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Abstract

Nonword pronunciation is a critical challenge for models of reading aloud but little attention has been given to identifying
the best method for assessing model predictions. The most typical approach involves comparing the model’s pronunciations
of nonwords to pronunciations of the same nonwords by human participants and deeming the model’s output correct if it
matches with any transcription of the human pronunciations. The present paper introduces a new ratings-based method, in
which participants are shown printed nonwords and asked to rate the plausibility of the provided pronunciations, generated
here by a speech synthesiser. We demonstrate this method with reference to a previously published database of 915 disyllabic
nonwords (Mousikou et al., 2017). We evaluated two well-known psychological models, RCO0 and CDP++, as well as an
additional grapheme-to-phoneme algorithm known as Sequitur, and compared our model assessment with the corpus-based
method adopted by Mousikou et al. We find that the ratings method: a) is much easier to implement than a corpus-based
method, b) has a high hit rate and low false-alarm rate in assessing nonword reading accuracy, and c) provided a similar
outcome as the corpus-based method in its assessment of RCO0 and CDP++. However, the two methods differed in their
evaluation of Sequitur, which performed much better under the ratings method. Indeed, our evaluation of Sequitur revealed
that the corpus-based method introduced a number of false positives and more often, false negatives. Implications of these
findings are discussed.
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Introduction readers make use of two distinct procedures operating in

parallel to translate orthography into phonology: a lexical

Experimental psychologists have studied the processes
underlying reading aloud for well over a century (e.g.
Huey, 1908). According to a longstanding account, skilled
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procedure that looks up the pronunciation of familiar words,
and a rule-based procedure that computes a pronunciation
via the application of grapheme-phoneme correspondence
rules such as EA — /i:/ (e.g. Coltheart, 1987; Morton,
1980; Ellis & Young, 2013). This dual-route account was
subsequently implemented as a computational model, the
dual-route cascaded model (DRC; Coltheart et al., 2001).
A key motivation for positing two distinct procedures
is to explain the ability to read aloud both irregular
words like “pint” and nonwords like “slint”. However,
this dual-route account was challenged by Seidenberg and
McClelland (1989), who argued that a gradient descent
learning mechanism could give rise to a set of probabilistic
associations that are sufficient to explain how both irregular
words and nonwords can be read aloud. Computational
models instantiating this theoretical claim were introduced
by Seidenberg and McClelland (1989) and Plaut et al.
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(1996). A third approach is to combine aspects of the
above two accounts by combining a lexical procedure
with a probabilistic association pathway that learns to map
graphemes to phonemes (Perry et al., 2007, 2010).

Assessing models of reading aloud: Rule-based,
analogy-based and corpus-based methods
of scoring nonword pronunciation

These models of reading aloud can be tested by examining
their ability to generalise their knowledge of spelling-
sound correspondences to novel stimuli, i.e. their ability
to name nonwords. Indeed, a fundamental challenge to
Seidenberg and McClelland (1989)’s model was offered
by Besner et al. (1990), whose analysis of the model’s
nonword naming performance concluded that the model
“failed to produce the correct phonological response to
almost 50% of stimuli” (p. 434). Plaut et al. (1996)
conceded that the model’s ability to name nonwords was
significantly worse than skilled readers, but also noted
that Besner et al. (1990)’s method of assessing the model
was somewhat problematic. Besner et al. (1990) scored
as correct any pronunciation of a nonword that followed
grapheme-phoneme correspondence rules (i.e. correctness
was based solely on regularity). However, this is an unfair
test, as readers do not always follow grapheme-phoneme
correspondence rules when pronouncing nonwords (e.g.
Andrews and Scarratt, 1998; Glushko, 1979). By the same
token, Coltheart et al. (2001)’s scoring of the DRC model’s
naming of nonwords — which adopted the same rule-based
method as Besner et al. (1990) — was overpermissive to a
model that relies almost exclusively on grapheme-phoneme
correspondence rules to name nonwords.

Because human readers sometimes produce nonword
pronunciations that appear to be derived by analogy with
real words rather than by following rules, Seidenberg
et al. (1994) proposed an alternative analogy-based scoring
method, according to which nonword pronunciations were
scored as correct “if we could identify a plausible basis for
them (either a rule or an analogy to a neighbouring word)”
(p.1185). For example, their model was scored correct for
pronouncing “jook” as /juk/ by analogy with the rhyming
words “book”, “cook”, etc., whereas the scoring method
used by Besner et al. (1990) and Coltheart et al. (2001)
would score this pronunciation as incorrect (grapheme-
phoneme correspondence rules imply a pronunciation
rhyming with “spook’). The model scored extremely well
when this method was used; for instance, its performance
on the Glushko (1979) set was scored as 96.5% correct (the
original participants scored 94.9% on average, according to
this criterion). The same scoring method was used by Perry
et al. (2007) in their assessment of their CDP+ model. They
reported an error rate of 6.3% for a set of 592 monosyllabic
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nonwords, comparable to the error rate of 7.3% for human
participants.

However, just as Coltheart et al. (2001)’s rule-based
scoring of the DRC model’s nonword naming is overly
generous in its assessment of that model’s performance,
the analogy-based method used by Seidenberg et al. (1994)
and Perry et al. (2007) to score their models seems far
too lenient. For example, the nonword “jinth” could be
pronounced with a long vowel, by analogy with the word
“ninth”, but Andrews and Scarratt (1998) found that not
one of their 44 participants produced this pronunciation (all
participants gave the regular pronunciation that rhymes with
the word “plinth”). Indeed, Andrews and Scarratt (1998)
found that the nonwords with irregular body neighbours
that they tested were given regular pronunciations by
their participants 85% of the time, overall. Thus, although
researchers may be able to point to analogies that support
the irregular pronunciations produced by models, it is
not clear how relevant this is to comparing models with
human performance. In the same way, Pritchard et al.
(2012) criticised the analogy-based scoring method as
too lenient because it includes “too many pronunciation
possibilities that readers simply do not consider” (p.1277).
An additional limitation concerns the potential subjectivity
of this measure, since a researcher must decide the extent
to which position-specific or position-independent rules
are considered (extreme cases of the latter may lead to
particularly lenient pronunciations such as the famous
“fish” pronunciation of the nonword “ghoti”).

An apparently straightforward way to overcome the
problems associated with the rule-based and analogy-
based scoring methods is to consider what pronunciations
readers actually assign to nonwords. As Plaut et al. (1996)
argued, the important question is not whether model’s
pronunciations are “correct” (in the sense of following
grapheme-phoneme correspondence rules), but whether
these pronunciations are similar to those produced by
human readers. However, assessing models on the basis of
human pronunciations is not quite as straightforward as one
might initially expect. One issue is that many of the older
data sets in the literature do not record what pronunciations
participants gave — the coding is limited to whether the
pronunciation was regular (e.g. Andrews and Scarratt, 1998;
Glushko, 1979).!

IThis is true even for published papers where authors included stricter
scoring criteria, such as Seidenberg et al. (1994), who report an
experiment in which they supplemented their analogy-based method
with a criterion that tested whether the model’s pronunciation matched
one of the top three pronunciations given by a sample of 24
participants. Seidenberg et al. (1994)’s appendices report the most
frequent pronunciation for each of their nonwords, but not what the
second and third most common pronunciations were, and thus it is not
possible to score other models against the same data set.
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The more fundamental issue, though, is that there is
considerable variability in human nonword naming (e.g.
Pritchard et al., 2012; Mousikou et al., 2017). This
variability challenges the notion that there is a correct
pronunciation of nonwords (which in itself is another
reason that the rule-based scoring method is problematic).
Accommodating this pronunciation variability suggests
the need for datasets (corpora) that record all of the
responses given by participants and scoring methods that are
appropriately sensitive to this variability.

