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Abstract

Signatures have long been considered to be one of the most accepted and prac-

tical means of user verification, despite being vulnerable to skilled forgers. In

contrast, EEG signals have more recently been shown to be more difficult to

replicate, and to provide better biometric information in response to known a

stimulus. In this paper, we propose combining these two biometrics using a mul-

timodal Siamese Neural Network (mSNN) for improved user verification. The

proposed mSNN network learns discriminative temporal and spatial features

from the EEG signals using an EEG encoder and from the offline signatures

using an image encoder. Features of the two encoders are fused into a common

feature space for further processing. A Siamese network then employs a dis-

tance metric based on the similarity and dissimilarity of the input features to

produce the verification results. The proposed model is evaluated on a dataset

of 70 users, comprised of 1400 unique samples. The novel mSNN model achieves

a 98.57% classification accuracy with a 99.29% True Positive Rate (TPR) and

False Acceptance Rate (FAR) of 2.14%, outperforming the current state-of-the-
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art by 12.86% (in absolute terms). This proposed network architecture may also

be applicable to the fusion of other neurological data sources to build robust

biometric verification or diagnostic systems with limited data size.

Keywords: User verification, Multimodal, EEG, Siamese Neural Network,

LSTM, CNN

1. Introduction

User identification, such as through video surveillance or photo identification,

is becoming increasingly pervasive [1, 2, 3]. This has been at least partially mo-

tivated because these modalities generally require no explicit compliance from

the target subject. User verification, however, is typically used in higher secu-

rity applications to provide additional assurance that a person is who they say

they are. As such, it generally involves direct interaction with authentication

systems to gain access to physical locations, online transactions, or for remote

access control. Even with increased digitization and the availability of more ad-

vanced biometric traits such as facial characteristics, the retina or iris, and finger

or palm prints [4], signatures remain a commonly used hallmark for verifying

identity. A typical pen-paper-based signature elicits discriminative information

through the pen’s pressure, the shape of loops, the speed and care of writing,

and the up-down motion of the pen. However, because these are behavioural

traits, once the shape and stroke of the original signature are known, a trained

imposter can learn them to exploit vulnerabilities.

A wide variety of machine learning approaches have been applied to the

verification of signatures. Fang et al. [5], for example, discussed signature ver-

ification via tracking of features and pen-stroke positions, but reported a False

Acceptance Rate (FAR) of 16.7%. Alaei et al. [6] developed a signature ver-

ification system using interval symbolic representation of images of signatures

(termed as offline) and a fuzzy similarity measure. Ferrer et al. [7] classified

geometric features of signatures using Support Vector Machine (SVM), Hid-

den Markov Model (HMM), and Euclidean classifiers. Several other works have
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explored variations of features and classifiers with varying degrees of success,

typically with Average Error Rates above 10% [8, 9, 10]. More recently, deep

learning tools, such as Convolutional Neural Networks (CNN), have been used

to automatically learn features from offline signatures to further prevent forgery

attacks [11].

Brain-Computer-Interface (BCI) approaches have also been widely explored

in recent years due to inherent advantages over other techniques. In particular,

the capture non-invasive measurement of Electroencephalogram (EEG) has be-

come increasingly used to capture brain-related signals. The use of physiological

signals in biometrics are much more difficult to spoof, because they are either

independent of, or at least not solely dependent on, behaviour. Studies have

shown that EEG-based user verification can indeed outperform offline signature-

based systems [12, 13]. Shannon entropy-based EEG features of various EEG

wavebands (alpha, beta, and gamma), for example, have been used for user ver-

ification, yielding classification accuracies of 97.1% [14]. Spatial and statistical

features (mean, standard deviation, kurtosis, skewness) of EEG have also been

used effectively across several works [15, 16]. In [17], Pham et al.developed an

EEG-based multifactor (age, gender) person verification system using the Power

Spectral Density (PSD) feature of EEG with a SVM classifier. They achieved

97.1% and 96.7% classification accuracies with gender and age factors consid-

ered, respectively. Mu et al. [18] developed a person authentication system using

fuzzy entropy features of EEG and a Artificial Neural Network (ANN) classifier.

Recently, Kumar et al. [19] implemented a framework using statistical features

of EEG to secure mobile devices, and reported a 25% global Half of Total Error

Rate (HTER) and 2.01% local HTER with 50 users.

