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Abstract—The cyber-physical cloud systems (CPCSs) release powerful capability in provisioning the complicated industrial services.
Due to the advances of machine learning in attack detection, a wide range of machine-learning applications are involved in industrial
CPCSs. However, how to ensure the implementation efficiency of these applications, and meanwhile avoid the privacy disclosure of the
datasets due to data acquisition by different operators, remain challenging for the design of the CPCSs. To fill this gap, a privacy-aware
deployment method, named PDM, is devised for hosting the machine-learning applications in the industrial CPCSs. In PDM, the
machine-learning applications are partitioned as multiple computing tasks with certain execution order, like workflows. Specifically, the
deployment problem is formulated as a multi-objective problem for improving the implementation performance and resource utility.
Then the most balanced and optimal strategy is selected by leveraging an improved differential evolution technique. Finally, through
comprehensive experiments and comparison analysis, PDM is fully evaluated.

Index Terms—CPCSs; Machine learning; Privacy-aware deployment; NSDE
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1 INTRODUCTION

Cyber physical cloud systems (CPCSs) take full advantage
of the strucutre optimazation of the cloud infrastructure to
extend the traditional cyber-physical systems (CPSs). The
new framework greatly improves the interaction among net-
work physical devices and contributes to performing large-
scale data storage and analysis. By means of the advantages
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of easy scalability and strong capability of CPCSs, service
providers manage the industrial applications in the virtual
manners and thus provide highly reliable services for a large
number of users [1] [2]. Currently, the industrial CPCSs have
received extensive attention from various organizations in
multiple fields, including smart grid, etc.[3]. With the ex-
plosive growth in service scale and type from end-users, the
industrial CPCSs are becoming increasingly complicated, in-
telligent, and autonomous in realizing interactions between
the physical devices and the heterogeneous networks. Fur-
thermore, the interactions suffers from the potential network
attacks as a result of multi-user acquisition and frequent
network communications [4].

Fortunately, machine learning (ML) is an efficient tech-
nology to detect the network attacks and develop corre-
sponding defense schemes in advance, so as to improve the
security of industrial CPCSs [5]. In particular, the industrial
CPCSs deploy machine-learning-based appliations to imple-
ment the accurate attack detection and ensure their own
security and reliability [6]. Technically the machine-learning
based security assessment learns the current state infor-
mation and the past of the industrial CPCSs. To improve
the implementation efficiency, the ML-based applications
are partitioned as multiple subtasks to realize parallel and
distributed processing with the support of the workflow. In
such workflows, each subtask is responsible for every aspect
of machine learning, including problem formulation, model
construction, and model verification. Besides, each subtask
often requires massive amounts of data from the CPCSs or
the intermediate data for execution. Machine learning and
workflow complement each other to further improve the
service performance and security of the industrial CPCSs
[7].
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Generally, the implementation efficiency is bound up
with the locations of the tasks in the machine-learning
workflows (MLWs) and the datasets, thus the internal rela-
tionship between the data and the workflow tasks needs to
be investigated. Therefore, it is critical to distribute massive
data to the storage nodes reasonably in response to data
acquisition for MLWs that are distributed in the cloud [8].
In the industrial CPCSs, as there are multiple concurrent
machine learning applications to be deployed, it is difficult
to guarantee the execution efficiency of all the workflows.
The reason is that the generated intermediate data from
some computing tasks in the machine-learning workflows
are also the source data for the other computing tasks
which also affect the execution efficiency of the workflows.
Therefore, it is crucial to properly schedule the workflows
and data for the CPCSs to the cloud, thereby improving the
implementation efficiency of the workflow applications [9].

Meanwhile, in the industrial CPCSs, massive physical
devices are equipped to collect data from the end-users in
real-time to complete the required services[10]. Accordingly,
a large amount of historical data from the end-users will
be transmitted in the cloud to assess the security of the
systems and achieve the further analysis of the data. But the
privacy disclosure problem still exists, since the multiple
data operators will access the same data storage nodes
in the cloud[11][12]. Generally, when the MLWs used to
ensure system security are executed, these private dat[?]a
will be leveraged by different operations to complete the
security assessment of the industrial CPCSs, resulting in the
disclosure of the private data.