To this end, Pritchard et al. (2012) assembled a corpus
of naming responses for 412 monosyllabic nonwords (each
of which was read aloud by 45 adults). All responses were
transcribed and the resulting corpus was used to assess the
DRC, CDP+ and CDP++ (Perry et al., 2010) models. A
model’s pronunciation of each nonword was deemed cor-
rect if it matched with any of the pronunciations in the
corpus. This corpus-based approach captures the variabil-
ity of human responses (contrary to the rule-based scoring
method used by Coltheart et al., 2001) but is not as lenient
as the analogy-based scoring method used by Seidenberg
et al. (1994) and Perry et al. (2007). Pritchard et al. (2012)
found that error rates were 1.5% for DRC, 49.0% for CDP+,
and 26.9% for CDP++. That is, for almost half of the non-
words the CDP+ model produced a response that was not
produced by any of the 45 human readers. These results
appear to pose a strong challenge to both the CDP+ and
CDP++ models. However, it is important to note that the
assessment of the DRC model depends on the details of the
scoring method. Although it was rare for the model’s pro-
nunciation not to correspond to one that was given by at
least one participant (reflecting the frequency with which
regular pronunciations are produced), for over a quarter of
the nonwords the most frequent response given by partic-
ipants did not correspond to the pronunciation output by
DRC.

More recently, Mousikou et al. (2017) have extended
the corpus-based method to disyllabic nonwords. Disyllabic
words and nonwords pose additional challenges given that
they contain a higher proportion of inconsistent grapheme-
phoneme correspondences and raise the problem of stress
assignment. Mousikou et al. (2017) constructed a corpus of
disyllabic nonword naming by transcribing the responses
of 41 adult participants who read aloud 915 disyllabic
nonwords. This corpus demonstrates the striking variability
of human responses; on average there were 5.9 alternative
pronunciations per nonword, with a range from 1 to 22.

Mousikou et al. (2017) used this corpus to assess two
models that are able to read aloud disyllabic nonwords,
CDP++ and RCOO (Perry et al., 2010; Rastle & Coltheart,
2000). They found that the two models had different
strengths, with the CDP++ model doing better at stress
assignment and the Rastle and Coltheart (2000) model

(abbreviated RC00) doing better at pronunciation. But
the performance of both models differed from human
performance: around one in four of CDP++ pronunciations
and around one in eight of RCO0 pronunciations were not
produced by any human reader.

Limitations of the corpus-based method

The corpora collected by Pritchard et al. (2012) and
Mousikou et al. (2017) are a valuable resource for
understanding human nonword naming and testing models.
Nevertheless, there are some limitations of the corpus-based
approach to assessing models. Some of these limitations
are related to the extremely resource-intensive nature of
the corpus-based approach. In the case of Mousikou et al.
(2017), a single listener was asked to transcribe all the
pronunciations of the 41 participants (over 37K sound
recordings) into English phonemes and then compare these
transcriptions to the phonemic outputs of the models. Quite
apart from the Herculean nature of this task, placing such
demands on a single listener raises the risk of both random
coding errors and systematic biases. Indeed, recent evidence
suggests that such coding errors may be quite likely,
with De Simone et al. (2021) reporting that two trained
transcribers of English were in only moderate agreement
(k= .57) when transcribing a set of English pseudowords
in their Experiment 1. Future model evaluation will require
researchers to expand the set of nonwords used to analyse
models; reliance on researchers to construct large corpora
may impede progress.

Other limitations of the corpus-based method are related
to the resulting data. It makes sense to compare model
outputs with human pronunciations, but there is a need for
caution in interpreting matches and mismatches between
model and data. We can distinguish two potential problems,
which we label false positives and false negatives. False
positives refer to cases where a match between model
and data gives a misleading assessment of the success
of the model. Such diagnostic errors can occur if the
corpus contains errors, either as a result of participant
error or transcription error. Indeed, it is possible to
find many examples in the Mousikou et al. corpus
that appear to be participant or transcription errors.
Pronunciations that would probably not be considered
plausible by most listeners include, for example, TAMCEM
pronounced t{ksim, PISPY pronounced pIpsi, and
DAXING pronounced dlksIN. If one of the models
considered by Mousikou et al. produced any of these
presentations it would have been scored correct (on the basis
that any output matched by a transcription in the database
is correct), but we suggest that scoring a model in this
way would constitute a false positive. Experiments 1 and 2
(below) will provide evidence for this claim.
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Table 1 Matching (%) of CDP++, RCO0 and Sequitur pronunciations of the 915 nonwords from (Mousikou et al., 2017) against human

pronunciations from the same work

Pronunciations st 2nd 3rd 4th Sth 6th 7th Match Absent
Strict scoring

CDP++ 44 16 8 4 1 0 77 23
RCO00 55 20 7 4 1 1 89 11
Sequitur 40 15 6 4 1 1 70 30
Lenient scoring

CDP++ 50 13 2 1 0 79 21
RCO00 69 14 1 0 92 8
Sequitur 50 12 5 3 2 1 1 75 25

The i-th column reports the percentage of model/algorithm output that matches the i-th most frequent human pronunciation; Match is the
percentage of output matching any human pronunciation; Absent is the complement of Match. Strict criteria means that two pronunciations
(phoneme strings) have to match exactly, while lenient means that substitution errors between short vowels and schwa (both ways) are forgiven

False negatives refer to cases where the failure to
find a match between model and data (because the
model’s pronunciation is not present in the corpus) gives
a misleading assessment of the failure of the model.
The fundamental issue here is that it is not safe to
assume that the participants’ responses exhaust all possible
valid responses. Restricting the set of valid responses
to those actually produced by at least one participant
neglects the potential for alternative responses that may be
apparent to individual readers. As noted above, Pritchard
et al. criticise Perry et al.’s scoring criterion as overly
lax for including pronunciation possibilities that “readers
simply do not consider”. But we must also ask whether
forcing participants to produce a single pronunciation of a
nonword allows us to sample all of the possibilities that
they do consider. A methodology that excludes plausible
pronunciations may provide a biased standard to assess
the performance of models. Furthermore, false negatives
may also arise as a consequence of transcription choices
(i.e. an erroneous transcription will result in the actual
pronunciation being excluded from the corpus of ‘correct’
pronunciations), as we show now.

Testing a different model using the corpus-based
method

To illustrate some of the above issues, we applied the
corpus-based method to a test of a different model of
reading aloud. Sequitur G2P (henceforth Sequitur) is a
leading grapheme-to-phoneme conversion tool algorithm
based on a data-driven algorithm introduced by Bisani and
Ney (2008).2 It is commonly used as a component of speech

2Sequitur is freely available from https://www-i6.informatik.
rwth-aachen.de/web/Software/g2p.html
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synthesis applications (e.g. Sawada et al., 2014), as well
as in speech recognition applications (e.g. Panayotov et al.,
2015), in both cases serving as a tool to generate phonemic
transcriptions of words for which no dictionary entry is
available to the system (e.g. proper names, toponyms, rare
words, etc.). Sequitur is based on the idea of joint-sequence
modelling, that is a word-pronunciation pair is modelled as
a sequence of units called graphones, each one representing
a mapping between adjacent letters to adjacent phonemes,
where the maximum allowed number of symbols (letters
or phonemes) on each side of a graphone is a parameter
set by the user. The algorithm learns associations between
sequences of graphones, the maximum length of learnable
sequences also being a free parameter. These associations
are trained on large phonemic dictionaries in the target
language. In the current work, Sequitur was trained on
a selection of 64,598 entries from the CELEX phonetic
dictionary for English (Baayen et al., 1995).

