18], (e) proposed neighborhood
suppression time surface (NSTS), (f) proposed NSTS–SAE encoding method. Upper row: the
representation by adding positive and negative polarity events (white represents the event, black
represents the background). Bottom row: the individual representation of the positive and negative
polarity events (red for positive, green for negative, and black for background).

2.1.4. Our Proposed Event-Stream Encoding Method

Inspired by the functioning of the time surface generation approach mentioned in [9]
and the HATS method [19], we propose a novel description of the time surface called
neighborhood suppression time surface (NSTS). The key point of NSTS is that the intensity
of each pixel on the time surface is only suppressed by its local neighborhood and is no
longer related to the entire image. In this way, the suppressive effects of the “dense events”
area on the weight of the “sparse events” area can be avoided as much as possible.

Our proposed NSTS encoding method can be intuitively understood as follows: assum-
ing a time surface, and the value of each pixel on the time surface maps the corresponding
event. When an event arrives, the pixel value of the corresponding location on the time
surface is updated with a predetermined value, while the pixel values at the surrounding
locations are suppressed. For a given pixel location, the more events occur at its neigh-
borhood locations, the more suppressed that pixel point is and the greater the pixel value
reduction. Conversely, the pixel position with fewer events occurring in the neighborhood
dominations is less penalty. In the absence of events in the neighborhood, the pixel value is
maintained until the time surface’s cutoff time. In this way, the same contour is produced
on the surface of time for both “dense event” and “sparse event” regions.

To further reduce the impact of dense events, we can also add a time filter before the event
integration. Specifically, given a time interval threshold, when an event arrives, by comparing
the time interval between the previous event and the current event at the same location, when
the interval is less than the given threshold, these two events are considered repeated events,
and NSTS will not be updated. However, each event with a larger interval passes through the
filter smoothly, makes corresponding changes to the NSTS. Therefore, the “dense events” area’s
contribution to the NSTS is reduced, and the “sparse events” area is not affected by the filter.

Considering the above two mechanisms together, our proposed NSTS approach is
described in detail as follows: given two hyperparameters, R represents the radius of
the considered neighborhood locations and Tthr symbolizes the time interval threshold.
Then, we will initialize two three-dimensional arrays of all zeros, which are event-frame
S(x, y, p) and timestamp surface T(x, y, p), respectively. The first two dimensions (x, y)
represent the pixel position where the event occurred in the frame, and the third dimension
(p) represents the polarity of the event. Whenever each event (x, y, p, t) arrives, we first

Electronics 2021, 10, 888 6 of 15

compare t to the latest timestamp T(x, y, p) recorded at the (x, y) position of the timestamp
surface. Only when the difference between the two is greater than Tthr, we then consider
updating event-frame F. All the pixel values F′ located in which neighborhood window
(2R + 1) × (2R + 1) will be subtracted by 1. Meanwhile, the S(x, y, p) at the event’s
location will be reinitialized to zero. The specific update process can be expressed by
formula (4), and the pseudo-code of the proposed algorithm is given in Algorithm 1.

S(x + i, y + j, p)

∣∣∣∣∣∣=

0 i f i = 0 and j = 0
S(x + i, y + j, p) − 1, i f − R ≤ i, j ≤ R
S(x + i, y + j, p), otherwise

(4)

Algorithm 1 Neighborhood suppression time surface (NSTS)

Input: Event e = (x,y,t,p)
Output: Time Surface S(x,y,p)
Initialization: S(x,y,p)←0 for all (x,y,p)
Initialization: T(x,y,p)←0 for all (x,y,p)
For each incoming event (x,y,t,p), extracting S(x + i,x + j)(−R ≤ i ≤ R,-R ≤ j ≤ R), update S:

if t − T(x,y) ≥ Tthr do
T(x,y,p)←t
for each S(x + i,y + i,p) do

S(x + i,y + j,p)←S(x + i,y + j,p) − 1
end for

end if
S(x,y,p)←0

Figure 1e illustrates the coding performance of the NSTS method in a real pedestrian
scene. It can be clearly seen that the contours of the moving target are very concise and
clear. Compared with the previous three encoding methods, the feature contour of the
over-suppressed pedestrian B is greatly enhanced, showing a relatively complete external
contour of the pedestrian. The presence of pedestrians at this location can also be clearly
inferred from the event frame images. In addition, our NSTS event-frame obtains a more
distinctive result with a high contrast around the edge by asynchronously reducing the
pixel weight at the edge of each event area.