Furthermore, the energy consumption of the cloud is
also increasing with the rising data processing requirements
of the industrial CPCSs. In particular, the transmission and
processing of massive data consume a lot of energy, when
MLWs are executed. Nowadays, the optimization of power
consumption of the cloud data centers promotes the healthy
and sustainable development of industrial CPCSs and has
become the primary part in green computing[13]. On the
other hand, to ensure the quality of the service, the depend-
ability and stability of the cloud have also received increas-
ing attention[14]. The load balance of the physical nodes
enhances the reliability of the cloud data center, which is
an effective measure to ensure service performance, and
reduces the possibility of a single node being overloaded or
even crashing [15]. Overall, the allocation of computational
and storage resources dominates the performance of the
machine-learning applications which is determined by the
deployment strategies of the workflows.

Based on the above analysis, it is significantly essential
to ensure the implementation efficiency of the machine-
learning applications, and meanwhile eliminate the poten-
tial risk of privacy disclosure of the datasets since data
acquisition by different operators, remains challenging for
the effective operations of the industrial CPCSs. To satisfy
these requirements in the industrial CPCSs, a privacy-aware
deployment method, named PDM, is devised for hosting the
machine-learning applications and jointly optimizing the
data acquisition time, power efficiency and resource utility.
Specifically, the key contributions are four folds.

• The machine-learning applications in the industrial

CPCSs are partitioned as multiple subtasks by work-
flow technology.

• The non-dominated sorting differential evolution
(NSDE) technique is fully investigated to obtain the
deployment strategies for the machine-learning ap-
plications.

• The most balanced and optimal deployment strategy
is selected through the utility value evaluation by uti-
lizing the simple additive weighting (SAW) and mul-
tiple criteria decision making (MCDM) techniques.

• Extensive experiments and comparison analysis are
conducted to demonstrate the performance of PDM.

The rest of this paper is organized as follows. Section
2 introduces the related work. Section 3 designs a CPCSs
service framework with fat-tree. Section 4 elaborates the
system model and formalize the goal fitness function. Sec-
tion 5 presents the design of PDM. Section 6 examines the
performance of PDM experimentally. Section 7 draws the
conclusion and introduces the future work.

2 RELATED WORK

Driven by the rapid advancement of cloud computing, it is
becoming more and more common to send data generated
by CPCSs during the operation process to the cloud data
platform for processing, which improves the operating per-
formance of CPCSs. Besides, optimizing application tasks
and data deployment strategy achieves contribute to re-
ducing data acquisition time, thereby further improving the
operating performance of CPCSs. Meanwhile, data privacy
is one of the most concerned problems in CPCSs, which
brings a lot of attention from academia and industry.

In recent years, there are a series of research works to
study the task scheduling problem in CPCSs, an energy-
aware task scheduling algorithm based on the greedy algo-
rithm is proposed for the heterogeneous cloud in [16]. To
realize the implementation of scientific workflows, a novel
energy-efficient resource allocation scheme was proposed in
response to the expanding cloud [17]. Besides, to ensure the
stability and security of many applications and data in the
cloud, it is also wise to maintain the load balance of nodes.
Liu et al. [18] proposed a duplicate placement approach,
aiming to optimize data transmission efficiency, enhance
the parallel placement performance and improve the load
balance. Zhao et al. [19] comprehensively investigated the
data acquisition time and the load balance, and a data
placement method.