Although it is not a psychological model, Sequitur may
provide further insights into the strengths and weaknesses
of each method that would not be detected by just testing
CDP++ and RCO00. Sequitur is capable of producing
pronunciations for any text string, and so we were able
to test it on the 915 disyllabic nonwords in Mousikou
et al. (2017)’s database (see Section 1 in Supplementary
Materials for further details about Sequitur and how we
generated pronunciations from it). For each nonword, the
model’s output was deemed correct if it matched at least
one reference pronunciation. To ensure our application of
Mousikou et al. (2017)’s method was correct we performed
a similar assessment of the CDP++ model (Perry et al.,
2010) and the RCOO rule-based disyllabic algorithm of
Rastle and Coltheart (2000). Note, Mousikou et al. (2017)
evaluated CDP++ and RCOO on their output pronunciations
and stress assignment. Here, we focus on pronunciation
only and as a consequence, our results are to be compared


https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html

Behavior Research Methods

with those in the Pronunciation section in Mousikou et al.
(2017).

Table 1 reports match scores for each model (i.e. the
percentage of nonwords for which the model’s output
matched with at least one human pronunciation in the
corpus). Following Mousikou et al. (2017), we scored
each pronunciation by both strict criteria (which required
phoneme strings to match exactly) and lenient criteria
(which allowed substitutions between short vowels and
schwas). The match scores for CDP++ and RCOO replicate
those calculated in Mousikou et al. (2017)3 . Sequitur scored
the worst among the three models, with a score of 70% using
strict scoring and 75% using lenient scoring, though it was
not far behind the CDP++ model.

Sequitur’s performance and the problem of false negatives

To get further insight into Sequitur’s poor performance
under the corpus-based method, we looked specifically at
its pronunciations that were deemed incorrect. This led us
to discover a number of systematic discrepancies between
the human pronunciations in Mousikou et al. (2017) and
Sequitur’s pronunciation of the same nonword.

The most common discrepancy involved a 9—$
substitution:*> Many nonwords were pronounced by
Sequitur with a $ phoneme ( i.e. the long vowel, o1, in law,
thought, and war) when all human transcriptions used a 9
phoneme (i.e. the diphthong, U9, in jury and cure) in the
same place. For example, OUTSLAW was pronounced as
6tsls$ by Sequitur and as 6ts19 by humans). This can
be explained by the fact that Mousikou et al. (2017) treated
$ phonemes and 9 phonemes as equivalent and conflated
them into 9.° Conversely, the $ phoneme never appears in
the outputs of CDP++ and RCO00, and nor in Mousikou
etal. (2017)’s transcriptions of human speakers. This creates
an unfair assessment of Sequitur because even if its use
of a $ phoneme is actually acceptable, all of Sequitur’s
outputs that used $ were deemed incorrect under the corpus-
based method since it was impossible for them to match
with any transcriptions of human speakers. In reality, it is

3There are minor discrepancies between our match scores and those
reported in Mousikou et al. (2017), possibly due to different rounding
procedures.

4To be consistent with Mousikou et al. (2017), the present paper uses
the DISC phonemic transcription system from CELEX (Baayen et al.,
1995) (which was used by all three models) as opposed to the more
commonly known IPA. Section 3 in Supplementary Materials provides
a full transcription table for IPA and DISC phonemes.

SIn this work, single and multi-phonemic edit patterns X — Y
were discovered automatically by adapting algorithms from string
matching and information retrieval. These are illustrated in Section 2
in Supplementary Materials.

6 After di scovering this issue, we contacted the authors of Mousikou et
al. who confirmed our explanation.

likely that at least some of these pronunciations by Sequitur
were actually acceptable, given that similar pronunciations
of real words can be found in its training set, CELEX. For
example, Sequitur’s pronunciations of OUTSLAW (6ts1S)
and GLORAK (gl$r{k) are generalizations from the
CELEX pronunciation of real words like OUTLAW (6t15)
and GLORY (gl$rI), respectively. That is, the corpus-
based scoring of some of the model’s pronunciations reflects
false negatives.

A number of other discrepancies between Sequitur and
Mousikou et al. (2017)’s transcriptions of human speakers
are described in Section 4.1 in Supplementary Materials.
Note that unlike the 9— $ substitution example above,
these remaining discrepancies are not due to conflation of
two phonemes (none of the phonemes mentioned below
were conflated in Mousikou et al., 2017) but they still
highlight potential false negatives — cases where Sequitur
may have learned acceptable pronunciations from CELEX
only to be deemed incorrect under the corpus-based
method. For example, many nonwords with word final
‘Y’ such as PIFTY were pronounced with a final I by
Sequitur whereas all humans pronounced PIFTY with a
final i. Yet similar pronunciations of real words can be
found in CELEX (e.g. FIFTY—=£fIftI, MISTY—>mIstI).
Similarly, Sequitur pronounced nonwords like CHANSEM
with # instead of { because the CELEX pronunciation of
words like CHANCE is J#ns and not J{ns. If Sequitur
learned correctly from the training set (as the examples
above suggest), then either CELEX itself is wrong or those
pronunciations should be considered correct (despite not
matching any transcription of human speakers in Mousikou
et al., 2017). CDP++ may have been similarly susceptible
to false negatives, since this model was also trained on
CELEX. Indeed, analysis of its pattern of errors reveals
errors similar to those described above (e.g. sometimes
using I instead of i for nonwords with word final ‘Y’).
Note that RCOO uses hard-wired rules to sidestep many of
these errors (e.g. its algorithm identifies word final ‘Y’ as a
suffix, and based on its stored rules for suffixes, applies the
i pronunciation).

A new method of testing models of reading aloud

Given the potential for diagnostic errors associated with the
corpus-based method, together with the other limitations
of this method, it is worth considering other methods for
assessing model pronunciations. To this end, we propose
a new method in which participants are asked to listen
to and rate the plausibility of nonword pronunciations.
This method does not require any transcription and allows
researchers to directly test the plausibility of candidate
pronunciations, rather than discarding these pronunciations
because they do not conform to grapheme phoneme
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correspondence rules, or were not produced by a (relatively
small) sample of human readers. The outputs of theoretical
models can be produced by a human speaker, or (as is the
case in the experiments described here) can provide the
input to a speech synthesizer, so that the models really do
name the nonwords aloud. This ratings-based method also
has the benefit of being easy to implement online which
makes data collection easier and possible to run entirely
remotely.

In the following two experiments, we directly compare
this new ratings-based method with the corpus-based
method. We took the output of CDP++, RC00 and Sequitur
for the nonwords from Mousikou et al. (2017), and used
these outputs as the input to a speech synthesizer. The
resulting sound files were played to participants one at a
time along with the corresponding written nonword itself,
and online participants rated how well the pronunciation
matched the written nonword. We considered a model’s
output appropriate if listeners judged the pronunciation
reasonable given the spelling. Our key findings are: a)
the corpus-based method does indeed introduce a number
of mistakes, both false positives (categorising implausible
pronunciations as correct) and more often, false negatives
(categorising acceptable pronunciations as incorrect), b)
our ratings method has a high hit rate and low false-
alarm rate in assessing nonword reading accuracy, and
arguably does a better job than the corpus-based method,
and c) although we observe a similar outcome as Mousikou
et al. (2017)’s evaluation in terms of RCO0 outperforming
CDP++, the two methods differ in terms of their evaluation
of Sequitur, which performed much better under our ratings-
based method. As we detail below, it can be argued
that our method provided a more accurate description
of the performance of Sequitur. Together, these findings
indicate that our new method can be used to facilitate the
developments of better models in the future.

Experiment 1

The first aim of Experiment 1 was to assess the
reliability of our ratings method’s assessment of nonword
pronunciations. Participants were asked to rate correct
(modal and minor) human pronunciations from Mousikou
et al. (2017) as well as manipulated pronunciations where
deliberate errors were introduced. The ratings of modal
responses were used to estimate the sensitivity of the
method (i.e. proportion of modal pronunciations rated as
correct) and ratings of deliberate errors were used to
estimate the specificity of the method (i.e. proportion of
deliberate error pronunciations rated as incorrect. Ratings
of modal and minor responses were used to assess whether
the method could detect fine-grained differences amongst

@ Springer

correct pronunciations, e.g. although both modal and minor
pronunciations are likely to be rated as correct using binary
classification, the former may yield more positive responses
than the latter on the six-point scale.

