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Abstract: The proton exchange membrane fuel cell (PEMFC) is a favorable renewable energy source
to overcome environmental pollution and save electricity. However, the mathematical model of
the PEMFC contains some unknown parameters which have to be accurately estimated to build
an accurate PEMFC model; this problem is known as the parameter estimation of PEMFC and
belongs to the optimization problem. Although this problem belongs to the optimization problem,
not all optimization algorithms are suitable to solve it because it is a nonlinear and complex problem.
Therefore, in this paper, a new optimization algorithm known as the artificial gorilla troops optimizer
(GTO), which simulates the collective intelligence of gorilla troops in nature, is adapted for estimating
this problem. However, the GTO is suffering from local optima and low convergence speed problems,
so a modification based on replacing its exploitation operator with a new one, relating the exploration
and exploitation according to the population diversity in the current iteration, has been performed
to improve the exploitation operator in addition to the exploration one. This modified variant,
named the modified GTO (MGTO), has been applied for estimating the unknown parameters of
three PEMFC stacks, 250 W stack, BCS-500W stack, and SR-12 stack, used widely in the literature,
based on minimizing the error between the measured and estimated data points as the objective
function. The outcomes obtained by applying the GTO and MGTO on those PEMFC stacks have
been extensively compared with those of eight well-known optimization algorithms using various
performance analyses, best, average, worst, standard deviation (SD), CPU time, mean absolute
percentage error (MAPE), and mean absolute error (MAE), in addition to the Wilcoxon rank-sum test,
to show which one is the best for solving this problem. The experimental findings show that MGTO
is the best for all performance metrics, but CPU time is competitive among all algorithms.

Keywords: fuel cells; PEMFC; artificial gorilla troops optimizer; modeling

1. Introduction

The proton exchange membrane fuel cell (PEMFC) is an important renewable energy
source that has attracted the attention of the world over the last decades. The main ad-
vantage is to convert hydrogen fuel into electrical energy, continuously and directly, for
disposing of environmental pollution caused by the traditional energy sources [1,2]. Polar-
ization curves that depict the relationship between current and voltage are so important
and need accurate modeling. Several mechanistic and empirical, or semi-empirical, models
have been designed to model the PEMFCs; among them, the semi-empirical model is more
suitable for engineering purposes due to its publicity and reputation to solve problems
more easily [1,3–7]. However, unfortunately, in this model, some non-mechanistic terms
have to be accurately identified to design a model simulating the real PEMFCs performance
better; this problem is known as the parameter estimation of PEMFCs.

This problem belongs to the optimization problems and could be tackled by a specific
optimization algorithm, but not all these algorithms, especially traditional algorithms,
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could achieve the required accuracy due to the complex nonlinearity, multi-variability, and
strong couple of the PEMFC system. Having a strong optimization algorithm to deal with
this problem is inevitable. Therefore, in literature, researchers have tried new modern
algorithms, namely metaheuristic algorithms, having a strong performance for solving
several nonlinear optimization problems with high dimensions in a reasonable time [8–11].
Some of those that have worked to estimate these parameters will be reviewed in the rest
of this section, to articulate their contributions besides their advantages and disadvantages.

In [12], two metaheuristic algorithms, namely Harris Hawks’ optimization (HHO)
and atom search optimization (ASO), have been investigated regarding their performance
for finding the unknown parameters of the PEMFCs using the sum of square errors as
the objective function. Those algorithms were assessed using three different commercial
PEMFC stacks, 500 W SR-12 PEM, BCS 500-W PEM, and 250 W stack, under various
operation conditions. In addition, the outcomes obtained by those algorithms have been
extensively compared with those of several existing optimization techniques to determine
their accuracy and speed; those experiments affirm that HHO is the best. However, this
algorithm still suffers from falling into local optimal and low convergence speed. Those
are observed from the employed maximum of function evaluations which might surpass
60,000 on account of the used population size.

For finding more accurate parameter values, in [13], a new objective function has
been designed and employed with the chaos embedded particle swarm optimization
algorithm (CEPSO) for estimating the unknown parameters of three commercial PEMFCs
stack. The findings have shown the superiority of this algorithm compared to some
existing algorithms. This algorithm used a population size and a maximum iteration of
100 and 100, respectively, equal to 10,000 function evaluations. This large number notifies
that this algorithm has low convergence speed as its main disadvantage. Additionally,
Singla et al. [14] have adopted a newly-published metaheuristic algorithm, known as black
widow optimization (BWO), for finding the parameter estimation of the PEMFCs. BWO’s
outcomes were compared with those obtained by five metaheuristic algorithms: particle
swarm optimization (PSO), multi-verse optimizer (MVO), whale optimization algorithm
(WOA), sine cosine algorithm (SCA), and grey wolf optimization (GWO). The experimental
outcomes affirmed that BWO is better than all.

Zhu [15] has employed another metaheuristic algorithm, known as the Adaptive
Sparrow Search Algorithm (ASSA), to tackle this problem by minimizing the error between
the measured and estimated current as of the objective function. The experimental findings
for three case studies, Ballard Mark V, Horizon H-12, and NedStack PS6, elaborated the
superiority of ASSA compared to three other algorithms. In [16], the slime mold optimizer
(SMA), which was recently proposed for tackling optimization problems and could fulfill
superior outcomes, was employed for tackling this problem. The outcomes obtained using
SMA outperform those of the compared algorithms. Diab et al. [17] suggested a new
parameter estimation model for PEMFCs based on the coyote optimization algorithm using
the sum of square error as an objective function. In order to demonstrate its efficiency,
it was evaluated using two PEMFCs stacks and compared four optimization algorithms
to show its superiority. Table 1 describes the contributions and disadvantages of some
recently published metaheuristic algorithms for estimating the parameter of PEMFCs.
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Table 1. Reviewing some published parameter estimation techniques for the PEMFCs.

Algorithms Contributions Disadvantages

Slime mold algorithm
(SMA) [16]

• Employing SMA for estimating the
unknown parameters of the fuel cell.

• Its performance has been compared to six
other metaheuristic algorithms and could
overcome all.

• It still suffers from low convergence speed
because it needed about 1000 iterations to
be converged to the best-obtained
solution. In addition, the authors did not
state the used population size.

Modified farmland fertility
optimization algorithm

(MFFA) [18]

• Proposing two stages-based
modifications to the standard farmland
fertility algorithm: the first is employing
the levy flight strategy to improve its
exploration and exploitation operators
and the other integrates a sine-cosine
function to generate various solutions
around the best-so-far solution.

• MFFA has been employed for finding the
unknown parameters of the PEMFC
models and compared with some rival
optimizers to check their superiority.

