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Cyber-Physical Systems (CPS), as a multi-dimensional complex system that connects the physical world and the cyber world, has a

strong demand for processing large amounts of heterogeneous data. These tasks also include Natural Language Inference (NLI) tasks

based on text from different sources. However, the current research on natural language processing in CPS does not involve exploration

in this field. Therefore, this study proposes a Siamese Network structure that combines Stacked Residual LSTM (bidirectional) with the

Attention mechanism and Capsule Network for the NLI module in CPS, which is used to infer the relationship between text/language

data from different sources. This model is mainly used to implement Natural Language Inference tasks and conduct a detailed evaluation

in 3 main NLI benchmarks as the basic semantic understanding module in Cyber-Physical Systems. Comparative experiments prove that

the proposed method achieves competitive performance, has a certain generalization ability, and can balance the size and performance

of trained parameters.
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1 INTRODUCTION

Cyber-Physical Systems (CPS) are multiple dimensional complex systems that connect the physical and virtual worlds,

relying on the deep collaboration and organic integration of multiple types of modules. Through the interaction

between the physical process and human-computer interaction interface, this next-generation intelligent system, which

integrates computing, communication, and control, can realize dynamic control, real-time perception, and information

service. CPS is inseparable from key technologies related to processing and fusing information flowing from physical

space to information space as a combination of perception and cognitive intelligence. This involves many processing

and recognition technologies ranging from speech (analog quantity) to semantic (discrete quantity). As we know,

voice-related technologies have been widely innovated and applied in the Internet of Things in recent years. However,

CPS is a comprehensive system that expands and contains more dimensional information (e.g., Internet) based on IoT, a
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2 Ni et al.

system based on perception intelligence. Therefore, it also focuses more on cognitive intelligence than traditional IoT

applications. Semantic understanding plays an important role in CPS’s cognitive module system. At the same time, as

the core module for implementing the interactive system in CPS, it is a key technology for processing and analyzing the

deep meaning in the speech signal from the real-world, and it is also one of the main ways to make CPS realize a more

natural human-computer interaction. Natural language inference, as difficulty in semantic understanding, is mainly

used to discover the semantic logic and implication relationship in natural language. This task provides a semantic

representation of natural language by defining a semantic relationship (Entailment, milling, Neutral), resulting in a

more precise output of text vectors that can be easily moved or deployed to other real-world tasks (e.g., dialogue,

qa, semantic matching in the cyber-physical world, etc.). Therefore, this task also provides a more effective channel

or mechanism for communication and integration between the Cyber and Physical worlds. This more natural way

of interaction is also more readable, convenient, and free than conventional virtual-reality communication based on

structured data (e.g. metadata). At the same time, this form of free-text data is also a promising direction for the future

iterative development of metadata [19].

NLI is mainly used to determine whether the given two randomly language fragments (e.g. paragraphs, sentences,

phrases, etc.) are statements of the same fact and whether the main logic of their content is consistent. The main

objective of this task is to judge the promise (P) and hypothesis (H) and determine whether it has an entailment

relationship. Therefore, NLI can be transformed into a classification problem in the form. This task has been widely

used in question answering systems. Much of the work is based on textual inclusion techniques to generate candidate

answers or to sort candidate answers generated by other methods [1, 2, 40, 58, 77, 79]. For example, if a user issues

the question like "Who is the founder of Google?" and the corresponding knowledge in the knowledge base happens

to be similar (e.g. "Larry Page and Sergey Brin founded Google in 1998"). At this time, if the question and answer

system can infer the result of "Larry Page and Sergey Brin is the founder of Google, " then the system can answer such

questions directly. In fact, there is generally an inference relationship between questions and candidate answers, and

between candidate answers and supporting documents. Moreover, the research [31] shows that the application of textual

entailment technology can improve the correct answer rate by about 20%. At the same time, in Machine Translation

Evaluation [24, 45, 59], Relationship Extraction [6, 48, 67], Multi-document Summary [32, 43, 49], Student Answers

Assessment [22, 23, 57], and Syntactic Analysis Evaluation [21, 26, 96] and other tasks, textual entailment task also plays

a significant role. As the core technical part of semantic understanding, the level of textual entailment also represents its

reasoning ability to a certain extent, which also limits the interactive reasoning ability of the current human-computer

interaction systems (e.g., Siri, Alexa, Microsoft Xiaoice, etc.) to a certain extent. Therefore, the ultimate goal of textual

entailment related research is to provide a general text-based inference engine to support other semantic-related NLP

tasks and other daily applications. And the performance improvement of this part also undoubtedly plays a vital role in

the semantic understanding in CPS and the enhancement of the interactive system.

This study proposed a Siamese Network structure that integrates Stacked Residual LSTM with Attention mechanism

and Capsule Network for the NLI module in Cyber-Physical Systems. The basic semantic understanding module in CPS

is mainly used to implement Natural Language Inference task. And a detailed evaluation based on three classic NLI

datasets to test and valid the performance of our proposed model.

The main contributions of this study are as follows:
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A Hybrid Siamese Neural Network for Natural Language Inference in Cyber-Physical Systems 3

• This work is currently the first exploration of NLI in the field of Cyber-Physical Systems and has conducted

technical empirical analysis and discussion. And this is a valuable exploration for creating effective artificial

intelligence models for CPS.

• We propose a Siamese Network based on Stacked Residual LSTM with Attention mechanism and Capsule

Network for the task of NLI, which is used for the semantic understanding module in CPS. This study conducted

experiments on three classic NLI datasets (SNLI, MultiNLI-m/-mm, MRPC), and obtained competitive results,

proving the effectiveness of the proposed model.

• This study designed a dual feature representation layer method combining LSTM-based (Stacked Residual LSTM

with Attention) and CNN alternative-based (Capsule Network) for NLI tasks and embedded them into the Siamese

Network with weight sharing mechanism. This model can reduce the number of training parameters and achieve

more ideal context modeling in the case of multi-input-based parallel computing to obtain better performance of

the actual task.