Because performance improves when EEG are measured in response to a

stimulus (termed the Evoked-Response Potential,or ERP) [20], researchers have

explored various recording scenarios including during rest [21, 22], while listen-

ing to music [23], or while entering password patterns on a mobile device [19, 24].

Without a known and consistent stimulus, however performance may de-

grade. For example, a user may lose focus while listening to music or watching
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a video. Moreover, the emotions and facial expression generated in response to

such stimuli may add confounding noise to the EEG, degrading system perfor-

mance [23]. Therefore, the selection of a robust stimulus that can be easily

integrated with EEG is of utmost importance when designing a biometric sys-

tem.

The literature has also shown that unimodal biometric systems yield limited

effectiveness and remain vulnerable to attacks and forgeries [25, 26]. Conse-

quently, in recent years, multimodal biometric systems have gained traction,

taking advantage of mixed physical and behavioral information sources. In

these systems, an intruder must break more than one biometric trait, and often

concurrently. In multimodal biometrics fusion, features from different biomet-

ric traits can be combined at various levels, including based on sensor data,

matching score, or decision level (e.g. based on the classification performance

of unimodal systems) [27]. For example, Galdi et al. [28] implemented a multi-

modal authentication framework fusing iris recognition with recognition of the

image sensor. Chang et al. [29] combined images of the face and ear using

Principal Component Analysis (PCA) to achieve a person identification rate of

90.9%. Frontal face images have been combined with text-dependent voice bio-

metrics [30], and face has been fused with fingerprint [31], the latter of which

achieved a 3.9% False Rejection Rate (FRR).

Saini et al. [32] proposed a multimodal user verification system using EEG

and offline signatures. They achieved 98.24% user identification accuracies with

FAR of 15% using Pyramid Histogram of Oriented Gradients (PHOG) and

Discrete Wavelet Transform (DWT) features. As with passwords, signature-

based verification systems also have the advantage of being changeable. That is,

a user could, technically, change their signature if attacked by imposters/forgers.

Moreover, the creation of a repeatable signature involves a series of complex

neuromuscular processes requiring years of repetition and motor learning [33,

34]. This not only adds an additional layer of authentication, but also makes

signatures a perfect stimuli against which to evaluate the neural response. Such

a scenario is represented in Figure 1, which shows the offline signature and
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corresponding EEG of a true user, Figure 1(a), and forged sample, Figure 1(b).

It can be seen from the figure that the forger was able to mimic the signature

quite well, but was unable to mimic the brain signals. Moreover, it can also

be seen that the forger failed to mimic the signature duration, as noted by the

shorter duration of corresponding EEG signals for the genuine user (350 vs 500

samples).

(a) 

(b) 

Figure 1: Example of (a) an EEG signal with original signature. (b) an EEG signal of

a corresponding imposter signature. The EEG signals was taken from the F7 channel for

visualization purposes only.

Deep learning architectures leveraging Convolutional Neural Network (CNN)

and Long Short-Term Memory (LSTM) techniques have become increasingly

favored for the automatic extraction of features and classification tasks. These

techniques, however, are widely accepted to require large amounts of labeled

data, which may not be possible (or preferable) in biometric applications nor

with short sessions of the EEG recorded while signing. Moreover, it is not always

feasible or practical to retrain biometric models whenever a new user is added to

the dataset. Consequently, a different approach is needed that can be trained on

fewer data samples and can extend to new users without retraining the model.

One potential approach is one-shot learning, which can be implemented using a

Siamese network comprised of twin sister-networks that share the same weights.
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Here, we propose a novel multimodal Siamese Neural Network (mSNN) for

person verification using combined EEG and offline signature data. The network

accepts a combination of EEG and offline signature pairs from genuine and

forged users to model the biometric data, as depicted in Figure 2. The signatures

are processed using CNNs, whereas the EEG is modeled using LSTMs. The

resulting encodings are fused to find structural commonalities in the multimodal

data. Finally, the encoding of input pairs is optimized based on a loss function

to facilitate person verification.

This network configuration could also be beneficial for fusing other modal-

ities for other applications, such as to improve the diagnosis of neurological

or psychiatric diseases. This ability to discriminate using fewer samples could

be particularly attractive as it would reduce the burden of collecting multiple

samples of neuroimaging data.

This study therefore presents the following novel contributions:

1. A multimodal Siamese Neural Network (mSNN) is proposed that fuses two

different biometric traits, namely EEG and offline signature, for person

verification.