However, the NSTS encoding method seems to pay too much attention to the contours
of the moving objects so that the representation of the internal details of the object (such
as the pedestrian A) is not as complete as SAE and Frequency. Therefore, the target in the
NSTS event-frame usually has only contour lines and exhibits less hierarchy. We learned
from the popular “attention mechanism” concept in deep learning [20,21] to enhance the
internal detail feature information by introducing the SAE encoding method to describe
the texture details of the target and fusing it with the NSTS coding method. Comparing
the visualization results are shown in Figure 1e,f, it can be found that the texture details,
such as the shoulders and backpacks of pedestrian A in the mixed event-frame NSTS–SAE,
are much richer and more complete than in NSTS. At the same time, the pixels belonging
to pedestrian B still retain sufficient contrast. Visually, NSTS–SAE brings a strong sense of
hierarchy. It can be seen that the “attention mechanism” in event-frame reconstruction is
conducive to making full use of the information in the event stream.

The process of fusing NSTS and SAE results in the event integrator is represented in
Figure 2. This integration is similar to mixing the high-contrast edges extracted by NSTS as
weights into the SAE to construct a new event frame. Since we have already recorded the
timestamps surface of each pixel location simultaneously during the NSTS calculation, the
fusion of two frames does not introduce additional calculation.

2.2. Object Detection Based on CNN

The original event stream is encoded into an event-frame image by an event integrator,
and the event stream-based pedestrian detection task is transformed into a conventional

Electronics 2021, 10, 888 7 of 15

frame-based object detection task. Among the object detection approaches in the field
of computer vision, the YOLO detector has received much attention from researchers
and engineers since its inception [22]. Its latest achievement, YOLOv3, offers significant
advantages in detection accuracy and speed in multi-target detection tasks [23].

Figure 2. The overview of the event integrator with NSTS–SAE (neighborhood suppression time
surface-surface of active events) fusion. Event integrator first encodes the event output in the dynamic
vision sensor (DVS) into S(x, y, p) with NSTS method as formulated in Algorithm 1. Then, the NSTS
result is fused with the intermediate variable T(x, y, p) in the encoding process regarded as the SAE
event-frame. Finally, the fusional NSTS–SAE event-frame is used as the input of the detection network.

In this work, considering the computing power limitation of edge computing, we
retained the detection head parts of the YOLOv3 model and replaced the feature extrac-
tion backbone net of Darknet53 with MobileNetV3_small [24] (hereafter abbreviated as
MobileNetV3) to compose the architecture of our proposed object detector. In this way, the
entire network could be applied more smoothly on conventional CPU platforms instead
of expensive and energy-intensive GPUs. Table 1 shows the information of Darknet53
and MobileNetV3. We set the input network resolution to 352 × 352 for our datasets. In
theory, DrakNet53 with a receptive field of 725 × 725 and MobileNetV3 with a receptive
field of 639 × 639 are both sufficient as a backbone network since the receptive field of
the network is much larger than the resolution of input features. From the perspective
of parameter amount and computational complexity, compared with DarkNet53 with
40.58 M parameters, MobileNetV3 contains only 2.51 M parameters, and floating-point
of operations (FLOPs) is nearly two orders of magnitude lower. For the detection speed,
Darknet53′s detection frame rate on the GPU is greater than that of MobileNetV3. However,
the performance on the CPU is far inferior to MobileNetV3. This is because the depth-wise
separable convolution in MobileNetV3 divides a standard convolution into two convo-
lutions (depth-wise and point-wise). GPUs with higher parallel computing capabilities
increase the number of computing layers and the amount of data exchanged from memory.
On the contrary, for CPUs lacking parallel computing capabilities, the dominant factor
in the total computing time is the total amount of computing. The depth-wise separable
convolution just reduces the number of parameters and correspondingly reduces the to-
tal amount of calculation. This shows that MobileNetV3 is more suitable for computing
platforms with limited computing power, such as edge computing applications.

Table 1. Comparison of parameters and performance of different backbone networks.

