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A B S T R A C T   

We describe and validate a feature-based system for calculation of likelihood ratios from 3D digital images of 
fired cartridge cases. The system includes a database of 3D digital images of the bases of 10 cartridges fired per 
firearm from approximately 300 firearms of the same class (semi-automatic pistols that fire 9 mm diameter 
centre-fire Luger-type ammunition, and that have hemispherical firing pins and parallel breech-face marks). The 
images were captured using Evofinder®, an imaging system that is commonly used by operational forensic 
laboratories. A key component of the research reported is the comparison of different feature-extraction methods. 
Feature sets compared include those previously proposed in the literature, plus Zernike-moment based features. 
Comparisons are also made of using feature sets extracted from the firing-pin impression, from the breech-face 
region, and from the whole region of interest (firing-pin impression + breech-face region + flowback if present). 
Likelihood ratios are calculated using a statistical modelling pipeline that is standard in forensic voice com
parison. Validation is conducted and results are assessed using validation procedures and validation metrics and 
graphics that are standard in forensic voice comparison.   

1. Introduction 

1.1. Outline 

When firearms are fired at a crime scene and cartridge cases are 
ejected, these fired cartridge cases may later be recovered. Forensic 
practitioners may then compare two fired cartridge cases recovered 
from the crime scene with each other – a comparison of a fired cartridge 
case which bears markings of questioned source with another fired 
cartridge case which bears markings of questioned source (hereinafter 
we refer to this as “Scenario 1”). Forensic practitioners may also 
compare a fired cartridge case recovered from the crime scene with 
cartridge cases that they fire from a firearm seized from a suspect – a 
comparison of a fired cartridge case which bears markings of questioned 
source with fired cartridge cases which bear markings of known source 
(hereinafter we refer to this as “Scenario 2”). 

The evaluation in Scenario 1 could be conducted for investigative 
purposes, but could also be used for evidential purposes if no relevant 
firearms are available for comparison but the question of how many 
firearms were fired during the commission of a crime is relevant for legal 

decision making. 
For simplicity, in the present paper we assume exactly two recovered 

cartridge cases in Scenario 1 and exactly one recovered cartridge case in 
Scenario 2. Real casework may involve larger numbers of recovered 
cartridge cases, but these can be dealt with via expansion or repetition of 
the methods described in the present paper. 

For brevity, we will use the terms “questioned-source cartridge case” 
and “known-source cartridge case” as abbreviations for “cartridge case 
bearing marks of questioned source” and “cartridge case bearing marks 
of known source” respectively. 

In the remainder of the introduction:  

• We describe the anatomy of a fired cartridge case and the processes 
by which firearms leave marks on cartridge cases (§1.2). 

• We describe current casework practice for comparison of fired car
tridge cases (§1.3).  

• We provide a summary of published research on feature-extraction 
methods and statistical-modelling methods that have previously 
been applied to forensic comparison of fired cartridge cases (§1.4). 
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In the remainder of the paper: 

• We describe the hypotheses, including the specification of the rele
vant population, that we have adopted for calculating likelihood 
ratios in the context of the present research (§2).  

• We describe a feature-based system that we have developed for 
calculation of likelihood ratios from images of fired cartridge cases 
(§3). The system includes:  
o a database of 3D digital images of the bases of fired cartridge cases 

(§3.2)  
• preprocessing of images (§3.3)  
• feature-extraction methods (§3.4)  
• a statistical modelling pipeline that calculates likelihood ratios 

(§3.5)  
• We describe validation procedures (§4), and present and discuss the 

validation results (§5 and §6). 

The focus of the present paper is on comparing the performance of 
different feature-extraction methods. The best-performing feature- 
extraction method will be used in planned future research using a larger 
database and Deep Neural Network (DNN) embeddings. 

The research reported in the present paper is part of a wider pro
gramme of research which is outlined in Morrison [1]. 

1.2. Anatomy of a fired cartridge case 

Fig. 1 shows an example of an image of the base of a fired cartridge 
case. The head-stamp region includes text indicating the manufacturer 
and calibre of the cartridge case. We assume that this information is 

factual, and that it narrows the “class” of the cartridge case without the 
need for interpretation. The other regions together constitute the region 
of interest and each of these regions is italicized on its first mention in the 
paragraph below. 

An unfired cartridge of ammunition consists of a cartridge case, a 
bullet, and explosives. The cartridge case is a metal tube that is sealed at 
its base and is plugged at the other end (its mouth) by the bullet. Be
tween the base of the cartridge case and the bullet are explosives. A 
cartridge is loaded into the chamber of a firearm. When the firearm is 
fired, the firing pin strikes the primer cup on the base of the cartridge 
case. This deforms the primer cup creating a concave firing-pin impres
sion.1 This kinetic action initiates an explosion within the cartridge case 
which forces the bullet forward out of the mouth of the cartridge case 
and along the barrel of the firearm. The explosion also forces the car
tridge case backward until its base impacts the breech of the firearm.2 

This creates an impression of the breech face on the base of the cartridge 
case. The region of the base of the cartridge case where this impression is 
made is called the breech-face region. The explosion can also push out
ward the area around the firing-pin impression leading to convex 
deformation known as flowback. After the firearm has been fired, the 
cartridge case is (manually or automatically) ejected so that a new un
fired cartridge can be loaded into the chamber. Typically, ejected car
tridge cases fall to the ground, and they can potentially be recovered at a 
later time. 

Breech faces are not perfectly smooth. They have irregularities due to 
the manufacturing process and potentially due to later wear or damage. 
These irregularities vary across firearms. A breech-face impression on 
the base of a fired cartridge case will reflect the irregularities of a breech 
face. The transferred patterns of irregularities can include, but are not 
limited to, parallel series of peaks and troughs. Differences in the ir
regularities of the breech faces of different firearms will cause variability 
in the breech-face impressions on cartridge cases fired from different 
firearms. Differences in the transfer of the irregularities of a breech face 
to cartridge cases will cause variability in the breech-face impressions on 
cartridge cases fired from the same firearm. Similarly, the location, 
shape, and surface details of firing-pin impressions can vary both across 
fires from the same firearm and across fires from different firearms. 

Considering a firearm as the source of breech-face and firing-pin 
impressions, inferences with respect to which firearm fired a cartridge 
case can be drawn if the between-source variability in breech-face and 
firing-pin impressions is greater than their within-source variability.3 

1.3. Current casework practice 

For reviews of current casework practice in firearm examination see 
Bolton-King [2] and Nichols [3]. In current widespread practice, the 
analysis is a human-perception process and the interpretation of the 
extracted information is a subjective-judgement process. The forensic 
practitioner visually compares fired cartridge cases, viewing them side 
by side through a comparison microscope.4 Properties that practitioners 
report taking into consideration include the position and shape of the 
firing-pin impression, and the heights, widths, and distances between 
parallel peaks and troughs on the firing-pin impression and on the 
breech-face region (Tobin & Blau [4]; Tai & Eddy [5]). Current 

Fig. 1. Graphical representations of an example of the base of a fired cartridge 
case (9 mm diameter Luger-type ammunition). (a) Perpendicular view. (b) 
Oblique view with z scale exaggerated by a factor of 5. 

1 For simplicity, we assume centre-fire cartridges. Some firearms use rim-fire 
cartridges, and a firing-pin impression appears on the edge of the base of the 
fired cartridge case rather than on a central primer cup.  

2 Breech designs vary, but a common design is for there to be a breech block, 
i.e., a block of metal, that halts the backward motion of the cartridge case.  

3 The design of many firearms allow firing pins and breech faces to be 
replaced, but for simplicity the present paper does not address scenarios 
involving such changes.  

4 A comparison microscope allows images of two different objects to be 
juxtaposed and rotated and aligned relative to one another. 
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widespread practice is to report the conclusion as a categorical decision, 
i.e., as “identification”, “inconclusive”, or “elimination” (or as “unsuit
able for analysis”). Existing validation studies of practitioner perfor
mance have tended to use a small number of test trials, and have seldom 
reflected real casework conditions (Smith et al. [6]; Mattijssen et al. [7], 
[8]; Scurich et al. [9]). 

For Scenario 2, practitioners typically fire 3 cartridges from the 
firearm of interest and compare the fired cartridge cases with the car
tridge case recovered from the crime scene. 

Images of fired cartridge cases for comparison with an image of a 
questioned-source cartridge case recovered from a crime scene may be 
selected via an automated database search. The automated search 
returns a set of candidates for comparison with the questioned-source 
cartridge case, i.e., cartridge-case images in the database that the 
automated system determines to be the most similar to the questioned- 
source cartridge-case image. Thereafter, the comparison between the 
questioned-source image and the known-source images in the candidate 
set becomes a variant of Scenario 1 or Scenario 2: the evaluation is 
conducted using the human-perception and human-judgement processes 
described above. 

In a survey of practitioners presented in Scurich et al. [9], ~7% of 
respondents reported that a typical fired-cartridge-case comparison took 
less than 30 min, ~24% that it took 30–60 min, ~28% that it took 1–2 h, 
~26% that it took 2–4 h, and ~15% that it took more than 4 h. 

1.4. Previous work using data, quantitative measurements, and statistical 
models 

1.4.1. Introduction 
In this subsection, we summarize published research on quantitative- 

measurement and statistical-modelling methods that have been applied 
in forensic comparison of fired cartridge cases. We first describe existing 
databases of images of the bases of fired cartridge cases (§1.4.2). We 
then summarize feature-extraction methods (§1.4.3), and statistical 
models that have been applied to features and to similarity scores 
(§1.4.4). Finally, we summarize the results of research on practitioners’ 
attitudes toward the use of statistical models (§1.4.5). 

1.4.2. Databases 
Data of interest consist of 2D or 3D digital images of cartridge-case 

bases. 2D photographic images capture reflected light. 3D images cap
ture surface topography, including depth information. In the present 
paper we focus on 3D images. There are several commercially marketed 
3D imaging systems. The two most commonly used in operational 
forensic laboratories are Evofinder® and IBIS®. Research using such 
systems has the advantage of potentially being more quickly applicable 
to casework. 

