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Abstract—This paper presents a novel XR and Deep Learning-
based IoMT solution for the COVID-19 telemedicine diagnostic, 

which systematically combines VR/AR remote surgical 

plan/rehearse hardware, customized 5G cloud computing and 

deep learning algorithms to provide real-time COVID-19 

treatment scheme clues. Compared to existing perception therapy 
techniques, our new technique can significantly improve  

performance and security. Our newly developed system collected 

347 positive and 2270 negative COVID-19 patient clinic data from 

the Red Zone by 5G transmission, a novel ACGAN-based 

intelligent prediction algorithm is addressed to learn a new 
COVID-19 prediction model. The Copycat network is then 

employed for the model stealing and attack for the IoMT model to 

develop the security performance. To simplify the user interface 

and achieve excellent user experience, we combined the Red 

Zone’s guiding images with the Green Zone’s view through the AR 
navigate clue by using 5G. Furthermore, an XR surgical 

plan/rehearse framework is designed, including all COVID-19 

surgical requisite details that were developed with a real -time 

response guaranteed. We have conducted a number of objective 

and subjective experiments for performance evaluation. Our 
evaluation results demonstrated that our new IoMT outperforms 

the existing perception techniques with significantly higher 

accuracy. This study suggests a new framework in the COVID-19 

diagnostic integration and opens the new research about the 

integration of XR and deep learning for IoMT implementation. 

 
Index Terms—IoMT, COVID-19, XR, ACGAN, Security 

 

I. INTRODUCTION 

o date, the Internet of Medical Things (IoMT) technology 

has been recognized and widely applied due to its high 

performance and practicality. The IoMT enables the application 

of deep learning for automated and accurate prediction of many 

diseases, assisting and facilitating effective and efficient  

medical treatment[1]-[3]. However, there are fewer studies that 

investigate the diagnostic IoMT through telemedicine and deep 

learning-based attacks targeting the services deployed on the 

IoMT devices, particularly the IoMT-based AI services. Since 

the Extended Reality (XR) technology, which includes the 
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Virtual Reality (VR), Augmented Reality (AR) and the Mixed  

Reality (MR) [4]-[6], refer to the real/virtual environments 

generated by computer graphics and wearables has been widely 

applicated in the medical field, especially in the telemedicine 

implementations. 

During outbreak of pandemic of COVID-19, IoMT can even 

be used to detect main symptoms ubiquitously, by the data 

collection from the infected area and customized the treatment 

plan based on aggregated IoMT data. Inspired by the 

aforementioned approaches, the XR implementation is 

introduced into the COVID-19 Diagnostic IoMT. Furthermore, 

a customized XR-enabled COVID-19 surgical 

planning/rehearse strategy is also being developed. Taking into 

account the previously mentioned deep learning-based IoMT 

platform, a novel deep neural network algorithm has been 

developed to predict the COVID-19 is positive or not by data 

5G data transformation. Apart from that, to achieve a better 

human ergonomics performance, we visualized all the COVID-

19 diagnostic clues from our XR surgical decision system. 

Thirdly, we used a Copycat-based access control system to 

protect the patient’s  clinic data used for rendering the XR 

images. We adopted a simplified approach based on Wang D 

[7], which allows electronic medical data to be accessed and 

shared on cloud storage. More specifically, each visit request to 

any patient’s clinic data will be recorded into the customized  

5G cloud together with a timestamp, requestor's ID, patient ID 

and image ID.  

Three original contributions are presented in this paper:  

1. For the first time, the deep ACGAN-based prediction and 

telemedicine surgical guiding methods are proposed for the 

COVID-19 diagnostic with 5G IoMT, which supplemented the 

shortage of medical staff and treatment of the Red Zone.  

2. Copycat ACGaN is employed to steal and attack for the 

IoMT model to evaluate the security performance. The privacy 

of COVID-19 patients has been guaranteed during IoMT data 

transmission. 

3. A novel XR-based COVID-19 surgical plan/rehearse 

prototype has been implemented for evaluating the new 
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techniques and ideas. This  work opens new research on the 

integration of XR and deep learning for tele-surgical 

applications.  