2. The proposed framework leverages a spatio-temporal architecture to gen-

erate multimodal encodings of the EEG time-series and the spatial signa-

ture data.

3. The proposed multimodal user verification system is evaluated on a large

dataset, demonstrating its superiority over traditional approaches.

2. Methodology

Siamese networks, a unique kind of neural network architecture, consist of

two similar types of subnetworks with the same configuration (identical parame-

ters and shared weights) [35, 36]. These two subnetworks are connected by a loss

function, which calculates a similarity score between two input samples based

on the feature representation of the two subnetworks. Here, Siamese Networks

are extended for use with two different modalities - behavioural (signature) and
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electrophysiological (EEG), enabling a multimodal redundancy in verification.

The proposed mSNN takes the combination of EEG signal and offline signature

pair from two users (e.g., subject 1 and subject2) and produces an output based

on the similarity between the two pairs, as depicted in Figure 2. For consistency,

the EEG and signature of the genuine subject 1 are passed to the first subnet-

work. Conversely, the EEG from subject 2 produced while attempting a forgery

of subject 1’s signature, are passed to the second subnetwork.The EEG signal is

processed using an LSTM to learn temporal relationships in the data sequences.

In contrast, the offline signature is processed using a CNN to find spatial fea-

tures from the signature image. Before passing the EEG and signature into the

respective networks, however, both inputs are pre-processed. Because the size

of raw signature images may vary (from 304× 240 to 798×482 in the current

dataset), all images were resized to 155×220 using binary interpolation [37]. To

normalize the images, each image pixel was divided by the standard deviation

of the pixels across all images in the dataset. EEG data were preprocessed using

a 2nd order Bandpass filter within the alpha range of 8-12 Hz [38, 39].

2.1. Multimodal Feature Learning

The proposed model takes a pair of inputs that consist of a signature image

and a time-series of EEG signal. Because the structure of these inputs is entirely

different, finding a common pattern or mapping between them is non-trivial.

Consequently, each input was transformed to a shared space by maximizing the

similarity between two embeddings of each input representation. To achieve this,

a Siamese Network was designed that 1) learns the joint embeddings between the

EEG and images using deep encoders and 2) maximizes the similarity measure

between the two modalities [40].

For the purpose of explanation, let a multimodal dataset of sample pairs, be

given by X=
{
ek, ik

}
, where k = 1, 2, 3, ....N , and the EEG signal and signature

image of kth sample are represented as (ek) and (ik), respectively. Assuming

Γ and δ represent the space of EEG samples and images, respectively, the ob-

jective is to build two encoders that convert the EEG and signature image into
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a common space (η). The EEG encoder (β) and image encoder (α) are then

represented as: β: Γ → η and α: δ → η, respectively. Here, the EEG en-

coder (β) that maps the EEG signal into the common space was built using

LSTM modules of different sizes to facilitate learning of temporal features from

the EEG. A linear layer was then applied to project the learned features into a

one-dimensional feature vector in the common space (η). Similarly, the image

encoder (α) mapped the input image into the common space (η) using Con-

volutional Neural Networks (CNN) with different sizes of convolutional layers.

Again, a linear layer was applied to produce a one-dimensional feature vector

in the common space (η). The output of two encoders (α and β) was then

concatenated using a compatibility function (F ). This compatibility function

(1) is used to measure the similarity between two sample pair embeddings in

the common space (η). Finally, the output of F from two subnetworks is passed

to a loss function to generate the final output of the model, as summarized in

Figure 2.

F (e, i) = [β(e), α(i)] (1)
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Figure 2: Block diagram of the proposed multimodal Siamese Neural Network (mSNN) for

user verification using EEG signals and offline signatures.

The proposed model compares two input samples (x1, x2), where x1=(e1, i1)

and x2=(e2, i2) using the distance between them in the common space calculated

according to a contrastive loss function [41]. The loss is computed between pairs

of training data known as positive-positive (similar) pairs and positive-negative

(dissimilar) pairs. The objective is to learn representations with a small distance

(D) between them for similar pairs, and greater distance than some margin value

(m) for dissimilar pairs. In this case, a value of zero means the instances are

similar, and a value of one indicates the instances are dissimilar. Unlike other

loss functions, such as Cross-Entropy Loss (a classification loss function whose

objective is to learn to predict class probabilities independently for each sam-

ple), contrastive loss is a metric learning loss, which operates on the data points

produced by the network and their positions relative to each other. The objec-

tive of contrastive loss is to predict relative distances between inputs so that a
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threshold can be used as a tradeoff between the genuine user and an imposter.

