Novel Microcarriers for the Scalable Production of Cultivated Meats

Project Aims

- Screen and characterise suitable edible biomaterials & engineer scaffolds
- Culture, expand and differentiate bovine mesenchymal stem cells in static conditions
- Engineer microcarriers from scaffolds and scale up the process to bioreactors

The Ideal Scaffold

- Improve consumer acceptance for cultivated meats
- Provide standards for the textural properties of cultivated beef burgers

Silk Fibroin (SF)

MetOH Treatment	Young's modulus (MPa)	Ultimate Tensile Strength (MPa)	Strain at Break (%)	
Untreated	189.37	6.27	13.96	
Treated	1625.48	18.62	1.34	

Increased SF's β-

and crystallinity.

sheet content

Changed SF's secondary structure

- Bovine mesenchymal stem cells (bMSC) were chosen for their ability to differentiate into muscle and fat lineages.
 - Cells were shown to grow successfully on silk fibroin electrospun scaffolds.
 - · Cells exhibited both elongated and rounded morphologies, which is ideal for muscle and fat lineages.
 - Cells appeared to permeate the scaffold pores.

Cell Culture

Ben Dagès 200148333@aston.ac.uk

- Engineering and Physical Sciences **Research Council**

- - The mechanical properties of burgers with different fat contents and consumer perceived quality (based on reviews) were measured.
 - · These measurements aim to provide a standard for cultivated meats to mimic the textural properties of traditional meat.

		Tensile properties		Flexural properties		Compressive properties	
	Test sample	E (kPa)	UTS (kPa)	Ebend (kPa)	UFS (kPa)	k (kPa)	UCS (kPa)
l Raw	20% fat High Quality	5	2.2	6.6	3	11.7	10.3
	20% fat Low Quality	9.1	4	12.9	5.1	18.5	18.2
l Cooked	20% fat High Quality	60.1	15.2	108.5	27.6	147.4	63.6
	20% fat Low Quality	70.1	19.3	118.4	43.8	205.4	137.7

- Burgers perceived as higher quality were more tender.
- The cooked samples were a approximately 10 x stiffer than the raw ones.

Meat Texture Analysis

Conclusions

- Silk fibroin scaffolds were created using electrospinning.
- MeOH treatment affected fibre morphology, strength and protein secondary structure.
- Silk fibroin scaffolds supported bMSC growth.
- Early work on mechanical properties of beef burgers identified desirable textural properties for cultivated meats.

 Affected fibre diameter and morphology.

Characterisation