II. RELATED WORK 

A. XR-based Implementations for IoMT 

In order to promote doctors to acquire more information  

conveniently during the operation, the XR-based IoMT strategy 

has been evaluated, which is the first method abovementioned, 

to rebuild the three-dimensional virtual patient from the 

medical images and superimpose it on the real patient in an 

operating room for the 3D surgical guiding [8], [9], [10]. A 

traditional XR system includes two steps  – three-dimensional 

reconstruction of anatomically based on CT/MRI images and 

the registration step between the recons tructed model and the 

patient [11]. Although existing communal or software could 

automatically complete the three-dimensional rebuilt step, for 

example, the Osirix, the Mimics, and the 3D slicer, the semi-

automatic manual correction by the professional surgeon, is still 

the most reliable strategy in the clinic applications  [12]. The 

Curve (Brain Brainlab AG, Germany) system [13] and the 

Stealth Station are designed to XR navigation of MIS [14]; the 

NavSuite3 (Stryker Corporation, USA) is designed for the spine 

surgery [15]; the Navigation Panel Unit (Storz, Germany) is 

used for the endoscopic surgical navigation [16]; and SCOPIS 

(Scopis, Germany) [17], with the aid of Microsoft HoloLens, 

provides ENT, CMF, neuro, and spine navigation. Nevertheless, 

the critical issues of these commercial systems are implemented  

with either visual-guide or optical-guide mechanisms. In other 

words, the infrared-based NDI Polaris is the vital unit 

supporting all of these navigation schemes. Unfortunately, two 

serious challenges still need to be addressed for the NDI Polaris 

system: firstly, a precise registration between the 3D static 

image-based reconstructed model and the real patient is the 

most challenging issue due to the medical image caused by the 

human respiration. Furthermore, the heterogeneity of the 

lesions; secondly, the IR-based navigation is usually limited by 

the disadvantage of the signal blocking during the real 

operations, surgeons’ operation area should not occlude the 

infrared transmit trajectory which also leads many 

inconveniences in IoMT. To the best of our knowledge, in the 

operation room, a majority of XR guiding surgical applications 

focus on the medial image fusion algorithms and the routing 

planning. Research has not yet introduced many intuitive 

perceptions, such as tactile feedback through the 5G 

transmission, which would significantly improve the accuracy 

of the surgical performance. 

B. AI-based COVID-19 IoMT Platform 

COVID-19 systems can quickly diagnose COVID-19 

pathogens and found different types of attacks. In addition, DL 

Inference models were tested. Including acoustic emission 

disturbances to the classifier, launching a black box attack using 

the Clarifai REST API model, and using the back door attack to 

update the model [18]. Gregory B. Rehm developed a research-

centric CDSS. The device leverages the power of the Internet 

of Things to collect real-time physiological data from patients 

on ventilators and other medical devices. To monitor and 

manage the conditions of patients in intensive care units, 

doctors can prioritize their care, aiming to improve diagnosis, 

prediction, and event recognition in intensive care units. 

Additionally, encrypted files are used to ensure the safety of 

patient information [19]. Chen designed a chronic kidney 

disease prediction system based on the Internet of Things 

(IoMT) platform, an adaptive hybridized deep convolutional 

neural network. CT image data from renal cancer were used and 

the missing values were processed with median estimates. The 

dual training method of learning and activation mechanisms can 

effectively avoid kidney disease. [20] Lalit Garg has designed 

and proposed a new privacy anonymous internet of things 

model. Moreover, an RFID proof-of-concept is provided for 

this model. The blockchain is used to simulate contract 

deployment and function execution. The model will make it 

easier to identify groups of infected contacts and provide mass 

isolation while protecting individual privacy.[21] Vinay  

Chamola et al. conducted detailed research on the Internet of 

Things, drones, blockchain, artificial intelligence and 5G. 

During the COVID-19 epidemic, the medical internet of things 

can effectively collect, analyze and transmit clinical data. 

Drones ensure minimal human interaction and can also be used 

to reach areas that are unreachable by humans. Robots and 

autonomous vehicles have also contributed significantly to the 

field of automatic disinfection by reducing human contact. 

Artificial intelligence plays an important role in risk prediction 

and prognosis treatment. [22][23] 

C. Cyber-attacks with Deep Learning Network  

When it comes to the Internet of Medical Things (IoMT), we 

should know that there is a very close connection between 

IoMT and the IoT. An idea was put forward by Fang Hu that 

IoMT could be used in the medical industry must be a truth [24]. 

After five years, a healthcare monitoring system had been made 

by V.Jagadeeswari [25] using big data training. Which proved 

the idea, which put forward by Fang Hu had become a truth. 