The contrastive loss is defined in (2), where m is the margin. Here, we set the

value of m to be 1. The binary indicator function (I) denotes whether the two

samples (x1, x2) belongs to the same class or not.

L(x1, x2, I) = I D2 + (1− I) max(0,m−D)2 (2)

where D represents the Euclidean distance between two learned embeddings

F (x1) and F (x2) from two subnetworks (3) .

D = ‖F (x1)− F (x2)‖2 (3)

A detailed diagram of the model architecture for person verification, along

with all associated parameters, is shown in Figure 3. Additional details about

the unique processing of EEG and signature images are given as follows.
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Figure 3: Proposed deep spatio-temporal siamese network for user verification using offline

signature and EEG signal.

2.2. EEG Encoder

The EEG encoder (β) converts the neural signal (EEG) into a common

representation. To capture the longer dynamics in the temporal dimension of
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the EEG signal, we have used two consecutive LSTM layers. The EEG encoder

consists of two LSTM layers; the first LSTM layer consists of 75 neurons, and

the second one with 55 neurons. Each LSTM layers are followed by a dropout

and batch normalization layer. Next, a dense layer of 50 neurons, followed by

a dropout and batch normalization layer, is connected to another dense layer

with 40 neurons. Informative features of the input EEG have been extracted

using a series of LSTM layers. The EEG feature maps (in the embedding space)

generated by the EEG encoder is shown in Figure 4. Each LSTM layer extracts

significant temporal information from the EEG signal. LSTM layers are used

to extracts deep temporal dynamics from the input data. A series of dense

layers have been applied to make the network deeper, which leads to better

performance.

LSTM Layer 2Input EEG data

Dense 
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e
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d
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LSTM Layer 1

Dense 
Layer 2

Figure 4: A block representation of the EEG encoder. EEG encodings are marked with

different colour in each LSTM layer. The output dimension of each layer has been mentioned

beside the block.

2.3. Signature Image Encoder

The image encoder (α) consists of a series of convolution layers, where each

convolution layer further followed by batch normalization, max pooling, and

dropout layer. Here, we use a 2D CNN for extracting the spatial information

from the input signature. The first convolutional layer takes the signature image

(size: 155×220) as input and performs the filter operation with 8 filters of size

11×11. The outputs of the first convolutional layer are passed to the second

convolutional layer (16 filters with a size of 5×5). Next, the outputs of the

second convolutional layer are passed to the third convolutional layer (32 filters
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with a size of 3×3). Finally, the summary of all the spatial features of a signature

image is passed to the flatten layer to produce a 1D feature vector.

CNN Layer 1 CNN Layer 2 CNN Layer 3
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Input
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Figure 5: Image encoder with layer-wise feature maps. Initial convolution layers (layer 1, layer

2) extracts low-level visual features (color contrast, edge, shape, texture) of the signatures.

The final layer (layer 3) extracts context-specific features in embedding feature space.

Feature maps can effectively show how each convolution layer (within the

image encoder) extracts the signature related pixels from the input signature

image. The layer-wise feature maps along with the detailed architecture of

image encoder are displayed in the Figure 5. It can be noted that the feature

maps close to the input detect low level detail of the input, whereas the feature

maps close to the output produce more specific features.

Next, the one-dimensional feature vector of EEG and image encoder is passed

to the ‘concatenate’ layer to produce the output for each subnetwork (1). The

same configuration and weights of EEG and image encoder are applied for both

the sister networks of mSNN. Finally, the loss function takes the output vectors

of two sister networks and computes the distance-based similarity measure as

the output.
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2.4. User Verification

For a given pair of identity and input data, where the input data refers to

the pair of signatures and EEG of the siamese network, the proposed system can

efficiently determine whether the input data provides a genuine match against

the identity or not. The proposed model gives the similarity measure as output,

and based on that similarity measure; we perform the verification task. If

the similarity measure is lower than the selected threshold, the user request is

accepted, otherwise rejected. The similarity measure between two input pairs

in the common space is computed using the ‘Euclidean distance’ function. The

verification decision for all the users is performed using ( 4).