• Creating around 100 solutions to search
for the optimal fitness value, and this
number consumes exactly 10,000
functions evaluations when the
maximum iteration is of 100, as used in
MFFA. From this, it is shown that the
convergence speed of MFFA still needs
significant improvements.

Moth–flame optimization
(MFO) [19]

• The classical MFO has been combined
with the notion of uncertainty for finding
the unknown parameters of three
well-known commercial PEMFC models
and the obtained outcomes were
compared with those of some
well-established algorithms.

• Both convergence speed and CPU time of
this algorithm have not been stated in the
published article and hence this algorithm
is not preferred because it might need
expensive computational costs and a
huge number of function evaluations to
find the near-optimal solution.

Coyote optimization
algorithm (COA) [20]

• In this paper, the COA was adapted for
tackling the parameter estimation of the
PEMFC models.

• Investigated using two PEMFCs, 250 W
stack and Ned Stack PS6, and compared
to four optimizers to observe its
effectiveness.

• The obtained outcomes affirmed its
superiority.

• This algorithm consumes a huge number
of function evaluations up to 40,000 to
converge to the near-optimal solution.

• The CPU time consumed is not stated.

Modified monarch butterfly
optimization (MMBO) [21]

• Integrating mutation and self-adaptive
mechanisms with the standard monarch
butterfly optimization (MBO) has been
performed to propose a new MBO, called
modified MBO. It has better exploration
and exploitation operators that enable it
to avoid becoming stuck in local minima
by accelerating the convergence speed.

• Employing MMBO for finding the
unknown parameters of 250 MW PEMFC
stack under various operating conditions,
in addition to comparing its performance
to four state-of-the-arts, has been
performed in this paper.

• The stability of the performance of this
algorithm with more PEMFC stacks with
various characteristics has not been
investigated and hence its performance
might deteriorate with other
PEMFC stacks.
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Table 1. Cont.

Algorithms Contributions Disadvantages

Shark smell optimizer
(SSO) [22]

• In this paper, a new nature-inspired
optimization algorithm known as SSO has
been adapted for estimating the unknown
parameters of the PEMFC models.

• Five commercial PEMFC stacks were
employed to investigate its performance,
and the obtained outcomes were
compared with five optimization
algorithms to observe its proficiency.

• The experimental findings affirmed that
SSO is better.

• It still suffers from low convergence
speed.

Improved grass fibrous root
optimization algorithm [23]

• This paper presented a new parameter
estimation technique for PEMFCs based
on improving the grass fibrous root
optimization algorithm.

• The outcomes of this algorithm have been
compared with those of some well-known
algorithms to clarify its superiority.

• This algorithm employed 100 search
agents to search for a better solution
within 100 iterations, any around
10,000 function evaluations and this
shows that the algorithms need more
improvements to overcome its low
convergence speed.

Improved barnacles mating
optimization algorithm

(IBMO) [24]

• In this work, an improved variant of the
barnacles mating optimization algorithm
has been suggested for finding the
unknown parameters of two various
PEMFC stacks: Horizon 500 W PEMFC
and NedStack PS6.

• The findings of IBMO were extensively
compared to those of five well-known
optimization techniques.

• Still suffers from the low convergence
speed and falling into local optima.

Hybrid teaching learning
based

optimization–differential
evolution algorithm [25]

• The teaching learning-based optimization
algorithm has been combined with the
differential evolution to propose a hybrid
variant, namely TLBO-DE, employed for
finding the unknown parameters of the
PEMFC stacks.

• This algorithm was investigated using a
250 MW PEMFC stack for various
operating conditions then the obtained
outcomes were compared with those of
four well-established metaheuristic
algorithms.

• This algorithm used 200,000 function
evaluations and this huge number notifies
that the algorithm also has a problem in
terms of the convergence speed.

There are several other parameter estimation PEMFC techniques based on meta-
heuristic algorithms: improved chaotic grey wolf optimization algorithm [26], modi-
fied farmland fertility optimizer [18], hunger games search algorithm [27], improved
version of the Archimedes optimization algorithm [28], moth–flame optimization [19],
Levenberg–Marquardt backpropagation algorithm [29], whale optimization algorithm [30],
marine predator algorithm optimizer [31], pathfinder algorithm [32], hybrid water cy-
cle moth–flame optimization algorithm [33], improved fluid search optimization algo-
rithm [34], Seeker optimization algorithm [35], improved grass fibrous root optimization
algorithm [36], developed coyote optimization algorithm [37], improved TLBO with elite
strategy [38], developed owl search algorithm [39], modified artificial electric field algo-
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rithm [40], Supply–Demand-Based Optimization Algorithm [41], convolutional neural
network optimized by balanced deer hunting optimization algorithm [42], and chaos game
optimization technique [43].

The algorithms mentioned above have still suffered from two common problems,
low convergence speed and falling into local minima, which prevent them from reaching
accurate outcomes in fewer function evaluations. Therefore, in this paper, a new meta-
heuristic algorithm, namely the artificial gorilla troops optimizer (GTO), proposed recently
for tackling the CEC optimization problems, has been adapted for tackling this problem
due to its significant success achieved for the CEC problems. In addition, an effective
modification has been performed on the GTO to improve its exploration and exploitation
capability in a new strong variant called the modified GTO (MGTO). Four well-known
commercial PEMFC stacks were employed to investigate the performance of the GTO and
MGTO, and the obtained outcomes were compared with eight well-known metaheuristic
algorithms to check its superiority for finding the unknown parameters which minimize the
error between the measured and estimated current. Finally, those conducted experiments
show that the MGTO is better than all the others for accuracy, convergence speed, and
stability. The main contributions within this paper are:

• To adapt the GTO for tackling the parameter estimation of PEMFC, in addition to
making a strong modification to produce a new variant, abbreviated as MGTO, having
better exploration and exploitation capabilities.

• Comparing the performance of the GTO and MGTO with eight metaheuristic algo-
rithms has shown that the MGTO is superior in terms of convergence speed, stability,
and final accuracy.

The remainder of this paper is organized as follows: Section 2 explains the mathemati-
cal model of the PEMFC; Section 3 presents the standard GTO; Section 4 discusses the steps
of the proposed parameter estimation algorithm, MGTO; comparison and discussions are
shown in Section 5; and the last section involves the conclusion and future work.

2. The Mathematical Model of PEMFC

A PEMFC is compounded of two electrodes, an anode and a cathode, as well as an
electrolyte between them, as depicted in Figure 1 [44]. The chemical reactions start with the
hydrogen (H2) converted at the anode to ions (H+) and electrons (e−) based on the catalyst
layer action, as described in (1). Afterward, both H+ and e− move to the cathode through
the electrolyte and the external circuit, respectively. Thereafter, to generate water and heat,
the protons and electrons react together with the oxygen in the catalyst layer of the cathode,
as also depicted in Figure 1 and described in (2); meanwhile, liberated electrons move
through the external circuit and generate electricity. Ultimately, the overall reactions are
described in (3) [45,46].