On the other hand, data privacy of the machine learning
application in the cloud has attracted massive attention and
plenty of privacy-preservation methods are presented to ad-
dress the security problems. In [20], the k-nearest neighbor
algorithm and local-sensitive hashing were utilized to keep
the private information of the images storing in the data
center and guarantee the traceability of images. Besides,
a protocol based on a watermark was proposed to avoid
unauthorized copying or modification. In [21], Li et al.
implemented fully homomorphic encryption with different
keys to conduct data encryption to guarantee the security
of training data. Then, the cost of deep learning in cloud
computing was analyzed to ensure the economy and secu-
rity of the proposed method. In [22], a privacy-preservation
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communication scheme was presented to ensure data safety
when the vehicles transmit data to the cloud. Mollah et al.
[23] introduced multiple security problems in the mobile
cloud computing , especially of data security and location
privacy. In [24], an intrusion detection method with machine
learning was proposed which utilized physical knowledge
and advanced machine learning technology to extract sig-
nificant features from a large number of noisy physical
measurements, thus ensuring the efficiency of attack de-
tection. In [25], a new adaptive management architecture
was designed to realize safety and security in CPCs. In
particular, an adaptive controller was developed to ensure
that the closed-loop dynamic system has consistent limit
boundedness.

To the best of our knowledge, there are very few studies
to ensure the implementation efficiency of the machine-
learning applications, and prevent the privacy disclosure
of the datasets due to data acquisition by different opera-
tors. To address these challenges in the industrial CPCSs,
a privacy-aware deployment method, named PDM, is pro-
posed in this paper for executing the machine-learning ap-
plications and jointly optimizing the data acquisition time,
power efficiency and resource utilization.

3 FAT-TREE SUPPORTED INFRASTRUCTURE CON-
STRUCTION FOR CPCSS

The Fat-Tree Supported Infrastructure Construction for
CPCSs is provided in Appendix A.

4 MULTI-OBJECTIVE PROBLEM DEFINITION

The multi-objective problem is defined through the analy-
sis of the resource utility of the CPCSs, including power
consumption and load balance, and the implementation
performance of the applications which mainly refers to the
data acquisition time.

4.1 Service Framework for CPCSs
Fig.1 shows a service framework for industrial CPCSs. The
system first collects data from physical devices, such as
vehicles, sensors, traffic lights, industrial equipment. Then,
the data is sent to the cloud platform via bidirectional
or monodirectional and used for storage, processing, and
analysis. By deploying sub-tasks of the MLKs on different
computing nodes in the cloud to ensure the efficiency of the
MLKs and data privacy, strong data support is established
to realize applications such as intelligent transportation
systems, smart homes and intelligent manufacturing for the
CPCSs.

4.2 Machine-Learning Workflow Model
Suppose that a machine-learning workflow includes WN
tasks and DN workflow original source data. The task
set is represented by TS = {t0, ..., twn, ..., tWN−1}.
Besides, the workflow original source data collection is
represented by OD = {od0, ..., oddn, ..., odDN−1}.
After task execution, an intermediate data set MD =
{md0, ..., mdwn, ..., mdWN−1} is generated, and the in-
termediate data mdwn of each task twn is the original source
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Fig. 1: Service framework for CPCSs.

data for its successor tasks. In addition, the historical data
setsHD = {hd0, ..., hdp, ..., hdP−1} that have been placed
in the cloud should be considered for data acquisition.
Therefore, the relations among all tasks and their respective
data sources are specified as β = {β0, ..., βwn, ..., βWN−1},
where βwn = {od1, ..., odi, md1, ..., mdj , hd1, ..., hdk}.
However, some privacy-conflict datasets cannot be placed
on the same node to ensure the data security. So these
privacy-conflict datasets can be defined as a set PD =
{θ0, ..., θs, ..., θS}, where θs = {(di, dj)|di, dj ∈
{OD,MD}} implies that di and dj cannot be placed on
the same storage node.

4.3 Data Acquisition Model

In the cloud data center of CPCSs, assume that twn and the
data d required by twn are placed in vi and vj , respectively.
Then the relationship between vi and vj is determined by
ρi,j .

• If vi and vj are placed in the same node, ρi,j is set to
0.

• If vi and vj are connected to the uniform switch, ρi,j
is set to 1.

• If vi and vj are located in the same pod, but they are
not connected to the uniform switch, ρi,j is set to 2.