Published research on statistical models for comparison of fired 
cartridge cases has made use of training and validation datasets that are 
relatively small. Some existing datasets consist of a large number of fires 
from a small number of firearms, e.g., 10–60 test-fires from each of 1–5 
firearms (Thumwarin [10]; Liong et al. [11]; Ott et al. [12]; Addinall 
et al. [13]), and others consist of a small number of fires from a some
what larger number of firearms, e.g., 1–4 test-fires from each of 10–90 
firearms (Xin et al. [14]; Legrá et al. [15]; Fadul et al. [16]).5 In addition, 
only a subset of the datasets used in published research have themselves 
been published and made available to other researchers and practi
tioners. Published datasets include those in the NIST Ballistics Toolmark 
Research Database (NBTRD).6 Some of the more commonly used data
sets are described in: Lightstone [19]; LaPorte [20]; Fadul et al. [16]. 

In order to train a forensic-evaluation system that outputs likelihood 

ratios, one has to model both within-source and between-source vari
ability. In order to do this, a dataset would be needed that includes a 
relatively large number of fires from each of a relatively large number of 
firearms of the same class. Datasets with a large number of firearms 
consisting of a small number from each of multiple classes would not be 
suitable for addressing “individualization”, as opposed to “class”, 
questions. To our knowledge, there are no existing datasets accessible 
for research purposes that contain images of a sufficient number of 
cartridge cases fired from each of a sufficient number of firearms of the 
same class to satisfy our requirements for training and validating a 
likelihood-ratio system. 

1.4.3. Feature extraction 
In published research, features have typically been extracted from 

the firing-pin impression and from the breech-face region. Flowback has 
usually been excluded from analysis (Ott et al., [12]; Song et al., [21]). 
Many features have been based on quantifications of what forensic 
practitioners report they pay attention to (see §1.3), but others have 
been based on functions fitted to image data without regard for inter
pretability of those features by humans. We will refer to the former as 
“human-inspired features” and the latter as “functional features”. 

Human-inspired features that have been extracted from firing-pin 
impressions include those based on the impression’s location (Legrá 
et al. [15]), overall shape (Zhou et al. [22]; Li [23]; Thumwarin et al. 
[10]), and surface texture (Legrá et al. [15]). Human-inspired features 
that have been extracted from the breech-face region include those 
based on low-frequency undulations of parallel peaks and troughs 
(Gambino et al. [23]; Petraco et al. [24]), in the literature this is termed 
“waviness”, and higher-frequency irregularities/residuals in those un
dulations (Petraco et al. [25]; Pan et al. [26]), in the literature this is 
termed “roughness”. Most of these features have been extracted from 
manually-selected parts of the firing-pin impression or of the 
breech-face region. 

Functional features that have been extracted from firing-pin im
pressions include values of central geometric moments (Ghani et al., 
[27]) and of Legendre moments (Chuan et al., [28]). From the whole 
cartridge-case base (including the headstamp region), Leng & Huang 
[29] extracted as features the values of circle-moment invariants (a 
modified version of central moments). From the whole region of interest 
(firing-pin impression + any flowback + breech-face region), Thum
warin et al. [10] extracted as features the magnitude-coefficient values 
from Fourier series fitted independently to each member of a set of 
concentric circles. 

1.4.4. Statistical models 
Statistical models applied in the published research have primarily 

been classification models rather then likelihood-ratio models. These 
classification models have included k nearest neighbors (Fischer & 
Vielhauer [30], [31]; Morris et al. [32]), linear discriminant analysis 
(Thumwarin et al. [10]; Ghani et al. [27]; Chuan et al. [28]), support 
vector machines (Zhou et al., [22]), bagged decision trees (Morris et al. 
[32]), and neural networks (Li [33]; Leng & Huang [29]; Morris et al. 
[32]; Ghani et al. [34]; Giudice et al. [35]; Razak et al. [36]). 

Other statistical models used for classification or for database search 
have skipped extraction of features and have been based on similarity 
scores calculated as the correlation between pairs of digital images, i.e., 
the correlation between the z values (the intensities for 2D images, or the 
heights for 3D images) at the corresponding x and y points of the two 
images. Similarity scores are calculated for pairs of cartridge cases 
known to come from the same source and for pairs of cartridge cases 
known to come from different sources, and statistical models are fitted to 
these two sets of scores (Roth et al. [37]; Song [38]; Ott et al. [12]; Tai & 
Eddy [5,39]; Zhang [40]). This approach has been applied to the whole 
of the firing-pin impression or the whole of the breech-face region (Song 
et al. [41]; Roth et al. [37]). Prior to calculating the correlation coeffi
cient, the firing-pin impressions or breech-face regions from the two 

5 In Zhang & Luo [17], 3070 test fires were produced from a total of 5 fire
arms. In Law et al. [18], 100 test fires were produced from each of 30 firearms.  

6 https://tsapps.nist.gov/NRBTD. 
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cartridge cases must be registered (rotated and aligned) relative to each 
other or to a common target. Rather than calculating the correlation 
over the whole of the firing-pin impression or the whole of the 
breech-face region, a commonly used approach is “congruent matching 
cells” (CMC) which calculates correlations over smaller areas which are 
called “cells”. The cells are, for example, squares of predetermined size 
defined by a grid superimposed on the image. Each cell from the 
questioned-source image is independently rotated and aligned relative 
to the known-source image in order to find the cell on the latter that is 
maximally correlated with the former.7 If the maximum correlation 
coefficient achieved exceeds a predefined threshold, these are desig
nated CMCs. The number of CMCs between a pair of fired cartridge cases 
can be used as a similarity score. Variants of the CMC approach are 
described in: Zhang et al. [42], [43]; Chen et al. [44]; Tong et al. [45], 
[46]. 

To our knowledge, there is no published research describing calcu
lation of likelihood ratios using statistical models applied to features 
separately extracted from each cartridge case, but there are a number of 
papers that describe calculation of likelihood ratios based on similarity 
scores. The most commonly used similarity score has been a correlation 
coefficient between pairs of digital images, calculated over the whole of 
or selected portions of the firing-pin impression or of the breech-face 
region (Riva & Champod [47]; Dong et al. [48]; Mattijssen et al. [7]; 
Riva et al. [49]). Other similarity scores used have been based on 
Euclidian distance between pairs of digital images, and on instantaneous 
angles on the surfaces of pairs of 3D images (Riva & Champod [47]; Riva 
et al. [49]). The most commonly used models have fitted kernel density 
distributions (Riva & Champod [47]; Dong et al. [48]; Mattijssen et al. 
[7]; Riva et al. [49]). Song et al. [50] used counts of the number of CMCs 
as similarity scores and fitted beta-binomial models to the count data. 
Similarity scores, however, do not take account of typicality with respect 
to the relevant population, and are therefore not an appropriate basis for 
calculating meaningful likelihood ratios in a forensic context (Morrison 
& Enzinger [51]; Neumann & Ausdemore [52]; Neumann et al. [53]). In 
the present paper we will therefore describe and validate a feature-based 
system for calculation of likelihood ratios. 

1.4.5. Practitioners’ attitudes toward the use of statistical models 
In a survey of practitioners presented in Scurich et al. [9], some re

spondents had skeptical (or even hostile) attitudes toward the use of 
statistical models for comparison of bullets and comparison of fired 
cartridge cases, but others had more positive attitudes. One of the re
spondents with a more positive attitude emphasized the need for de
velopers of statistical models to have a thorough understanding of 
firearms examination, and another emphasized the need for improved 
performance and for larger databases. 

2. Hypotheses and relevant population 

2.1. Introduction 

In this section, we restate the two casework scenarios of interest, and 
state the hypotheses that we have adopted with respect to each of these 
scenarios, including specifying the relevant population. For both sce
narios, the hypotheses define a common-source question.8 

2.2. Scenario 1 

One or more firearms are fired at a crime scene and the cartridge 
cases are ejected. Crime-scene investigators later recover two fired 

cartridge cases. A forensic practitioner compares the two questioned- 
source cartridge cases with one another and draws an inference with 
respect to whether they were fired by the same firearm or not. 

Hs: The two cartridge cases were fired by the same firearm. 
Hd: The two cartridge cases were fired by different firearms from the 
same population. 

2.3. Scenario 2 

A firearm is fired at a crime scene and the cartridge case is ejected. 
Crime-scene investigators later recover the fired cartridge case. Police 
investigators seize a firearm from a suspect. A forensic practitioner fires 
multiple cartridges from the seized firearm and collects the ejected 
cartridge cases. The forensic practitioner then compares the fired car
tridge case recovered from the crime scene (the questioned-source car
tridge case) with the cartridge cases fired from the suspect’s firearm (the 
known-source cartridge cases) and draws an inference with respect to 
whether the questioned-source and known-source cartridge cases were 
fired by the same firearm or not. 

Hs: The cartridge case bearing marks of questioned source and the 
multiple cartridge cases bearing marks of a single known source were 
fired by the same firearm. 
Hd: The cartridge case bearing marks of questioned source and the 
multiple cartridge cases bearing marks of a single known source were 
fired by different firearms from the same population. 

We will test two versions of Scenario 2, one in which the practitioner 
fires 3 cartridges from the seized firearm, and one in which they fire 9 
cartridges. 

2.4. Relevant population 

In casework, the practitioner would first examine the questioned- 
source cartridge case in order to assess the class of firearms from 
which the cartridge case may have been fired. For the purposes of the 
research reported in the present paper, the relevant population of fire
arms that we have adopted is semi-automatic pistols that fire 9 mm 
diameter centre-fire Luger-type ammunition, and that have hemispher
ical firing pins and parallel breech-face marks. Examples of firearms in 
this class are Browning Hi-Power, CZ 75, Beretta 92FS, and Ruger P85. 
This particular class was chosen as the relevant population for the pre
sent research because it is commonly encountered in casework [55].9 

The evaluation of the class of the firearm is generally considered to 
be the easiest step in the forensic comparison of fired cartridge cases due 
to gross differences in geometric form between classes (Bolton-King [2]; 
Nichols [3]). The present paper is not concerned with evaluation of 
class-level hypotheses. 

7 “Cells” on the known-source image can be of any orientation in any location 
and do not have to tessellate with each other.  