In the remaining sections, we will discuss in detail the background, technical solutions, experimental results, and

analysis of the research. In the second section (Related Work), we mainly reviewed some previous major explorations

on Natural Language Processing (NLP) in Cyber-Physical Systems and investigated some technological innovations in

the field of NLI in recent years. In the third section (Methodology), we introduced the details of the designed network

structure in a hierarchical form. The fourth part (Experiments) introduces the experimental environment and datasets.

In the fifth section (Results and Analysis), we conducted a specific analysis and discussion of the experiment results.

The last section (Limitation and Conclusion) is mainly about the limitation and summary discussion of the study.

2 RELATEDWORK

2.1 NLP in Cyber-Physical Systems

The unique challenge in CPS integration comes from the heterogeneity of components and interactions. This hetero-

geneity drives the need for modeling cross-domain interactions in the virtual world (information domain) and the real

world (physical domain). And by understanding the deeper features and attributes of heterogeneous sources, to better

serve the needs of specific scenarios [75]. One of CPS’s main goals is how to integrate the voice signals received from the

physical world and the linguistic information circulating in the information world to achieve barrier-free cross-domain

communication. Related research on natural language processing in CPS is currently quite rare. Wiesner et al. [87], based

on the survey, explored the challenges, potential applications, and preliminary suggestions about CPS in Requirements

Engineering. The study pointed out that the shared informal requirements specifications can be converted into formal

domain-specific models of related disciplines through NLP to integrate the collaboratively described requirements of

multiple disciplines (e.g. mechanical engineering, software, and systems engineering) and map them to the system

element. At the same time, the research also suggests adopting the form of establishing a dialogue system to meet the

needs of ambiguity and semi-automatic conversion. Vogelsang et al. [82] reported on their work in automatic knowledge

extraction, query answer retrieval based on an expert system, and automatic requirement classification in building

CPS. This work envisions that NLP will become a key component that connects requirements and simulation models

and can explain tool-based decision-making processes, and provides some inspiration for the development of related

fields. At present, the research related to NLP in CPS is mainly concentrated in the field of requirements engineering,

but there are also works for Web of Things (WoT) facilitates (CPS system) that involve semantic reasoning in the field

of knowledge engineering. Wu et al. [90] design the semantic Web of Things (SWoT) framework for Cyber-Physical
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4 Ni et al.

Systems (SWoT4CPS), which provides a hybrid ontology engineering method by extending the semantic sensor network

and the deep learning method based on the entity connection solution. The feasibility of the framework is verified

through experiments that realize temperature abnormality diagnosis and automatic control use cases. In addition, the

evaluation of physical connections shows that it has a high accuracy of linking domain knowledge to DBpedia and an

acceptable level of time-consuming. In summary, previous research mainly regarded NLP as "tools" that provide local

support related to text data processing for integrated systems at the development level but did not raise its Attention to

the methodology system used to process multi-source language information. Therefore, the current progress of NLP

in CPS, whether at the application level or technological innovation level, remains at the mere imagination level or

embryonic stage, which also limits CPS’s ability to process multi-source language information.

2.2 Natural Language Inference

The current NLI has evolved from traditional logical expressions to deep learning methods. Raina et al. [65] express

the premise and hypothesis as a conjunction of two sets of sub-propositions using the dependency relationship. Then

use the abductive reasoning mechanism to infer the hypothesis from the premise and calculate its cost, to determine

whether there is an entailment relationship between the premise and the assumption. In short, the method is to express

the text as a mathematical, logical expression to form a set of facts and whether the hypothesis can be inferred according

to the premise is determined by logical inference rules. Bar-Haim et al. [8] uses a "calculus idea" similar to [65]. They

turned to language analysis techniques (e.g., syntactic analysis, semantic role labeling) instead of strict mathematical

logic expressions. Then, Bowman et al. [11] published a data set on textual entailment recognition, SNLI [11]. SNLI has

a total of 570K textual pairs, a total of three types (Entailment, Contradiction, Neutral) relationship, and completely by

manual annotation. The label integrates the opinions of five experts and is based on the principle of minority obeying

the majority. And both promise and hypothesis are based on the same specific scene. At the same time, SNLI is also a

benchmark test that enables neural network-based models to demonstrate high competitiveness for the first time in

related NLI tasks. The NLI model based on neural networks has developed rapidly with high-quality and rich sources of

training data.

2.3 RNN-based methods for NLI

Some of these works are based on deep learning-based models of Recurrent Neural Networks (RNN) and its variants.

Rocktäschel et al. [66] proposed the generic end-to-end differentiable system, which uses two LSTMs (Long Short-Term

Memory, variants of RNN) to encode the promise and hypothesis to determine the delivery relationship. The method

achieved better performance on the SNLI dataset compared to the previous SOTA classifier (Lexicalized classifier (LSTM)

[11]. And the study also qualitatively analyzed the Attention weight generated by the model. However, in the study of

Wang et al. [85], the approach proposed by [66] has certain limitations: only a single vector of promise is used to match

hypothesis; Neither increases the weight of the more important matching part between promise and hypothesis nor

decreases the weight of non-critical parts. Therefore, for these two defects, they matched the Attention vector and

the hypothesis vector based on the original model. Then input to match-LSTM. In addition, the special word NULL

is also introduced in the premise. When the word in hypothesis does not form any match with the word in premise,

match-LSTM will match the word with NULL, which is equivalent to increasing the dangling alignment and improving

the alignment model. Kim et al. [41] designed a densely-connected co-attentive RNN similar to DenseNet (a densely

connected convolutional network) [35]. The model performs concatenated information processing on attentive features

and all hidden features of preceding recurrent layers. In addition, the model also uses AutoEncoder to solve the problem
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A Hybrid Siamese Neural Network for Natural Language Inference in Cyber-Physical Systems 5

of the rapid growth of parameters after concatenation. Chen et al. [15] proved that the sequential reasoning model

based on the chain LSTM could be superior to the model of the complex network structure used before. On this basis, it

further shows that by adding local reasoning and reasoning combination, it can well improve the sequential reasoning

model. In addition, the study introduced the ESIM model (Enhanced Sequential Inference Model) and introduced a

tree-type LSTM network incorporating syntactic parsing information. A majority of previous research projects on

text matching only considered unidirectional semantic matching, but did not consider the importance of bidirectional

semantics. Generally speaking, only consider a single granularity semantic matching (word by word or sentence by

sentence). In view of the above defects, Wang et al. [86] designed the BiMPM (Bilateral Multi-perspective Matching)

model to solve the above problems. In this work, we draw on the idea of bidirectional semantic modeling to build a

Stacked LSTM based on bidirectional to capture richer features.