• If vi and vj are not located in the uniform pod, ρi,j is
set to 3.

Suppose that the node scale in the cloud is L, then
the relationship between any nodes is represented as a 2-
dimensional tensor ρi,j (i, j ∈ {1, 2, 3..., L}), and ρi,j =
{0, 1, 2, 3}.

With the node distribution value ρi,j for each pair of
nodes, acquisition time Tac of twn to acquire d(d ∈ βwn)is
accordingly expressed as

Tac =


ρi,j , ρi,j = 0
(ρi,j + 1) · d/Bhe, ρi,j = 1
ρi,j · (d/Bhe + d/Bea), ρi,j = 2
(ρi,j − 1) · (d/Bhe + d/Bea + d/Bac), ρi,j = 3

(1)
where Bhe, Bea and Bac are the transmission bandwidth
between node and edge switch, the transmission bandwidth
across edge and aggregation layers and the transmission
bandwidth across the aggregation and core layers.
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The total acquisition time Twn of twn consists of the
acquisition time for acquiring its necessary data βwn and
the intermediate result mdwn. Thus, Twn of task twn is
expressed by

Twn =
∑

d∈βwn∪mdwn

Tac. (2)

Let WN be the amount of subtasks in a machine-
learning workflow. Then, the acquisition time Ttotal of all
sub-tasks in this workflow is represented as

Ttotal =
WN−1∑
m=0

Twn. (3)

Since subtasks of the cloud environment obtain the data
set they request in a parallel and distributed manner, the
average data collection time is evaluated as the main eval-
uation criterion in this paper. Ultimately, the average data
acquisition time Tavg is expressed as

Tavg = Ttotal/WN. (4)

4.4 Transmission Power Consumption Model

The consumed power for data extraction and acquisition is
mainly generated by the operation of switches at different
layers.

Suppose the transmission rate of each switch is trs,
and the transmission power is tps. Thus, the transmission
time tswitch for the task of data size d transmitting across
switches and nodes is expressed as

tswitch = d/trs. (5)

Suppose that the number of switches that vj accesses to
the data set on vi is NSi,j . Then the consumed power of all
the switches caused by accessing the datasets is expressed
as

Eswitch = NSi,j · tswitch · tps. (6)

The power consumption Ewn generated by twn for ob-
taining all the requested data is deduced by

Ewn =
∑

d∈βwn∪mdwn

Eswitch. (7)

Ultimately, the total transmission power consumption E
for all the tasks is expressed as

E =
WN−1∑
wn=0

Ewn. (8)

4.5 Load Balance Model

Suppose that the virtual machine required by twn and ddn
are vmwn and vmdn, respectively. The capacity of vi and vj
are Ci and Cj . The number of the computing nodes is CS.
And correspondingly the number of the storage nodes is
SS. Assume that the computing node that executes twn and
the storage node for storing dn are vi and vj , respectively.

Thus, δcalwn,i = 1, δstoredn,j = 1. Otherwise, δcalwn,i = 0, δstoredn,j = 0.
Furthermore, the utilization Zcali of vi is expressed by

Zci =
WN−1∑
wn=0

δc
wn,i
· vmwn/Ci. (9)

Besides, the utilization Zstorej of vj is expressed by

Zsj =
DN−1∑
dn=0

δs
dn,j
· vmdn/Cj . (10)

Moreover, Zc is utilized to represent the mean resource
usage of the computing nodes in CPCSs which is expressed
by

Zc =
CS−1∑
i=0

Zci /CS. (11)

Similarly, Zs is lerveraged to represent the mean re-
source usage of the storage nodes in CPCSs which is ex-
pressed by

Zs =
SS−1∑
j=0

Zsj /SS. (12)

Z̃c and Z̃s are utilized to represent the average uti-
lization difference values for computing nodes and storage
nodes which are calculated by

Z̃c =
1

CS
·
CS−1∑
i=0

(Zci − Zc)2, (13)

and

Z̃s =
1

SS
·
SS−1∑
j=0

(Zsi − Zs)2. (14)