8 See Ommen & Saunders [54] on the distinction between specific-source and 
common-source likelihood ratios. 

9 It is not always the case that a firearm that has parallel breech-face marks 
will clearly transfer those marks to the breech-face region of the cartridge case. 
If a questioned-source cartridge case has clear parallel marks on its breech-face 
region, then the class of firearms can be restricted to those with parallel breech- 
face marks. If the questioned-source cartridge case does not have a clear pattern 
of marks on its breech-face region, then the class of firearms could be those with 
parallel breech-face marks, or with circular, cross-hatch, arc, or granular 
breech-face marks, or with smooth breech faces. In the present research, we 
have simply used cartridge cases fired from the class of firearms that have 
parallel breech-face marks without checking whether the cartridges playing the 
part of questioned-source cartridge cases actually have clear parallel marks. 
Including this step is something we leave for potential future research. Likewise 
adopting a broader population for cartridge cases including those without clear 
patterns of breech-face marks (and collecting data from that broader popula
tion) is something we leave for potential future research. 
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3. Fired-cartridge-case-comparison system 

3.1. Introduction 

In this section, we describe the system we have developed for 
feature-based calculation of likelihood ratios from images of fired car
tridge cases. First, we describe the construction of a database of 3D 
images of fired cartridge cases that was used for training and validating 
the algorithmic stages of the system (§3.2), then we describe the algo
rithmic stages of the system (§3.3–§3.5). 

The image-preprocessing, feature-extraction, and statistical- 
modelling stages of the system are outlined in Fig. 2. In the initial 
stages, information from a known-source cartridge case and information 
from a questioned-source cartridge case are processed in parallel. In the 
final stages, the known-source and questioned-source information are 
combined. 

In the first stage, images are preprocessed prior to feature extraction 
(§3.3). In the next stage, feature vectors are extracted from the images. 
In §3.4, we provide details of the multiple feature-extraction methods 
that we have tested. These methods include those that have previously 
been proposed and applied in the research literature (see §1.4.3), plus an 
additional method (Zernike moments) that a priori we expected to be 
effective. 

The last three stages in the system are: dimension reduction, calcu
lation of uncalibrated likelihood ratios, and calibration. In §3.5, we 
describe the statistical models used in each of these stages. The use of 
this statistical modelling pipeline is standard for backend modelling in 
state-of-the-art forensic-voice-comparison systems (Morrison et al. [56], 
[57]; Weber et al. [58]). 

Matlab® code implementing the algorithms described in §3.3–§3.5 is 
available from: https://forensic-data-science.net/firearms/. 

3.2. Database 

The data for the present research were taken from the E3 Database of 
Fired Cartridge Cases (release 1), that we built as part of the present 
research. This database is available from NBTRD.10 A link to the data
base is also provided at: https://forensic-data-science.net/firearms/. 

This database consists of 3D images of the bases of cartridge cases 
fired from firearms that were in the possession of a number of opera
tional forensic laboratories, law-enforcement agencies, military units, 
and private individuals in Barbados, Canada, France, Germany, UK, and 
USA. The cartridges used were taken from whatever each provider had 
available, with the condition that they have brass primer cups. 10 car
tridge cases were fired from each firearm (on occasion, one or more of 
these were missing). The original aim was to collect 3D images of the 
bases of cartridge cases fired from 1000 firearms, but progress toward 
this target was slowed by the COVID 19 pandemic. We plan to continue 
building the database and, in the future, release additional data. The 
research reported in the present paper makes use of data from cartridge 
cases fired from 297 firearms. This was the number available after 
excluding any firearms for which we received fewer than 8 fired car
tridge cases. 

The bases of the fired cartridge cases were digitally imaged using 
Evofinder® (software version 6.6.1.17), which uses a mixture of 
photometric stereo imaging and focus variation to capture 3D surface 
topography. The base of each cartridge case was digitally imaged, and 
the resulting data were exported as a matrix of values z(x, y) in x3p 
format11 with a resolution of 280 samples per mm in each of the x di
rection and the y direction (3.6 μm between samples). The resolution in 

the z direction was able to capture differences in height of less than 1 
μm. 

For the present research, the dataset was divided into two parts using 
a 2/3 versus 1/3 split: Data from 198 firearms (hereinafter the “training 
set”) were used to train all the models up to and including calculation of 
uncalibrated likelihood ratios, and data from the remaining 99 firearms 
(hereinafter the “calibration/validation set”) were used for cross- 
validated training of the calibration model and for validation. 

3.3. Preprocessing 

Prior to feature extraction, we applied the following commonly-used 
preprocessing steps:  

1. Segmentation: Separation of the firing-pin impression and the 
breech-face region from the remainder of the image and from each 
other. 

2. Illumination correction: Correction for non-uniformities in illumi
nation, including planar-bias correction.  

3. Noise removal: Removal of imaging artifacts.  

4. Registration. 
Rotation and alignment 
Details of commonly-used preprocessing procedures are provided 
in Tai & Eddy [5]. Preprocessing is not a focus of the present 
paper, so we do not provide details here. For segmentation, 
whereas Tai & Eddy [5] uses thresholds based on individual pixel 
values with predetermined threshold values, we used adaptive 
thresholds based on smoothed contours.12 

The following regions were segmented:  

(a) the whole of the region of interest including flowback if present  
(b) the whole of the region of interest excluding flowback if present  
(c) the firing-pin impression alone  
(d) the breech-face region alone 

Fig. 3 shows examples of each of these segmented regions. 
Although flowback has usually been excluded from analysis (Ott 

et al., [12]; Song et al., [21]), we hypothesized that the flowback region 
would contain useful information related to the firearm that fired the 
cartridge. 

The output of preprocessing were matrices of values z(x, y) with a 
resolution of 56 samples per mm in each of the x direction and y the 
direction (the downsampling procedure included anti-aliasing low-pass 
filtering). Within each matrix, the x and y values were centred by sub
tracting their means (calculated over the whole of the segmented re
gion), and were scaled such that the entire segmented region fell within 
a unit circle: x2 + y2 ≤ 1. This resulted in x and y values in the range −
1…1 with 0 in the centre. z values that corresponded to x and y com
binations that fell outside the segmented region did not contribute to the 
calculation of the feature values (these z values were coded in Matlab as 
“not a number, NaN”). z values were scaled in millimetres, and were 
shifted so that the origin (zero value) was set to the plane fitted to the 
breech-face region during planar-bias correction (planar-bias correction 
was derived from the breech-face region only and applied to each of the 
segmented regions). 

Because of the preprocessing, all data matrices had the same scale 
and the same location. Some of the features extracted for the present 

10 https://tsapps.nist.gov/NRBTD/Studies/Studies/Details/a023199a-b9 
f3-4a1a-89e8-c94054a7cf61.  
11 ISO 25178–72:2017/AMD 1:2020 Geometrical product specifications (GPS) 

— Surface texture: Areal — Part 72: XML file format x3p — Amendment 1. 

12 We plan to publish details of these modified procedures elsewhere, along 
with comparisons of results of segmentation using the original Tai & Eddy [5] 
procedures and our modified procedures. 
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research are rotation invariant, but others are not. As part of pre
processing, we therefore rotated the data matrices. An ideal rotation 
procedure would use the questioned-source cartridge case in Scenario 2/ 
one of the questioned-source cartridge cases in Scenario 1 as the target 
and rotate all other data matrices used for training and testing to that 
target. This, however, would require each data matrix in the entire 
dataset to be independently rotated to each questioned-source cartridge 
case/to each cartridge case used in validation as if it were a questioned- 
source cartridge case. This would be prohibitive in terms of processing 
time. We therefore arbitrarily selected one cartridge case from our 
dataset (the one shown in Fig. 1 and Fig. 3), rotated data from all other 
cartridge cases to this arbitrary target, then used this single rotated 
dataset for training and validation. The cost of rotation, especially ideal 
rotation, is a reason to prefer rotation-invariant features, but if rotation 
leads to substantial improvement in performance that cost may be 
justified. 

3.4. Feature extraction 

3.4.1. Introduction 
We extracted and tested the same sets of functional features that have 

previously been proposed and applied in the published literature on 
forensic comparison of fired cartridge cases (see §1.4.3). We also 
extracted and tested Zernike moments (Zernike [59]; Teague [60]; 
Khotanzad & Hong [61]). Zernike moments have been widely used in 
many fields, including optometry, photonics, astronomy, and 
facial-expression analysis (e.g., Iskander et al. [62]; Sun et al., 2014 
[63]; Pinhasi et al., [64]; Vretos et al. [65]). They are orthogonal and 
rotation invariant and have been found to outperform other 
moment-based approaches in terms of noise resilience, information 
redundancy, reconstruction capability, and classification accuracy (e.g., 
Teh & Chin [66]; Khotanzad & Hong [61]; Belkasim et al. [67]). We 
hypothesized that using Zernike moments as part of a 
fired-cartridge-case comparison system would result in better perfor
mance than using any of the previously proposed functional features.13 

Below, we provide details of the extraction of:  

• central moments (§3.4.2) 

Fig. 2. Schematic of the feature-extraction and statistical-modelling stages of the system. Abbreviations: k = known source; q = questioned source; LR = likeli
hood ratio. 

Fig. 3. Examples of segmented regions of a cartridge case (using the same example image as in Fig. 1): (a) whole region of interest including flowback; (b) whole 
region of interest excluding flowback; (c) firing-pin impression alone; (d) breech-face region alone. For the oblique views, the z scale is exaggerated by a factor of 5. 

13 We also tested central-moment invariants (Hu [68]; Flusser [69]; Flusser & 
Suk [70]), but they did not perform as well as Zernike moments. 
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• circle-moment invariants (§3.4.3)  
• Legendre moments (§3.4.4)  
• Coefficients of Fourier series fitted to concentric circles (§3.4.5)  
• Zernike moments (§3.4.6) 

§3.4.7 provides, for each feature-extraction method, the number of 
features that we extracted. 