Nowadays, with an increasing number of cyber-attacks have 

appeared, Talon Flynn [26] discover that IoMT system based 

on a mobile platform is very easy to be breached by various 

network attacks. A series of evidence can be presented to 

support our attack model. Deep learning has  gained prominence 

in many field, including computer vision and cybersecurity 

such as vulnerability detection [27, 28]. In 2014, however, 

Szegedy [29] and follow-up studies [30] demonstrated that 

small changes to the data as images are entered can attack deep 

learning techniques. Subsequently, Dalvi [31], Meek and Lowd 

[32] have proved that in the linear classification of spam 

detection
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Fig. 1. Customized design of COVID-19 Diagnostic IoMT through XR and Deep Neural Model, which has been implemented in the prevention and treatment of 
COVID-19 in China. The Red Zone is an epidemiological term, which means the COVID-19 infected area, especially in Wuhan and Hubei. Clinic data is collected 

from the OPC of Red Zone by the cell phone, tablet and laptop. After that, the 5G transmission is employed to transfer and co mpute the medical data for the 
COVID-19 prediction using the 5G cloud (Alibaba Cloud). Finally, the professional respiratory physician, and the thoracic surgeon from the Green Zone, such as 
Shanghai and Kunming, could make a diagnosis and detailed surgical plan through the IoMT application layer with high efficien cy and safety. 

 

can be fooled by adversarial simples. Barreno et al. [33] pointed 

out that with the development of cyberattacks, both ML 

algorithms and DL algorithms can be attacked by a malicious  

adversary. It can be seen from the relevant literature that there 

are three different attack modes of adversarial attack, including 

white-box attack, grey box attack and black box attack. The 

difference between them is how much is known about the target 

model (including data sets, parameters/hyperparameters, deep 

learning models and algorithms). Because of the similarity of 

COVID-19 text data, among the many ways of adversarial 

attacks, the one that can have the most impact on our network 

is the grey box attack. Crafted adversarial samples have been 

used against a Deep Neural Network (DNN), aiming to create 

confrontation examples by approaching the decision boundary 

of the target DNN [34]. 

III. NEW SYSTEM DESIGN 

In this section, we addressed the COVID-19 Diagnostic 

IoMT through XR and Deep Neural Model design and 

implementation, as demonstrated in Fig.1. A new KNN based 

ACGAN model is developed to estimate the COVID-19 

prediction accuracy and the XR platform is employed for the 

remote diagnoses. After that, the 5G transmission is employed 

to transfer and compute the medical data for the COVID-19 

prediction using the 5G cloud. AR-remote diagnose and XR 

surgical implementations is developed, we also present the 

evaluation approaches, which evaluate the performances with  

different kinds of deep neural algorithms.  
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A. ACGAN-based COVID-19 intelligent network design 

The whole technological process of the ACGAN-based  

COVID-19 intelligent prediction system is demonstrated in 

Fig.2. The real-world clinical data is collected and then some 

preprocessing, including samples wrangling (such as selecting 

the demanding data and setting correct data formats), KNN for 

missing data imputation and resampling techniques  for solving 

the problem of imbalance samples between normal subjects and 

COVID-19 subjects in a retrospective cohort. The processed 

training set is employed to train the ACGAN prediction model. 

After that, the well-trained discriminator of ACGAN is used to 

forecasting the samples from the prospective cohort. Finally , 

the interpretability of this system is produced by CEM to give 

an analysis of medical significance. The further descriptions of 

each part of ACGAN-based COVID-19 intelligent prediction 

are provided as follow. 

 

1) KNN for Missing Data Imputation 

A technique widely-used for handling with the extremely  

imbalanced distribution of samples is regarded as resampling. 

In resampling, to make up for the imbalanced class, a bias is 

used for reselecting more samples from one class which has 

smaller number of data than another type. The process of 

resampling has mainly consisted of the two parts: deleting some 

samples from the majority class, which is called under sampling, 

and augmenting samples from the minority class which is called  

oversampling. 

Due to the influence of elements such as broken system and 

man-made error, the missing of recording clinical data is 

inevitable. Moreover, much worthwhile information on the 

original data would be loss resulting in the decreases of 

forecasting accuracy and the mistaken research result, if only to 

delete these missing data. In this work, 𝑘 -nearest neighbour 

(KNN)-based missing data estimation algorithm is utilized to 

solve this thorny problem. In the KNN, the 𝑘 samples nearest 

to the missing sample are searched from all complete instances  

in the dataset, and then the corresponding missing value is 

padded with the mean value of these using the mean value 

samples. In KNN, the (𝑋, 𝑌, 𝑍) is defined as the features of 

samples, and then their k nearest neighbors are 𝐷𝑘 =
{(𝑋𝑘 , 𝑌𝑘,𝑍𝑘)|𝑗 = 1, 2, … , 𝑘} . The KNN estimator can be 

described as follow: 

𝑌 = arg max𝑣 ( ∑ 𝐶(𝑌𝑗 = 𝑛)
(𝑋𝑘 ,𝑌𝑘,𝑍𝑘)∈𝐷𝑘

)  

where 𝑋𝑘  is the target sample, 𝑌𝑗 is a missing feature in 𝑋, 𝑍𝑘 is 

the classification which is 0 or 1 in the current task, 𝑛 represents 

the value within the range of  the 𝑌 and 𝐶(𝑌𝑘 = 𝑛) represents a 

discriminant function that outputs  0 or 1 depending on its 

argument is false or true. 