Anode : H2 → 2H+ + 2e− (1)

Cathode :
1
2

O2 + 2H+ + 2e− → H2O + heat (2)

Overall reaction : 2H2 + O2 → 2H2O + Heat + Electricity (3)
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Figure 1. The schematic configuration of the PEMFC [47].

The output voltage of several fuel cells connected in series, while ignoring the ir-
reversibility losses and entropy, is computed using the following equation according to
several references [36,48–50]:

Vs = Ncells(E− vact − vR − vc) (4)

where Ncells stands for the number of fuel cells connected in series, E indicates the open-
circuit voltage per cell, and estimated by the following equation:

E = 1.229− 0.85 ∗ 10−3
(

Tf c − 298.15
)

+ 4.3085× 10−5Tf cln
(

PH2

√
Po2

)
(5)

PH2 =
(RHa ∗ PH2O)

2

1/

 (RHa × PH2O)

Pa
e

(4.192I f c/A)

T1.334
f c

− 1

 (6)

PO2 = (RHc ∗ PH2O)

1/

 (RHa × PH2O)

Pc
e

(4.192I f c/A)

T1.334
f c

− 1

 (7)

PH2O = 2.95 ∗ 10−2Tc − 9.18 ∗ 10−5T2
c + 1.44 ∗ 10−7T3

c − 2.18
∣∣∣ Tc = Tf c − 273.15 (8)

vact, which indicates the activation overpotential per cell, is computed by (9), and vR
is computed using (11) to determine the ohmic voltage drop in the cells, and vc is used to
compute the concentration over-potential in cells is calculated according to (13).

vact = −
[
ξ1 + ξ2Tf c + ξ3Tf cln

(
CO2

)
+ ξ4Tf cln

(
I f c

)]
(9)

CO2 =
PO2

5.08× 106 e
498
Tf c (10)
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VR = I f c(Rm + Rc)

∣∣∣∣∣ Rm =
ρl

m
A

(11)

ρm =

181.6
[

1 + 0.03
( I f c

A

)
+ 0.062

( I f c
303

)2( I f c
A

)2.5
]

[
λ− 0.634− 3

( I f c
A

)]
e

4.18(
Tf c−303

Tf c
)

(12)

vc = −β2 ln
(

Jmax − J
Jmax

)
(13)

where Tf c is a phrase about the operating FC temperature in Kelvin Po2 , PH2 , and PH2O
are the partial pressure of the oxygen (O2), the hydrogen (H2), and H2O, respectively.
RHc indicates the relative moisture of vapor at the cathode (atm) and RHa is the relative
moisture of vapor at anode. Pc is the inlet pressure of the cathode, while Pa is the inlet
pressure of the anode e in (atm). The concentration of the O2 is symbolized using CO2

in mol/cm3. Rm is the membrane’s resistance, while Rc is the resistance of connections.
I f c is the FC operating current. β2 stands for a parametric coefficient. l (CM) and ρm
are the thickness and the resistance of the membrane. J and Jmax are the density of the
actual current and the maximum of J (A/cm2). It is obvious from the previously described
equation that the values of seven unknown parameters (ξ1, ξ2, ξ3, ξ4, λ, Rc, and β2) have
to be accurately extracted to build up an accurate PEMFC model. This problem is known
as the parameter estimation of PEMFC and belongs to the optimization problem and hence
could be solved using the metaheuristic algorithms. Therefore, in this paper, an effective
metaheuristic algorithm, known as GTO, will be herein adapted, with some modification
on its performance, for tackling this problem.

3. The Standard Artificial Gorilla Troops Optimizer

In [51], a newly proposed metaheuristic optimizer inspired by the social intelligence
of gorilla troops, namely artificial gorilla troops optimizer (GTO), has been proposed for
tackling global optimization problems and their outcomes proved its superiority for those
problems. The GTO algorithm is divided into two phases, exploration and exploitation,
which are described next in detail.

3.1. Exploration Operator

In this phase, the GTO will seek to explore the search space of the optimization
problem for finding the most promising regions, which might include the near-optimal
solution as modeled in the following equations:

Gi(t + 1) =


→
lb +

(→
ub−

→
lb
)
∗ r r1 < p

(r2 − C)× (Xr(t)) + H × L r1 ≥ 0.5

Xi(t)− L× (L× (Xi(t)− Gr(t)) + r3 × (Xi(t)− Gr(t))) r1 < 0.5

(14)

C = F×
(

1− t
maxt

)
(15)

F = cos(2× r4) + 1 (16)

L = C× l (17)

H =
→
Z × X(t)

∣∣∣∣Z = [−C, C] (18)

where
→
lb and

→
ub are two vectors including the lower bound and upper bound of the

optimization problem dimensions, and r, r1, r2, r3, and r4 include randomly generated
numbers between 0 and 1. t and maxt indicate the current iteration and maximum iteration,
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respectively. l is a variable including a number created randomly between −1 and 1. Gi
includes the positions of the ith solution created in the next iteration, while Xi refers to the
current position of the same solution. Gr is a solution selected randomly from the updated
positions, while Xr also is a solution selected randomly from the current solutions. p is a

predefined probability between 0 and 1.
→
Z is a vector including random numbers generated

between −C and C. After that, the updated solution Gi(t + 1) replaces the current position
Xi(t) if it is better.

3.2. Exploitation Operator

The exploitation operator in the GTO is achieved based on two behaviors: following
the best-so-far solution and competition for adult females. Following the best-so-far
solution X∗ is mathematically implemented in the GTO using the following equation:

Gi(t + 1) = L×M× (Xi(t) − X∗(t)) + Xi(t) (19)

M =

(∣∣∣∣∣ 1
N

N

∑
i=0

Gi(t)

∣∣∣∣∣
g) 1

g

(20)

g = 2L (21)

where N represents the population size. The second behavior, known as competition for
adult females, is mathematically described using the following formula:

Gi(t + 1) = −(Q× Xi(t) − Q× X∗(t))× A + X∗(t) (22)

Q = 2× r5 − 1 (23)

A = E× β1 (24)

E =

{
N1, r6 ≥ 0.5
N2, r6 < 0.5

(25)

where r5 and r6 are two numbers selected randomly in the range of 0 and 1. β1 is a
value predefined by the researchers before starting the optimization process. N1 is a
vector assigned randomly using the normal distribution, while N2 is a random number
also generated randomly using the normal distribution. Exchanging between those two
behaviors is based on a predefined variable W and factor C presented in (15) as defined in
the following equation:

Gi(t + 1) =
{

execute Eq(30) i f C ≥ w
execute Eq(23) i f C < w

(26)

The steps of the GTO are shown in Algorithm 1.
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Algorithm 1 Pseudocode for GTO

1. Initialize N solutions randomly within the search space, Xi(i ∈ N).
2. Initialize β1 , W, and p.
3. Evaluate each solution and determine the best-so-far one, X∗, with the lowest fitness value.
4. t = 0;
5. while (t < maxt)
6. update both C and L using (15) and (17), respectively.
7. // Exploration
8. f or each i solution
9. update the location of the current solution using (14)
10. Evaluate Gi and replace Xi with Gi if Gi is better, in addition to updating X∗ if this

updated solution is better
11. End
12. // Exploitation
13. f or each i solution
14. update the location of the current solution using (26)
15. Evaluate Gi and replace Xi with Gi if Gi is better, in addition to updating X∗ if this

updated solution is better
16. End
17. t = t + 1;
18. End while
19. Return X∗.

4. The Proposed Algorithm: MGTO

In this section, the steps of the proposed algorithm, modified GTO, will be discussed
in detail. Those steps are initialization, the objective function, and the modified GTO
(MGTO). Our main idea here is based on replacing an updating scheme in the standard
GTO with another one, maximizing its performance toward preserving the population
diversity for exploring more regions within the optimization process. This is an attempt
to avoid becoming stuck in local minima while accelerating the convergence speed in the
right direction of the near-optimal solution.

4.1. Initialization Step

Before starting the optimization process, a number N of solutions with seven unknown
parameters will be randomly distributed within the search space of this problem using the
following equation:

→
lb +

(→
ub−

→
lb
)
∗→r (27)

where
→
r is a vector of seven variables initialized randomly between 0 and 1. After that,

those initialized solutions will be evaluated using the objective function discussed later
and then the solution with the lowest objective value, namely the best-so-far solution, is
employed in the next generation in the hope of finding a better one.

4.2. Objective Function

The MGTO is employed to find the values of seven unknown parameters based
on minimizing the error value between the measured and estimated current using an
objective function known as the sum of the squared errors (SSE). The SSE is mathematically
formulated as shown in (25) [48]:

SSE = f (Xi) =
LD

∑
c=1

∣∣VS, measured(c)−VS, estimated(c)
∣∣2 (28)

where LD indicates the number of the measured data points and Xi includes the values of
the parameters obtained by the ith solution.
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4.3. The Modified Artificial Gorilla Troops Optimizer: MGTO

The exploitation operator still suffers from slow convergence speed because it is based
significantly on using random numbers, which might maximize the step sizes. Hence, the
new solution will jump far away from the best-so-far solution, which might involve the
desired near-optimal solution. Furthermore, equality between exploration and exploitation
processes might reduce the performance of the algorithm in some cases which need higher
exploration operators and vice versa. This is the second advantage of the standard MGTO,
which we seek to solve within a new modified variant called the MGTO. In the MGTO,
the exploitation operator is replaced with another one, aiding in exploring more regions
around the best-so-far solution and other places within the search space in the hope of
finding more promising regions which might involve the desired near-optimal solution.
This new exploitation operator is based on two folds, and the first one is mathematically
described as that:

Gi(t + 1) = X∗ + β× (Xr(t)− Xi(t)) + (1− β)× (Xr1(t)− Xr2(t)) (29)

where β is a controlling factor generated randomly between 0 and 1. In this fold, two-step
sizes are generated based on the selected solution, where the first step size is based on
multiplying the difference between a solution Xr(t) selected randomly from the current
population and the current solution Xi(t) by β, and the second one is created by multiplying
the difference between two solutions, Xr1(t) and Xr2(t), selected randomly from the current
population by (1− β). Finally, the best-so-far solution will be updated using those two
steps. This phase will relate searching around the nearly best-so-far solution with the
diversity of the population, for example, if the difference between the two solutions
selected randomly from the population is small, the generated step sizes will update the
current solution to a region so near to the best-so-far solution; otherwise, the current
solution will update to a far region from the best-so-far solution. Hence, this will help
in avoiding becoming stuck in local minima with aiding to explore all regions gradually
around the best-so-far solution. The second fold is modeled using the following equation:

Gi(t + 1) = Xr(t) + a× (Xr1(t)− Xi(t)) + b× (Xr2(t)− Xr3(t)) (30)

where Xr(t) is a solution selected randomly from the current population, a and b are
two random numbers selected between 0 and 1. Moreover, in this fold, two steps are
generated using two different random numbers to generate various steps sizes exploring
the regions extensively around the randomly selected solution as a new attempt to avoid
becoming stuck in local minima, in addition to preserving the population diversity as much
as possible. Exchanging between those two folds is achieved with a probability of 0.5, as
shown in (31).

Gi(t + 1) =
{

execute Eq(29) i f C ≤ 0.5
execute Eq(30) i f C > 0.5

(31)

Finally, the steps of the proposed algorithm, MGTO, are presented in Algorithm 2 and
depicted in Figure 2.
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Algorithm 2 Pseudocode for modified GTO (MGTO)

1. Initialize N solutions randomly within the search space, Xi(i ∈ N).
2. Initialize β1 , W, and p.
3. Evaluate each solution and determine the best-so-far one, X∗, with the lowest fitness value.
4. t = 0;
5. while (t < maxt)
6. update both C and L using (15) and (17), respectively.
7. // Exploration f or each i solution
8. update the location of the current solution using (14)
9. Evaluate Gi and replace Xi with Gi if Gi is better, in addition to updating X∗ if this

updated solution is better
10. End
11. // Modified exploitation
12. f or each i solution
13. update the location of the current solution using (31)
14. Evaluate Gi and replace Xi with Gi if Gi is better, in addition to updating X∗ if this

updated solution is better
15. End
16. t = t + 1;
17. End while
18. Return X∗.
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5. Findings and Discussions

Our proposed algorithm is validated using four commercial PEMFC stacks, 250 W stack,
BCS-500W stack, and SR-12 stack, due to widespread use in the literature [9,34,45,52–58].
Those PEMFC stacks have I–V curves specified in the manufacturers’ datasheets and
have to be estimated by finding the unknown parameters of its mathematical model.
Each unknown parameter has a search boundary that contains the near-optimal solution
in an unknown region within. Generally, the characteristics of the employed PEMFCs
stack, and the lower and upper bound of the unknown parameters, are presented in
Table 2. Furthermore, the MGTO is compared with nine well-known optimizers to show its
efficiency as a strong alternative to tackle the parameter estimation of PEMFC stacks; those
algorithms are differential evolution (DE) [59], grey wolf optimizer (GWO) [59], hybrid
DE with GWO (DEGWO) [59], bonobo optimizer (BO) [60], flower pollination algorithm
(FPA) [61], slime mold algorithm (SMA) [16], seagull optimization algorithm [62], horse
herd optimization algorithm [63], and classical GTO [51]. Regarding the parameters of
those algorithms, they are set as found in the cited paper, except classical GTO, such that
its parameters assignment will be discussed within the next section.