3.4.2. Central moments 
Central moments were previously applied to forensic comparison of 

fired cartridge cases in Ghani et al. [27]. 
Raw geometric moments have the general form given in Equation 

(1), in which m and n are non-negative integers that specify the orders of 
the moment, and f(x, y) is an arbitrary function of x and y. Equation (2) 
provides the form applicable for digital data. Nx and Ny are the number 
of discrete x and discrete y values respectively. Equation (3) provides the 
formula for calculating central moments. Since we centred our data in x 
and y during preprocessing, x = 0 and y = 0 and there will be no dif
ference between our μraw

m,n and μcentral
m,n values. 

μraw
m,n =

∫∫

xmynf (x, y)dxdy 1  

μraw
m,n =

∑Nx

i=1

∑Ny

j=1
xm

i yn
j z
(
xi, yj

)
2  

μcentral
m,n =

∑Nx

i=1

∑Ny

j=1
(xi − x)m( yj − y

)nz
(
xi, yj

)
3 

Fig. 4 shows the products of the power functions on x and on y up to 
order 4 plotted over a disc of unit radius. All panels in Fig. 4 through 
Fig. 8 are plotted with − 1…1 as the range for each of the x, y, and z axes. 
Because the x and y values are in the range − 1…1, as m and n increase, 
the magnitudes of the outputs of the power functions decrease toward 
zero. For visualization purposes, in each panel of Fig. 4 we have scaled 
the product of the power functions so that the maximum magnitude on 
the z axis is 1. The plot in each panel represents a function that, if 
sampled at the same x and y values as the matrix of data values z(x,y), 
produces a matrix of values that can be pointwise multiplied with a 
matrix of data values z(x, y) and the products summed to extract a scaled 
central moment that can be used as a feature value. 

Central moments are not orthogonal and are not rotation invariant. 

3.4.3. Circle-moment invariants 
Circle-moment invariants were previously applied to forensic com

parison of fired cartridge cases in Leng & Huang [29]. 
Circle-moment invariants are a modified version of central moments. 

They have the form given in Equation (4). Whereas central moments use 
the signed values of the power functions on x and on y, circle-moment 
invariants use the absolute values. Fig. 5 shows the products of the ab
solute power functions on x and on y up to order 4 plotted over a disc of 
unit radius. For visualization purposes, we have scaled the product of the 
absolute power functions so that the maximum magnitude in each panel 
is 1. 

Circle-moment invariants are rotation invariant, but not orthogonal. 

μcircle
m,n =

∑Nx

i=1

∑Ny

j=1
|(xi − x)m

|
⃒
⃒
(
yj − y

)n⃒⃒z
(
xi, yj

)
4  

3.4.4. Legendre moments 
Legendre moments were previously applied to forensic comparison 

of fired cartridge cases in Chuan et al. [28]. 
The previously considered moments have used a power function of x 

and a power function of y, but moments can be generalized to use other 
functions. Legendre moments have the form given in Equation (5), in 

which L m( ⋅) is a Legendre polynomial of order m. Legendre poly
nomials up to order 4 are given in Equation (6). After the specification of 
the zeroth and first Legendre polynomials, higher orders in the series can 
be generated using Equation (7). Fig. 6 shows the scaled products of 
Legendre polynomials on x and on y up to order 4 plotted over a disc of 
unit radius. Legendre moments are orthogonal, but not rotation 
invariant. 

μLegendre
m,n =

(2m + 1)(2n + 1)
4

∑Nx

i=1

∑Ny

j=1
L m(xi)L n

(
yj
)
z
(
xi, yj

)
5  

L 0(x)= 1 6  

L 1(x)= x 7  

L 2(x)=
1
2
(
3x2 − 1

)

L 3(x)=
1
2
(
5x3 − 3x

)

L 4(x)=
1
8
(
35x4 − 30x2 + 3

)

L m(x)=
(

2 −
1
m

)

xL m− 1(x) −
(

1 −
1
m

)

L m− 2(x)

3.4.5. Concentric-circle features 
Fourier series fitted to concentric circles were previously applied to 

forensic comparison of fired cartridge cases in Thumwarin et al. [10]. 
The coefficient values from the Fourier series were used as features. For 
brevity, we refer to these features as “concentric-circle features”. 

Imagine a circle of radius ρ and a function z(ρ, θ) where θ specifies 
the angle in radians around the circumference of the circle. Fix ρ, and fit 
a Fourier series to the function z(θ) with the first-order component being 
a cosine with a period of 2π radians. All non-zeroth components will be 
cosines whose periods are 2π/n radians where n is a positive integer. 
Each component will therefore complete an integer number of periods as 
it travels around the circumference of the circle and will meet itself 
exactly in phase. The function z(θ) can be reconstructed to order N using 
a Fourier series as in Equation (8), in which A0 is the mean value of z(θ), 
and An is the magnitude coefficient and φn the phase coefficient of 
component n of the series. Cosine functions up to N = 4 with zero phase 
(φn = 0 for all n) fitted to a unit-radius circle (ρ = 1) are plotted in the 
top row of Fig. 7. Other rows of Fig. 7 show cosine functions up to 
successively lower N values fitted to successively smaller circles. Across 
the rows of Fig. 7, the period (ρm/Nm) of the highest order cosine 
function is the same. 

ẑFourier
N (θ) =

A0

2
+
∑N

n=1
An cos(nθ − φn) 8 

As in Thumwarin et al. [10], we only extracted concentric-circle 
features from the whole region of interest including flowback. In order 
to fit Fourier series covering the segmented region of interest, we 
specified the radius ρm of each member of a series of concentric circles. 
ρm values were selected such that circles fell entirely within the 
segmented region of interest. We transformed the Cartesian-coordinate 
data matrices, z(x, y), to polar coordinates, z(ρ(x, y), θ(x, y)). We then 
selected the z(ρ(x, y), θ(x, y)) data points that were closest to each 
concentric circle. Fourier series were fitted independently to each circle. 

As the radii ρm of the circles decrease, so do the lengths of their 
circumferences. As ρm decreased, we decreased the order Nm of the 
Fourier series so that, across all circles, when measured in millimetres, 
the period of the highest order component was the same. The reduction 
in Nm with reduction in ρm is illustrated in Fig. 7. Details of the values of 
Nm and ρm used for feature extraction in the present research are 
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provided in §3.4.7 below. 
The magnitude coefficients of a Fourier series can be used as 

rotation-invariant features. We henceforth refer to these features as 
“concentric-circle magnitude features”. We also extracted features that 
took account of both magnitude and phase. We henceforth refer to these 
features as “concentric-circle magnitude and phase features”. Phase per 
se is inconvenient as a feature because of discontinuity of values at φn =

0 = 2π. An alternative representation of a component of a Fourier se
ries, given in Equation (9), makes use of weighted cosine and sine 
functions. We will use the weights an and bn as paired features that 
together capture both magnitude and phase information. 

An cos(nθ − φn)= an cos(nθ) + bn sin(nθ) 9  

an = An cos(φn)

bn = An sin(φn)

An =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2
n + b2

n

√

φn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cos− 1
(

an

An

)

if bn ≥ 0

− cos− 1
(

an

An

)

if bn < 0  

3.4.6. Zernike moments 
Zernike polynomials were described in Zernike [59], and Teague 

[60] and Khotanzad & Hong [61] provide introductions to Zernike 
moments. To our knowledge, Zernike moments have not previously been 
applied to forensic comparison of fired cartridge cases. 

Zernike moments have the form given in Equation (10), in which 

Vm,n(ρ, θ) is a Zernike polynomial parameterized in polar coordinates. 
Equation (11) provides the form for calculating Zernike moments from 
digital data. The constraint x2

i + y2
j ≤ 1 was already enforced by the 

preprocessing of our data. 

μZernike
m,n =

m + 1
π

∫1

ρ=0

∫2π

θ=0

Vm,n(ρ, θ)f (ρ, θ)dρdθ 10  

μZernike
m,n =

m + 1
π
∑Nx

i=1

∑Ny

j=1
Vm,n

(
ρ
(
xi, yj

)
, θ
(
xi, yj

))
z
(
xi, yj

)
⃒
⃒
⃒
⃒
⃒

x2
i +y2

j ≤1

11 

Zernike polynomials are calculated as in Equation (12), which con
sists of a function Rm,n(ρ) dependent on distance ρ from the centre of a 
disc of unit radius, and a function cos(nθ) or sin(nθ) dependent on angle θ 
around the disc. The angle function is also dependent on n, which can be 
specified as a positive or a negative integer, or as zero. For n ≥ 0 the 
angle-dependent function is a cosine function, and the notation uses n as 
a subscript. For n < 0 the angle-dependent function is a sine function, 
and the notation uses − n as a subscript. 

Vm,n =Rm,n(ρ)cos(nθ) 12  

Vm,− n =Rm,n(ρ)sin(nθ)

The Rm,n(ρ) are a series of orthogonal polynomial functions depen
dant on the values of m and n, see Equation (13). 

Rm,n(ρ)=Rm,− n(ρ)=
∑
m− |n|

2

i=0
( − 1)i (m − i)!

i!
(

m+|n|
2 − i

)
!
(

m− |n|
2 − i

)
!
ρm− 2i 13 

Fig. 4. Plots of scaled products of power functions used in the calculation of central moments up to order 4.  
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Zernike moments are defined for even values of m− |n| with the 
constraint that |n| ≤ m. The Rm,n(ρ) up to order 4 are given in Equation 
(14). Fig. 8 shows Zernike polynomials up to order 4 plotted over a disc 
of unit radius. The output of Zernike polynomials intrinsically fall in the 
range − 1…1. 

R0,0(ρ)= 1 14  

R1,1(ρ)= ρ  

R2,0(ρ)= 2ρ2 − 1  

R2,2(ρ)= ρ2  

R3,1(ρ)= 3ρ3 − 2ρ  

R3,3(ρ)= ρ3  

R4,0(ρ)= 6ρ4 − 6ρ2 + 1  

R4,2(ρ)= 4ρ4 − 3ρ2  

R4,4(ρ)= ρ4 

To calculate Zernike moments, we used the method described in 
Iskander et al. [62] and given in Equation (15), in which: z is a data 

matrix z(x, y) rearranged into a column vector; V is a matrix in which 
each column is a matrix of Zernike polynomial values Vm,n(ρ(x, y),
θ(x, y)) rearranged into a column vector in the same way as for z, and for 
which the number of columns equals to the number of Zernike moments 
to be extracted14; superscript T indicates the transpose of the matrix; and 
μ̂ is a column vector of estimated Zernike moments. This method is a 
least-squares fit assuming a model in which the data are the product of 
the Zernike polynomials and the moments, plus a random error, i.e., z =

Vμ+ ε. 