In order to choose the k samples nearest to the target sample, 

the similarity between the target sample and the corresponding 

k nearest samples must be minimum. And the commonly-used  

approach called Minkowski distance (or its variants) is given as 

follows, 

𝐷𝑖𝑠(𝑖, 𝑗)

= √|𝑥 𝑖1 − 𝑥𝑗1|
𝑞 + |𝑥 𝑖2 − 𝑥𝑗2|

𝑞 + ⋯+ |𝑥 𝑖𝑝 − 𝑥𝑗𝑝 |𝑞
𝑞

, (𝑥 𝑖𝑝

∈ 𝑋𝑖 , 𝑥𝑗𝑝 ∈ 𝑋𝑗 )  

Where 𝑞  represents a positive integer which is the Minkowski 

coefficient. Minkowski distance is defined as Manhattan 

distance, when 𝑞 = 1 and it described as Euclidean distance 

when 𝑞 = 2.  In the current system, the 𝑞 = 1 is used. 

 

2) Deep Training Module Design 

Deep learning techniques are widely used in medical 

application, prediction, and retrieval domains, promising very 

good performance in classification fields. The Auxiliary  

Classifier Generative Adversarial Networks (ACGAN) is was 

further improved on the basis of the CGAN through 

incorporation of the idea of mutual information in InfoGAN 

[35]. Unlike traditional generative networks which are based on 

the unsupervised models, the supervised learning method is 

used in the generated adversarial concept. Furthermore, the 

internal structure of ACGAN adds the portion embedding the 

class information into the input of generater and compared with 

traditional CGAN.  The additional task for ACGAN is to 

classify the category of samples by expanding an auxiliary  

judgement layer in discriminator which can output the class 

labels of input samples [36]. Due to the speciality of the 

network, the objective function of ACGANs is divided into two 

part: the log-likelihood of the correct source 𝐿𝑆  and the log-

likelihood of the correct class 𝐿𝐶 . 

𝐿𝑆 = 𝐸[log𝑝 (𝑠 = 𝑟𝑒𝑎𝑙|𝑋𝑟𝑒𝑎𝑙
)] + 𝐸[𝑙𝑜𝑔𝑝(𝑠 = 𝑓𝑎𝑘𝑒|𝐺(𝑧))] 

𝐿𝑦 = 𝐸[log𝑝 (𝑌 = 𝑦|𝑋𝑟𝑒𝑎𝑙
)] + 𝐸[𝑙𝑜𝑔𝑝(𝑌 = 𝑦|𝐺(𝑧))] 

Where 𝑔  represents the created clinical sample. The 

discriminator 𝐷 is trained to find the maximum of 𝐿𝑆+𝐿𝑦 , while 

the generator is trained to find maximum of 𝐿𝑌 − 𝐿𝑆. 

3) Contrastive explanations method for prediction system 

Contrastive explanations method (CEM) is an AI novel 

algorithm created and implemented by IBM research, which 

that  can provide contrastive explanations for black box models 

such as deep neural networks well-known as black box models. 

CEM can be effectively used to create meaningful explanations 

in different domains that are presumably easier to consume as 

well as more accurate [37]. CEM of looking for the correlation  

positive/negative is expressed as an optimization problem of 

using perturbation variable δ that is used to explain how the 

model’s deep learning model to decide prediction results 

according to the input features. In finding pertinent negatives 

(PN), 𝑋  is defined as the feasible data; (𝑥0,𝑦0
) 𝑥0 ∈ 𝑋 is an 

example where 𝑦0  is the class label predicted by a neural 

network model; 𝑥 ∈ 𝑋 is a modified example which is defined 

as a perturbation variable 𝛿  applied to 𝑥0 : 𝑥 = 𝑥0+  𝛿  and 

𝑦𝛿 is the corresponding prediction results . For any natural 

example 𝑥 , CEM dedicates to find an interpretable perturbation 

and thus study the difference between the 

𝑎𝑟𝑔𝑚𝑎𝑥 𝑖[𝑃𝑟𝑒𝑑(𝑥0)]𝑖  and 𝑎𝑟𝑔𝑚𝑎𝑥 𝑖[𝑃𝑟𝑒𝑑(𝑥0 + 𝛿)]𝑖  where 

𝑃𝑟𝑒𝑑(∙) is the output consisting of prediction probabilities for 

all classes. The implementations of CEM finding PN are 

formulated as follow: 
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Fig. 2. The ACGAN-based COVID-19 intelligent prediction network: the real-world clinical data is collected, and then some preprocessing including samples 
wrangling (such as selecting the demanding data and setting correct data formats), KNN for missing data imputation and resampling techniques for solving the 
problem of imbalance samples between normal subjects and COVID-19 subjects in a retrospective cohort. The processed training set is employed to train the 
ACGAN prediction model. After that, the well-trained discriminator of ACGAN is used to forecasting the samples from a prospective cohort. Finally, the 

interpretability of this system is produced by CEM to give an analysis for medical significance. 