The second aim was to use our ratings method to re-
evaluate possible errors of the corpus-based method. For
this purpose, we used the ratings method to re-assess
nonword pronunciations that were deemed errors on the
basis of the model’s output matching with O out of 41 human
responses (i.e. we tested for false negatives), and to re-assess
pronunciations that were deemed correct on the basis of the
output matching with only one out of 41 human responses
(i.e. testing for false positives). These latter items may be
good candidates for false positives with the single matches
reflecting a transcription error or lapses in concentration by
the participant that cause implausible pronunciation.

Method
Design and materials

Experiment 1 used 528 nonwords, corresponding to all of
the nonwords from Mousikou et al. (2017) for which at
least one of the three models (CDP++, RC00 and Sequitur)
was deemed (a) incorrect (did not match with any human
responses), or (b) correct, by matching with only one out of
41 human responses. We tested multiple pronunciations for
each nonword. These pronunciations were distributed across
six conditions. The first three conditions were designed as a
test of the ratings method:

(i) Human Modal Pronunciation The modal pronunciation
of each nonword was determined based on its most frequent
pronunciation in Mousikou et al. (2017)’s corpus. We
expected that the pronunciations in this condition would
receive the highest ratings.

(ii)) Human Minor Pronunciation A minor pronunciation of
each nonword was determined by choosing a pronunciation
that was produced by between two and six speakers in
Mousikou et al. (2017)’s corpus (if there was more than one
candidate, the more frequently produced pronunciation was
chosen). It was not possible to use all 528 nonwords in this
condition because some did not have a pronunciation that
was shared between two and six speakers. We expected that
the pronunciations in this condition would receive lower
ratings than those in the Modal Pronunciation condition.

(iii) Deliberate Error condition For each nonword we
generated an erroneous pronunciation by changing one
phoneme from the Human Modal pronunciation at random,
according to the following constraints: A consonant could
be substituted only by another consonant with a different
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place and manner, and a vowel or diphthong could be
substituted only by another vowel or diphthong with a
different position (front, mid, back) and length (short vowel,
long vowel or diphthong). For example, i, which is a long
and fronted vowel, could be substituted by U, which is short
and back, but not by I, because it is also fronted; likewise,
p (bilabial plosive) could be substituted by S (alveolar
fricative) but not by b (also bilabial). In this way we tried
to obtain errors that were unequivocal but at the same
time not too distant from the written form. We expected
the pronunciations in this condition to receive the lowest
ratings.

The remaining three conditions — (iv) CDP++, (v) RCOO
and (vi) Sequitur — were designed as a cross-check on
the accuracy of the scoring of model outputs under the
corpus-based method. The pronunciations in each of these
conditions were those produced by the respective models.
These were pronunciations that had been produced by
either no human participants (‘Zero Match’ items) or one
participant (‘One Match’ items) in Mousikou et al. (2017)’s
corpus. Table 2 reports the number of pronunciations per
category included in our experiment.

Using Microsoft Speech Synthesizer’, pronunciations
were synthesised from either Mousikou et al. (2017)’s DISC
transcriptions of human pronunciations or from the models’
DISC outputs. The British female voice “en-GB, Hazel”
was used in all experiments. This synthesiser allows the
user to specify the desired pronunciation of a given written
stimulus in terms of phonetic transcription, as well as to
control some prosodic aspects, like speech rate. Although
we found this synthesiser to be better than alternative ones
(e.g. eSpeak®), one limitation is the lack of control in
positioning lexical stress, which, although considered by
the programming interface, is ignored by the synthesizer,
which places the stress according to pre-determined rules
not accessible to the user. As we were not focused on
stress assignment, we accepted this limitation. Note the
results reported in the Pronunciation section of Mousikou
et al. (2017) also disregarded stress assignment. The reader
interested in using Microsoft Speech Synthesizer for their
own research is referred to Section 5 in Supplementary
Materials for practical suggestions.

Procedure

A short screening test was used before the main experiment.
Here, participants completed five multiple-choice questions,
each of which played aloud the correct pronunciation of an
existing English word; participants were required to match

7https://docs.microsoft.com/en- gb/previous-versions/office/
developer/speech-technologies/hh361644(v=office.14)

8http://espeak.sourceforge.net/index.html

Table 2 Number of pronunciations per condition in Experiment 1

Condition Number of pronunciations
Human Modal 528

Human Minor 390

Deliberate Error 528

CDP++ 279 (209,70)

RC00 151 (98,53)

Sequitur 325 (270,55)

The total for Human Minors is less than Human Modals because not all
nonwords had a minor response. Totals differ for each model (Sequitur,
RCO00 and CDP++) because pronunciations were excluded if they
matched with more than one human response. The parentheses indicate
how many pronunciations matched with 0/41 human responses (first
number) or 1/41 human responses (second number). For example,
out of 279 CDP++ pronunciations, 209 matched with 0/41 human
responses and 70 with 1/41

the pronunciation with one of three written forms presented
on the screen, e.g. hear: crane, choose among: crane, frame,
train. If participants failed to get more than 3/5 correct
answers, they did not progress to the main experiment.

For the main experiment, six stimuli lists were con-
structed, each containing 528 nonword pronunciations so
that each condition of a given nonword pronunciation fea-
tured at least once across the lists (although no list contained
the same orthographic form more than once and hence par-
ticipants were never exposed to two pronunciations of the
same nonword). An additional constraint was to ensure that
each participant rated no more than 200 stimuli (to avoid
boredom and fatigue), and thus, each of the six lists was ran-
domly divided into three lists of 176 pronunciations, giving
a total of 18 lists.

In addition to the material described above, we added ten
catch trials to each list (the same ones for all lists). These
were ten pronunciations of nonwords that were not amongst
the 528 nonwords used in our experiment, but which all
41 participants from Mousikou et al. (2017) produced (and
were thus highly likely to be correct). Five of them, called
Accurate, were synthesised to be consistent with the human
pronunciation. The other five, called Inaccurate, were
distorted by the same procedure used to obtain Deliberate
Errors. Participants in our experiment were expected to rate
Accurate stimuli as very good and Inaccurate stimuli very
bad. If this was not the case, participants were likely to be
inattentive or using the wrong audio equipment.

Gorilla Experiment Builder® was used to host the exper-
iment online (Anwyl-Irvine et al., 2018). Each orthographic
stimulus was presented while the corresponding auditory
stimulus was played once. Participants could re-play the
audio by pressing the space bar and rated the pronunciation

dwww.gorilla.sc
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by clicking on a six-point scale (Very bad, Bad, Probably
not OK, Probably OK, Good, Very good) displayed below
the orthographic stimulus. The task can be experienced
online.!”

Participants

Participants were recruited using Prolific'!. The average
completion time was 12 minutes and participants were paid
2.20 GBP (11 GBP/hour pro-rata). Criteria for selection
was as follows: (i) Monolingual English-as-first-language
Speakers, (ii) British citizen and resident (iii) No diagnosis
of literacy difficulties (e.g. dyslexia), (iv) Prolific approval
rate above 95%.

A total of 121 participants were recruited. Nine of these
were rejected because they did not finish the experiment and
four were rejected because they failed the initial screening
task. Thus, 108 participants completed the experiment
(ensuring there were six participants for each of the 18
stimuli lists). This sample size was deemed sufficient
because it ensured that we obtained approximately 3000
observations per condition which satisfies recently proposed
criterion for properly powered experiments of this kind
(Brysbaert & Stevens, 2018; Brysbaert, 2019).