μ̂ =
(
VTV

)− 1VTz 15 

As discussed at the end of §3.4.5 and shown in Equation (9), a pair of 
cosine and sine functions capture both the magnitude and phase of a 
component of a Fourier series. Likewise a pair of Zernike polynomials 
Vm,n and Vm,− n with the same m and |n| values capture both magnitude 
and phase information, therefore Zernike moments μZernike

m,n and μZernike
m,− n 

with the same m and |n| values can be used as paired features that 
capture both magnitude and phase information. 

Theoretically, Zernike moment magnitude and phase features are not 

rotation invariant, but Zernike moment magnitude features, 
⃦
⃦
⃦μZernike

m,±n

⃦
⃦
⃦ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
μZernike

m,n

)2
+
(

μZernike
m,− n

)2
√

, are rotation invariant. 

Fig. 5. Plots of scaled products of absolute power functions used in the calculation of circle-moment invariants up to order 4.  

14 Subject to the previously stated constraints regarding m, and n, we extracted 
Zernike moments for all negative, zero, and positive n for each m up to the 
maximum order of m used. 
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3.4.7. Numbers of features extracted 
Given the relatively small size of our dataset, we did not want to 

extract a very large number of features, but we wanted to extract suf
ficient information to obtain reasonably good performance on the 
cartridge-case-comparison task. We initially focussed on extracting 
Zernike-moment magnitude and phase features for Scenario 1, and a 
priori believed that extracting up to 10th order moments for the firing- 
pin impression and up to 20th order for the breech-face region would 
be a reasonable compromise. We chose a lower order for the firing-pin 
impression because its gross shape is usually considered an important 
source of information, whereas we chose a higher order for the breech- 
face region in order to capture finer details of surface irregularities. In 
preliminary tests, we also tested up to 5th and up to 15th order for the 
firing-pin impression, and up to 10th and up to 30th order for the 
breech-face region, but up to 10th and up to 20th order for the firing-pin 
impression and breech-face region respectively gave better or no worse 
results. Up to 10th order Zernike moments (up to m = 10) result in a 
total of 66 magnitude and phase features, and up to 20th order (up to 
m = 20) result in a total of 231 magnitude and phase features. In 
addition to fitting models to features extracted from the firing-pin 
impression alone and to features extracted from the breech-face region 
alone, we also fitted models to the concatenation of these two sets of 
features. The concatenation of firing-pin plus breech-face features con
tained a total of 297 features. When extracting features from the entire 
region of interest (either including or excluding flowback), we used up 
to 23rd order Zernike moments (up to m = 23), resulting in a total of 
300 magnitude and phase features. These choices as to number of fea
tures to extract are somewhat arbitrary, however, we will treat them as 
specifications for the system and then validate the performance of that 
system. 

For the Zernike-moment magnitude-only features, using the same 
orders as stated above, 36 features were extracted from the firing pin 
impression, 121 from the breech-face region, and 156 from the whole 
region of interest. 

For the other moment-based feature sets (central moments, circle- 
moment invariants, and Legendre moments), we extracted approxi
mately the same number of features as we had Zernike-moment 
magnitude and phase features: up to 7th order (up to m = n = 7) 
from the firing-pin impression, a total of 64 features; up to 14th order 
(up to m = n = 14) from the breech-face region, a total of 225 features; 
and up to 16th order (up to m = n = 16) from the whole region of in
terest, a total of 289 features.15 

As in in Thumwarin et al. [10], for the concentric-circle features, we 
only extracted features from the whole region of interest. A 23rd order 
Fourier series was fitted to the outermost circle (circle m = 1 with order 
N1 = 23), matching the order of the Zernike moments. Based on mea
surements from the cartridge case which was used as the target for 
rotation, the radius of the outermost circle (the largest circle that could 
be drawn within the segmented region of interest) was ρ1 = 1.671 mm. 
The circumference of that circle was therefore c1 = 2πρ1 = 2π × 1.
671 = 10.497 mm, and the period of the highest order component of the 
Fourier series was therefore τ1,N1 = c1/N1 = 10.497/23 = 0.456 mm. 
This specifies the smallest wavelength of repetitive surface irregularities 
in the region of interest from which these features can extract infor
mation. Additional circles were then drawn, concentric to the outermost 
circle but with smaller radii. Moving from the outermost to the 

Fig. 6. Plots of scaled products of Legendre polynomials used in the calculation of Legendre moments up to order 4.  

15 The calculation of the number of features includes moments for which m =

0 or n = 0, e.g., up to 7th order is 82 features. 
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innermost circle, the order of the Fourier series for each circle was set to 
be two less than that of the previous circle: Nm+1 = Nm − 2, i.e., the 
orders were 23, 21, 19, …, 5, 3, 1 (a total of 12 circles). The radius of 
each circle was then calculated such that the period of the highest order 
component of the Fourier series fitted to that circle τm,Nm was equal to 

τ1,N1 , i.e., ρm = Nmτ1,N1/2π. The resulting radii were 100, 91, 83, 74, 65, 
57, 48, 39, 30, 22, 13, and 4% of the radius of the outermost circle. The 
pattern of reduction in ρm with reduction in Nm is illustrated in Fig. 7, 
but with orders 4, 3, 2, 1. Starting with N1 = 23 and reducing in steps of 
2, the total number of concentric-circle magnitude and phase features 

Fig. 7. Cosine components of a Fourier series up to component 4 (N = 4) fitted to a unit-radius circle (ρ = 1), and cosine components up to successively lower N 
fitted to successively smaller circles. 

Fig. 8. Plots of Zernike polynomials used in the calculation of Zernike moments up to order 4.  
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was 300, and the total number of concentric-circle magnitude-only 
features was 156. 

When extracting moments from the whole of the region of interest 
excluding flowback, data within the flowback region were not used in 
the calculations (in Matlab, data within the flowback region were coded 
as “not a number, NaN”). 

3.5. Statistical models 

3.5.1. Introduction 
This subsection provides details of the statistical modelling pipeline 

previously outlined in §3.1 and Fig. 2, i.e., dimension reduction (§3.5.2), 
calculation of uncalibrated likelihood ratios (§3.5.3), and calibration 
(§3.5.4). 

3.5.2. Dimension reduction 
Given the relatively small size of the dataset, in order to reduce the 

number of parameter values to be estimated in the next stage of 
modelling and in order to reduce potential redundancy of information 
among features, we reduced the number of feature dimensions using 
principal component analysis (PCA; Pearson [71]; Hotelling [72]). For 
each feature set, for the firing-pin impression we reduced the number of 
dimensions to 10, for the breech-face region to 20, and for the whole 
region of interest (including or excluding flowback, and including the 
concatenation of features from the breech-face-region and the 
firing-pin-impression) to 30. These values were chosen as a compromise 
between trying not to discard potentially useful information and trying 
not to have too many dimensions relative to the number of firearms 
available for training the between-source covariance matrix in the next 
stage of modelling. 

After dimension reduction using PCA, we calculated linear discrim
inant functions (LDFs; Fisher [73]; Rao [74]) on the training data and 
transformed all the data into the LDF space. For LDF training, each in
dividual firearm (each source), constituted a category. We did not use 
LDFs for additional dimension reduction, but only to rotate the data into 
orthogonal dimensions that maximized between-source versus 
within-source variance ratios. In preliminary tests, using LDFs for 
dimension reduction led to worse results. If there are mismatches in 
conditions between the questioned-source item and the known-source 
item (as is common in forensic voice comparison), then the mismatch 
in conditions can be the cause of substantial within-source variability. In 
this circumstance, training LDFs on data that include the mismatch and 
using only the lower-order dimensions serves as a 
mismatch-compensation technique: the lower-order dimensions have 
higher ratios of between-source to within-source variance, including 
within-source variance due to mismatched conditions, than do the 
higher-order dimensions. Since all the cartridge cases in our dataset had 
brass primer cups, there was no within-source mismatch in conditions 
for the training data or for the calibration/validation data, hence no 
mismatch-compensation advantage to be gained from dimension 
reduction using LDFs.16 

3.5.3. Calculation of uncalibrated likelihood ratios 
Uncalibrated likelihood ratios were calculated using a common- 

source likelihood-ratio model known in the automatic-speaker- 
recognition literature as the two-covariance version of probabilistic 
linear discriminant analysis (PLDA; Prince & Elder [75]; Kenny [76]; 
Brümmer & de Villiers [77]; Sizov et al. [78]).17 We used the imple
mentation from Sizov et al. [78]. The form of the model is as given in 
Equation (16), in which λ is an uncalibrated likelihood ratio, f(v|μ,Σ) is a 

multivariate Gaussian probability-density function, vq and vk are 
post-PCA-LDF questioned-source and known-source feature vectors 
respectively, μ̂r is the estimate of the mean vector for the relevant 
population, and Σ̂w and Σ̂b are, respectively, the within-source covari
ance matrix and the between-source covariance matrix estimates for the 
relevant population. 

λ=
f
([

vq
vk

]⃒
⃒
⃒
⃒

[
μ̂r
μ̂r

]

,

[
Σ̂w + Σ̂b Σ̂b
Σ̂b Σ̂w + Σ̂b

])

f
(
vq
⃒
⃒μ̂r, Σ̂w + Σ̂b

)
f (vk|μ̂r, Σ̂w + Σ̂b)

16 

For each segmented region, we trained three different PLDA models, 
which differed in their Σ̂w values: 

Model 1 v 1 corresponds to Scenario 1. 
A pooled Σ̂w was calculated using all feature vectors from all sources 

in the training data. 
Model 1 v 3 corresponds to Scenario 2 and assumes the practitioner 

fired 3 cartridges from the seized firearm. 
From the 10 feature vectors of each source (corresponding to the 10 

cartridge cases from each firearm), there are 
(

10
3

)

= 120 possible 

combinations of 3 feature vectors. 10 of these combinations were 
randomly selected, and the mean vector for each of these combinations 
was calculated. A pooled Σ̂w was then calculated using the combination 
of all the original singleton feature vectors and all the three-mean 
feature vectors from all sources in the training data. 