Decision(X|Sm) =

Genuine, if Sm < th

Imposter, otherwise

(4)

where X and th represent the query user, and threshold value, respectively. If

the similarity measure (Sm) between two pairs (EEG and signature) is less than

th, the user is treated as genuine else rejected. The verification performance is

recorded in terms of FAR and FRR using Eq. (5) and (6), respectively. Here,

the terms FP, TP and FN are false-positive, true-positive and false-negative,

respectively.

FAR = FP/(FP + TN) (5)

FRR = FN/(TP + FN) (6)

2.5. Dataset

In this work, we adopted the dataset provided by Saini et al. [32]. The

dataset consists of 70 subjects with 10 signatures each. An additional ten im-

personated signatures were also collected per person (with corresponding EEG

signal) to facilitate the evaluation of forgery detection. Consequently, 700 gen-

uine signatures (70×10=700) and 700 forged signatures (70×10=700) were col-

lected, and a total of 700+700=1400 signatures were used in this work. The

signatures were collected by asking subjects to sign a sheet of paper 10 times
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using a ballpoint pen, while EEG was recorded simultaneously. Subject age

and gender information were also recorded for context during data collection.

The EEG signals were captured using a 14-channel (AF3, F7, F3, FC5, T7, P7,

O1, O2, P8, T8, FC6, F4, F8, AF4) portable EEG headset, with a sampling

frequency of 128 Hz. A description of the dataset is described in Table 1, with

subjects and gender ratios subdivided based on age.

Table 1: Description of Subjects and Gender Ratios Based on Age

Groups Age Distribution #Subjects Male/female

G1 15-25 50 27/23

G2 26-44 15 10/5

G3 45-55 5 3/2

3. Results

3.1. Analysis of person verification

In this section, we perform the experimental analysis of the proposed model.

This section is divided into the following subsections: person verification using

unimodal & multimodal systems (Subsection 3.1.1), user verification by varying

multimodal data (Subsection 3.1.2), effects of different brain lobes in user ver-

ification (Subsection 3.1.3), and comparison with machine learning classifiers in

user verification (Subsection 3.1.4).

Twelve pairs each of genuine-genuine and genuine-forged signatures were

created randomly for every user. These pairs were then divided into training (6

pair/user), validation (2 pair/user) and testing (4 pair/user). For training, the

models were run for 150 epochs with a batch size of 100. An Adam optimizer was

used with an initial learning rate of 1e-03. Running on a 2GHz CPU with 64GB

RAM, each epoch took approximately 350 seconds or 5.8 minutes, resulting in

a total training time of 870 minutes (150× 5.8 minutes). The details of the

training parameters are listed in Table 2.
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Table 2: List of Training Parameters

Parameter Value

Batch Size 100

Activation Relu

Maximum Iteration 150

Optimizer Adam

Initial Learning Rate 1e-03

Regularization Parameter L2 (0.01)

Epoch Time 5.8 minutes

Training Time 870 minutes

3.1.1. Person Verification

Here, we present the results of person verification using both unimodal ap-

proaches and the proposed multimodal system. For unimodal systems, two

Siamese Neural Networks (SNNs) were trained independently for EEG and sig-

nature data. The distance between each pair of samples in the unimodal system

(EEG or signature) and the multimodal system (a combination of EEG and

signature) was calculated using the Euclidean distance. The distribution of dis-

tances for matching and non-matching pairs are shown in Figure 6 for EEG

alone (a), signature alone (b), and for the EEG+Signature proposed system

(c). For matching pairs, the pair-wise distance should be lower, whereas the

distance should be higher for an imposter/non-matching pairs. From Figure 6,

it can be seen that the multimodal system outperforms both unimodal systems

based on the reduced overlap in distributions.
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(a) (b)

(c)

Figure 6: Distribution of matching and non-matching pair-wise distances for the (a) EEG-

based unimodal, (b) Signature-based unimodal, (c) (EEG + signature)-based multimodal

systems.

The ROC curves shown in Figure 7 was used to evaluate the performance

of the unimodal and proposed multimodal systems across different threshold

values. In this work, a threshold value (th) of 0.44 was chosen for the proposed

model, corresponding to the point where the true positive rate (TPR) of the

proposed model reached 100%. That is, no legitimate users were rejected at

this point. For the EEG and signature-alone models, values of 0.48 and 0.49,

respectively were chosen for the same reason. It can be seen that the multimodal

system yields a much higher area under the curve (99% vs 76% and 86% for

EEG and Signature, respectively).
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Figure 7: ROC curve of the multimodal and unimodal verification systems.