Table 2. Lb and ub of each unknown parameter in addition to the employed PEMFC characteristics.

PEMFC Type 250 W Stack BCS-500W Stack SR-12 Stack Parameters ub Lb

Ncells 24 32 48 ξ1 −1.1997 −0.8532
A
(
cm2) 27 64 62.5 ξ2 × 10−3 1.0000 5.0000

l (µm) 178 178 25 ξ3 × 10−5 3.6000 9.8000
Jmax, mA/cm2 860 469 672 ξ4 × 10−5 −26.0000 −9.5400
Tfc, K 338.15 333 323 λ 13.0000 23.0000
PO2 , atm 1 1 0.2095 Rc × 10−4 1.0000 8.0000
PH2 , atm 1 1 1.47628 β× 10−2 1.3600 50.0000

All experiments conducted herein are implemented using the MATLAB platform,
using a device with the capabilities:

• 32 GB of RAM;
• Intel(R) Core(TM) i7-4700MQ CPU @ 2.40 GHz;
• 64-bit Windows 10.

Finally, there are two well-known metrics used to evaluate the accuracy of the obtained
parameters for minimizing the error between the measured and estimated data; those
metrics are mean absolute percentage error (MAPE) and mean absolute error (MAE), which
are mathematically described using the following equation:

MAE =
1

LD

LD

∑
c=1

∣∣∣v f c, measured(c)− v f c, estimated(c)
∣∣∣ (32)

MAPE =
1

LD

LD

∑
c=1

∣∣∣∣∣v f c, measured(c)− v f c, estimated(c)
v f c, measured(c)

∣∣∣∣∣ (33)

5.1. Parameter Settings

The classical GTO has three parameters, p, W, and β, that have to be accurately picked
to maximize its performance. Therefore, extensive experiments have been conducted using
various values for each parameter. For example, the best value for both p and W has been
picked after conducting extensive experiments with various values of 0.0, 0.01, 0.05, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, and 1.0, which show that the best value for p is of
0.01, as depicted in Figure 3a, while the best for W is competitive for 0.6, 0.8, and 0.99.
Generally, values of 0.01 and 0.8 are used within the conducted experiments next for p and
W, respectively. Likewise, for the parameter β, several experiments have been conducted
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under virus values, and their outcomes have been depicted in Figure 3c, which shows that
a value of 2 for this parameter is better than all the other values.
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5.2. Test Case 1: 500 W Stack

This section investigates the performance of our proposed algorithm, MGTO, using
the first test case based on using a well-known commercial PEMFC stack called 500 W
stack. At the onset, all algorithms have been prepared using the same population size and
maximum of function evaluation of 25 and 5000 to achieve a fair comparison, and then
all are executed 25 independent runs. The outcomes of those runs have been analyzed
in terms of the best, average, worst, and standard deviation (SD), which are presented in
Table 3. In addition, this table presents the best-obtained parameters by each algorithm.
As a result of observation, the MGTO could be the best for all those terms and the GTO
comes in the second rank as the second-best one after the MGTO, while the SOA is the
worst. Moreover, this table shows that the MGTO is better for the two additional metrics:
MAE and MAPE.
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Table 3. Comparison among algorithms using test case 1.

Parameter DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO

ξ1(V) −0.9677 −0.9978 −0.9328 −0.8748 −0.8548 −0.9488 −0.8532 −1.0586 −0.9082 −1.0305
ξ2(V/k) 0.0037 0.0038 0.0027 0.0025 0.0033 0.0026 0.0022 0.0031 0.0032 0.0029
ξ3(V/k) 9.800 × 10−5 9.437 × 10−5 4.565 × 10−5 5.348 × 10−5 9.026 × 10−5 3.706 × 10−5 3.600 × 10−5 5.350 × 10−5 7.862 × 10−5 3.900 × 10−5

ξ4(V/k)
−9.54 ×

10−5
−1.80 ×

10−4
−1.82 ×

10−4
−9.54 ×

10−5
−1.776 ×

10−4
−1.012 ×

10−4
−9.540 ×

10−5
−9.540 ×

10−5
−1.910 ×

10−4
−1.931 ×

10−4

λ 13.0000 22.1506 21.9455 13.0000 15.6367 16.3142 13.0000 13.4848 22.9584 21.1529
Rc(Ω) 8.000 × 10−4 5.076 × 10−4 6.778 × 10−4 8.000 × 10−4 1.977 × 10−4 3.663 × 10−4 1.908 × 10−4 6.129 × 10−4 4.245 × 10−4 1.199 × 10−4

β2 0.0238 0.0192 0.0157 0.0177 0.0136 0.0730 0.0309 0.0264 0.0155 0.0162
SSE (best) 5.7768 0.0176 0.0146 0.0117 0.0171 0.1975 6.7438 0.3019 0.0117 0.0117
SSE (avg) 5.8192 0.0794 0.0373 5.4968 0.0325 17.0048 7.1814 5.8182 0.0169 0.0120
SSE (worst) 5.9802 0.2871 0.1470 14.2898 0.1272 87.9465 8.0204 6.9522 0.0336 0.0162
SSE (SD) 0.0517 0.0813 0.0276 2.6105 0.0251 19.7260 0.2916 1.3542 0.0062 0.0009
MAE (best) 0.4316 0.0850 0.0505 0.3388 0.0614 1.1226 0.4780 0.4480 0.0141 0.0128
MAPE (best) 1.9153 0.4111 0.2328 1.3925 0.2760 5.6113 2.1577 1.9928 0.0647 0.0610

To measure the convergence speed, five-number summary, and CPU time of the
MGTO, Figure 4 is presented to expose all those outcomes for each algorithm. From
this figure, it is observed that the MGTO is the best in terms of faster reaching the near-
optimal solution and the five-number summary depicted in the boxplot. Broadly speaking,
Figure 4a, which depicts the outcomes of various algorithms on this test case using the
boxplot, shows that the proposed algorithm is the best, and the GTO is the second-best one,
while the SOA is the worst one. Regarding the convergence speed shown in Figure 4c, the
MGTO could come true with the best convergence speed, and the GTO is the second-best
one, while the FPA is the worst one. For CPU time depicted in Figure 4b, the MGTO could
come as the eighth one after the GWO, DEGWO, DE, FPA, SMA, SOA, and BO, but its
superiority for the other metrics, apart from converging the CPU time with the best eight
algorithms, makes it the best for tackling this problem.
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Furthermore, Figure 5a,b depicts the I–V and I–P polarization curves obtained by
depicting the estimated and measured data; the best-so-far parameters estimated by the
MGTO receive the estimated data points. From this figure, the MGTO could significantly
find accurate parameters that minimize the error between measured and estimated data.
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In Table 4, the p-value under the Wilcoxon rank-sum test, which determines if the
outcomes obtained by the MGTO on test case 1 are significantly different from those of
each rival algorithms, are shown. This table shows that all p-values are less than 0.05,
making the acceptance moves toward the alternative hypothesis, which says that there is a
significant difference between the outcomes obtained by the MGTO and each of the others.