Model 1v 9 corresponds to Scenario 2 and assumes the practitioner 
fired 9 cartridges from the seized firearm. 

From the 10 feature vectors of each source (corresponding to the 10 

cartridge cases from each firearm), all 
(

10
9

)

= 10 possible combina

tions of 9 feature vectors were drawn, and the mean vector for each of 
these combinations was calculated.18 A pooled Σ̂w was then calculated 
using the combination of all the original singleton feature vectors and all 
the nine-mean feature vectors from all sources in the training data. 

Model 1 v 1, Model 1 v 3, and Model 1 v 9 will have successively 
smaller-valued within-source covariance matrices, the latter two 
reflecting the size of the group of known-source cartridge cases that will 
be compared with the questioned-source cartridge case. 

The mean vector for each source in the training data was calculated 
using, as applicable for each model, all the original singleton feature 
vectors from that source, or all the original singleton feature vectors 
from that source plus all the three-mean or all the nine-mean feature 
vectors belonging to that source. μ̂r and Σ̂b were then calculated using 
all of the mean vectors from each source. 

Prior to training the PLDA model, independently for each feature- 
vector dimension, the training data were centred to 0 and were scaled 
to a standard deviation of 1. These transformations, obtained from the 
mean and standard deviation of the training data, were subsequently 
applied to the calibration/validation data. Given this centring and 
scaling, for Model 1 v 1 and Model 1 v 9, should be a vector of zeros, the 
diagonal of should be a vector of ones, and the values of should be the 
same for both models. These values will differ slightly for Model 1 v 3 
because of the random sub-selection of data used in training that model. 

3.5.4. Calibration 
Whereas the model used to calculate uncalibrated likelihood ratios 

requires the estimation of a large number of parameter values in a 
multivariate data space, a calibration model is a parsimonious model 
which requires the estimation of a small number of parameters in a 

16 In preliminary work, we tested several other dimension-reduction methods, 
but none outperformed the combination of PCA + LDF.  
17 In Aitken & Lucy [79], it is called the “multivariate normal (MVN) 

procedure”. 

18 Occasionally, the number of fired cartridge cases available for a firearm was 
8 or 9 rather than 10, in which case the number of feature vectors available was 
used. 
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univariate space. The ratio of parameter values to be estimated relative 
to the number of data points is therefore much smaller for the latter 
model than for the former. 

We calibrated the uncalibrated likelihood ratios using a logistic- 
regression model. Logistic regression is commonly used as a calibra
tion model in forensic voice comparison (González-Rodríguez et al. 
[80]; Morrison [81]). We used the regularized-logistic-regression model 
described in Morrison & Poh [82], with a regularization weight equiv
alent to a set of feature vectors from one firearm.19 

For each segmented region and for each PLDA model (Model 1 v 1, 
Model 1 v 3, and Model 1 v 9), we trained different calibration models. 
Each calibration model was trained using a set of same-source scores and 
a set of different-source scores, where: a “score” is an uncalibrated log 
likelihood ratio, log(λi,j)

20; a same-source score, log(λi,j)
⃒
⃒
i=j, is the logged 

output of a PLDA model when the input is a pair of feature vectors 
originating from different cartridge cases fired from the same firearm (vi 

versus vj with i = j); and a different-source score, log(λi,j)
⃒
⃒
i∕=j, is the 

logged output of a PLDA model when the input is a pair of feature 
vectors originating from cartridge cases fired from different firearms (vi 
versus vj with i ∕= j). To calculate scores for training the calibration 
model, vi versus vj pairs were entered into Equation (16), with vi in place 
of vq and with vj in place of vk. Given a set of same-source scores and a set 
of different-source scores, a logistic regression model was trained using 
an iterative procedure (conjugate-gradient method; Hestenes & Stiefel 
[83]; Minka [84]) that estimated values for the intercept and slope co
efficients β0 and β1 of Equation (17), which was then used to convert 
each uncalibrated log likelihood ratio, log(λ), to a calibrated log likeli
hood ratio, log(λ).21 

log(λ)= β0 + β1log(λ) 17 

Same-source pairs of feature vectors (vi versus vj with i = j) and 
different-source pairs of feature vectors (vi versus vj with i ∕= j) for 
training each calibration model (and for cross-validation) were con
structed as follows: 

Model 1 v 1: To create same-source pairs of feature vectors, all 
(

10
2

)

= 45 possible combinations of 2 feature vectors were drawn from 

the 10 feature vectors originating from a firearm. One of the feature 
vectors in each pair was assigned to vi and the other to vj (the Model 1 v 1 
PLDA model is symmetrical so the order of assignment is irrelevant). 
This resulted in 45 pairs of same-source feature vectors from each 
firearm. To create different-source pairs of feature vectors, each feature 
vector from each firearm was compared with each feature vector from 
every other firearm. This resulted in 100 pairs of different-source feature 
vectors from each pair of firearms. 

Model 1 v 3: To create same-source pairs of feature vectors, each of 
the 10 feature vectors originating from a firearm was selected in turn, 
and the selected singleton feature vector was assigned to vi. From the 
remaining 9 feature vectors of each firearm, using random selection 
without replacement, 3 non-overlapping combinations of 3 feature 
vectors were drawn, and the mean vector of each combination was in 
turn assigned to vj. This resulted in 30 pairs of same-source feature 
vectors from each firearm. To create different-source pairs of feature 
vectors, each feature vector from each firearm was compared with each 
of the mean vectors of 3 non-overlapping randomly selected 

combinations of 3 feature vectors from each of the other firearms. The 
combinations of 3 feature vectors were randomly selected without 
replacement from the total of 10 feature vectors from the second firearm 
(one of the feature vectors was not used). A different random selection 
from the second firearm was used for comparison with each of the 
singleton feature vectors from the first firearm. The singleton feature 
vector was assigned to vi and each of the three-mean vectors was in turn 
assigned to vj. This resulted in 30 pairs of different-source feature vec
tors from each pair of firearms (with v1 versus v2 counted as a different 
pair to v2 versus v1). 

Model 1 v 9: To create same-source pairs of feature vectors, each of 
the 10 feature vectors originating from a firearm was selected in turn, 
the selected singleton feature vector was assigned to , and the mean 
vector of the other 9 feature vectors was assigned to . This resulted in 10 
pairs of same-source feature vectors from each firearm. To create 
different-source pairs of feature vectors, each feature vector from each 
firearm was compared with the mean of each of the possible combina
tions of 9 feature vectors from every other firearm. The singleton feature 
vector was assigned to and the nine-mean vector to . This resulted in 100 
pairs of different-source feature vectors from each pair of firearms (with 
versus counted as a different pair to versus ). 

In addition to separately calibrating the scores from each of the 
firing-pin impression and the breech-face region, we also used a logistic- 
regression model to simultaneously fuse and calibrate scores from these 
two regions. The scores were parallel in that each firing-pin-impression 
score corresponded to a breech-face-region score that was calculated 
using the same combination of digital images (including for Model 1 v 3, 
the same random selections of images). Given a parallel set of same- 
source and different-source scores, a regularized-logistic-regression 
model was trained resulting in estimated values for the intercept β0 
and for two slope coefficients β1 and β2. These coefficient values were 
then used to fuse and calibrate a parallel pair of scores, log(λ1) extracted 
from the firing-pin impression and log(λ2) extracted from the breech- 
face region, as in Equation (18). 

log(λ)= β0 + β1log(λ1) + β2log(λ2) 18 

Calibration and validation were performed together using cross- 
validation (see §4.2 for details). 

4. Validation 

4.1. Introduction 

A system validation was conducted for each different feature- 
extraction method applied to each different segmented region. Valida
tion was conducted according to the relevant recommendations in the 
Consensus on validation of forensic voice comparison (Morrison et al. [85]). 
In this section, we describe the validation procedures (§4.2), and the 
metric (log-likelihood-ratio cost, Cllr; §4.3) and graphic (Tippett plot; 
§4.4) used to represent the results. 

4.2. Validation procedures 

Calibration and validation were performed using cross-validation, 
comparing feature vectors from each firearm with other feature vec
tors from the same firearm and with feature vectors from all the other 
firearms in the calibration/validation set. 

Considering a matrix of all possible combinations of two cartridge 
cases: Since Model 1 v 1 is symmetrical, the same-source comparisons 
were those on the diagonal of the matrix and the different-source 
comparisons were those on the upper right of the matrix (or those on 
the bottom left, but not both). Since Model 1 v 9 and Model 1 v 3 are not 
symmetrical, the same-source comparisons were those on the diagonal 
of the matrix and the different-source comparisons were those on both 
the upper right and the lower left of the matrix. 

19 In the notation of Morrison & Poh [82]: wψ = κψ/2N, where κψ = 1, and N 
is the number of firearms that contributed to scores that were used to train the 
logistic-regression model. See Morrison & Poh [82] for further explanation.  
20 Use of the term “score” to refer to an uncalibrated log likelihood ratio is 

common in forensic voice comparison. Such scores, which take account of both 
similarity and typicality, should not be confused with similarity scores (see 
§1.4.4).  
21 Natural logarithms were used for the calculations. 
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Leave-one-source-out/leave-two-sources-out cross-validation was 
used: In a cross-validation loop in which the score to be calibrated was a 
same-source score, e.g., the result of comparing a cartridge case fired 
from firearm A with another cartridge case fired from firearm A, all 
scores that resulted from comparisons in which one or both members of 
the pair was a cartridge case fired from firearm A were excluded from 
the data used to train the calibration model (leave-one-source-out). In a 
cross-validation loop in which the score to be calibrated was a different- 
source score, e.g., the result of comparing a cartridge case fired from 
firearm A with a cartridge case fired from firearm B, all scores that 
resulted from comparisons in which one or both members of the pair was 
a cartridge case fired from firearm A or a cartridge case fired from 
firearm B were excluded from the data used to train the calibration 
model (leave-two-sources-out). 