 

min
𝛿∈𝑋/𝑥0

𝑐 ∙ 𝑓𝑘
𝑛𝑒𝑔

(𝑥0 ,𝛿) + 𝛽‖𝛿‖
1 + ‖𝛿‖

2
2 + 𝛾‖𝑥0 + 𝛿 −

𝐴𝐸(𝑥0 + 𝛿)‖2
2 

 

Where 𝑓𝑘
𝑛𝑒𝑔 (𝑥0,𝛿)  is an objective function designed to 

encourage 𝑥  to be predicted as a different class than 𝑦0 = 

𝑎𝑟𝑔𝑚𝑎𝑥 𝑖[𝑃𝑟𝑒𝑑(𝑥0)]𝑖. [𝑃𝑟𝑒𝑑(𝑥0,𝛿)]𝑖 represents the 𝑖-th class 

probabilities of 𝑥 , 𝑘 refers to confidence parameter controlling 

the separation between [𝑃𝑟𝑒𝑑(𝑥)]𝑦0
and 

𝑚𝑎𝑥
𝑖≠𝑡0

[𝑃𝑟𝑒𝑑(𝑥) ]𝑖, 𝛽‖𝛿‖
1 and ‖𝛿‖

2
2 called elastic net regularizer, 

which is used for efficient feature selection in high-dimensional 

learning problems [38]. ‖𝑥0 + 𝛿 − 𝐴𝐸(𝑥0 + 𝛿)‖2
2  is an 𝐿2 

reconstruction error of 𝑥  evaluated by auto encoder, 𝑐, 𝛽 and 𝛾 

are the associated regularization coefficients. 

 

B. XR-Based COVID-19 remote diagnosis platform.  

 

1) COVID-19 Patient-specific CT 3D Rendering 

The CT images for the visual rendering are provided by the 

hospital in Fig. 4 show some examples of images. The sample 

case for the clinical stage is a 55-year old male presented to the 

hospital in Kunming. He had a two days history of pharyngalgia, 

headache, rhinorrhea and fever. He did not contact any COVID-

19 patients. Apart from a history of hypertension, the patient 

was a 30-year smoker. The patient's chest CT scan (February 8, 

2020) demonstrated the unilateral peripheral distribution of 

ground-glass opacities, as shown in Fig.4. Laboratory 

investigations illustrated that elevated white blood cell count 

(3.62×109/L, normal range, 4-10×109/L), higher count of 

neutrophil (9.2×109/L, normal range, 2.0-7.5×109/L) and 

lymphocyte count was slightly reduced at 0.42×109/L (normal 

range 0.8-4.0×109/L).  Firstly, we imported patients’ CT 

images, the DICOM format, to reconstruct a surgical simulation  

demo. Four professional thoracic surgeons manually corrected 

the COVID-19 infection region of interest after that, which is 

demonstrated in the third column of Fig. 3. The 3D mesh 

reconstructed model is used in the marching cube algorithm. 

We programmed the process of using the SDK such as VTK, 

CTK, ITK, IGSTK, for the visual rendering. Finally, we 

employed the shade programming to paint on the vertex colors. 

The virtual patient was characterized by transparency, variable 

size, and enabling the trainees to monitor their surgical 

operation visually. Various triggers are implemented to respond 

to the surgical tools touching different COVID-19 lung demo 

layers that help judge which costa will be punctured by the 

trocar needle inserting the current route. 

 

2) XR surgical Visual-haptic Implementation 

The VATS-XR systems developed in this article mainly  

include the development of hardware and software. Fig. 3. 

shows the framework of the system. The tactile and visual are 

two important indicators of the system. For visual aspects, the 

OpenHaptic plugin calls feedback devices to interact with  

virtual objects, such as collision detection and soft tissue cutting 

and deformation. For visual elements, interactive objects are 

rendered more realistically by shader language, to make it close 

to the real physical model. UGUI is used to design the UI 

interface design of the system. These functions were finally  

implemented in Unity3D. Surgical instruments and force 

feedback devices are connected through the linker. The operator 
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holds the surgical instrument to bring the three axes of the 

power feedback device to perform corresponding 

transformation operations. When the clip of the virtual surgical 

instrument interacts with the virtual object, computer calls the 

force feedback device through the OpenHaptic plugin 

(Geomagic, USA) to give the corresponding driving force, 

thereby giving the operator a real tactile sense. HTC VIVE and 

Logitech camera are used to realize XR display methods. 