Finally, the variance Z̃ of the mean usage of computing
nodes and storage nodes is measured by

Z̃ =
1

2
· (Z̃c + Z̃s). (15)

4.6 Objective Functions and Constraint

While solving the privacy-aware deployment and privacy-
aware data processing problems of machine learning work-
flow, this paper aims to minimize the average data acquisi-
tion time, power consumption and load balancing of cloud
nodes. The optimization objectives is expressed as

Min(Tavg, Z̃, E). (16)

Furthermore, the privacy-conflict of different data sets
is considered as the optimization goal to avoid privacy
leakage problems caused by operating on different data sets.
Generally, let µk = {d0, d1, d2, ..., da, db, ..., dK−1}
be the locations that the all datasets placed on the storage
node, where K is the total number of datasets. Then, the
constraint relationship between the privacy-conflict datasets
is described as a constraint, which is defined by

{da, db} 6∈ PD | ∀µk ∈ µ, ∀a, b = 1, 2, ...,K − 1|. (17)
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5 METHOD DESIGN

5.1 Encoding

The deployment strategies for the MLWs are
encoded as the chromesomes at the endcoding
phase. Generally, the deployment strategies are
represented as X = {XT , XMD, XOD}, where
XT = {xT0 , xT1 , ..., xTm, ..., xTWN−1} represents the
deployment strategies with WN tasks. Besides, the
deployment strategies of WN creating intermediate data
and N workflow original source data are represented
by XMD = {xMD

0 , xMD
1 , ..., xMD

wn , ..., xMD
WN−1} and

XOD = {xOD0 , xOD1 , ..., xODdn , ..., x
OD
DN−1}, respectively.

The deployment strategy for these data cannot be the same
node that stores the historical data in the cloud.

5.2 Objective Functions

To solve the multi-objective optimization problem, it is nec-
essary to jointly optimize the average data implementation
efficiency, the total consumed power, and the load balance
of the node to achieve the balance of the three objective
functions.

Average Data Implementation Efficiency: For the task
in TS, Eq.(1) is leveraged to calculate the time for storing
the intermediate result, and Eq.(4) is utilized to calculate
the implementation efficiency of the required data and the
average data implementation efficiency.

Total Consumed Power: For the task in TS, the trans-
mission consumed power of the switch is calculated by
Eq.(6) and Eq.(7). Then the consumed power of the switch
to perform all tasks is calculated by Eq.(8).

Load Balance: After calculating the load of computing
nodes and storage nodes in the cloud, the different values
for all these two kinds of nodes are determined. Then,
Eq.(15) is utilized to calculate the average load balance
variance of each node.

5.3 Privacy-aware Deployment Stategies Acquired by
NSDE

5.3.1 Initialization

As a genetic algorithm, NSDE generates an initial popu-
lation before the process of evolution. The parent popula-
tion is expressed as X = {X0, ..., Xi, ..., XCU−1}, where
Xi is the i-th chromosome. Suppose that the optimization
problem has WD tasks, WD intermediate data, and DN
workflow original source data, then Xi is expressed as
{XT

i , X
MD
i , XOD

i }. XT
i represents the strategies for placing

WN tasks, XMD
i represents the strategies for WN data of

the intermediate result and XOD
i represents the strategies

for placing N original source data of the workflow.

5.3.2 Mutation

The operation of mutation is to combine the differential
genes of three chromosomes to produce a mutant chromo-
some. Generally, in Eq.(18), Xa, Xb and Xc are selected
as the parent chromsome randomly from X . Then, the
genotypes on these three chromosomes are combined to
construct a new chromosome with a new genotype. The

mutation factor C with values between 0 and 1 are ran-
domly set to increase genotype diversity. Therefore the new
chromosome Hi obtained by mutation is expressed by

Hi = Xa + C · (Xb −Xc). (18)

A mutation population H =
{H0, H1, ...,Hi, ...,HCU−1} is obtained, and the size
of the mutation population is still CU .