2.4 CNN-based methods for NLI

The deep learning model based on CNN (Convolutional Neural Networks) and its variants also play a significant role

in the NLI. Mou et al. [53] use a tree-structured CNN to model a single sentence. They use the syntactic dependency

tree as the operation object of convolution to form a subtree feature extractor, which can extract the dependency

relationship between the parent node and its child nodes at once. This method uses two Tree-based CNNs to model

promise and hypothesis, respectively. It uses vectors constructed by heuristic features construction methods such as

concatenation, difference, and multiplication to represent the semantic information of a pair of premise and hypothesis,

and finally, use softmax for classification. Zhang et al. [98] emphasized that in many cases, it is necessary to recognize

the association between words before recognizing the association between sentences, and vocabulary entailment

largely depends on the contextual representation of words. Therefore, this study proposes a recognition method based

on Context-Enriched Neural Network (CENN). Specifically, the representation of the input word pairs uses multiple

embedding vectors, from different contexts, to integrate and optimize these vectors through multiple combination

methods and Attention weighting, and then output the relationship between the predicted word pairs. Yin et al. [94] adds

Attention Matrix to the convolution layer. This method allows the model to consider the correlation between sentences

(the hypothesis and premise sentences are originally independent) and the context relationship of sentences through

the Attention mechanism. This method fully considers the situation that the information of promise and hypothesis

needs to be considered in the entailment relationship (the pair of texts needs to be modeled simultaneously). Chen et al.

[13] proposed a GCNN (Gated CNN) for sentence matching, which solves the problem of time-consuming and other

problems that the recursive architecture cannot perform parallel computing within sequences. The convolution stacked

by this method encodes the hierarchical context-aware representations of the sentence, where the gating mechanism

optionally controls and stores the convolutional context information. Gong et al. [27] designed an IIN (Interactive

Inference Network), to realize the hierarchical extraction of high-dimensional semantic features of sentence pairs from

interactive space. The research mainly proves that an interactive tensor matrix (Attention weight) contains the semantic

information in NLI, while a denser interactive tensor matrix often potentially contains richer semantic information. So

they built Densely Interactive Inference Network (DIIN), and achieved a performance improvement of more than 5%

over the previous methods [56] on the MultiNLI [88] dataset.

3 METHODOLOGY

The inference relationship between natural languages, also known as Textual Entailment, refers to the basic semantic

connection between texts (or refers to the pointing relationship between two text fragments). In simple terms, the

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Ni et al.

Table 1. An example of three conditions for Textual Entailment

A positive Textual Entailment example (hypothesis is

entailed in the given text):

Given text: If you help those in need, God will reward you.

Hypothesis: Giving money to the poor can get a good return.

A negative Textual Entailment example (the meaning

of the given text is about refuting the hypothesis):

Given text: If you help those in need, God will reward you.

Hypothesis: There is no reward for giving money to the poor.

An example without Textual Entailment (the given

text neither entails hypothesis nor refute it):

Given text: If you help those in need, God will reward you.

Hypothesis: Giving money to the poor will make you better.

textual entailment relationship describes the reasoning relationship between two texts. One of the texts is used as a

premise, and the hypothesis is the other text. If premise 𝑃 can infer hypothesis 𝐻 , then 𝑃 can be regarded as entailing

𝐻 and annotated as 𝑃 → 𝐻 . For example, we can find from Table 1 that the textual entailment relationship is not purely

logical reasoning, and its conditions are looser, which can be defined as follows: if a person can infer from ℎ that ℎ has

a high probability of being true, then 𝑡 is entailed ℎ (𝑡 => ℎ).
Textual entailment is different from similar tasks like Paraphrasing. Two text fragments from different sources do

not contain the same semantics with high probability. Strictly speaking, Paraphrasing can be regarded as a "Textual

Equivalence" relationship, or it can be called as a "Bidirectional Textual Entailment" relationship. But Textual Entailment

is a unidirectional inference relationship (𝐻 cannot infer 𝑃 backward) [5]. In addition, Textual Entailment and Text

Similarity are also quite different. If a pair of texts contain similar semantics, they can be evaluated using edit distance

or other similar measures, but they may not constitute an entailment relationship [3, 29, 33, 39, 51]. The main idea

of Textual Entailment is more like the human decision-making process of judging the authenticity of the semantic

propositions given by hypothesis after understanding the semantic propositions of premises and combining their own

common sense. In addition, the decision-making process differs from logical reasoning to a certain extent. Although

some textual entailment relationship methods refer to the basic idea of logical reasoning [4, 9, 52, 65, 68], it does not

strictly abide by the rules of mathematical, logical reasoning, and its discriminating process is also different from the

process of mathematical logic. In summary, compared to the other tasks mentioned above, the Textual Entailment task

has: focusing on the inclusion or reasoning attributes between the semantics of the text, using human common sense as

the basis for reasoning, having the characteristics of directionality, etc.