Backbone
Model

Input Network
Resolution

Receptive
Field Size Parameters FLOPs FPS (GPU

Tesla V100)
FPS (CPU

Xeon W-2145)

Darknet53 352 × 352 725 × 725 40.58 M 35.3 G 93.5 3.4
MobileNetV3 352 × 352 639 × 639 2.51 M 307.2 M 76.7 27.6

2.2.1. Grids Partition Detection Model

In the conventional video analysis or object detection, each frame of data is indepen-
dently processed by the entire detector, and recalculating all intermediate feature maps,

Electronics 2021, 10, 888 8 of 15

even if only some pixels have changed between these consecutive frames. Moreover, the
feature extraction network is precisely the bottleneck of computations. However, for event
cameras, the nature of the output event is to respond asynchronously to change the light
intensity at the current pixel location. The sparsity of the event stream determines that
the effective pixels in the event frame do not cover every position of the image matrix as
conventional image frames. Assuming that the event frames are directly utilized as the
input of the CNN network, it will inevitably cause a large amount of wasted power and
computations, which is incompatible with the nature of event cameras.

To exploit the potential of event cameras in promoting computational efficiency, we
proposed a compromise scheme called grid partition (GP). Specifically, each event-frame is
divided into N × N grids, and the changes of features are calculated independently in each
grid. Neither each pixel location is treated individually, nor all grids in the event-frame
are treated as a whole. Since only the event features in several regions change between
consecutive event frames, only the features corresponding to changed grids need to be
recalculated, while the features of other unchanged grids can directly reuse the results
extracted from the previous frame without recalculating through the detection network.

Figure 3 showed the framework of the event-based pedestrian detector. The first four
convolutional layers in the MobileNetV3 network downsample the input image by a factor
of 8 and output an intermediate feature map of size 44 × 44. This intermediate feature map
is the feature map that we need to reuse, called the event reuse feature map (ERFM). The
detection process is described as follows: the detection of the first frame is the same as the
conventional target detection process, and all grids are input to the detector, but the location
of the grid with event activity in the current frame and the intermediate feature map ERFM is
additionally recorded. Subsequent event streams are passed through the event integrator, and
the grid with event activity in the current frame is calculated before being input to the detector.
The event feature patches of these grids are extracted in parallel and replace the feature map
patches at the corresponding positions of ERFM of the previous frame. The newly fused
ERFM is then fed into the subsequent CNN detection model to obtain detection results for the
current frame. As shown in Figure 3, the six small blocks (marked in orange) in the ERFM
are the event-active grids that need to be recomputed for the current frame. Compared with
recalculating all 16 grids, the computational effort is greatly reduced.

Figure 3. Framework of the pedestrian detector with grids partition of feature maps. The event-frame
through the integrator is divided into 4 × 4 grids, and only the changed grids will be calculated
by CNN to get the intermediate feature map, and then the corresponding area of the feature map
saved in the previous frame is updated (6 orange marked grids). The fused intermediate feature map
is used as the feature of the current frame and is inputted into the latter part of the detector. The
detection result is acquired from all the three prediction branches through the NMS (Non-Maximum
Suppression).

Electronics 2021, 10, 888 9 of 15

2.2.2. Asynchronous Event Frame Detection Model

For the entire event frame, we can get a distinct and rich DVS image by accumulating
all events in a fixed time interval. This is based on the knowledge that sufficient events
occurred within this time window. Now let us think in another way. For regions with
relatively high event frequency, only a short time window is needed to get enough events
to construct a complete event frame. For regions with fewer events, the corresponding
time window needs to be expanded to capture more events. Thanks to the idea of “grid
partitioning”, we can independently consider the event-frame construction process in each
grid. To determine whether the events in each area are adequate to construct a clear and
detailed event frame, we count the number of events in each grid and compare it with
an empirical threshold Ethr. For grids with an event count larger than this threshold, we
consider that the grid’s events are sufficient to reflect the object motion in the region, and
directly input this part of the DVS image into the pedestrian detector, and then reinitialize
the event frame in the grid. On the contrary, for grids less than the threshold, we continue
to keep this portion of the time surface, and the construction of the next event-frame
in the grid is based on this saved time surface instead of the initial zero value until the
accumulation of events in this grid reaches our requirements. In this way, each grid region
can build the corresponding event-frame image independently, and the moment of input
into the CNN depends only on the number of events in the grid, rather than completing the
detection of the whole event frame at the same time. Therefore, we call it the asynchronous
event-frame detection method.