4.3. Validation metric: Log-likelihood-ratio cost (Cllr) 

Given a same-source input, a good output from a forensic-evaluation 
system would be a likelihood-ratio value that is much larger than 1, a 
less good output would be a value that is only a little larger than 1, a bad 
output would be a value less than 1, and a worse output would be a value 
much less than 1. Mutatis mutandis, given a different-source input, a 
good output would be a value much less than 1. 

A metric that captures this gradient goodness is the log-likelihood- 
ratio cost (Cllr; Brümmer & du Preez [86]), which is calculated as in 
Equation (19), in which λs and λd are likelihood-ratio outputs corre
sponding to same-source and different-source input pairs respectively, 
and Ns and Nd are the number of same-source and different-source input 
pairs respectively. 

Cllr =
1
2

(
1
Ns

∑Ns

i=1
log2

(

1+
1

λsi

)

+
1

Nd

∑Nd

j=1
log2

(
1+ λdj

)
)

19 

Lower Cllr values indicate better performance. Cllr values cannot be 
less than 0. A system that always responded with a likelihood ratio of 1 
irrespective of the input, and hence gave no useful information, would 
have a Cllr value of 1. A system with a Cllr of less than 1 is providing 
useful information. Cllr values substantially greater than 1 can be pro
duced by uncalibrated or miscalibrated systems. 

For further explanation of Cllr and its interpretation, see Appendix C 
of Morrison et al. [85]. 

4.4. Validation graphic: Tippett plot 

Tippett plots (Meuwly [87]) consist of plots of the empirical cumu
lative probability distributions of the same-source log-likelihood-ratio 
values and of the different-source log-likelihood-ratio values. The 
tradition is to plot lines joining the data points rather than to plot the 
data points themselves. Tippett plots of some of the results of the present 
study are provided in Fig. 9 below. The y-axis values corresponding to 
the curves rising to the right give the proportion of same-source test 
results with log likelihood-ratio values less than or equal to the corre
sponding value on the x-axis. The y-axis values corresponding to the 
curves rising to the left give the proportion of different-source test re
sults with log likelihood-ratio values greater than or equal to the cor
responding value on the x-axis. In general, shallower curves with greater 
separation between the two curves indicates better performance. Tippett 
plots give an indication of the range of possible likelihood-ratio values 
that the system could generate under the test conditions, and can also 
reveal problems such as bias in the output. 

For further explanation of Tippett plots and their interpretation, see 
Appendix C of Morrison et al. [85]. 

Fig. 9. Tippett plots of validation results obtained using Zernike moment 
magnitude and phase features extracted from the whole of the region of interest 
including flowback. (a) Model 1 v 1. (b) Model 1 v 3. (c) Model 1 v 9. 
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5. Results 

5.1. Introduction 

In this section, we present the validation results, including Cllr values 
(§5.2) and selected Tippett plots (§5.3).22 

5.2. Cllr values 

Table 1, Table 2, and Table 3 provide Cllr values obtained from the 
validations of Model 1 v 1, Model 1 v 3, and Model 1 v 9 respectively. 
Each table provides Cllr values from the factorial of combinations of 
feature set and segmented region (including using feature concatenation 
and score-level fusion to combine features extracted separately from the 
breech-face region and the firing-pin impression). Examining these ta
bles, a clear pattern of results emerges:  

1. The feature set resulting in best performance is the Zernike moment 
magnitude and phase feature set.  

2. The segmented region resulting in best performance is the whole of 
the region of interest including flowback.  

3. The larger the size of the group of known-source cartridge cases that 
was compared to the questioned-source cartridge case, the better the 
performance. 

5.3. Tippett plots 

Fig. 9 provides Tippett plots of validation results obtained using 
Zernike moment magnitude and phase features extracted from the whole 
of the region of interest including flowback. The results show good 
calibration, with the same-source and different-source curves crossing 
near log 10(λ) = 0. For all models, likelihood-ratio values into the 
thousands in favour of same source would be supported, and likelihood- 
ratio values into the tens of thousands in favour of different source 
would be supported. The larger the number of known-source cartridge 
cases used, the more negative the limit of different-source log-likeli
hood-ratio values obtained (the Tippett plots are truncated at 
log 10(λ) = − 6, hence not all values are shown). Related to this pattern, 
substantial asymmetry is apparent for the same-source versus different- 
source log-likelihood-ratio values from Model 1 v 9. This increasing 
asymmetry is the expected and commonly observed pattern as within- 
source variability becomes much less than between-source variability.23 

6. Discussion 

6.1. Introduction 

In this section, based on the results, we discuss:  

• what we consider to be the best feature set (§6.2)  
• the benefit of rotating the data matrices to a common target (§6.3)  
• the benefit of using more known-source cartridge cases (§6.4)  
• what we consider to be the best segmentation of the cartridge case 

base (§6.5) 

6.2. Best feature set 

In §3.4.1, on theoretical grounds and based on empirical results of 
applications in other fields, we hypothesized that using Zernike mo
ments as features would result in better performance than using any of 
the other feature sets previously proposed in the literature on forensic 
comparison of fired cartridge cases. 

Our results demonstrated that this was indeed the case with respect 
to other moment-based feature sets. For the whole region of interest 
including flowback, compared to Legendre moment features (the best 
performing non-Zernike moment-based feature set), Cllr values for Zer
nike moment magnitude and phase features were lower by 10%, 14%, 
and 16% for Model 1 v 1, Model 1 v 3, and Model 1 v 9 respectively. 

Compared to concentric-circle magnitude and phase features, how
ever, Cllr values for Zernike moment magnitude and phase features were 
only lower by 1%, 2%, and 3% for Model 1 v 1, Model 1 v 3, and Model 1 
v 9 respectively. Although, the improvement is slight, Zernike moment 
magnitude and phase features have the advantage of being simpler to 
extract. 

For future work, including ultimate application to casework, we 
therefore consider Zernike moment magnitude and phase features to be 
the best feature set to use. 

6.3. Benefit of rotation 

In §3.3 we noted that the cost of rotating the data matrices is a reason 
to prefer rotation-invariant features, but, if rotation leads to substantial 
improvement in performance, that cost may be justified. 

After performing rotation, the theoretically non-rotation-invariant 
Zernike moment magnitude and phase features did not consistently 
result in better performance than the theoretically rotation-invariant 
Zernike moment magnitude-only features (see Table 1, Table 2, and 
Table 3). For all three models, for breech-face region alone and for score 
fusion (and for Model 1 v 9 for the whole region of interest excluding 
flowback), Cllr values were actually lower for Zernike moment 
magnitude-only features than for Zernike moment magnitude and phase 
features. 

For all three models, for the whole region of interest including 
flowback, however, Cllr values were lower for Zernike moment magni
tude and phase features than for Zernike moment magnitude-only 
feature, albeit only by 2%. 

We ran an additional set of validations without rotation, using Zer
nike moment magnitude-only features and Zernike moment magnitude 
and phase features extracted from the whole region of interest including 
flowback. For all combinations of model and for both magnitude-only 
and magnitude-and-phase features, the Cllr values for rotated versus 
non-rotated image data were less than 1% different.24 Thus, even if not 
theoretically rotation invariant, the magnitude and phase features in 
practice gave equally good results irrespective of whether rotation was 
applied to the data matrices or not. 

For future work, including ultimate application to casework, we 
therefore consider the cost of performing rotation to be not justified. 

6.4. Benefit of using more known-source cartridge cases 

In §3.5.3 we described using different numbers of known-source 
cartridge cases for training, resulting in Model 1 v 1, Model 1 v 3, and 
Model 1 v 9 having successively smaller-valued within-source covari
ance matrices. The expected result of this is that models with smaller 

22 In addition, in order to assess the stability of the system using Zernike 
moment magnitude and phase features extracted from the whole of the region 
of interest including flowback, we performed randomization tests in which in 
each iteration we randomly selected a different 198 firearm training dataset 
versus 99 firearm calibration/validation dataset split. Based on the results, we 
were satisfied that the system is sufficiently stable with respect to the selection 
of data for such splits. For brevity, we do not include the results here.  
23 Compare, for example, the score distributions in Fig. 10a and b, and 16 of 

Morrison & Poh [82], and the corresponding Tippett plots in Figs. 11, 12 and 17 
of Morrison & Poh [82]. 

24 For Model 1 v 1, Model 1 v 3, and Model 1 v 9 respectively, for magnitude- 
only features the Cllr values were 0.529, 0.387, and 0.357 without rotation, 
compared to 0.531, 0.390, and 0.359 with rotation, and for magnitude and 
phase features the Cllr values were 0.520, 0.384, and 0.348 without rotation, 
compared to 0.519, 0.384, and 0.351 with rotation. 
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ratios of within-source versus between-source covariance matrix mag
nitudes will produce a larger range of log-likelihood-ratio values, 
extending from higher-magnitude negative log-likelihood-ratio values 
for different-source comparisons to higher-magnitude positive log- 
likelihood-ratio values for same-source comparisons. 

For Zernike moment magnitude and phase features extracted from 
the whole region of interest including flowback, the results were as 
expected for different-source comparisons, but not so for same-source 
comparisons (see Fig. 9). Increasing the number of known-source car
tridge cases clearly improved results for different-source comparisons 
but did not clearly do so for same-source comparisons: in Fig. 9c the 
largest same-source log-likelihood-ratio value was actually less than in 
Fig. 9a and Fig. 9b. 

Although the 9% reduction in Cllr values for Model 1 v 9 compared to 
Model 1 v 3 (0.351 compared to 0.384) appears to be substantial, if it is 
primarily due to large-magnitude negative log likelihood ratios from 
different-source comparisons getting even more negative, the increase in 
performance indicated by the Cllr values may not be particularly perti
nent in casework. 

In the context of casework, in which firing 3 cartridge cases from a 
seized firearm is currently the norm, the cost of firing 9 cartridge cases 
instead may not be justified. This is an issue to revisit once a larger 
database is collected and potentially better performing systems are 
developed. 

For training and validation purposes, we recommend firing 10 car
tridge cases from each firearm. These can be used to make multiple sets 
of data for training and validating Model 1 v 3. 