Overall, 98/108 of participants answered at least 9/10
Catch Trials correctly, and 104/108 participants answered at
least 8/10 correctly, which suggests that overall participants
were attentive and that the synthesiser was capable of
rendering speech satisfactorily. However, upon closer
inspection of the four participants that answered more than
two catch trials incorrectly, we identified three of these
participants as outliers: two of them rated almost all the
stimuli from the main experiment as implausible, while the
third one rated Deliberate Error pronunciations better than
anything else and in general produced erratic responses (the
fourth participant’s answers were relatively sound). Those
three participants were excluded from further analyses as we
believe that they either did not understand or did not attend
to the task.

Results
Assessing sensitivity and specificity

In this section, we assess the reliability of the ratings
method by obtaining Sensitivity and Specificity estimates
from participants’ ratings of Human Modals and Deliberate
Errors. Sensitivity is defined as the proportion of Human
Modal pronunciations rated as correct, while Specificity is

1Ohttps://gorilla.sc/openmaterials/102572

ywww.prolific.ac
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the proportion of Deliberate Error pronunciations rated as
incorrect.

We obtained one binary correct/incorrect score for each
pronunciation (i.e. 528 scores for Human Modals and 528
scores for Deliberate Errors) by (i) calculating the median
rating of each pronunciation (medians were used because
we treated the rating scale as an ordinal rather than a
continuous scale), and (ii) converting each of these median
scores to a correct response (rating of “Probably OK”,
“Good”, or “Very good”), or incorrect response (rating of
“Probably Not OK”, “Bad”, “Very bad”). When a median
score was tied between “Probably Not OK” and “Probably
OK” this was rounded down to “Probably Not OK” (this
was the case for eight Modal and 21 Deliberate Error
pronunciations). The pattern of results is displayed in Fig. 1.
Using these scores, our initial estimation of Sensitivity was
475/528 = 90%, and Specificity was 465/528 = 88%.

However, after an inspection of the 53 Human Modal
pronunciations that were rated as incorrect (and which
thus reduced the Sensitivity score), it became clear that
sensitivity would be near-perfect were it not for the 9—$
substitution confound in Mousikou et al. (2017)’s stimuli
set. As described above, the 9— $ substitution refers to
the fact that in Mousikou et al. (2017)’s transcriptions of
human pronunciations, $ phonemes (i.e. the long vowel,
o:, in  law, thought, and war) and 9 phonemes (i.e. the
diphthong, U9, in jury and cure) were treated as equivalent
and conflated into 9. This is relevant to our sensitivity
estimate because 48 of the 53 Human Modal pronunciations
that were rated as incorrect by our participants were
transcribed by Mousikou et al. (2017) with a 9 phoneme
when they probably should have been transcribed with a $
phoneme. Consistent with this claim, we found that for 27
of these nonwords, a Sequitur pronunciation of the same
nonword used a $ phoneme in the same position that the
Modal pronunciation used a 9 phoneme; crucially, all of
these Sequitur pronunciations were rated as acceptable (see
Table S6 in Supplementary Materials). Once we correct for
this error, we obtain a sensitivity score of 475/480 = 99%
and thus confirms our method is sufficiently sensitive for
detecting plausibility of nonword pronunciations.

Furthermore, an analysis of the five remaining incorrect
Human Modal pronunciations revealed that two of them,
BAININX and CHERINX, were transcribed with a final
k. A check of the original audio files'> revealed that
speakers pronounced those two nonwords with a final ks,
which is clearly more plausible. This example revealed a
clear limitation of the corpus-based method’s reliance on
transcriptions and further highlighted the need to cross-
check transcriptions.

2the Authors of Mousikou et al. kindly granted us access to the
original recordings.


https://gorilla.sc/openmaterials/102572
www.prolific.ac

Behavior Research Methods

250

200

150

10

o

5

o

o

Count

200

150

100

[6)]
o

o

T T

sas
Probably not OK -

OK

Probably OK
Good

Very good
Very bad .

Probably not

uy)
Q
=3
>
©Q

Probably OK -

One Match
. Zero Match

ad
OK

Good -
I
]
|
~
[
[

Probably OK
Good

B
Very good

Very good |
Very bad

Probably not

Fig.1 Rating counts for Experiment 1 separated by pronunciation condition and rating

We conducted a similar evaluation of our initial speci-
ficity estimate (i.e. the 63 Deliberate Error pronunciations
that were rated as acceptable; the full list is reported in
Table S7 in Supplementary Materials). At least six of those
63 ratings can be attributed to poor design of the Deliberate
Error: although these pronunciations were designed to be
Deliberate Errors, their random generation unintentionally
coincided with a pronunciation from another category (e.g.
the Deliberate Error for the nonword OUTBOST was gen-
erated from the Human Modal pronunciation, 6tbQst—
6tb5st, but the random Q— 5 substitution generated an
identical pronunciation as the Human Minor pronunciation,
which was also 6tb5st).

Although we could only identify six cases like this (when
the error was an exact match with another pronunciation),
it is likely that other Deliberate Errors were also poorly
designed (i.e. although the error did not match with
another pronunciation, the random generation nevertheless
produced a plausible pronunciation).

Another possible source of lower specificity score is that
some of these Deliberate Errors were poorly synthesized.
This may have obscured the error we introduced and led
participants to judge the pronunciation as acceptable. In
an attempt to assess the role of the speech synthesizer
in producing false-positive responses, we recruited three
trained phoneticians who all had a PhD in Phonetics, were
native British English speakers, and were blind to the
experiment’s purpose, and asked them to verify whether
each of the 63 phonemic strings had been produced
accurately by our synthesizer. We used Gorilla Experiment
Builder to present phoneticians with each of the 63
phonemic strings (converted from DISC to IPA) alongside
an audio presentation of its synthesis. Phoneticians were
asked to judge whether the phonemic string had been
accurately rendered by the synthesiser using the same six-
point scale employed in the main experiment and were
told that positive ratings (“Probably OK” or better) would
be taken to indicate that all phonemes in the string were
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pronounced to a satisfactory standard, whereas negative
ratings (“Probably not OK” or worse) would indicate that
at least one phoneme had been synthesised incorrectly. For
16 out of 63 pronunciations, the modal response from the
three phoneticians was that the synthesizer had produced
the phoneme string incorrectly (likely a consequence of the
fact that some Deliberate Errors will naturally be difficult to
pronounce). Both the error of stimulus construction and the
limitations of the synthesizer we used will have artificially
reduced the specificity of the corpus-based method. If we
recompute the specificity while putting aside these items it
is estimated at 465/512 = 91%. Of course the limits of
the synthesizer does reduce the specificity in the current
experiments, but it is not a limitation of the ratings method
per se.

In sum, our on-line ratings-based experiment showed
high Sensitivity and Specificity scores, it was able to
discriminate between human modal and minor responses,
and it revealed a systematic bias in Mousikou et al. (2017)’s
transcriptions which we were not aware of. These results
would be further improved if carried out in laboratory
conditions and with a better speech synthesizer. This
suggests that the ratings method is a reasonable measure for
assessing pronunciations of disyllabic nonwords.

Pronunciation ratings for zero and one match items

In this section, we assess the accuracy of CDP++, RCO00,
and Sequitur pronunciations of the zero and one match items
using our ratings method. As noted above, these are the
words that are most likely to have been misclassified by the
corpus-based method, with zero match pronunciations being
candidates for false negatives (if a pronunciation does not
match exactly with any pronunciations from the reference
list of 41 participants, this is not necessarily an erroneous
pronunciation) and one match pronunciations candidates for
false positives (a match with only one of 41 participants
may reflect the fact that this participant mispronounced or
that it was mistranscribed). Based on the 9—$ confound
described earlier, we decided to exclude all orthographic
stimuli for which any pronunciation contained the 9 and/ or
$ phoneme (95/528 nonwords were excluded).