This asynchronous event-frame detection scheme fits well with the idea of asyn-
chronous output event streams from DVS. Since in the extreme case, each pixel is consid-
ered as a grid, and each event updates the event-frame at that pixel location, while that
pixel is fed into CNN. It is the most primitive single event detection model. However, in
terms of grid statistics, parallel computation and merging of subsequent feature maps,
processing each pixel as a grid will result in many tedious computations. At the same time,
the merging of feature maps is directly related to the object detection effect. Therefore, the
choice of suitable grid size is especially critical to balance the calculation. After experimen-
tal comparison and analysis, we divide the input feature with a resolution of 352 × 352
into 4 × 4 grids.

3. Experiments and Discussion

In this section, we present the implementation process and related parameters of our
proposed pedestrian detection architecture in detail and conduct extensive discussions and
analyses of the experimental results

3.1. Datasets

As far as we know, the datasets based on DVS are currently much scarcer than
conventional cameras in the field of object detection. Especially, there is no fully public
labeled dataset for pedestrian detection. Although several event-based pedestrian detection
studies have been conducted [12,13], the datasets they used are not publicly available.
Hence, we collected about 6.5 h of event streams with the help of the DAVIS346 event sensor
(iniVation, Zurich, Switzerland). DAVIS is a composite sensor that combines event-driven
asynchronous readout of temporal contrast with synchronous frame-based APS readout
of intensity [25]. The resolution of this event camera is 346 × 260. The dataset contains
multiple real-world pedestrian scenarios, including campus roads, traffic intersections,
subway station exits and pedestrian crossings. We collected 141 short event streams with a
total of 488 s, including 84 M events, to construct an event data-based pedestrian detection
dataset named Pedestrian-SARI (Shanghai Advanced Research Institute). Among them,
107 event streams are used as the train set, and the rest are used as the test set. Each event
stream clip is converted into corresponding event frames and annotated manually to record
locations of pedestrians as well as the label. In total, 6061 event frames reconstructed

Electronics 2021, 10, 888 10 of 15

with a temporal window of 40 ms are annotated. Figure 4 shows some examples from the
pedestrian-SARI dataset.

Figure 4. Some examples and pedestrian annotations in the Pedestrian-SARI (Shanghai Advanced
Research Institute) dataset. All event frames are constructed by the NSTS–SAE method.

3.2. Event-Frame Construction

We compare our proposed NSTS against the previously published event-frame ac-
cumulation method: the event-stream encoding method based on frequency, SAE, and
LIF. All these methods are based on the author’s public implementation. The specific
implementation method is as described in Section 2.1. It is worth mentioning that we
have retained event frames with both positive and negative polarities for each construction
result. Therefore, the input of the pedestrian detector is equivalent to these two integrated
channels. Following, we introduce in detail the parameters that our proposed method
relies on.

To be concise, we use the name of the event-to-frame construction method to name
the test case. For example, frequency, SAE, and LIF, respectively, represent the event
frames constructed by the corresponding event stream encoding method. The event frames
drove from the NSTS construction approach with the event filter are abbreviated to NSTS.
Analogously, NSTS–SAE denotes the event frames obtained by fusing the two results of
NSTS and SAE achieved previously.

3.3. Pedestrian Detection Performance
3.3.1. Comparison of Different Event Frame Encoding Methods

In this work, we designed a pedestrian detection system based on standard Mo-
bileNetV3 and YOLO head as our baseline for the event-based detector (EBD). The baseline
method was trained from scratch with five different datasets as described in Section 3.2,
respectively. In this way, we compare the impact of different event-to-frame construction
methods on pedestrian detection accuracy. All the models are trained using the Adam
optimizer with a total of 50 epochs. The initial learning rate is 10−4, betas are (0.9, 0.999),
eps is 10−8, and the learning rate is dynamically adjusted with the trained batches by
cosine annealing scheduler [26]. Early stopping was adopted to prevent overfitting of the
model. The batch size was chosen as 32 depending on the memory of the GPU. For data
augmentation, we only used horizontal flip by a probability of 0.5. Considering the cost
of training time, all the training processes are completed on the NVIDIA Tesla V100 GPU
(Nvidia, Santa Clara, CA, USA), and it takes about 3 h to train a model from scratch. The
detection processes are on the Intel Xeon W-2145 CPU (Intel, Santa Clara, CA, USA). Our
methods are implemented based on the open-source Pytorch framework.