5.3.3 Crossover
To further increase the genetic diversity of the population,
the crossover operation is performed on mutation chromo-
some set H and parent population set X to produce a
crossover population. Generally, in Eq.(19), the crossover
factor CF with values between 0 and 1 is randomly gener-
ated at first. Then, a random number is set as a flag to select
the crossover gene Ri,j . If the random number is greater
than CF , the genotype it will select from Xi,j . Otherwise,
the genotype will select from Hi,j . Therefore, the crossover
gene Ri,j acquisition is expressed by

Ri,j =

{
Hi,j , j = rand(0, 2WN + DN− 1)||rand(0, 1) ≤ CF,
Xi,j , rand(0, 1) > CF.

(19)
Therefore, the crossover population R =

{R0, R1, ..., RCU−1} is acquired, and the population
size of R is CU .

5.3.4 Selection
In the stage of selection, the chromosome with good geno-
types in the crossover population and the parent popu-
lation need to be selected as a chromosome in the next
generation population. Therefore, X and R are combined
into Y = {Y0, Y1, ..., Yi, ..., Y2CU−1}, and the population
size of Y is 2CU . The crowded distance calculation and
fast non-dominated sorting operations are performed on Y .
When performing fast non-dominant sorting, Y is divided
into multiple dominant layers Li(i = 0, 1, 2, . . . ). Since the
gene of chromosomes in Li is better than Li+1, so that
all chromosomes in Li+1 are completely dominated by all
chromosomes in Li. The chromosomes in Li are better than
Li+1 as excellent chromosomes are retained in the offspring.
Besides, in the same dominant layer Li, each chromosome
performs crowding distance calculation to preferentially
retain chromosomes with better crowding distance to the
offspring. Then, the chromosomes in the better dominant
layer and those in the same dominant layer with better
crowding distance will preferentially retain the offspring X
until the size of X is CU . Furthermore, the genetic oper-
ations are conducted by NSDE on X until the solution in
the population begins to converge or the maximum number
of iterations is reached, thereby multiple non-dominated
strategies for the MLWs deployment are acquired.

5.4 Optimal privacy-aware deployment strategy
When NSDE terminates, multiple strategies are acquired
for the MLWs deployment. The optimal one needs to be
selected as the optimal privacy-aware deployment strategy.
Therefore, SAW and MCDM are used to compute out the
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utility values of Xi, thereby realizing the standardization of
multiple indicators.

Since each solution has three objective function values,
three corresponding weights w1, w2 and w3 are set ac-
cording to SAW for the three targets, and the sum of tree
weights is always equal to 1. The higher the importance of
the fitness, the greater the relevant weight is.

Suppose that the average data implementation efficiency,
the total consumed power, and the load balance of Xi are
expressed by TCi, ECi, and UCi, respectively. Besides,
TCmin, TCmax, ECmin, ECmax, UCmin and UCmax rep-
resent the minimum and maximum value of the average
data implementation efficiency, the total consumed power,
and the load balance of all individuals, respectively. Thus,
the utility value vi of Xi is measured by

vi = w1·
TCmax − TCi

TCmax − TCmin
+ w2·

ECmax − ECi

ECmax − ECmin

+ w3·
UCmax − UCi

UCmax − UCmin
,

(20)

where w1 + w2 + w3 = 1.
Then, the deployment strategy with the maximum utility

value is obtained as the optimal deployment strategy for the
MLWs.

5.5 Method Overview

As shown in Fig.2, PDM is mainly divided into two stages.
In the first stage, the initial population X , crossover popu-
lation R and mutation population H are obtained. Specif-
ically, the initial population is first generated randomly,
and the number of individuals in the initial population is
N . If the individuals in the population are not stratified,
crossover, mutation and fast non-dominated sort are exe-
cuted in the initial population. Furthermore, according to
(18) and Eq.(19), the crossover population H and the mutant
population R are obtained. Finally, the initial population is
mixed with the population that has completed genetic ma-
nipulation to form Y . In the second stage, the individuals in
the current population are evaluated to determine whether
the solutions are stratified and dominated by each other.
Finally, the optimal solution is obtained through Eq.(20).