Table 4. Comparison under Wilcoxon rank-sum test on test case 1.

DE GWO DEGWO BO SMA SOA HOA FPA GTO

h-value 1 1 1 1 1 1 1 1 1
p-value 1.4156 × 10−9 1.4156 × 10−9 2.2854 × 10−9 2.5260 × 10−8 1.4156 × 10−9 1.4156 × 10−9 1.4156 × 10−9 1.4156 × 10−9 8.8609 × 10−6

5.3. Test Case 2: 250 W Stack

Another well-known commercial PEMFC stack, called 250 W stack, is used to inves-
tigate the performance of the MGTO compared with some of the rival algorithms. The
outcomes obtained by running the MGTO and the other rival algorithms 30 independent
times on this stack are given in Table 5. This table shows that the MGTO is the best for all
employed metrics, except MAE and MAPE, which are better for GTO.

In addition, the boxplot, the convergence speed, and CPU time of each algorithm are
presented in Figure 6, which shows the superiority of MGTO in terms of the five-number
summary depicted using the boxplot, and the convergence speed, while their performance
is competitive for CPU time. Broadly explaining, Figure 6a shows that the proposed
algorithm is the best and GTO is the second-best, while SOA is the worst. Additionally,
Figure 7 is presented to show I–V and I–P curves between measured and estimated data
points. From this figure, it is obvious that estimated data points are highly consistent with
those obtained practically.
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Table 5. Comparison among algorithms on test case 2.

Parameter DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO

ξ1(V) −0.9126 −1.1459 −1.1997 −1.1749 −0.8712 −1.0017 −0.8532 −1.1678 −1.0071 −0.9184
ξ2(V/k) 0.0030 0.0033 0.0044 0.0037 0.0033 0.0034 0.0023 0.0038 0.0035 0.0029
ξ3(V/k) 6.826 × 10−5 3.842 × 10−5 9.378 × 10−5 6.015 × 10−5 8.822 × 10−5 7.339 × 10−5 3.600 × 10−5 7.012 × 10−5 7.518 × 10−5 5.342 × 10−5

ξ4(V/k)
−9.540 ×

10−5
−1.627 ×

10−4
−1.700 ×

10−4
−9.540 ×

10−5
−1.682 ×

10−4
−1.021 ×

10−4
−9.540 ×

10−5
−9.540 ×

10−5
−1.746 ×

10−4
−1.741 ×

10−4

λ 14.0436 20.6210 22.7543 14.1055 18.8055 19.7886 13.0000 13.5684 19.5978 20.4346
Rc(Ω) 8.000 × 10−4 4.526 × 10−4 2.872 × 10−4 8.000 × 10−4 1.115 × 10−4 5.990 × 10−4 1.000 × 10−4 2.947 × 10−4 1.006 × 10−4 2.625 × 10−4

β2 0.0136 0.0176 0.0196 0.0136 0.0136 0.0294 0.0136 0.0140 0.0139 0.0146
SSE (best) 1.9144 0.3407 0.3369 0.3360 0.3362 0.3508 2.0445 0.9151 0.3361 0.3360
SSE (avg) 1.9577 0.3934 0.3489 2.1610 0.3442 6.2246 2.0501 1.9129 0.3404 0.3364
SSE (worst) 2.0445 1.2163 0.4271 6.2395 0.3791 30.7484 2.0653 2.0451 0.3740 0.3383
SSE (SD) 0.0408 0.1730 0.0211 1.1183 0.0105 8.4842 0.0064 0.2352 0.0079 0.0007
MAE (best) 0.2759 0.1449 0.1509 0.2739 0.1299 0.3095 0.2899 0.2805 0.1252 0.1263
MAPE (best) 1.4663 0.8079 0.8521 1.4520 0.7061 1.7270 1.5555 1.4887 0.6891 0.6934
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Finally, the Wilcoxon rank-sum test is used to see if the outcomes of the MGTO are
different from the rival algorithms or not. The outcome results from applying the Wilcoxon
rank-sum test are presented in Table 6, which shows that the alternative hypothesis is ace
with all the rival algorithms because the p-value of each algorithm is less than 5%.
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Table 6. Comparison under Wilcoxon rank-sum test on test case 2.

DE GWO DEGWO BO SMA SOA HOA FPA GTO

h-value 1 1 1 1 1 1 1 1 1
p-value 1.4157 × 10−9 1.4157 × 10−9 4.1259 × 10−9 4.4532 × 10−8 3.9965 × 10−8 1.4157 × 10−9 1.4157 × 10−9 1.4157 × 10−9 1.6165 × 10−7

5.4. Test Case 3: SR-12 PEMFC Stack

In this section, an additional commercial PEMFC stack, namely SR-12 500 W, utilized
widely in the literature, is used to affirm the effectiveness of our proposed algorithm; the
proposed and rival algorithms have been executed for 30 independent runs under the same
settings and their analyzed outcomes are given in Table 7. This table (Table 7) shows that
the proposed algorithm, MGTO, is the best in terms of the best, average, worst, SD, MAE,
and MAPE, while the SOA is the worst for all those metrics. In addition, Figure 8 has
been presented to show the performance of the proposed algorithm graphically compared
to the others in terms of CPU time, convergence speed, and five-number summary. It is
concluded from this figure that the MGTO is the best for the five-number summary, shown
in Figure 8a, and the convergence speed, displayed in Figure 8c, while its CPU time is
competitive with the others, as depicted in Figure 8b. Furthermore, Table 8 presents the
outcomes resulting from applying the Wilcoxon rank-sum test on the outcomes obtained
by the proposed algorithm against those of each one of the rival algorithms. According to
the outcomes presented in this table, the MGTO’s outcomes are significantly different from
those obtained by the others because the p-value under each rival algorithm is less than
0.05. This makes the alternative hypothesis in the Wilcoxon rank-sum test accepted.