We use average precision (AP) as a metric to evaluate the detection performance of
different models. The APs of the detectors with different encoding methods are provided
in Table 2. Compared with previously reported methods (e.g., frequency, SAE, LIF), our
proposed NSTS method achieves better detection performance. This shows that increasing
the pixel weight of “sparse events” in DVS images is beneficial to improve detection
accuracy. Moreover, the NSTS–SAE frame, which is fused by both NSTS and SAE, has the
best performance. The highest AP of 86.37% was obtained, which indicates that NSTS and
SAE event frames can be reconsidered as complementary to each other.

Electronics 2021, 10, 888 11 of 15

Table 2. The performance comparison of different event-to-frame encoding methods evaluated by
the event-based detector (EBD) (IOU0.5 AP).

Encoding Methods AP (%) Detect Time (ms)

Frequency [10] 81.48

47.58
SAE [14,15] 82.81

LIF [18] 78.92
NSTS (proposed) 84.08

NSTS–SAE (proposed) 86.37

It is worth stating that our proposed event-based detection pipeline includes two
parts: event frame encoding and event frame detection. Event frame encoding is performed
in real time as the events arrive, and the consumption time depends on the timestamp of
the initial event and the cutoff event, independent of the encoding method or the detector.
Therefore, the detection time in Table 2 refers to the time between the event frame input
to the detector and the output detection result. This metric is compared to illustrate the
detection speed of the different detectors.

The visualized pedestrian detection results from the detectors are presented in Figure 5.
As shown in Figure 5a, this is a typical traffic road crossing scene. Interestingly, comparing
Figure 5c,e can clearly that NSTS and SAE focus on the different locations, so the fusion
of NSTS and SAE event frames can complement each other. Therefore, the results from
NSTS–SAE were superior to others.

Figure 5. Detection results of different event frame encoding methods in EBD (event-based detector).
The blue boxes in each figure mark the corresponding predicted object position. (a) APS (active pixel
sensor) channel from DAVIS camera (used to display real-world scenario); (b) frequency [10]; (c)
SAE (surface of active events) [15]; (d) LIF (leaky integrate-and-fire) [18]; (e) NSTS (neighborhood
suppression time surface); (f) NSTS–SAE.

3.3.2. Comparison of Different CNN Detection Schemes

(1) Grids partition detection model

Compared with the images captured by conventional cameras, the data in DVS images
are sparser and simpler. Reusing part of the feature map through GP methods is an
effective method to avoid spending much computation resources in the repeated feature
calculation process. Based on our proposed GP method, we improved the feature extraction
network MobileNetV3 in the EBD, as described in detail in Section 2.2.1. In this work,
we take N = 4, that is, the event frame and the corresponding feature map is divided
into a total of 16 sub-grids. Then we used the same training strategy as the baseline to

Electronics 2021, 10, 888 12 of 15

re-train the GP detection model (EBD–GP) on different event-frame datasets separately
and compared the detection results in detail. As illustrated in Table 3, in terms of AP, the
detection performance of the EBD–GP network is generally slightly inferior to the baseline.
Compared with the five encoding methods, the AP is reduced by −0.05–0.34%. However,
the detection speed is reduced from 47.58 ms of baseline to 41.89 ms of EBD–GP, saving
about 12% of the detection time. Here we do a brief theoretical analysis. With an input
resolution of 352× 352, the FLOPs of the first four layers of MobileNetV3 are about 105.0 M,
accounting for nearly 34% of the entire backbone network. Assuming that we can reuse
half of the feature maps between two frames, the total calculation amount will be saved by
nearly 17%. This is why our EBD–GP method can significantly reduce the detection time.

Table 3. The performance comparison of pedestrian detection accuracy and detection speed of event
frames constructed by different encoding methods evaluated by EBD (event-based detector) and
EBD–grid partition (GP), respectively (IOU0.5 AP).