3.1 Overall Structure

This study proposes a novel multi-dimensional data simultaneous input structure for NLI tasks. The structure is based

on the Siamese Network with a binary branch. Each branch net composed of the Embedding Layer, the Encoder Layer,

the Contextual Representation Layer, the Aggregation, and the Predict Layer (Fig. 1). Each layer mentioned above is

composed of the following models: Embedding Layer: BERT [18] is used as word embedding to obtain more accurate

dynamic word vectors than static word embedding (e.g., Word2Vec, GloVe, etc.). Encoder Layer: Stacked Residual LSTM

as a semantic modeling method, using a multi-layer and different directional LSTM network with Residual layer and

Attention mechanism to model the language. Contextual Representation Layer: Capsule Network as a feature extraction

mechanism for extracting local context Features, this part can also be regarded as a semantic modeling layer together

with the Encoder Layer. Aggregation and Prediction Layer: the text representation vectors output by the Contextual

Representation Layer of two branch nets are concatenated, and softmax is used as the activate function of the prediction

layer to output the inferred results. Since the Embedding Layer directly uses BERT as word embedding in this study,
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Fig. 1. The overall structure of the proposed model

the other three layers will be mainly introduced in the subsequent content. For an overview of the structure of the

model, please refer to Fig. 1.

3.2 Siamese Network

The Siamese Network was originally designed to determine the similarity of any two images [12]. The two photos

are simultaneously modeled by convolutional neural networks to obtain separate vector representations, and then

the edit distance of the two vector representations is solved to determine whether they are similar. It also provides a

new direction for Textual Entailment research. One of its core ideas is parameter sharing among multiple encoders.

Therefore, Siamese Network as the main component of the proposed structure to achieve weight sharing and matching

mechanism, its weight sharing has two purposes: (1) reduce the number of parameters, reduce the complexity of the

model; map the vectors of two different spatial dimensions to the same spatial dimension, to keep their distribution

consistent, and to encode different vectors in the same spatial dimension. Therefore, we built a shared weight layer (share

embedding layer) in the two branches of the Siamese Network to process these inputs from similar spatial dimensions

for encoding (e.g. two texts with different meanings with similar vocabularies). Through this layer, information can be

shared between different inputs, and the model can be trained on fewer data.

In summary, the role of this part is to input two different feature vectors, and finally judge and output the relationship

between the two feature vectors. Its specific structure is shown in Fig. 2.
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Fig. 2. The overall structure of the Siamese Neural Network

Fig. 3. The structure of the RNN

3.3 Encoder Layer

The convolutional layer of the capsule network is mainly used to extract local features. It uses capsule vectors to

represent the spatial position relationship between local features [89]. To make up for the defect that the capsule

network does not consider the context relationship of features, we have added an LSTM network before the capsule

network to obtain context information of local features. Additionally, Encoder Layer is composed of multiple stacked

LSTM networks, which has better semantic representation capabilities than shallow layers.
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RNN is a recursive neural network based on sequence input, which recurs in the direction of sequence evolution and

all nodes (recurrent units) are connected in a chain. The neurons of the hidden layer are calculated by inputting 𝑥𝑡 at

the time of 𝑡 , and 𝑠𝑡−1, the activation value of the hidden layer neurons at the time of 𝑡 − 1 (Fig. 3).

The neurons can be calculated as follows (where𝑈 and𝑊 are the parameters of the network, 𝑓 (.) represents the
activation function, and 𝑥𝑡 is the input at the time of 𝑡 ):

𝑠𝑡 = 𝑓 (𝑥𝑡𝑈 + 𝑠𝑡−1𝑊 ) (1)

The hidden layer ℎ at the moment of 𝑡 is calculated as (𝑏 is bias):

ℎ𝑡 = tanh (𝑊𝑥𝑡 +𝑈ℎ𝑡−1 + 𝑏) (2)

Although RNN solves the problem of information preservation that appeared in previous neural networks, it is still

limited to the issue about long-term dependence (i.e. the memory capacity is limited, and it is unable to capture the key

information of the remote context), so it derives its variant LSTM [97]. LSTM solves this problem by introducing a

memory cell so that the information that needs to be memorized can always be transmitted, ensuring that the state will

not disappear with time (Fig. 4). The unit of LSTM at each moment is defined as a set of vectors in the 𝑑 dimension

space: forget gate 𝑓𝑡 , memory unit 𝑐𝑡 , input gate 𝑖𝑡 and output gate 𝑜𝑡 . In addition, 𝜎 means the sigmoid activation

function and ⊙ represents the symbol multiplied by the element, and ℎ𝑡 represents the hidden state (different from

RNN’s ℎ𝑡 ). It is worth noting that the range of vectors 𝑖𝑡 , 𝑜𝑡 , 𝑓𝑡 is [0, 1].
1. Gates

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖 ) (3)

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜 ) (4)

𝑓𝑡 = 𝜎

(
𝑊𝑥 𝑓 𝑥𝑡 +𝑊ℎ𝑓 ℎ𝑡−1 + 𝑏 𝑓

)
(5)

2. Input transform

𝑐−𝑖𝑛𝑡 = tanh

(
𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐−𝑖𝑛

)
(6)

3. State update

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐−𝑖𝑛𝑡 (7)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝑐𝑡 ) (8)

Essentially, the input gate controls the update level of each unit, the output gate controls the output level of the

internal unit, the forget gate is responsible for controlling to what extent the memory unit at the previous moment is

forgotten. Hence, the hidden state vector in the LSTM unit is a gated local representation of the state of the memory

in the unit. The model can learn information representation on multiple time scales because the value of the gated

variable changes according to each vector element.

In view of unidirectional LSTM modeling the sentence, there is a problem that the backward information (from right

to left) cannot be encoded. Especially in more fine-grained classification tasks (e.g., the effect of Sentiment Analysis

is influenced by a large number of vocabulary such as emotion word, degree of adverb, negator, etc.), it has higher

requirements for the model’s context representation ability.
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Fig. 4. The structure of the LSTM

Graves et al. [28] found that a deeper network and more memory cells played a positive role in the overall effect of

the method. Therefore, deepening the neural network may be considered as a potentially feasible solution. In our study,

we build Stacked LSTM to capture the bidirectional semantic dependence and learn the comprehensive representation

from previous layers by increasing the depth of the neural network, to create new representations at a higher level of

abstraction.