In Fig. 1, top row, we report ratings for the Human
Pronunciations and Deliberate Errors, corresponding to
the Sensitivity and Specificity scores above. The bottom
row of Fig. 1 reports the ratings of each model: darker
shades of grey denote ‘Zero Match’ pronunciations whereas
lighter shades of grey denote ‘One Match’ pronuncia-
tions. Strikingly, over half of the Zero Match pronunci-
ations (58%) were rated as correct (“Probably OK” or
better) despite the fact that all of these pronunciations were
rated as incorrect under Mousikou et al. (2017)’s crite-
rion (i.e. evidence for false negatives in the corpus-based
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method). Notable examples include FREACELY (frislI),
CONGLIST (k@nglIst), and AFFLAVE (@f11v), which
all used substitutions identified earlier (e.g. 1—I, Q—@,
{—@) thus supporting the notion that these generaliza-
tions learned from CELEX were indeed correct. Turning
our attention to ‘One Match’ pronunciations (shaded in
lighter grey), these were judged more consistently with
the corpus-based method (most were judged positively) but
there were nevertheless some inconsistencies between the
methods (19% were judged negatively). Notable examples
include SURBEFT (s3bft), CONCLISE (kQn2sz), PIL-
PREM (pIspr@m), and UDGEMENT (v_im), which were all
judged as “Bad” or “Very bad” by our participants. Since all
of these are clearly bad pronunciations, they highlight exam-
ples of when Mousikou et al. (2017)’s reference list included
either transcription errors or unreliable human responses
that made their method susceptible to false positives.

In sum, the ratings method of the zero match and one
match items suggests that the corpus-based method is prone
to making false-negative errors and false-positive errors.
The false-negative errors may simply reflect the fact that the
responses of the 41 participants did not produce all plausible
pronunciations of these nonwords, and the false-positive
errors reflect the fact that matching one response out of
41 participants is not sufficient grounds for characterizing
a pronunciation as correct (people make mistakes, and
matching a mistake does not entail a correct pronunciation).
Combined with the high sensitivity and specificity results
of the ratings method, and the fact that the ratings method
picked up a transcription error that the corpus-based method
was blind to, the ratings method seems a promising method
for evaluating model productions that can easily be applied
to any item. In Experiment 2, we compare the success
of CDP++, RCO00, and Sequitur models in naming the
same set of disyllabic nonwords using the corpus-based and
ratings-based methods.

Experiment 2

In Experiment 2, a new group of participants was asked
to rate the output of the three nonword naming models
on the same set of 803 nonwords from Mousikou et al.
(2017) (not just the 528 from Experiment 1 that matched
with <1 human responses)13. They were also asked to rate
the responses of three different speakers from Mousikou
et al. (2017) who named the nonwords in different manners.

13ideally, all 915 nonwords from Mousikou et al. (2017) would be used
but for the reasons outlined already, we excluded the 112 nonwords
affected by the 9— $ substitution, leaving 803 nonwords.
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The ratings of the model outputs and the ratings for the
responses for the three speakers were compared.

Method
Materials

Experiment 2 used seven pronunciation conditions: (i)
CDP++, (ii) RCO00, (iii) Sequitur, (iv) Deliberate Error,
(v) Modal Speaker, (vi) Typical Speaker, and (vii) Outlier
Speaker. Conditions (i) to (iv) are the same as their
namesakes in Experiment 1 except that we include each
model’s pronunciation of 803 nonwords. In contrast to
Experiment 1, we also used pronunciations by individual
human speakers (Conditions v-vii), as opposed to artificial
categories like Human Modal and Human Minor, which
are not necessarily representative of any individual speaker.
To select these conditions, we employed the Surprise
Index (SI) (Good, 1956), a statistic based on information
theory that quantifies how unexpected an outcome is based
on the available outcome probabilities (Siegelman et al.,
2020). This measure was applied on each pronunciation
of each speaker, providing 41 speaker profiles each one
describing how the production of a particular speaker
departs from the majority, i.e. how ‘surprising’ it is. The
three selected profiles were the least surprising (Modal),
the most surprising (Outlier) and the median surprising
(Typical). It turns out that the Modal Speaker corresponds
to the speaker who produced the modal pronunciation most
often, while the Outlier is the one who produced unique
pronunciations most often, thus justifying the use of SI. A
formal definition of SI and a detailed description of how
SI was computed on the pronunciations in Mousikou et al.
(2017) is provided in Section 7 in Supplementary Materials.
As in Experiment 1, all stimuli were synthesized using
Microsoft Speech Synthesizer from either (Mousikou et al.,
2017)’s DISC transcriptions or the models’ DISC outputs.

Design & procedure

Experiment 2 used 803 nonwords, and a total of 3086
unique pronunciations (sometimes, a nonword had identical
pronunciations in multiple categories, so the total was not
803 multiplied by the number of categories). To ensure
lists were an appropriate length for participants, stimuli
were divided into 16 lists of 192 or 193 pronunciations
(no nonword was used more than once within a list). The
same screening task was used as Experiment 1, as were the
same conditions to present stimuli. A full demonstration of
Experiment 2, as well as all materials, is available online.!#

Yhttps://gorilla.sc/openmaterials/101478

Participants

A total of 155 participants were recruited, seven of which
were rejected for failing the screening task and 20 of
which were rejected for not finishing the experiment. Thus,
128 participants completed the experiment, ensuring there
were at least eight participants for each item of the 16
lists. Recruitment strategy, sample size justification, and
exclusion criteria were the same as in Experiment 1. The
average completion time was 14 min and participants were
paid 2.34 GBP (10 GBP/h pro-rata).

Results
Comparing models using the ratings method

Figure 2 reports the median ratings for nonwords, separated
by Condition (CDP++, RCO00, Sequitur, Modal Speaker,
Typical Speaker, Outlier Speaker, Deliberate Error). Four
nonwords (out of 803) were excluded from the analysis
since the median ratings of the three human speakers’
pronunciations (Modal, Typical, Outlier) were all below
“Probably OK” and hence we suspected some specific
problems related to their transcription or synthesis. These
were BAININX and CHERINX, whose transcriptions were
identified as wrong, COMBIRE, which was poorly rendered
by the synthesiser due to a final @r, and UDSTAME, for
which we cannot find an explanation.

Two mixed-effects regression models were conducted
to test for statistical differences between each condition.
Both models serve the same purpose, but one is a
logistic regression model'> which predicts binary ratings
(correct/ incorrect) and the other one is a cumulative link
model'® that predicts ordinal-scale ratings. Both models
used Condition as fixed factor and treated Participant
and Nonword (i.e. the orthographic stimulus) as random
intercepts. A by-participant random slope for Condition was
fitted for the logistic model but did not converge for the
ordinal model. BIC tests proved that all the terms in both
models are justified.

Fig. 3a illustrates the logistic regression model by
displaying the predicted probability (estimated marginal
means!’) that the model has estimated for each condition
(i.e. the probability of each condition getting a plausible
rating). As can be seen, the Modal Speaker had a very
high probability score of 0.95, immediately followed by
the Typical Speaker with 0.94, then RC00 and Sequitur

I5computed with the glmer function from the Ime4 package in R

(Bates et al., 2015)
16computed with the c1lmm function from the ordinal package in R

(Christensen, 2019)

17computed with the emmeans package in R (Lenth, 2019)
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both at 0.90, the Outlier Speaker 0.87 and CDP++ at 0.82.
Finally, the Deliberate Error condition had a much lower
probability of 0.15. To test whether these differences were
significant, we used Tukey-adjusted pairwise comparisons,
which compared each condition against the other. All
conditions were significantly different from each other (all ¢
test p values < 0.0001) except between Modal Speaker and
Typical Speaker, and between RCO00 and Sequitur. Perhaps
most interestingly, RC0O0 and Sequitur both performed
significantly better than the Outlier Speaker, which itself
outperformed CDP++.