EBD EBD–GP (Proposed)

AP (%) Detect Time (ms) AP (%) Detect Time (ms)

Frequency [10] 81.48

47.58

81.52

41.89
SAE [14,15] 82.81 82.44

LIF [18] 78.92 78.97
NSTS (proposed) 84.08 83.96

NSTS–SAE (proposed) 86.37 86.03

(2) Asynchronous event frame detection model

Based on the EBD–GP, we further proposed an asynchronous event frame detection
model (EBD–AGP). We evaluated the performance of pedestrian detection results by inde-
pendently accumulating events and updating event frames in each grid. In the experiment,
we set the event count threshold Ethr = 200 to determine whether the time surfaces within
grids need to be reinitialized. For convenience, we will use this method of asynchronously
initializing the time surface with the mark “A” (asynchronous) in front of it. As presented
in Table 4, the detection performance of different encoding methods with the EBD–AGP
method has been improved to different degrees. Regarding NSTS and NSTS_SAE, AP in-
creased by 1.43% and 1.06%, respectively. As forecasted, by asynchronously reconstructing
event frames, DVS images integrate richer event features, which making pedestrians are
easier to be recognized by CNN. This is mainly because, in EBD–AGP, every event frame
input to the detector is valid and has enough event information to accurately describe the
motion state of the object, which ensures that the object in the region will not be missed or
misidentified.

Table 4. The performance comparison of pedestrian detection accuracy and detection speed of event
frames constructed by different encoding methods evaluated by EBD (event-based detector) and
EBD–AGP (asynchronous event frame detection model), respectively (IOU0.5 AP).

EBD EBD–AGP (Proposed)

AP (%) Detect Time (ms) AP (%) Detect Time (ms)

Frequency [10] 81.48

47.58

82.05

38.26
SAE [14,15] 82.81 84.08

LIF [18] 78.92 80.84
NSTS (proposed) 84.08 85.51

NSTS–SAE (proposed) 86.37 87.43

It is important to note that there is no notion of conventional frames in EBD–AGP.
The detector is triggered once when the number of events in each independent grid region
reaches the event count threshold. Therefore, the time interval between two times of

Electronics 2021, 10, 888 13 of 15

detections is not fixed, which makes it difficult to directly determine the average detection
time per image frame. Therefore, the average detection time per frame of EBD_AGP is
calculated by using the ratio of the detection time of the whole test set and the number
of event frames encoded in the baseline model. The calculation shows that the average
detection time per frame for the asynchronous event-frame detection scheme is 38.26 ms,
which is nearly 20% shorter than the 47.58 ms in EBD. Theoretically, the object detection
time relates to the number of detection model operations. In EBD–AGP, the “sparse event”
region is not detected as frequently as in EBD but only be detected once when enough
events are accumulated.

As shown in Figure 6, the results from EBD–AGP were superior to those from EBD
on the same reconstruction methods. It is noted that the event frame in the lower row
accumulates richer details asynchronously, while the random white noise generated by the
event camera also accumulates. However, the subsequent CNN detector is not sensitive to
this noise, so it will not affect the detection accuracy.

Figure 6. Some examples of visualization results of pedestrian detection. The outputs from EBD
(event-based detector) are shown in the upper row, while outputs from EBD–AGP(asynchronous
event frame detection model) are shown in the lower row. (a) SAE [14,15]; (b) NSTS; (c) NSTS–SAE;
(d) A–SAE; (e) A–NSTS; (f) A–NSTS–SAE.

3.4. Discussion

As mentioned in the previous section, in the baseline architecture of EBD, the per-
formance of our proposed NSTS reconstruction method is about 1.27–5.16% higher than
previous work. Moreover, the NSTS–SAE method of fusing the two event frames of NSTS
and SAE further significantly improved the AP of the detector by 86.37%, which is about
4.2–9.4% higher than previous reports. Although in EBD–GP, the AP of all cases is slightly
reduced by −0.05%–0.34%, as shown in Table 3. But, as shown in Table 4, with the aid
of the method of asynchronously constructing time surface in each grid, the AP of all
cases increased by 0.57–1.92% in EBD–AGP. Compared with previous results, our final
performance is about 5.6–10.8% higher. In terms of detection speed, benefiting from the
idea of reusing feature maps with Grids Partition, our detector can reach about 26 FPS,
which is nearly 20% higher than baseline. Most importantly, our proposed detection meth-
ods EBD–GP and EBD–AGP, have significant improvements in detection speed. Whose
innovation is to exploit the sparsity and asynchrony of the event data by making a grid
division of the input event frames to optimize the computational complexity of the detector.
This enhancement is independent of the specific feature extraction network or detector and
is a universal optimization method applicable to event-based object detection networks
based on CNNs.