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setting

In this experiment, parameters Bhe ,Bea, Bac, r and p of
the cloud infrastructure constructed by fat-tree are set as
200kb/s, 300kb/s, 400kb/s, 300kb/s and 5W, respectively.
Besides, to demonstrate the effectiveness of PDM, two algo-
rithms are selected for comparative analysis, as follows.

• State-aware placement (SP): The deployment strat-
egy of the subtasks and datasets of the MLWs makes
the nodes in the cloud computing center in the state
of load balance.

• Time-aware placement (TP) [17]: The main idea of TP
is that the MLWs takes the shortest time to retrieve
data when it is deployed for the subtasks and data of
the MLWs.
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Fig. 2: The flow chart of PDM.

6.2 Impact on the Utility Weights

In the experiment, the changes of utility value caused by the
different weights are observed by adjusting the correspond-
ing proportion of three objective function values in Eq.(20).
Specifically, when some weight value is changed, the other
two weights are set to the same value and remain the same
all the time. In addition, the value of w1 is adjusted to show
the impact of w1 on load balance and energy consumption
under different scales of the MLWs. As shown in Fig. 3, with
the increase of w1, the optimization performance of PDM in
load balance variance and energy consumption is gradually
getting worse. As assumed in Section 5.4, w1 represents the
weight of the average data realization efficiency. Therefore,
as the value of w1 continues to increase, the average data
realization efficiency accounts for an increasing proportion
in the optimization process, which leads to the poor per-
formance of PDM in terms of load balance variance and
energy consumption. Meanwhile, as shown in Fig.3, when
the value of w1 is the same, as the scale of MLWs continues
to increase, the value of load balance variance and energy
consumption continues to increase.

6.3 Performance Evaluation

6.3.1 Implementation efficiency of workflow original source
data

As each workflow has one or more original source data
for implementation, the implementation efficiency should
be evaluated. Fig.4 shows the concrete results for SP, TP
and PDM with different scales of workflows. From Fig. 4
we can find that TP is more efficient than SP and PDM
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(c) MLWs scale=3
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(d) MLWs scale=4
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Fig. 3: Results of the weight w1 on the load balance and the implementation efficiency metrics under different MLW scales.

achieves the best time efficiency among these three methods.
We can deduce that some datasets which serve for multiple
workflows, choose the proper locations to minimize the
overall data implementation efficiency.
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Fig. 4: Results of the implementation efficiency for obtaining
the workflow original source data by using SP, TP, and PDM.

6.3.2 Deployment time of generated data
As each workflow could generate multiple datasets, the de-
ployment time for these generated datasets should be evalu-
ated. Fig. 5 shows a comparative analysis of the deployment
time of generated data by using SP, TP, and PDM with differ-
ent scales of workflows. As shown in Fig. 5, because TP and
SP do not consider the impact of the deployment time of the
data set during the execution process, the deployment time
of the data set generated during the execution of TP and SP
is relatively close. However, since PDM fully considers the
time of data set deployment during the execution process,

the time efficiency of PDM is better than that of TP and
SP. Besides, as the number of workflows increases, the time
performance of PDM deployment workflows to generate
data sets is still better. Therefore, PDM further effectively
shortens the execution time of the workflow by selecting an
appropriate deployment strategy for the data set generated
by the workflow.
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Fig. 5: Results of the deployment time of generated data by
using SP, TP, and PDM.