Using the best thresholds found for each system (based on the ROC curves),

the accuracy of each system was computed, as shown in Table 3.

Table 3: Unimodal vs. Multimodal (mSNN) verification system. Accuracy results shown for

Training/Validation/Testing.

Modality Features Accuracy(%) FAR(%) FRR(%)

Unimodal EEG 91.93/87.45/81.78 29.28 7.14

Unimodal Signature 93.29/86.33/81.42 30.71 6.42

Multimodal EEG + Signature 99.80/98.60/98.57 2.14 0.71

Figure 8 shows examples of cases when the unimodal systems failed to recog-

nize a forgery, but the proposed system does not. The signature-based Siamese

Neural Network in Figure 8 (a) takes the genuine signature of the user as an

input to its subnetwork 1 and the forged signature attempt as an input to its

subnetwork 2, but is unable to discriminate between the skilled forgery and the

original. Similarly, the EEG-based Siamese Neural Network in Figure 8 (b)
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takes the EEG from two different users as inputs to its subnetworks. Driven by

the stochastic nature of EEG, in some cases, it returns the wrong results due

to similar peaks, amplitude, or variations in the input signals. The proposed

multimodal system, however, makes its decision based on the combined pair of

signature and EEG and therefore tends to produce a more robust biometric.

Genuine signature of user no. 65

Accepted

ResultModality

Unimodal 
(Signature based 
Siamese network)

+Multimodal 
(EEG +Signature based 
Siamese network)

+

Genuine (signature, EEG) pair of user no. 65 (Forged signature of user no. 65, EEG of forger) pair 

Rejected

Case

(a)

(b)

Accepted

+
Rejected

Genuine (signature, EEG) pair of user no. 67

Forged signature of user no. 65

EEG of user no. 67 EEG of user no. 26

+

Genuine (signature, EEG) pair of user no. 26

Unimodal 
(EEG based Siamese 
network)
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Figure 8: Comparative Example: Unimodal system (signature, EEG) vs. multimodal (EEG

+ signature) system for user verification. The EEG data corresponding to the P8 electrode

of each user is shown for visualization purposes. In both examples (a) and (b), the proposed

multimodal system rejects the imposter attempt and correctly identifies the genuine user.

3.1.2. Impact of Training Samples

To evaluate the impact of the amount of training exemplars, the number of

training samples was varied from 4 to 7 signature pairs for each user. One pair

of genuine and forged signatures was used for each of validation and testing, to

maintain consistency. The results of this analysis are presented in Table 4, and

show that the performance plateaus after 6 training pairs were included.
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Table 4: Impact of the number of training exemplars on model performance

# Training Pairs
(Genuine, Forged)

Accuracy(%)

(Train/Val/Test) FAR(%) FRR(%)

(4,4) 92.83/89.25/90.02 14.29 5.71

(5,5) 96.65/93.46/94.23 3.57 2.14

(6,6) 99.30/98.60/98.57 1.42 1.42

(7,7) 99.75/98.89/98.53 1.42 1.42

3.1.3. Effect of EEG Sensor Location

The classification performance of the proposed model was also evaluated for

different electrode locations over the brain. EEG data were collected from all 14

channels, but the activity from different lobes of the brain (frontal, temporal,

parietal, and occipital) has been shown to be related to different kinds of tasks.

Table 5, therefore, presents the results when using channels only from specific

lobes, and all lobes combined. It can be noted that, although the occipital

region performs well, the best result is achieved when using all sites.

Table 5: Effect of EEG lobes in user verification

Brain
Lobes Channels

Accuracy(%)

(Train/Val/Test) FAR(%) FRR(%)