 
Fig. 3. XR COVID-19 surgical IoMT simulator framework: the first part is the 

COVID-19 patient-specific medical image processing from the clinic data 

collection. The second part is the XR visuo-haptic reconstruction with the 

medical data. The third part is the audio rendering procedure, stored the audio 

details of OR-based heart monitor, anesthesia and breathing apparatus and line 

four is the surgical environment reconstruction. 
  

3) 3DUI Design 

Referring to the GPS navigation interface, we developed a 

Haptic-XR based 3DUI with the XR device and the main parts 

of the UI included in both visual and haptic intro-operation 

details. Three main kinds of XR display technologies during the 

operation have been presented; compared to the video-based 

and projection-based XR navigation system, the see-through 

display system using a semi-transparent free-form lens to 

reflect the digital content overlapped with the patient on the 

near-eye micro-display provided an intuitional and portable 

surgical experience. In this paper, we chose the see-through XR 

display pattern with the Microsoft HoloLens mixed reality  

head-mounted display (HMD). Since the C-arm image or 

ultrasound image is the most essential navigational clues during 

the intentional surgery, we put the real-time CT images on the 

central left part of the 3DUI, as demonstrated in Fig 5. For the 

real-time XR, the navigation interface is constructed in the top 

right of the UI, which is the manipulation platform for the 

Haptic-XR surgical simulator. We introduced this module to 

mimic the real operation in OR. Apart from these two 

components, the coronal, sagittal and axial CT images  

synchronously display the needle track during the surgical 

simulation as a part of XR navigation. Referring to the GPS 

interface, we integrated the navigation clues in the bottom of 

the 3DUI, which includes the operation time, intervention depth, 

force limitation, speed limitation, the matching layer of the 

tissue, and the warning of mis-puncture during the surgery, as 

demonstrated in the bottom of Fig. 4. 

 
Fig. 4. Diagram of the general software architecture of the Haptic-XR based 
3DUI with the IoMT device integrative implementation. 

C. Model Stealing Attack to The New IoMT Platform 

In this section, we'll show you how to train an imitation  

network (Copycat network) by stealing labels from the original 

network (Auxiliary Classifier GANs). In this paper, model 

stealing attacks mainly use the fake natural dataset to steal 

labels from the ACGAN and put these labels and the dataset 

into the imitation network. From Fig.4, we can conclude that 

this process mainly consists of two steps. The first step is to 

create a training dataset that has a similar s tructure to the 

original dataset, but they come from different problem domains 

(PD). So, the dataset we have chosen is different from the 

original dataset. Obviously, in the second step, we must use the 

labels and the pseudo dataset to train our model (In this paper, 

we choose the ACGAN as a copycat model.).  

Even though the dataset obtained from the first-line hospital 

is used in the original network, we can still download a similar 

COVID-19 dataset from the Internet and then change its data 

structure to have a similar structure with the original dataset. By 

doing this, we can be stealing the corresponding label from the 

original model. 

Next, we will explain the assignability of adversarial samples. 

Suppose that the adversary is interested in classifying the wrong 

sample and producing a hostile sample 𝜔 ∗⃗⃗ ⃗⃗   different from the 

model in which the class is assigned to the legal input 𝜔⃗⃗ . In the 

following optimization formula, we can achieve this: 

𝜔∗⃗⃗ ⃗⃗  = 𝜔⃗⃗ + 𝜃𝜔⃗⃗⃗  where 𝜃𝜔⃗⃗⃗ = 𝑎𝑟𝑔min
𝛼⃗⃗ 

𝑔(𝜔⃗⃗ + 𝛼 ) ≠ 𝑔(𝜔⃗⃗ ) 

Misleading example 𝜔∗⃗⃗ ⃗⃗  , deliberately 𝑔  calculation model. 

However, adversarial samples are often incorrectly classified as 

𝑔′ instead of 𝑔 in practice. For the convenience of discussion, 

the concept of transferability of adversarial samples is 

formalized: 

𝛱𝑌
(𝑔, 𝑔′) = |{𝑔′(𝜔⃗⃗ ) ≠ 𝑔′(𝜔⃗⃗ + 𝜃 𝜔⃗⃗⃗ 

⃗⃗⃗⃗  ⃗ : 𝜔⃗⃗ ∈ 𝑌)}| 
Set 𝑌  represents expected input distribution solved by the 

model 𝑔 and 𝑔′. in the task. We divide the transferability of 

adversarial samples into two variables to describe the models  

(𝑔, 𝑔′). The first is the transferability within the technology.  
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Fig. 5. The interpretation to the KNN-ACGANs with respect to how the clinical feature influences their decision for whether a patient is infected with COVID-19. 