Figure 9 is presented to show the consistency of the estimated I–V and I–P curves
against the measured ones, which affirms that the estimated parameters by the MGTO
could reach estimated characteristics that are highly consistent with the measured ones
and hence it is a strong alternative to all the existing parameter estimation techniques.
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Table 7. Comparison among algorithms using test case 3.

Parameter DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO

ξ1(V) −0.9491 −0.8568 −1.0377 −0.8532 −1.0505 −0.9463 −0.8532 −0.8577 −1.0774 −1.1403
ξ2(V/k) 0.0027 0.0031 0.0033 0.0029 0.0030 0.0030 0.0023 0.0027 0.0037 0.0040
ξ3(V/k) 3.9 × 10−5 7.51 × 10−5 5.71 × 10−5 6.35 × 10−5 3.61 × 10−5 4.97 × 10−5 3.60 × 10−5 5.59 × 10−5 7.24 × 10−5 7.43 × 10−5

ξ4(V/k) −9.00 × 10−5 −1.02 × 10−4 −1.00 × 10−4 −9.54 × 10−5 −1.01 × 10−4 −1.87 × 10−4 −9.54 × 10−5 −9.54 × 10−5 −1.06 × 10−4 −1.06 × 10−4

λ 17.5081 14.7370 13.0595 14.7560 21.0273 14.8101 13.0000 13.9576 22.9814 18.9405
Rc(Ω) 4.6 × 10−4 5.05 × 10−4 1.10 × 10−4 8.00 × 10−4 7.36 × 10−4 3.85 × 10−4 2.05 × 10−4 7.97 × 10−4 3.63 × 10−4 2.33 × 10−4

β2 0.1483 0.1440 0.1512 0.1425 0.1439 0.0984 0.1548 0.1418 0.1491 0.1498
SSE (best) 0.1048 0.0032 0.0028 0.0833 0.0004 0.0282 0.3003 0.0250 1.4441 × 10−4 1.4212 × 10−4

SSE (avg) 0.2349 0.0497 0.0517 10.2931 0.0229 20.8772 0.7558 0.1313 5.948 × 10−3 1.6760 × 10−4

SSE (worst) 0.6134 0.1623 0.2103 254.4047 0.0817 126.4416 2.4341 0.2059 3.0422 × 10−2 6.4372 × 10−4

SSE (SD) 0.1210 0.0463 0.0536 50.8566 0.0236 27.2663 0.5015 0.0413 9.3330 × 10−3 9.9469 × 10−5

MAE (best) 0.0819 0.0310 0.0565 0.0494 0.0336 0.8413 0.1166 0.0503 5.8197 × 10−3 2.2472 × 10−3

MAPE (best) 0.2382 0.1012 0.1656 0.1432 0.1064 2.6281 0.3885 0.1474 1.8892 × 10−2 7.0079 × 10−3
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DE GWO DEGWO BO SMA SOA HOA FPA GTO

h-value 1 1 1 1 1 1 1 1 1
p-value 1.417 × 10−9 1.417 × 10−9 1.417 × 10−9 1.417 × 10−9 1.802 × 10−9 1.417 × 10−9 1.417 × 10−9 1.417 × 10−9 2.297 × 10−8



Energies 2021, 14, 7115 19 of 23
Energies 2021, 14, x FOR PEER REVIEW 20 of 24 
 

 

  
(a) (b) 

Figure 9. Depiction of I–V and I–P curves obtained using MGTO on test case 3: (a) I–P measured against I–P computed, 

(b) I–V measured against I–V computed. 

Table 7. Comparison among algorithms using test case 3. 

Parameter DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO 

ξ1(V) −0.9491 −0.8568 −1.0377 −0.8532 −1.0505 −0.9463 −0.8532 −0.8577 −1.0774 −1.1403 

ξ2(V/k) 0.0027 0.0031 0.0033 0.0029 0.0030 0.0030 0.0023 0.0027 0.0037 0.0040 

ξ3(V/k) 3.9 × 10−5 7.51 × 10−5 5.71 × 10−5 6.35 × 10−5 3.61 × 10−5 4.97 × 10−5 3.60 × 10−5 5.59 × 10−5 7.24 × 10−5 7.43 × 10−5 

ξ4(V/k) −9.00 × 10−5 −1.02 × 10−4 −1.00 × 10−4 −9.54 × 10−5 −1.01 × 10−4 −1.87 × 10−4 −9.54 × 10−5 −9.54 × 10−5 −1.06 × 10−4 −1.06 × 10−4 

λ 17.5081 14.7370 13.0595 14.7560 21.0273 14.8101 13.0000 13.9576 22.9814 18.9405 

Rc(Ω) 4.6 × 10−4 5.05 × 10−4 1.10 × 10−4 8.00 × 10−4 7.36 × 10−4 3.85 × 10−4 2.05 × 10−4 7.97 × 10−4 3.63 × 10−4 2.33 × 10−4 

β2 0.1483 0.1440 0.1512 0.1425 0.1439 0.0984 0.1548 0.1418 0.1491 0.1498 

SSE (best) 0.1048 0.0032 0.0028 0.0833 0.0004 0.0282 0.3003 0.0250 1.4441 × 10−4 1.4212 × 10−4 

SSE (avg) 0.2349 0.0497 0.0517 10.2931 0.0229 20.8772 0.7558 0.1313 5.948 × 10−3 1.6760 × 10−4 

SSE (worst) 0.6134 0.1623 0.2103 254.4047 0.0817 126.4416 2.4341 0.2059 3.0422 × 10−2 6.4372 × 10−4 

SSE (SD) 0.1210 0.0463 0.0536 50.8566 0.0236 27.2663 0.5015 0.0413 9.3330 × 10−3 9.9469 × 10−5 

MAE (best) 0.0819 0.0310 0.0565 0.0494 0.0336 0.8413 0.1166 0.0503 5.8197 × 10−3 2.2472 × 10−3 

MAPE (best) 0.2382 0.1012 0.1656 0.1432 0.1064 2.6281 0.3885 0.1474 1.8892 × 10−2 7.0079 × 10−3 

Table 8. Comparison under Wilcoxon rank-sum test using test case 3. 