The results from the ordinal model (Fig. 3b) provides
a more detailed picture by calculating the predicted
proportions of each ordinal rating (“Very good”, “Good”,
“Probably OK”, “Probably not OK”, “Bad”, “Very bad”) for
each condition. Notably, the predicted proportions of “Very
good” ratings for Modal and Typical Speaker at around
0.47, followed by Sequitur, RCO0 and the Outlier Speaker
at around 0.39, then CDP++ with 0.32. This confirms that
two of the three models (RC0O0 and Sequitur) produced
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pronunciations that were judged within the same range of
acceptability as pronunciations by real human speakers.

Comparing methods

Table 3 compares the ratings and the corpus-based
evaluations. As can be seen in the table, the two
methods provided similar assessments of the RCO0 and
CDP++ models, whereas performance of Sequitur was
judged to be lower on the corpus-based (76% on strict
criterion) compared to the ratings (90%) method. The
discrepancy with Sequitur provides us an opportunity to test
which method is doing a better job in evaluating model
performance.

In a first attempt to understand the different outcome
we collected an independent assessment of the acceptability
of the discrepant naming outcomes. The same three
phoneticians from Experiment 1 saw the orthographic
string of all the discrepant nonwords alongside their
corresponding phonemic strings (converted from DISC to
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IPA) and were asked to judge whether this was an acceptable
pronunciation (note that judging the acceptability of
phonemic strings rather than audio files removes any
potential influence from the synthesiser on acceptability).
The phoneticians’ median judgement was significantly
more likely to agree with the outcome of the ratings method
than the corpus-based method (57 vs. 43%), x2=6.78,df =

1, p = 0.004, and this effect did not differ between models
(x%=0.90, df =2, p = 0.63). If we adopt the phoneticians’
median judgement as ground truth for the discrepant items
and combine with items that the methods agreed upon,
we obtain the following values for model pronunciation
acceptability: 79% for CDP++, 93% for RCO0 and 87%
for Sequitur. This pattern of results is more similar to
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Table 3 Comparison of model evaluations under corpus-based
methods (i.e. % match score) and ratings-based methods (i.e. % judged
as acceptable)

Corpus-based ratings
(strict; lenient)
RCO00 90%; 93% 90%
CDP++ 78%; 80% 82%
Sequitur 76%; 81% 90%

To allow the fairest comparison, match scores from the corpus-based
method in Table 1 were recomputed on the basis of the 799 nonwords
analysed in 2: Sequitur’s performance improved as a consequence of
eliminating the false negatives introduced by the 9— $ substitution

the estimate of the ratings method and suggests that the
ratings method provided a more accurate assessment of the
performance of Sequitur.

Figure 4 provides a closer look at phoneticians’
median ratings; the left panel shows the distribution of
phoneticians’ median ratings for discrepant items that were
accepted under the corpus-based method (and rejected
under the ratings method) where as the right panel shows
phoneticians’ median ratings for discrepant items accepted
under the ratings method. The higher overall count of
items in the right panel reflects the fact that there were
more discrepant items rated acceptable under the ratings
method. Importantly, 62% of the items accepted by the
ratings method were also accepted by the phoneticians, with
very few rated “Bad” or “Very bad”. By contrast, for the
items accepted by the corpus-based method, there was no
clear pattern with the phoneticians’ judgements. Again, this
suggests that the phoneticians agreed more with the ratings
compared to the corpus-based method.

It is also interesting to note that phoneticians’ judgements
on the discrepant items were closely related to the typicality
of the pronunciations, as measured through the surprise
index (SI). The discrepant items accepted under the corpus-
based method but rejected by the phoneticians had a high
mean SI of 3.0, whereas those items accepted by the
phoneticians had a low mean SI of 1.9 (one-sided ¢ test
yielded 1 = -4.3, df = 71.2, p value < 0.0001)'8.

This suggests that discrepant items with a high SI
reflected false positives from the corpus-based method:
When participants from Mousikou et al. produced a rare
pronunciation (a word with a high SI), it was rejected by
both the ratings method and the phoneticians because it was
likely a mistaken production or transcription error.

Although the above analyses suggest the ratings method
was more accurate overall, it is still not clear why Sequitur
fared so much better under the ratings method than the

18The SI difference is remarkable, considering that the highest possible

SI value for a distribution of 41 speakers is 5.19 (see Section 7 in
Supplementary Materials)
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corpus-based method (see Table 3).!° One possibility is
that some of the discrepant nonword productions were
poorly synthesized, with more subtle errors missed in the
ratings method. If this occurred more often for the nonwords
produced by Sequitur it might help explain the results. Note,
the previous analyses do not rule this possibility out as
the phoneticians rated phonemic text string rather than the
synthesized outputs.

To explore this possibility we asked the three pho-
neticians to verify the synthesiser’s pronunciations. As in
Experiment 1, phoneticians were asked to judge whether the
phonemic string of each discrepant item (converted from
DISC to IPA) had been accurately rendered by the syn-
thesiser on the same scale used in the main experiment,
with positive ratings (“Probably OK” or better) indicating
that all phonemes in the string were pronounced to a satis-
factory standard and negative ratings (‘“Probably not OK”
or worse) indicating that at least one phoneme had been
synthesised poorly. Only 3% of discrepant items were unan-
imously rated as poorly synthesised (the remaining 97%
were rated positively by at least one phonetician). However,
when using the median of the three phoneticians’ ratings as
the outcome (as opposed to the unanimous rating), 15% of
the discrepant items were rated as poorly synthesised.?”

Importantly though, no model was affected differently
by poor synthesis when considering all discrepant items
(x> = 145, df = 2, p = 0.49) or when specifically
considering discrepant items rejected by the corpus-based
method (x2 = 0.60, df = 2, p = 0.74).

Finally, we performed a detailed analysis of the
discrepant items using the same methods employed above
in order to gain some additional insight. We identified
19 phonemic patterns that appeared in at least five of
the discrepant items, and these are listed in Table S8 in
Supplementary Material, where each pattern is analysed
separately. Here we summarise the main findings.

190ne reviewer suggested the reason why Sequitur fared better under
the ratings method may be that it benefited from a lax criterion
(i.e. the binary correct/incorrect definition includes ‘Probably Ok’
ratings as correct pronunciations). To address this claim, we conducted
additional analyses after applying a stricter criterion to the ratings
method (where the definition of correct/incorrect includes only ‘Good’
and ‘Very Good’ ratings as correct pronunciations - and when a
subset of the most lenient participants are excluded); under this
criterion, rankings of the seven pronunciation conditions under the
ratings method did not change (Sequitur was still ranked third highest,
above RC00, CDP++, the Outlier Speaker and Deliberate Errors),
thus demonstrating that Sequitur’s improved performance under the
ratings method was not due to lax ratings. Further details of these extra
analyses are available by request.

20 Although the figure of 15% may seem quite high, it is important to
note that only 2% were rated as ”"Bad” or ”Very Bad”, and these poor
ratings only refer to the discrepant items (this is not a measure of the
overall quality of the synthesizer). But of course, a better synthesizer
can only improve the ratings method.
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Fig. 4 Phoneticians’ median rating counts for discrepant items of Experiment 2, separated by rating and by type of discrepancy, i.e. accepted
under the corpus-based method (hence rejected under ratings, left) or accepted under ratings (hence rejected under the corpus-based method, right)

Other, albeit less numerous cases are highlighted in
Section S8 of Supplementary Material, which demonstrate
the unfair penalisation of some typical Sequitur pronun-
ciation patterns. However, some sporadic counter-evidence
can be found as well. For example, g—_ in GEVELD,
I—2 in ETIND and OPPIND and {—1 in APREDS, are
examples where Sequitur generalised from CELEX (see
Section S8 in Supplementary Material for details), but these
pronunciations were accepted under ratings and rejected by
phoneticians, thus in agreement with corpus-based methods.
In cases like these it remains unclear why some generalisa-
tions from CELEX are rated negatively by phoneticians but
further investigation on this issue is beyond the scope of this
work.