It  can be seen from Fig.6 that lymphocyte quantity, mitochondria quantity and whether patients have above symptoms (from fever to headache) are the top -3 risk 

factors affecting the model to estimate the probability of patients getting COVID-19. 

 

The transferability between different parameter initializations  

of the same technology or training models of different datasets 

(for example, 𝑔  and 𝑔′  are deep learning networks or both 

support vector machines (SVM)) has been defined. Second, for 

cross-technology transferability, two technologies can be used 

to train models (for example, 𝑔 is a deep learning network and 

𝑔′ is SVM). 

IV. RESULTS 

A. KNN-ACGAN Learning Accuracy 

Based on the prospective cohort, the results toward COVID-

19 prediction for KNN-ACGAN and the other four models 

(KNN-SVM, KNN-RF, KNN-DNN, KNN-CNN) are reported 

in Table I. The evaluation metrics include Precision, Recall and 

F1-score. As shown in Table I, the highest values indicate that 

our proposed KNN-ACGAN model has the best prediction 

performance compared to KNN-SVM, KNN-RF, KNN-DNN 

and KNN-CNN. 
TABLE I 

PERFORMANCE COMPARISON BETWEEN THE PROPOSED KNN-
ACGAN MODEL AND THE FOUR GENERAL PREDICTION METHODS 

Model Precision Recall F1-score 

KNN-SVM 0.75 0.98 0.85 

KNN-RF 0.63 0.95 0.75 

KNN-DNN 0.81 1.00 0.89 

KNN-CNN 0.77 0.98 0.86 

KNN-ACGAN 0.92 0.98 0.95 

SVM: Support vector machine; RF: Random forest; DNN: Original deep neural 

network; CNN: Convolution neural network. 

 

To evaluate the forecasting performance of KNN imputation  

for missing data, we performed a comparison between the 

KNN-based prediction model and the average-based prediction 

model. The area under the ROC curve (AUC) of the comparison 

result is shown in Fig. 5. In terms of ROC, KNN-based models 

obtain promotions compared to average-based models. Table II 

reports the detailed promotion of the comparison of KNN-based  

models and average-based models under three performance 

criteria. It visually shows that all KNN-based predictive models 

have more significant improvement in performance than KNN-

based models. 
TABLE II 

THE PROMOTION OF KNN-BASE PREDICTION MODEL COMPARED 

TO AVERAGE-BASED PREDICTION MODEL IN PRECISION, RECALL 

AND F1-SCORE 

KNN-based 
model vs. 
Average-

based model 

SVM RF DNN CNN ACGAN 

Pprecision 0.03 -0.05 0.42 0.33 0.16 

Precall 0.02 0.41 0.00 -0.02 0.01 

Pf1-score 0.02 0.12 0.24 0.18 0.07 

𝑃𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =
𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐾𝑁𝑁 − 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐴𝑣𝑒𝑟𝑎𝑔𝑒

𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛𝐴𝑣𝑒𝑟𝑎𝑔𝑒

 

 

B. Stealing Model Performance for the New IoMT Platform 

There are some evaluation indicators and corresponding 

parameters shown in Table III. A higher number on the same 

scale indicates better performance for the model. The values 

Precision in the Table II are very close to 1, indicating that the 

original network has a strong performance in predicting 

COVID-19 and non-COVID-19 data. 

TABLE III 

VALUES OF DIFFERENT INDICATORS OUTPUTTED BY THE TARGET MODEL. 
O bject Precision Recall F1_score Support 

NORMAL 1.00 0.97 0.99 68 
COVID-19 0.78 1.00 0.88 7 
Macro avg 0.89 0.99 0.93 75 

Weighted avg 0.98 0.97 0.97 75 

Accuracy ― ― 0.97 75 

Table III shows the different performance indicators that 

copycat network outputs after training with stolen labels and the 

corresponding dataset. Compared to the original network, the 

copycat network can achieve 80% similarity with the data in 

Table I and Table II. Because we selected data between PD and 

non-Problem Domain (NPD) when we selected the Copycat 

dataset, we still got a 79% accuracy rate with many irrelevant  

data effects. 
TABLE IV 

VALUES OF DIFFERENT INDICATORS OUTPUTTED BY THE COPYCAT MODEL. 
O bject(copycat) Precision Recall F1_score Support 

NORMAL 1.00 0.77 0.87 196 
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COVID-19 0.38 1.00 0.55 28 
Macro avg 0.69 0.88 0.71 224 

Weighted avg 0.92 0.79 0.83 224 
Accuracy ― ― 0.79 224 

V. DISCUSSION 

In order to develop an intelligent and trustworthy COVID-19 

Diagnostic IoMT through XR and deep neural network, the XR 

based framework has been conducted. Based on the training 

results, the COVID-19 can be accomplished diagnose with or 

without assistance, so that visual feedback and numerical 

feedback are provided. Offering includes displaying a real-time 

3D representation of the surgical implementations. 