Each LSTM memory cell requires 3D input. When the LSTM processes each time step sequence, each memory cell

will output a single value of the entire sequence in the form of a 2D array. However, in order to stack multiple LSTM

layers, the output of each LSTM needs to be adjusted to the form of a 3D array as the input of the subsequent layer (i.e.

adjust the original sequence return mode of "only output the hidden state of the last time step" to the form of "output

the hidden state of each time step").

We refer to the design of Stacked Residual LSTM in the work of Prakash et al. [62]. In our work, the stacked LSTM

is consist of a group of BiLSTM and a forward unidirectional LSTM, which are successively stacked into three layers

of the network. In the first two layers of LSTM, when entering a sentence (eg "I like it."), its forward 𝐿𝑆𝑇𝑀𝐿 enters

"I", "like", "it" in turn, and three corresponding vectors ℎ𝐿0, ℎ𝐿1, ℎ𝐿2 can be obtained from the network. And backward

𝐿𝑆𝑇𝑀𝑅 input "it", "like", "I" in turn, the corresponding vectors ℎ𝑅0, ℎ𝑅1, ℎ𝑅2 can be obtained from the network. The last

layer is the forward LSTM to perform deeper unified modeling of the previous two layers of LSTM. The hidden states

of all LSTM layers are fully connected. Except for the first layer, the input of all other layers is passed from the hidden

state of the previous layer 𝑙 at time step 𝑡 . Therefore, the activation of the 𝑙 layer can be expressed as:

ℎ
(𝑙)
𝑡 = 𝑓 𝑙

ℎ

(
ℎ
(𝑙−1)
𝑡 , ℎ

(𝑙)
𝑡−1

)
(9)

In addition, the ℎˆ of the 𝑙 layer is updated with the residual value 𝑥𝑙−𝑛 , and the 𝑥𝑖 represents the input of the layer

𝑖 + 1, and the residual connection is added after a single LSTM layer. According to the experience gained in the study of

Prakash et al. [62], when the number of layers exceeds 3, it will cause expensive computational overhead. Therefore, we

only add after the second layer when adding the residual layer. In the first layer, the learned function is a standard

LSTM with deviation, which depends on the input 𝑥 , so not every layer of LSTM needs to add a residual connection,

which does not increase any trainable parameters and computational complexity. At the same time, this will also reduce

the probability of the gradient disappearing during training.

As an effective mechanism to capture global semantic dependency, Attention is widely used by Transformer, BERT,

XLNET, and other models. Here, we add the Attention mechanism [81] after Stacked Residual LSTM to weight the
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Fig. 5. The structure of the LSTM

output, which is used to give higher weight to the key semantic features to improve the overall semantic modeling

performance of the model.

Therefore, the Attention Value needs to be calculated to weight the output of the Stacked Residual LSTM. Attention

function generates the Attention distribution coefficient, which is used to get Attention Value. The specific details are:

𝑄 is a Query element in the given target, and 𝐾 is a part of the (𝐾𝑒𝑦,𝑉𝑎𝑙𝑢𝑒) of the constituent elements in the source,

which is the Key. Then by calculating the correlation between 𝑄 and each 𝐾 , the weight of each 𝐾 corresponding value

can be obtained, and calculate the product of each value and its weight and then sum them (i.e. 𝑉𝑎𝑙𝑢𝑒). The calculation

method of the Attention function can be roughly divided into three stages as follows: 1. Calculate the similarity between

𝑄 and 𝐾 to obtain the weight; 2. Normalize the weight calculated in the previous stage; 3. Multiply the normalized

weight with 𝑉 and then weighted sum them. At this time, the result of weighted summation is Attention Value. The

specific calculation process is presented in Fig. 6.

Therefore, the specific method of Attention is to use the ℎ𝑖 output by the Stacked Residual LSTM as the input of the

Attention mechanism, by expressing the set of vectors output by the LSTM layer at each moment as 𝐻 : ℎ1, ℎ2, ..., ℎ𝑡 ,

the weight matrix obtained by the Attention layer can be obtained by the following formula:

𝑀 = 𝑡𝑎𝑛ℎ(𝐻 ) (10)

𝛼 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤𝑇𝑀) (11)

𝑟 = 𝐻𝛼𝑇 (12)

𝐻𝑑𝑤𝑇
, 𝑑𝑤 means the dimension of the word vector, and 𝑤𝑇

represents a transposition of the parameter matrix

obtained by training. The semantic representation of the final output can be annotated as follows:
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Fig. 6. The calculation process of the Attention mechanism

ℎ∗ = 𝑡𝑎𝑛ℎ(𝑟 ) (13)

3.4 Contextual Representation Layer

In traditional CNN, the underlying features construct higher-order features through the network to represent higher-

level meanings. However, the CNN model will repeatedly use many feature detectors, and it cannot model spatial

information while maintaining the feature representation. Unlike the traditional neural network in the past, each neuron

in the Capsule Network is a vector instead of a scalar and uses vectors to represent attributes. Therefore, it adopts a

new "vector in vector out" network transmission scheme, which is more suitable for NLP tasks based on word vectors

as input and output. This scheme is interpretable to a certain extent. Here we adopted the Capsule Network variant

adopted by Zhao et al. [101] as the scheme of this part. The specific method consists of 5 layers: N-gram Convolutional

Layer (Conv), Primary Capsule Layer (PrimaryCaps), Convolutional Capsule Layer (ConvCaps), Capsule Flatten Layer

(Flatten), and Fully Connected Capsule Layer (FCCaps). And its specific structure is shown in Fig. 7.

In the N-gram Convolutional Layer, the vector output by the previous Encoder Layer is first extracted the N-gram

features by a convolution layer to obtain the output𝑀 . This part is the N-gram features extracted by multiple different

convolution kernels at different positions of the sentence.

At the first capsule network layer, the Primary Capsule Layer, the capsule replaces the scalar output of the convolution

operation with a vector output, thereby retaining the instantiated parameters (e.g., the semantic representation of

words and the local order of words).