Electronics 2021, 10, 888 14 of 15

4. Conclusions

To improve pedestrian detection speed and accuracy, we presented a novel event-
to-frame conversion method to integrate the inherent characteristics of the events more
effectively, and an improved feature extracting network was designed that can reuse
intermediate features to further reduce the amount of calculation. Based on these two
approaches, we introduced an efficient pedestrian detection system with event data from
DVS. After the validation on the custom dataset contains multiple real-world pedestrian
scenarios, our proposed method is about 5.6–10.8% higher, and the detection speed is
nearly 20% faster than the previous method reported. Finally, the pedestrian detector
can run about 26 FPS at an AP of 87.43% on a single CPU, meeting the quasi-real-time
requirements. We hope that our attempts will promote further research and application
of DVS.

Author Contributions: Conceptualization, J.W., M.X.; Data curation, M.X., Z.H.; Formal analysis,
Y.Z.; Investigation, J.W.; Methodology, L.T.; Project administration, H.W.; Writing—original draft,
J.W.; Writing—review & editing, Z.H., L.T., X.Z., V.C., Y.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Project (No.
2019YFC0117302), NSFC Youth Fund (No. 62004201), NSFC Youth Fund (No. 61704179), Shanghai
Municipal Science and Technology Commission project (No. 19511131202), Pudong Economic and
Technological Commission project (No. PKX2019-D02), Strategic Priority Research Program of
Chinese Academy of Sciences (No. XDC02070700), Talents Project of Shanghai Advanced Research
Institute Chinese Academy of Science (No. E052891ZZ1).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mao, J.; Xiao, T.; Jiang, Y.; Cao, Z. What can help pedestrian detection? In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3127–3136.
2. Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C. Deep learning for person re-identification: A survey and outlook. IEEE Trans.

Pattern Anal. Mach. Intell. 2021. [CrossRef] [PubMed]
3. Zhu, M.; Wu, Y. A Parallel Convolutional Neural Network for Pedestrian Detection. Electronics 2020, 9, 1478. [CrossRef]
4. Jung, J.; Bae, S.-H. Real-time road lane detection in urban areas using LiDAR data. Electronics 2018, 7, 276. [CrossRef]
5. Guo, Z.; Huang, Y.; Hu, X.; Wei, H.; Zhao, B. A Survey on Deep Learning Based Approaches for Scene Understanding in

Autonomous Driving. Electronics 2021, 10, 471. [CrossRef]
6. Gallego, G.; Delbruck, T.; Orchard, G.; Bartolozzi, C.; Scaramuzza, D. Event-based Vision: A Survey. arXiv 2019, arXiv:1904.08405.

[CrossRef] [PubMed]
7. Leñero-Bardallo, J.A.; Serrano-Gotarredona, T.; Linares-Barranco, B. A 3.6$\mu $ s Latency Asynchronous Frame-Free Event-

Driven Dynamic-Vision-Sensor. IEEE J. Solid-State Circuits 2011, 46, 1443–1455. [CrossRef]
8. Lakshmi, A.; Chakraborty, A.; Thakur, C.S. Neuromorphic vision: From sensors to event-based algorithms. Wiley Interdiscip. Rev.

Data Min. Knowl. Discov. 2019, 9, e1310. [CrossRef]
9. Haessig, G.; Benosman, R. A sparse coding multi-scale precise-timing machine learning algorithm for neuromorphic event-based

sensors. In Proceedings of the Micro-and Nanotechnology Sensors Systems, and Applications X, Orlando, FL, USA, 15–19 April
2018; p. 106391U.

10. Chen, N.F. Pseudo-labels for supervised learning on dynamic vision sensor data, applied to object detection under ego-motion.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22
June 2018; pp. 644–653.

11. Li, J.; Dong, S.; Yu, Z.; Tian, Y.; Huang, T. Event-based vision enhanced: A joint detection framework in autonomous driving. In
Proceedings of the IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 1396–
1401.

12. Jiang, Z.; Xia, P.; Huang, K.; Stechele, W.; Chen, G.; Bing, Z.; Knoll, A. Mixed frame-/event-driven fast pedestrian detection.
In Proceedings of the International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 8332–8338.