6.3.3 Implementation efficiency of generated and history
data
Likewise, the implementation efficiency for these generated
datasets and history datasets should be evaluated. Fig. 6
shows a comparative analysis of the implementation effi-
ciency of history data by SP, TP, and PDM with different
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scales of workflows. In Fig. 6, we can find that TP is more
efficient than SP since TP represents the acquisition time
aware deployment of the workflows and the datasets, but
PDM achieves the best time efficiency. It is deduced that
PDM chooses the proper deployment policy for generated
datasets and history datasets of the MLWs to minimize the
overall data acquisition and deployment time. Furthermore,
Fig. 7 shows the comparative analysis of the total time
for data acquisition and deployment by SP, TP, and PDM
with different scales of workflows, respectively, and the
experimental results further prove the reliability of PDM.
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Fig. 6: Results of the implementation efficiency of history
data by using SP, TP, and PDM.

6.3.4 Load balance variance for privacy-aware deployment

The load balance is an important metric to evaluate the
data deployment method. The smaller the load balance
variance of the node in the cloud indicates the better the
load performance of the cloud. Fig. 8 shows a comparative
analysis of the load balance variance for deployment by SP,
TP, and PDM. It is intuitive from Fig. 8 that PDM has the
lowest load balance variance and SP has the highest load
balance variance.
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Fig. 7: Results of the total time of data acquisition and
deployment by using SP, TP, and PDM.

6.3.5 Consumed power for privacy-aware deployment

The consumed power is another important metric to evalu-
ate the efficiency of methods, which includes the consumed
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Fig. 8: Results of the load balance variance for privacy-aware
deployment by using SP, TP, and PDM.

power of nodes and switches. Fig. 9 represents the compar-
ison of the consumed power by SP, TP, and PDM. In Fig. 9,
when the workflow scale is small, the performance of SP, TP,
and PDM is not much different. However, as the scale of the
workflow increases, the energy consumption gap between
PDM and other methods is also increasing, indicating that
when the scale of the workflow is large, PDM saves more
energy.
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Fig. 9: Results of the consumed power for privacy-aware
deployment by using SP, TP, and PDM.

7 CONCLUSION

A privacy-aware deployment method, named PDM, was
proposed in this paper. Initially, the deployment of the
MLWs and the data was modeled as a multi-objective opti-
mization problem. Then, NSDE was leveraged to solve this
problem. Furthermore, the SAW and MCDM are utilized
to find the optimal deployment strategy. Ultimately, a large
number of experiments were proceeded to verify the effec-
tiveness of PDM. In future, we hope to apply the PDM to the
real scenes and further optimize the performance of PDM.

8 ACKNOWLEDGMENT

This research is supported by the Financial and Science
Technology Plan Project of Xinjiang Production and Con-
struction Corps under grant no. 2020DB005. Besides, this
work is also supported by the National Natural Science



IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, XX 201X 9

Foundation of China under grant no. 61702277 and the
Priority Academic Program Development of Jiangsu Higher
Education Institutions (PAPD) fund.

APPENDIX
FAT-TREE SUPPORT INFRSTRUCTURE CONSTRUC-
TION FOR CPCSS

The fat-tree topology is one of a mature network topolo-
gies to construct cloud infrastructure. It consists of three
layers: core layer, aggregation layer and edge layer[26].
The switches in the aggregation layer and the edge layer
form multiple pods so that the switches and nodes can
be effectively managed. Therefore, the fat-tree topology is
utilized to erect the cloud infrastructure for CPCSs, and
provide high-throughput transmission services and effec-
tive network communication. There are multiple parallel
paths between two physical nodes in the fat-tree network
topology, the cloud platform has good fault tolerance, which
makes CPCSs provide reliable services.
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Fig. 10: A Fat-tree Support Infrstructure Construction for
CPCSs.

Fig. 10 shows a fat-tree supported cloud infrastructure
for CPCSs. In the cloud infrastructure, two aggregation
switches and two edge switches build a pod, which each
supports the implementation of applications such as ma-
chine learning based fault detection, monitoring and diag-
nostics, and cyber-attack detection for CPCSs. Assuming
that there are S pods in the cloud, the number of nodes
connected to each pod is (S/2)2. Therefore, the number of
edge switches and aggregation switches in each pod is S/2.
Assuming that there are (S/2)2core switches in the cloud,
the number of ports on each switch in the network is S, and
the S3/4 nodes is able to connect.
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