In the Dynamic Routing part, the basic thought is to design a nonlinear mapping. The nonlinear mapping iteratively

ensures that the output of each capsule can be fed into the appropriate parent capsule in the next layer. The nonlinear

mapping iteratively ensures that each capsule’s output can be fed into the appropriate parent capsule in the next layer.

For each potential parent capsule, the capsule network can increase or decrease the connection strength between the

child capsule and each parent capsule through the dynamic routing process, which is more effective than the original

Downsampling Strategy (e.g., max-pooling, etc.) and other pooling operations.
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Fig. 7. The structure of capsule network

Although the pooling operation can detect features that appear anywhere in the text, it also brings about problems

such as shift-invariant of representation, which causes a lot of spatial location information to be lost. Therefore, the

method of dynamic routing can learn more advanced and flexible representation; the specific methods are:

Use 𝑢 𝑗 |𝑖 to represent the prediction vector output from the 𝑖 primary capsule to the 𝑗 digit capsule, which can be

obtained by multiplying the weight matrix𝑊𝑖 | 𝑗 by the vector 𝑢𝑖 output from the primary capsule.

𝑢 𝑗 |𝑖 =𝑊𝑖 𝑗𝑢𝑖 (14)

𝑏𝑖 | 𝑗 is logits of coupling coefficients, which can be considered as the logarithmic prior probability between the 𝑖

capsule and the 𝑗 capsule, initialized to 0. Secondly, normalize 𝑏𝑖 | 𝑗 through Leaky-softmax [69] to obtain the coupling

coefficient 𝑐 𝑗 |𝑖 of connection strength of the connection from the 𝑖-th capsule to the 𝑗-th capsule.

𝑐𝑖 𝑗 = Leaky-softmax

(
𝑏𝑖 𝑗

)
(15)

Then by calculating the sum of the products of all prediction vectors and their corresponding connection probabilities,

the digital capsule input 𝑠 𝑗 can be obtained.

𝑠 𝑗 =
∑
𝑖

𝑐𝑖 𝑗𝑢 𝑗 |𝑖 (16)

Similar to the activation function sigmoid in the neuron model, the input is mapped to the interval of 0 1. 𝑔(.) is
a nonlinear activation function called "squashing". It is used to map shorter vectors to vectors with a length close to

0, and to map longer vectors to vectors with a length close to 1. And it is applied to the digital capsule input 𝑠 𝑗 for

calculation, so the digit capsule output 𝑣 𝑗 can be obtained.
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Fig. 8. The calculation process of Dynamic Routing

𝑔
(
𝑠 𝑗
)
=



𝑠 𝑗 

2
1 +



𝑠 𝑗 

2 ·
𝑠 𝑗

𝑠 𝑗 

 (17)

The corresponding weight 𝑏𝑖 | 𝑗 is updated by the following equation, i.e. 𝑏𝑖 | 𝑗 is updated by the result calculated by

the inner product of two vectors (the prediction vector 𝑢𝑖 output from the primary capsule, the vector 𝑣 𝑗 of output from

the digit capsule). Repeat this process until convergence.

𝑏 𝑗 |𝑖 = 𝑏 𝑗 |𝑖 + 𝑢 𝑗 |𝑖 · 𝑣 𝑗 (18)

The visualization of the above process is shown in Fig. 8.

In Convolutional Capsule Layer, each capsule is only connected to a local area in the next layer. The relationship

between child capsules (low-layer capsules) and parent capsules (high-level capsules) is calculated by multiplying

these capsules and the transformation matrix, and then the upper-level parent capsules are calculated according to

routing-by-agreement.

In Capsule Flatten Layer and FCCaps layer, flatten the capsules in the next layer into a list of capsules and fed into

the FCCaps layer. In the FCCaps layer, the capsule is multiplied by a transformation matrix, and then the final capsule

and its probability for each category are generated by routing-by-agreement.

3.5 Aggregation and Prediction Layer

The purpose of Aggregation and Prediction Layer is to concatenate the matching vectors, which output from the branch

network of the Siamese Network on both sides into a matching vector (fixed-length). And then, feed it into the softmax

layer through the last Dense layer to predict the final relationship judgment result of the Textual Entailment: Entailment,

Contradiction, or Neutral.
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4 EXPERIMENTS

4.1 Environment

The experiment is based on Dual Nvidia GeForce GTX 1080 Ti GPU (11GB), Dual 2.50GHz RAM, Intel Xeon E5-2678 v3

CPU environment. Due to GPU memory limitations, we use BERT-base (110M parameters, 12-layer, 768-hidden) [18] as

the word embedding in our model’s Embedding Layer.

4.2 Datasets

Here, we used three classic natural language inference datasets (SNLI, MultiNLI-m/-mm, MRPC) as tests to evaluate

the effectiveness of the proposed method in different applications compared to other previous baseline models. These

datasets are as follows:

• Stanford Natural Language Inference (SNLI) Corpus [11]: The SNLI corpus has about 550k hypothesis/premise

pairs whose measurement is based on accuracy.

• Multi-Genre Natural Language Inference (MultiNLI) corpus [88]: This series of the corpus contains about 433k

hypothesis and promise pairs, which covers a large number of genres of the spoken and written text, and the

creation of this corpus refers to SNLI. In addition, in the work of Gururangan et al. [30], the test set is divided

into two parts, matched and mismatched. Therefore, in this experiment, we use MultiNLI-m (matched) and

MultiNLI-mm (mismatched) to evaluate the performance of the models.

• Microsoft Research Paraphrase Corpus (MRPC) [20]: The sentence pairs are derived from comments on the same

news. It is used by the model to determine whether each of the 3600 pairs of annotated sentences is semantically

the same.