 DE GWO DEGWO BO SMA SOA HOA FPA GTO 

h-value 1 1 1 1 1 1 1 1 1 

p-value 1.417 × 10−9 1.417 × 10−9 1.417 × 10−9 1.417 × 10−9 1.802 × 10−9 1.417 × 10−9 1.417 × 10−9 1.417 × 10−9 2.297 × 10−8 

5.5. Accumulative Grade Point Assessment 

In [64], a new assessment mechanism, known as an accumulative grade point assess-

ment (CGPA), has been proposed to rank and evaluate the performance of the various 

algorithms based on six factors: 

 Absolute Error (E); 

 Computational Time (t); 

 Standard Deviation of Error (𝜎𝑒); 

 Standard Deviation of Time (𝜎𝑒); 

 Consistency of Rs (λRs); 

 Consistency of Rsh (λRsh). 

Herein, this mechanism is employed to evaluate the performance of the proposed 

algorithms relative to the others. However, only the first four factors are employed be-

cause it is corresponding to the current problem, parameter estimation of the PEMFC, 

while the other two factors correspond to the parameter estimation of the photovoltaic 

Figure 9. Depiction of I–V and I–P curves obtained using MGTO on test case 3: (a) I–P measured against I–P computed,
(b) I–V measured against I–V computed.

5.5. Accumulative Grade Point Assessment

In [64], a new assessment mechanism, known as an accumulative grade point assess-
ment (CGPA), has been proposed to rank and evaluate the performance of the various
algorithms based on six factors:

• Absolute Error (E);
• Computational Time (t);
• Standard Deviation of Error (σe);
• Standard Deviation of Time (σe);
• Consistency of Rs (λRs);
• Consistency of Rsh (λRsh).

Herein, this mechanism is employed to evaluate the performance of the proposed
algorithms relative to the others. However, only the first four factors are employed because
it is corresponding to the current problem, parameter estimation of the PEMFC, while the
other two factors correspond to the parameter estimation of the photovoltaic model. This
mechanism calculates the grade point assessment (GPA) for each factor from those four
factors using the following formula:

GPA = w ∗ (βmax − β)

(βmax − βmin)
(34)

where β indicates the obtained value by an algorithm for an arbitrary factor, w is the weight
of this factor in proportion to the others, βmax and βmin are the maximum and minimum
values obtained by the algorithms for this factor. For the first factor, the GPA weightage
was set to 2 because the absolute error is considered the most important factor used to
measure the efficiency of the algorithms for tackling this problem, while the other factors
were set to 0.025. Finally, the total GPA (T-GPA) is a phrase about the average GPA values
obtained on the four factors. In Tables 9–11, the total GPA for those four factors on three
investigated test cases are presented. After observing those tables, it is concluded that
the MGTO could reach the best T-GPA compared to the others although the proposed
could not achieve the best value for the computational time for those test cases. Finally,
the accumulative GPA values (CGPA), which result from calculating the average of the
T-GPA values obtained by each algorithm on three investigated test cases, are introduced
in Table 12, which affirms the superiority of the MGTO.
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Table 9. Comparison under T-GPA on test case 1.

DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO

E 0.19180 1.82081 1.91974 1.47338 1.79757 0.59519 0.00000 0.28365 1.98509 2.00000
t 0.01801 0.02500 0.01635 0.01518 0.01621 0.01466 0.00000 0.00696 0.00462 0.00525
σe 0.00242 0.02452 0.02485 0.02195 0.02432 0.00995 0.00000 0.00116 0.02500 0.02497
σt 0.01784 0.02410 0.02500 0.02217 0.02194 0.02468 0.02420 0.02329 0.00000 0.01944
T-GPA 0.05752 0.47361 0.49649 0.38317 0.46501 0.16112 0.00605 0.07877 0.50368 0.51242

Table 10. Comparison under GPA on test case 2.

DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO

E 0.01989 1.74097 1.85527 0.21060 1.99434 0.39208 0.00000 0.29705 1.99173 2.00000
t 0.01795 0.02253 0.01715 0.00687 0.02500 0.00946 0.00000 0.01044 0.00815 0.00420
σe 0.00323 0.02500 0.02426 0.00309 0.02247 0.01086 0.00343 0.00000 0.02246 0.02248
σt 0.02772 0.00075 0.01202 0.02053 0.02371 0.01691 0.00000 0.02500 0.01976 0.01758
T-GPA 0.01720 0.44731 0.47717 0.06027 0.51638 0.10733 0.00086 0.08312 0.51052 0.51107

Table 11. Comparison under GPA on test case 3.

DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO

E 1.6956 1.8771 1.8282 1.8844 1.9349 0.0000 1.7813 1.8816 1.9982 2.0000
t 0.0175 0.0250 0.0183 0.0133 0.0161 0.0129 0.0000 0.0054 0.0092 0.0067
σe 0.0000 0.0227 0.0070 0.0165 0.0209 0.0189 0.0047 0.0015 0.0110 0.0250
σt 0.0000 0.0227 0.0070 0.0165 0.0209 0.0189 0.0047 0.0015 0.0110 0.0250
T-GPA 0.4283 0.4869 0.4651 0.4827 0.4982 0.0126 0.4477 0.4725 0.5073 0.5142

Table 12. Comparison under CGPA on three test cases.

DE GWO DEGWO BO SMA SOA HOA FPA GTO MGTO

T-GPA1 0.05752 0.47361 0.49649 0.38317 0.46501 0.16112 0.00605 0.07877 0.50368 0.51242
T-GPA1 0.4283 0.4869 0.4651 0.4827 0.4982 0.0126 0.4477 0.4725 0.5073 0.5142
T-GPA1 0.01720 0.44731 0.47717 0.06027 0.51638 0.10733 0.00086 0.08312 0.51052 0.51107
A.CGPA 0.16767 0.46927 0.47959 0.30871 0.49320 0.09368 0.15154 0.21146 0.50717 0.51256

6. Conclusions and Future Work

This paper presents a new parameter estimation technique for the PEMFC based on
the artificial gorilla troops optimizer (GTO), which has been recently proposed for tackling
global optimization problems. However, unfortunately, the GTO still suffers from falling
into local optima and low convergence speed, so it is modified in this paper by replacing the
exploitation operator with a new one, aiding in disposing of those problems. This modified
variant, abbreviated MGTO, and the standard GTO are herein assessed using three well-
known PEMFC stacks, 250 W stack, BCS-500W stack, and SR-12 stack, compared with
eight optimization algorithms, SOA, DE, DEGWO, GWO, FPA, SMA, BO, and HOA, under
various performance metrics such as best, average, worst, SD, CPU time, convergence
curve, MAE, and MAPE, in addition to a statistical test, namely the Wilcoxon rank-sum
test. The outcomes of the MGTO are better than those of the compared algorithms for the
employed performance metrics on all investigated PEMFCs, except the CPU time which is
competitive among the algorithms. Our future work involves finding another way to make
further improvements to the MGTO to reduce the consumed CPU time, while keeping or
improving the current accuracy.
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