Frontal F7, F8, F3, F4 93.29/91.45/90.32 12.14 7.14

Temporal T7, T8 97.02/94.89/93.25 8.90 4.60

Occipital O1, O2 98.25/97.10/96.67 4.28 2.50

Parietal P7, P8 89.56/84.10/82.77 21.42 13.21

All lobes All channels 99.30/98.08/98.57 2.14 0.71

3.1.4. Comparison with Classification

The performance of the SNN and mSNN approaches was compared with

two conventional machine learning classifiers, SVM and Random Forest (RF),

for both the unimodal and multimodal cases. For this, the commonly used

20



histogram of the oriented gradients (HOG) features were extracted from the

signature images and three statistical features (the mean, standard deviation

and root mean square) were computed from the EEG filtered data [32]. For the

unimodal cases, classification was performed using the SVM or RF classifiers

and either the signature or EEG features, separately. A CNN-based architecture

was used for the signature-alone SNN, and an LSTM-based SNN was used for

the EEG-alone data. For the multimodal system, the HOG and EEG features

were combined for use with the SVM and RF classifiers for comparison with

the mSNN. The results of this comparison are shown in Figure 9 for signature

alone (a), EEG alone (b), and the multimodal case (c). It can be noted that

the proposed mSNN-based user verification system vastly outperforms these

conventional classification approaches in both the unimodal and multimodal

cases.
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Figure 9: ROC curves comparing the unimodal SNN and multimodal mSNN with conventional

SVM and Random Forest classifiers. (a) Signature-based unimodal system, (b) EEG-based

unimodal system, (c) EEG & signature-based multimodal system.
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3.2. Analysis of Failure Cases

Out of the 560 testing pairs (280 genuine, 280 forged), the proposed mSNN

model incorrectly classified 8 samples. This yielded a 2.14% FAR (6 samples out

of 280) and 0.71% FRR (2 samples out of 280). Figure 10 shows a comparison

of the training and testing samples for these 8 misclassified cases.

User no. Training samples Testing samples

1

2

3

4

5

6

7

8

Figure 10: Training and testing samples of the misclassified (wrongly classified) users by

our model. The red blocks denote the difference of characters between training and testing

samples. User 1 to 5 are female subjects, and user 6 to 8 are male subjects.

The EEG signals from some of the misclassified users also exhibited the

presence of head and facial muscle movements during signing. This may have

led to the inclusion of motion artifacts or electromyogram (EMG) corruption in

the acquired EEG signal [42], as shown in Figure 11.

4. Conclusion

In this study, we proposed a multimodal Siamese Neural Network to combine

two different biometric traits, EEG and offline signatures, for user verification.
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Noisy EEG of User 6

Noisy EEG of User 4

Noisy EEG of User 1

(a) (b)

(c)

Figure 11: EEG samples from three users likely corrupted by EMG and/or motion artifact

The mSNN was designed to learn spatial and temporal features from signature

images and EEG using both CNNs and LSTMs encoders. Multimodal feature

fusion was performed in the embedding space and a similarity between two

pairs a computed for verification. The comparison between the performance of

EEG or signature-only unimodal systems and the proposed multimodal system

was analyzed using ROC curves, showing that mSNN outperformed EEG based

authentication by reducing FAR from 29.28% to only 2.14%. From this, it can

be seen that the two traits complement each other when combined, helping to

greatly reduce the success of forgery attempts. Moreover, a skilled forgery can

be learned to copy offline signatures, however, the features of the corresponding

EEG signal are unique for each user, making it especially difficult to forge both

at the same time.

From the experiments conducted, the proposed deep spatio-temporal mSNN

achieved a 98.57% classification accuracy with 2.14% FAR. This represents an

absolute improvement of 12.86% in FAR compared to previous results using a

Hidden Markov Models on the same dataset [32]. Some caution should be taken

in interpreting this comparison, however, as the training/testing protocols may

differ between the works due to the training strategy of the Siamese networks

(compared to conventional classification). Under a direct and controlled com-
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parison within the current work, however, while unimodal SNNs only moder-

ately outperformed conventional SVM and RF classifiers, the multimodal mSNN

vastly outperformed their multimodal equivalents.

The training approach of the mSNN offers another key advantage. It was

found that only 6 pairs of multimodal data were sufficient to secure a user’s

identity. This is attractive as it reduces the registration burden users in poten-

tial future implementations. Furthermore, the entire model doesn’t have to be

retrained when adding a new user, as with conventional classifiers. This could

substantially reduce the computational burden as the database of known users

is increased. Future analyses should investigate, in more detail, the impact of

the selection and quality of specific genuine and forgery attempts on the overall

system performance. Together, these results provide a compelling argument for

the robustness and applicability of the proposed mSNN. While initial internal

piloting suggests that the SNN architectures translate well to other individual

modalities, additional multimodal datasets are required to explore how well the

proposed mSNN models generalize to new modalities.
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