5 RESULTS AND ANALYSIS

5.1 SNLI

From the comparative experiments (Tab. 2, Fig. 10, 11), we can find that our method has great advantages over other

hybrid methods on SNLI datasets. Among them, our model exceeds 300D Full tree matching NTI-SLSTM-LSTM global

attention [54] improved by 2.4% on Test Accuracy and 7.8% by Train Accuracy; compared to BiMPM [86] has 2.2%

and 5.6% improvement on Test Accuracy and Train Accuracy respectively; compared with ESIM+ELMo [61] has 1%

and 4.7% improvement on Test Accuracy and Train Accuracy respectively. In addition, our method also has a slightly

different performance compared to fine-tuning the current SOTA language model, such as: compared to BERT-Base

[99], our method is higher on Test Accuracy 0.5%. However, compared with BERT-Large+SRL [99], it is 1.6% lower on

Test Accuracy and 0.6% higher on Train Accuracy, and the parameter amount is only one-third of BERT-Large+SRL

(mainly using BERT-base as word embedding, the parameter quantity is much less than Large version). This also applies

to comparisons with SemBERT [100]. In addition, there is a certain correlation between the parameter quantity and the

performance of the model (Fig. 10), and the model with a larger parameter quantity will perform better than the model

with a smaller parameter quantity. To some extent, this has something to do with the size of the pre-training corpus,

the training duration, and computing power.

In summary, although the method proposed by this study is not the best solution on SNLI, it has a better balance in

parameter quantity and effect than other large language models.
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Table 2. The comparative experimental results on the SNLI dataset

METHOD TEST ACCURACY (%) TRAIN ACCURACY (%) PARAMETERS YEAR
SemBERT [100] 91.9 94.4 339m 2020

MT-DNN [47] 91.6 97.2 330m 2019

BERT-Large+SRL [99] 91.3 95.7 308m 2019

Fine-Tuned LM-Pretrained

Transformer [63]

89.9 96.6 85m 2018

Our Method 89.7 96.3 108m 2020
BERT-Base [99] 89.2 - - 2019

300D DMAN Ensemble [60] 89.6 96.1 79m 2018

150D Multiway Attention Network

Ensemble [76]

89.4 95.5 58m 2018

450D DR-BiLSTM Ensemble [25] 89.3 94.8 45m 2018

300D CAFE Ensemble [78] 89.3 92.5 17.5m 2018

ESIM+ELMo Ensemble [61] 89.3 92.1 40m 2018

KIM Ensemble [14] 89.1 93.6 43m 2018

SLRC [99] 89.1 89.1 6.1m 2019

RE2 [93] 88.9 94.0 2.8m 2019

Densely-Connected Recurrent

and Co-Attentive Network [41]

88.9 93.1 6.7m 2019

448D Densely Interactive

Inference Network (DIIN) [27]

88.9 92.3 17m 2018

300D DMAN [60] 88.8 95.4 9.2m 2018

BiMPM Ensemble [86] 88.8 93.2 6.4m 2017

ESIM+ELMo [61] 88.7 91.6 8.0m 2018

KIM [14] 88.6 94.1 4.3m 2018

600D ESIM+300D Syntactic

TreeLSTM [15]

88.6 93.5 7.7m 2017

450D DR-BiLSTM [25] 88.5 94.1 7.5m 2018

Stochastic Answer Network [46] 88.5 93.3 3.5m 2018

300D CAFE [78] 88.5 89.8 4.7m 2018

150D Multiway Attention

Network [76]

88.3 94.5 14m 2018

Biattentive Classification

Network+CoVe+Char [50]

88.1 88.5 22m 2017

aESIM [44] 88.1 - - 2018

BiMPM [86] 87.5 90.7 1.6m 2017

2400D Multiple-Dynamic

Self-Attention Model [95]

87.4 89.0 7.0m 2018

300D Full tree matching

NTI-SLSTM-LSTM global

attention [54]

87.3 88.5 3.2m 2017

5.2 MultiNLI

In this part of the comparative experiment, our proposed method has some advantages over other Attention-based

models on the accuracy of Matched and Mismatched (Tab. 3, Fig. 11), including: compared with BiLSTM+ELMo+Attn

[84], our method is improved by 10.7% and 9.8% respectively; compared with Multi-task BiLSTM+Attention [84], our

method is improved by 12.2% and 12.1%, respectively; compared to BiGRU sentence encoder+ Attention [10], our method
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Fig. 9. Visualization of Test and Train Accuracy on SNLI dataset

Fig. 10. Visualization of parameter quantity of models on SNLI dataset

is improved by 15.4% and 14.8%, respectively; compared with Character-level Intra-attention BiLSTM encoders [92],

our method is improved by 16.9% and 16.1%, respectively, etc. At the same time, the proposed method also has some

advantages for other stack types: compared with Stacked Bi-LSTMs (shortcut connections, max-pooling, Attention)

[10], our method is 14.1% higher on Matched accuracy and 13.8% higher on Mismatched accuracy. In addition, compared
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Fig. 11. Visualization of accuracy of Matched and Mismatched on the MultiNLI dataset

with the fine-tuning of some language models, there is also a slight improvement: 0.2% and 0.9% higher than BERT-Base

[18]; 1.1% and 0.7% higher than SesameBERT [72]; 2.3% and 2.5% higher than TinyBERT [38]; 2.4% and 2% higher than

T5-Small [64]; 2.7% and 2.9% higher than OpenAI GPT [63], etc. Therefore, based on the evaluation of the comparative

models on the MultiNLI dataset, it can be proved that our method has a certain generalization ability and is relatively

effective to some extent.

5.3 MRPC

On the MRPC dataset, compared with other BiLSTM-based models or fine-tuning language models, the proposed

model can still guarantee the effect of Accuracy and F1-Score to a certain extent (Tab. 4, Fig. 12). In particular, the

BiLSTM+ELMo, BiLSTM+ELMo+Attn, BiLSTM+Attn, BiLSTM, BiLSTM+CoVe+Attn, BiLSTM+CoVe model on GLUE

benchmark [84] are lower than our proposed methods on the above two measurements: 3.1% and 6.1%; 3.4% and 6.1%;

7.7% and 7.9%; 6% and 7.9%; 7.8% and 12.3%; 9.1% and 9.6%, respectively. At the same time, compared to BERT-of-Theseus

(6-layer; single model) [91], TinyBERT [38], T5-Small [64], OpenAI GPT [72], our method has improved on the above

two measurements: 0.2% and 0.9%; 0.5% and 1.5%; 1.2% and -5.6%; 5.5% (only accuracy), respectively. This high probability

may have something to do with the level of the language model selected by the word embedding layer.