To summarise, the phoneticians’ ratings of nonword
pronunciations suggest that the ratings method was more
accurate in assessing the Sequitur’s performance, and
the pattern of errors analysis identified some frequent
pronunciation patterns by Sequitur that originate from
CELEX that were deemed acceptable by the ratings method
phoneticians but not by the corpus-based method. These
seem to an example of false-negative errors associated

with the corpus-based method with acceptable responses
rejected on the basis that they did not match a reference
set of pronunciations (generated from a limited set of 41
participants).

General Discussion

In this paper we have compared two different methods
of assessing disyllabic nonword naming performance. For
the corpus-based method we relied on the nonword dataset
of Mousikou et al. (2017) that includes 915 disyllabic
nonwords and the pronunciation transcriptions of 41 human
speakers. According to this method, a model is correct
if its output matches at least one human transcription.
Apart from providing a measure of model performance,
a key contribution of the corpus-based method is that it
can document the extreme variability of human nonword
naming responses (e.g. in Mousikou et al. (2017)’s paper,
the mean number of different pronunciations per nonword
was 5.9, ranging from 1 to 22) and thus, the method is
particularly important for determining factors that predict
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consistency or variability of pronunciations. Still, there are
some limitations to the corpus-based method, including that
it is extremely resource intensive, making it a challenge to
expand the dataset to many more nonwords as required for
future model development.

We compared this corpus-based method to a ratings-
based method that makes it much easier to assess the
outputs of a model by asking human participants to
judge its nonword pronunciations when produced by a
speech synthesizer. Despite the relative simplicity of this
method, it was at least as good in characterizing the
nonword naming performance of two psychological models
RC00, CDP++ considered by Mousikou et al. (2017)
as well as a freely available commercial text-to-speech
product called Sequitur. Indeed, the ratings method: (i)
identified limitations of the corpus-based method that led
to errors in classifying nonword pronunciations (both false
positive and false negatives), (ii) correctly assessed the
accuracy of nonword pronunciations with high sensitivity
and specificity, and (iii) reached a similar conclusion
regarding the successes of the RC0O0 (Rastle & Coltheart,
2000) and CDP++ (Perry et al., 2010) accounts of word
naming, (iv) did a better job in assessing the performance
of the Sequitur model (see Table 3). Implications of these
findings are discussed below.

With regards to the limits of the corpus-based method,
we have identified three sources of error that result
from the assumption that a pronunciation is only correct
if it matches a transcription from a reference list of
human pronunciations. First, there were transcription errors.
Mousikou et al. (2017)’s reference list was transcribed
by just one person (who transcribed over 37K responses)
and the inevitable mistakes were treated as a correct
pronunciation under the corpus-based method. Second,
there were (inevitable) human pronunciation errors that
were treated as correct pronunciations under the corpus-
based method. Examples of transcription errors and human
pronunciation errors were identified above (e.g. surbeft
—s3bft, conclise—~kQn2sz, pilprem—pIsprem, and
udgement—v_im).?! Third, the reference list only contains
a limited sample of human responses (41 speakers in
this case), and in some cases, there were potentially
plausible pronunciations of a nonword that were not
produced by participants (or which were excluded from the
list because erroneous transcriptions prevented the actual
pronunciations from appearing). For example, Experiment
1 highlighted numerous examples of model outputs that did
not match with any human pronunciation (‘Zero Match’
pronunciations), but nevertheless were given positive ratings

21 Although these examples are clearly incorrect and do not belong on
the reference list (all were rated as “Very bad” by our participants),
it is difficult to know whether these are transcription errors or human
pronunciation errors.

@ Springer

in the ratings method. Although we acknowledge some of
these cases may be considered borderline acceptable, many
outputs obtained a median rating of *Very good’ and are
thus clear examples of false negatives in the corpus-based
method (e.g. freacely—>frislI, conglist—>kenglIst,
and afflave—@f11v).

We also made a closer inspection of the discrepant items
in an attempt to further gauge the reliability of each method.
First, we demonstrated that for the majority of these items,
the synthesiser had rendered the pronunciation accurately,
thus lending credibility to participants’ judgements of
these pronunciations. Second, we asked phoneticians to
judge the phonemic string of the model pronunciation
(independent from a synthesiser) and found that they were
more likely to agree with the outcome of the ratings
method than the corpus-based method. The phoneticians
also confirmed many cases of false negatives under the
corpus-based method, such as the examples outlined above
(frislI, k@englIst, @f11v), which were unanimously
deemed acceptable by the phoneticians. We also examined
whether there were any common patterns of error that could
provide insight into the discrepancies between methods.
Notably, some of Sequitur’s outputs that were deemed
incorrect under the corpus-based method (but correct under
the ratings method and by phoneticians) were based on
generalizations from the CELEX training set, such as 1— T,
{—#, and kQn— k@n. That is, the model had generalized
correctly from their training set, listeners (and trained
phoneticians) considered these productions appropriate, but
the fact that the productions were not consistent with the
limited sample of human pronunciations in Mousikou et al.
(2017) meant that they were deemed incorrect under the
corpus-based method.

It is difficult to remedy the three sources of error
associated with the corpus-based method, outlined above.
Participant errors are difficult to avoid but transcription
errors may be reduced by using more than one transcriber
and cross-checking these transcriptions, although this
would be time consuming and expensive. To reduce its
susceptibility to the third source of error (i.e. the limited
sample of human responses), the corpus-based method
would require a huge amount of human participants in
order to capture as many pronunciation variants as possible.
However, increasing the number of human participants
would lead to an inevitable increase in transcription errors
and human pronunciation errors.

The ratings method sidesteps the three sources of errors
outlined above because there is no reliance on constructing
reference lists of human pronunciations and thus, there
is no inherent risk of wrongly penalising pronunciations
because they do not match a given set of references (false
negatives), or wrongly accepting pronunciations because
they match a specific reference that is actually erroneous
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(false positives). Furthermore, the ratings method is much
easier to implement because (i) there is no need to create
a reference list of human pronunciations each time a new
dataset of nonwords are introduced, and (ii) data can be
collected online which is much faster and relatively cheap.
Nevertheless, we acknowledge that the ratings method has
its own limitations and it is important to consider how these
may be addressed for future implementations. For example,
although there was occasionally inaccurate synthesis in the
current implementation, this can be fixed as technology
improves. Furthermore, we have made our full dataset
available for further analyses to facilitate further analyses of
the discrepant items and thus provide further insights into
the strengths and weaknesses of each method (for example,
original sound files can be examined to assess which
discrepant items really were transcription errors and which
really were never pronounced by the human participants).
The full data set may also be used for development of
future computational models as a benchmark for capturing
the fine-grained and heterogeneous range of acceptable
pronunciations for each pseudoword (e.g. Schmalz et al.,
2020; Ulicheva et al., 2021).

In summary, generalisation to unfamiliar nonwords is
a key challenge for models of word naming. Datasets
such as that collected by Mousikou et al. (2017) are
valuable for testing models, and particularly for helping to
explain the variability of human pronunciations. However,
comparing model output with human pronunciations is not
straightforward. The production and corpus-based method
for assessing model performance is extremely labour
intensive, making it difficult to test models on a wide range
of nonwords beyond existing datasets. In addition, we have
identified a number of limitations with the accuracy of this
method. By contrast, the ratings-based approach is an easy-
to-implement alternative which is not prone to the same
mistakes as the corpus-based method, and is arguably a
more accurate test of model performance. We hope this
method will be useful in future model development.
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