13. Chen, G.; Cao, H.; Ye, C.; Zhang, Z.; Liu, X.; Mo, X.; Qu, Z.; Conradt, J.; Röhrbein, F.; Knoll, A. Multi-cue event information fusion
for pedestrian detection with neuromorphic vision sensors. Front. Neurorobotics 2019, 13, 10. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2021.3054775
http://www.ncbi.nlm.nih.gov/pubmed/33497329
http://doi.org/10.3390/electronics9091478
http://doi.org/10.3390/electronics7110276
http://doi.org/10.3390/electronics10040471
http://doi.org/10.1109/TPAMI.2020.3008413
http://www.ncbi.nlm.nih.gov/pubmed/32750812
http://doi.org/10.1109/JSSC.2011.2118490
http://doi.org/10.1002/widm.1310
http://doi.org/10.3389/fnbot.2019.00010
http://www.ncbi.nlm.nih.gov/pubmed/31001104

Electronics 2021, 10, 888 15 of 15

14. Mueggler, E.; Bartolozzi, C.; Scaramuzza, D. Fast event-based corner detection. In Proceedings of the British Machine Vision
Conference (BMVC), London, UK, 4–7 September 2017.

15. Mohamed, S.A.; Haghbayan, M.-H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Towards real-time edge detection for event cameras
based on lifetime and dynamic slicing. In Proceedings of the Joint European-US Workshop on Applications of Invariance in
Computer Vision, Ponta Delgada, Portugal, 9–14 October 1993; pp. 584–593.

16. Miao, S.; Chen, G.; Ning, X.; Zi, Y.; Ren, K.; Bing, Z.; Knoll, A. Neuromorphic Vision Datasets for Pedestrian Detection, Action
Recognition, and Fall Detection. Front. Neurorobotics 2019, 13. [CrossRef] [PubMed]

17. Li, H.; Li, G.; Ji, X.; Shi, L. Deep representation via convolutional neural network for classification of spatiotemporal event streams.
Neurocomputing 2018, 299, 1–9. [CrossRef]

18. Fang, W. Leaky Integrate-and-Fire Spiking Neuron with Learnable Membrane Time Parameter. arXiv 2020, arXiv:abs/2007.05785.
19. Sironi, A.; Brambilla, M.; Bourdis, N.; Lagorce, X.; Benosman, R. HATS: Histograms of averaged time surfaces for robust

event-based object classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018; pp. 1731–1740.

20. Yan, C.; Tu, Y.; Wang, X.; Zhang, Y.; Hao, X.; Zhang, Y.; Dai, Q. Stat: Spatial-temporal attention mechanism for video captioning.
IEEE Trans. Multimed. 2019, 22, 229–241. [CrossRef]

21. Choi, E.; Bahadori, M.T.; Sun, J.; Kulas, J.; Schuetz, A.; Stewart, W. Retain: An interpretable predictive model for healthcare using
reverse time attention mechanism. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain,
5–10 December 2016; pp. 3504–3512.

22. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings
of the Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 779–788.

23. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:abs/1804.02767.
24. Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V. Searching for

mobilenetv3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November
2019; pp. 1314–1324.

25. Berner, R.; Brandli, C.; Yang, M.; Liu, S.-C.; Delbruck, T. A 240 × 180 120 db 10 mw 12us-latency sparse output vision sensor
for mobile applications. In Proceedings of the International Image Sensors Workshop, Snowbird, UT, USA, 12–16 June 2013;
pp. 41–44.

26. Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:abs/1608.03983.

http://doi.org/10.3389/fnbot.2019.00038
http://www.ncbi.nlm.nih.gov/pubmed/31275128
http://doi.org/10.1016/j.neucom.2018.02.019
http://doi.org/10.1109/TMM.2019.2924576

	Introduction
	Methodology
	Event-Frame Construction
	Event-Stream Encoding Based on Frequency
	Event-Stream Encoding Based on Surface of Active Events
	Event-Stream Encoding Based on LIF Neuron Model
	Our Proposed Event-Stream Encoding Method

	Object Detection Based on CNN
	Grids Partition Detection Model
	Asynchronous Event Frame Detection Model

	Experiments and Discussion
	Datasets
	Event-Frame Construction
	Pedestrian Detection Performance
	Comparison of Different Event Frame Encoding Methods
	Comparison of Different CNN Detection Schemes

	Discussion

	Conclusions
	References