A. Performance by ACGAN-based COVID-19 IoMT 

As shown in Table I, the proposed KNN-ACGAN model has 

excellent performance. Compared with the CNN model, the 

precision and f1-score on the KNN-ACGAN increased by 15% 

and 9%, respectively. Compared with the DNN model, the 

precision and f1-score on the KNN-ACGAN increased by 11% 

and 6%, respectively. It indicates that the ACGAN model can 

obtain more accurate features and more precise prediction 

results after the preprocessing of KNN for missing data and the 

resampling processing in training. We used KNN (k=1) to fill 

up the missing data and the oversampling to solve the problem 

of imbalance samples. In Fig. 5 and TABLE II, where the 

performance of KNN is evaluated, the AUC of the KNN-based  

models has increased by 1%-8% compared with average-based 

models. Moreover, except for the Pprecision of KNN-RF and 

the Precall of KNN-CNN, all the KNN-based models have a 

promotion in which Pf1-score have increased by 2%-24%, 

Precall have increased by 2%-41% and Pprecision have 

increased by 3%-41%. More promising information can be 

obtained from the confusion matrix in Fig 6. All the 

experiments demonstrate that KNN-ACGAN is a promising  

technology that can be used effectively in COVID-19 

prediction.   

 
Figure 6. The interpretation of important clinical features based on the CEM 
algorithm. 

 

In the offline process, we use real-world clinical COVID-19 

data to train the proposed KNN-ACGAN model. After 

optimizing and adjusting the model parameters, the model is 

saved. The new experiments with the protected model are 

performed in the online application. According to the predicted 

feedback, whether the patients are infected are predicted and 

displayed on the monitor. Besides, the interpretability based on 

CEM can provide the importance for the clinical features, 

which gives the KNN-ACGAN model the medical insight and  

Fig. 7. The confusion matrix for different algorithms. (a) AVG-SVM, (b) KNN-
SVM, (c) AVG-RF, (d) KNN-RF, (e) AVG-DNN, (f) KNN-DNN, (g) AVG-
CNN, (h) KNN-CNN, (i) AVG-ACGAN, (j) KNN-ACGAN. 

 

ensure the reliability of our proposed COVID-19 intelligent  

prediction system. 

B. Performance by IoMT Stealing Model 

As shown in Figure 9, the obfuscated matrix is an error matrix 

that can be used to evaluate the performance of supervised 

learning algorithms. Therefore, we can see more clearly that the 

prediction set is a mixed part of the real set through the 

confusion matrix. We can see from Figure 9, True Positive (TP) 

and False Negative (FN) account for a large proportion in the 
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confounding matrix, among which TP accounts for the largest 

proportion, which has been directly reflected that the ACGAN 

network can accurately predict the data of patients with and 

without COVID-19. 

 
Fig.8. Confusion matrix diagram based on the ACGAN model and ROC curve 

using different models for data prediction. 

 

The Receiver Operating Characteristic (ROC) curve is drawn 

according to a series of different dichotomies (cut-off values or 

determining thresholds), unlike traditional evaluation methods, 

the ROC curve does not need to divide experimental results into 

two categories for statistical analysis, and all points on the curve 

reflect the same receptivity. The ROC curve is judged by which 

line in the curve can get the fastest and most infinitely close to 

an ordinate of 1, indicating that the model represented by that 

curve will work best. As we can see from Figure, KNN-

ACGAN can have the best effect on the classification of new 

crown data. ACGAN can more accurately predict the data of 

COVID-19 patients and non-COVID-19 patients by combining  

the results of the ROC curve and confounding matrix. At the 

same time, the copycat network can also achieve similar effects 

to the original network. 

VI. CONCLUSION 

In this paper, we proposed a Trustworthy and Intelligent 

COVID-19 Diagnostic IoMT through XR and deep neural 

networks. We developed a customized novel ACGAN-based  

intelligent prediction algorithm that was addressed to learn a 

new COVID-19 prediction model. Apart from that, to achieve 

a better human ergonomics performance, we visualized all the 

navigational clues from our Haptic-AR guide system. We are 

among the first to apply deep learning for the COVID-19 IoMT 

prediction and remote surgical plan cues, which may provide a 

new strategy for COVID-19 therapy. In the future, we will 

improve this IoMT system in both hardware design and deep 

learning algorithms promotion, aims to create a platform for 

both academia and industry to the COVID-19 track and 

treatment. 
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