6 LIMITATION AND CONCLUSION

Compared with the unsupervised method (e.g., distance measurement, etc.), the supervised natural language inference

models (SNLINMs) generally have higher computational complexity. In actual application scenarios (e.g., question

answering system, information retrieval, etc.), SNLINMs have problems, such as extended response time and high

computing resource overhead, which undoubtedly have negative impacts on user experience and actual deployment

costs. Therefore, in the future natural language inference task, the combination of unsupervised and supervised methods
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Table 3. The comparative experimental results on the MultiNLI-m and MultiNLI-mm datasets

METHOD MATCHED MISMATCHED YEAR
Our Method 84.8 84.3 2020
BERT-Base [18] 84.6 83.4 2019

SesameBERT [72] 83.7 83.6 2019

TinyBERT [38] 82.5 81.8 2019

T5-Small [64] 82.4 82.3 2019

OpenAI GPT [63] 82.1 81.4 2018

Densely Interactive Inference Network [27] 79.2 79.1 2018

Compare-Propagate Alignment-

Factorized Encoders [78]

78.7 77.9 2018

Chen et al.’s Ensembled ESIM [16] 74.9 74.9 2017

Shortcut-Stacked Encoder [56] 74.6 73.6 2017

BiLSTM+ELMo+Attn [84] 74.1 74.5 2018

Distance-Based Self-Attention Network [36] 74.1 72.9 2017

aESIM [44] 73.9 73.9 2018

Deep Gated Attention BiLSTM encoders [16] 73.5 73.6 2017

Enhanced Sequential Inference Model [15] 72.4 71.9 2017

Multi-task BiLSTM+Attention [84] 72.2 72.1 2018

BiLSTM+Inner-Attention [7] 72.1 72.1 2017

BiLSTM-Max Encoder [56] 71.7 71.2 2017

Stacked Bi-LSTMs (shortcut

connections, max-pooling) [10]

71.4 72.2 2019

GenSen [73] 71.4 71.3 2018

Directional Self-Attention Encoders [71] 71.0 71.4 2018

BiLSTM sentence encoder

(max-pooling) [10]

70.7 71.1 2019

BiLSTM+enhanced embedding+max-pooling [83] 70.7 70.8 2017

Stacked Bi-LSTMs (shortcut connections,

max-pooling, Attention) [10]

70.7 70.5 2019

BiGRU sentence encoder+Attention [10] 69.4 69.5 2019

SWEM-max [70] 68.2 67.7 2018

BiLSTM+CoVe+Attn [84] 68.1 68.6 2018

Character-level Intra-attention

BiLSTM encoders [92]

67.9 68.2 2017

BiLSTM Encoder [88] 67.5 67.1 2018

Continuous BOW

(Averaging Word Embeddings) [88]

65.2 64.6 2018
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Table 4. The comparative experimental results on the MRPC dataset

METHOD ACCURACY (%) F1 (%) YEAR
Our Method 87.8 84.1 2020
BERT-of-Theseus (6-layer; single model) [91] 87.6 83.2 2020

TinyBERT [38] 87.3 82.6 2019

PD-BERT [80] 86.8 81.7 2019

T5-Small [64] 86.6 89.7 2019

Vanilla KD [34] 86.2 80.6 2015

BERT-PKD [74] 85.0 79.9 2019

BiLSTM+ELMo [84] 84.7 78.0 2018

BiLSTM+ELMo+Attn [84] 84.4 78.0 2019

BiLSTM+Attn [84] 83.9 76.2 2018

OpenAI GPT [72] 82.3 - 2019

BiLSTM [84] 81.8 74.3 2018

DisSent [55] 81.7 74.1 2017

Continuous BOW (Averaging Word Embeddings) [88] 81.5 73.4 2018

Skip-thought vectors [42] 80.8 71.7 2015

TF-KLD [37] 80.4 85.9 2013

BiLSTM+CoVe+Attn [84] 80.0 71.8 2018

BiLSTM+CoVe [84] 78.7 71.5 2018

GenSen [73] 78.6 84.4 2018

InferSent [17] 76.2 83.1 2017

can be regarded as a promising solution. One of the potential ideas is to refer to transfer learning: pre-trained the

corpus in the knowledge base through the supervised model in advance, and store it by converting it into a vector form.

Once new text data is entered and a match or inference is requested, unsupervised similarity measures (e.g., distance

calculation, etc.) can be performed directly with the candidate text stored in the repository. Thus, the computation and

time overhead at the execution terminal level could be greatly reduced.

In conclusion, in this study, we propose a Siamese Network structure that combines Stacked Residual LSTM with

Attention mechanism and Capsule Network for the NLI module in Cyber-Physical Systems. In this network structure, the

BERT language model is used as the word embedding to input the text, and then the language is modeled bidirectionally

by Stacked Residual LSTM, the important semantic features are captured and weighted by Attention mechanism, and

the local features of the context are extracted by Capsule Network. Finally, the vectors represented by the text output

of the previous layers are concatenated and then transmitted to the prediction layer, and the final inference result is

predicted by softmax. On the tests on SNLI, MultiNLI, and MRPC datasets, our model achieved results of 91.9% and

94.4% (Test and Train accuracy, SNLI), 84.8% and 84.3% (accuracy of Matched and Mismatched, MultiNLI), 87.8% and

84.1% (accuracy and F1 score, MRPC), respectively. Among them, the performance, generalization ability, balance ability

between parameter quantity, and performance of the proposed method tested on each data set have also been proven to

some extent. This also lays a good foundation for the subsequent exploration of CPS systems with more dimensional
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Fig. 12. Visualization of Accuracy and F1-Score on the MRPC dataset

processing capabilities, so that textual data from different sources can be better detected with the relationships entailed

in them. In other words, this work is also a beneficial practice about CPS for heterogeneous text data.
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