6.5. Best segmentation 

As mentioned in §1.3, in current casework practice, practitioners 
tend to visually compare the firing-pin impressions and the breech-face 
regions of pairs of fired cartridge cases. As mentioned in §1.4.3, in 
previous research using data, quantitative measurements, and statistical 
models, flowback has usually been excluded from analysis. In §3.3, 
however, we hypothesized that the flowback region would contain in
formation related to the firearm that fired the cartridge. 

Combining information from the firing-pin impression and the 
breech-face region was expected to result in better performance than 
using one of these alone, and that result was obtained: in Table 1, 
Table 2, and Table 3 it can be observed that any of the means tested for 
combining firing-pin-impression and breech-face-region information 
almost always resulted in lower Cllr values than using either of these 
alone.25 

As we hypothesized, however, the best performance was obtained by 

Table 1 
Cllr values for each combination of feature set and segmented region for Model 1 v 1.   

Segmented Region 

Feature Set whole region of interest breech face firing pin breech face + firing pin 

including flowback excluding flowback feature concat. score-level fusion 

central moments 0.616 0.671 0.710 0.923 0.682 0.697 
circle-moment invariants 0.597 0.673 0.695 0.962 0.677 0.693 
Legendre moments 0.577 0.679 0.719 0.923 0.709 0.707 
concentric-circle features (mag.) 0.586 – – – – – 
concentric-circle features (mag. & phase) 0.526 – – – – – 
Zernike moments (mag.) 0.531 0.652 0.684 0.852 0.615 0.632 
Zernike moments (mag. & phase) 0.519 0.645 0.689 0.841 0.605 0.635  

Table 2 
Cllr values for each combination of feature set and segmented region for Model 1 v 3.   

Segmented Region 

Feature Set whole region of interest breech face firing pin breech face + firing pin 

including flowback excluding flowback feature concat. score-level fusion 

central moments 0.491 0.527 0.574 0.858 0.537 0.553 
circle-moment invariants 0.467 0.532 0.557 0.901 0.537 0.551 
Legendre moments 0.448 0.538 0.583 0.845 0.571 0.563 
concentric-circle features (mag.) 0.435 – – – – – 
concentric-circle features (mag. & phase) 0.390 – – – – – 
Zernike moments (mag.) 0.390 0.502 0.547 0.752 0.459 0.476 
Zernike moments (mag. & phase) 0.384 0.498 0.550 0.730 0.449 0.478  

Table 3 
Cllr values for each combination of feature set and segmented region for Model 1 v 9.   

Segmented Region 

Feature Set whole region of interest breech face firing pin breech face + firing pin 

including flowback excluding flowback feature concat. score-level fusion 

central moments 0.485 0.497 0.542 0.843 0.506 0.534 
circle-moment invariants 0.465 0.494 0.527 0.913 0.524 0.529 
Legendre moments 0.420 0.501 0.549 0.822 0.546 0.534 
concentric-circle features (mag.) 0.416 – – – – – 
concentric-circle features (mag. & phase) 0.363 – – – – – 
Zernike moments (mag.) 0.359 0.441 0.493 0.699 0.406 0.421 
Zernike moments (mag. & phase) 0.351 0.450 0.508 0.678 0.401 0.430  

25 There were a couple of exceptions for circle-moment invariants. 
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extracting features from the whole region of interest, including not only 
the breech-face region and the firing-pin impression, but also the flow
back region. It therefore appears that, contrary to received wisdom, the 
flowback region does contain useful information about the firearm that 
fired the cartridge case. 

Practically, only having to segment the region of interest from the 
headstamp region, and not having to additionally segment the firing-pin 
impression and the breech-face region will result in a simpler and faster 
system for comparing fired cartridge cases. 

For future work, including ultimate application to casework, we 
therefore consider the whole region of interest including flowback to be 
the best segmented region to use. 

7. Conclusion 

The present paper described and validated a feature-based system for 
calculation of likelihood ratios from 3D digital images of fired cartridge 
cases. The system includes a database of 3D digital images of the bases of 
approximately 3,000 fired cartridge cases, consisting of 10 cartridges 
fired per firearm from approximately 300 firearms of the same class 
(semi-automatic pistols that fire 9 mm diameter centre-fire Luger-type 
ammunition, and that have hemispherical firing pins and parallel 
breech-face marks). The images were captured using Evofinder®, an 
imaging system that is commonly used by operational forensic labora
tories. Although in terms of the combination of number of firearms of the 
same class and number of fires per firearm, this may be one of the largest 
databases in existence, we consider it relatively small for training sta
tistical models that take account of both within-source and between- 
source variability. Given this relatively small database, we were 
encouraged by the relatively good validation results. 

An important component of the research reported in the present 
paper was the comparison of different methods for feature extraction. 
Key conclusions were:  

• Of the feature sets tested, the best performance was achieved using 
Zernike moment magnitude and phase features.  

• Performance of Zernike moment magnitude and phase features was 
equally good irrespective of whether the data matrices were rotated 
prior to feature extraction or not. Use of costly rotation procedures is 
therefore not necessary.  

• The best performance was achieved by directly extracting features 
from the whole of the region of interest (the firing-pin impression 
plus the flowback region plus the breech-face region), rather than by 
any process that involved separately segmenting the firing-pin 
impression and the breech-face region.  

• In the context of casework involving comparison of a fired cartridge 
case recovered from a crime scene with cartridges fired from a seized 
firearm, using 3 cartridges fired from the seized firearm would 
appear to be sufficient to achieve good results. Use of a larger 
number of fires per firearm would, however, be advisable for system 
training and validation. 

In future work aimed at developing better performing systems, we 
will therefore use Zernike moment magnitude and phase features 
extracted from the whole of the region of interest without rotation of 
data matrices prior to feature extraction. 

Planned future work includes expanding the size of the database to 
the point where it will be sufficient for training a DNN-embedding based 
system, which is currently the state-of-the-art approach in forensic voice 
comparison, and which is expected to lead to substantial improvements 
in system performance. Planned future work will also ultimately include 
field testing by practitioners of a later version of the system. 
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Rodríguez, G.S. Morrison, Validation of the alpha version of the E3 Forensic Speech 
Science System (E3FS3) core software tools, Forensic Sci. Int.: Synergy 4 (2022), 
100223, https://doi.org/10.1016/j.fsisyn.2022.100223. 

N. Basu et al.                                                                                                                                                                                                                                    

https://doi.org/10.1109/icosp.2000.891807
https://doi.org/10.1109/icosp.2000.891807
https://www.researchgate.net/publication/236109928
https://www.researchgate.net/publication/236109928
https://www.ojp.gov/pdffiles1/nij/grants/237960.pdf
https://www.ojp.gov/pdffiles1/nij/grants/237960.pdf
https://doi.org/10.1016/j.forsciint.2017.11.035
https://doi.org/10.1016/j.forsciint.2017.04.019
http://refhub.elsevier.com/S2589-871X(22)00057-2/sref19
http://refhub.elsevier.com/S2589-871X(22)00057-2/sref19
http://refhub.elsevier.com/S2589-871X(22)00057-2/sref19
http://refhub.elsevier.com/S2589-871X(22)00057-2/sref20
http://refhub.elsevier.com/S2589-871X(22)00057-2/sref20
http://refhub.elsevier.com/S2589-871X(22)00057-2/sref20
https://doi.org/10.1016/j.forsciint.2017.12.013
https://doi.org/10.1016/j.forsciint.2017.12.013
https://doi.org/10.1109/cvpr.2001.990551
https://doi.org/10.1109/ICIF.2003.177417
https://doi.org/10.1002/sca.20251
https://www.ncjrs.gov/pdffiles1/nij/grants/239048.pdf
https://doi.org/10.1109/ICCSE.2016.7581634
https://doi.org/10.1016/j.forsciint.2010.02.011
https://doi.org/10.1016/j.forsciint.2010.02.011
https://doi.org/10.1088/1742-6596/890/1/012126
https://doi.org/10.1016/j.eswa.2011.08.003
https://doi.org/10.1016/j.eswa.2011.08.003
https://doi.org/10.1145/2600918.2600930
https://doi.org/10.1145/2600918.2600930
https://doi.org/10.1145/2756601.2756619
https://doi.org/10.1145/2756601.2756619
https://www.ncjrs.gov/App/AbstractDB/AbstractDBDetails.aspx?id=272547
https://www.ncjrs.gov/App/AbstractDB/AbstractDBDetails.aspx?id=272547
https://doi.org/10.1109/COGINF.2006.365616
https://doi.org/10.1109/COGINF.2006.365616
http://www.pertanika.upm.edu.my/pjst/browse/regular-issue?article=JST-S0297-2017
http://www.pertanika.upm.edu.my/pjst/browse/regular-issue?article=JST-S0297-2017
https://doi.org/10.1109/ICIP.2019.8803619
https://doi.org/10.1109/ICIP.2019.8803619
https://jtec.utem.edu.my/jtec/article/view/5823
https://doi.org/10.1109/BTAS.2015.7358774
https://doi.org/10.1109/BTAS.2015.7358774
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911193
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=911193
https://doi.org/10.1111/1556-4029.13577
https://doi.org/10.1111/1556-4029.13577
https://doi.org/10.6028/jres.124.026
https://www.nist.gov/publications/metric-comparison-surface-topographies-standard-reference-material-srm-bullets-and
https://www.nist.gov/publications/metric-comparison-surface-topographies-standard-reference-material-srm-bullets-and
https://doi.org/10.1016/j.forsciint.2016.04.015
https://doi.org/10.1111/1556-4029.14634
https://doi.org/10.1016/j.forsciint.2017.08.033
https://doi.org/10.1016/j.forsciint.2017.08.033
https://doi.org/10.1016/j.neucom.2018.04.059
https://doi.org/10.1016/j.neucom.2019.08.033
https://doi.org/10.1111/1556-4029.12382
https://doi.org/10.1111/1556-4029.12382
https://doi.org/10.4103/jfsm.jfsm_6_19
https://doi.org/10.4103/jfsm.jfsm_6_19
https://doi.org/10.1016/j.forsciint.2020.110363
https://doi.org/10.1016/j.forsciint.2020.110363
https://doi.org/10.1016/j.forsciint.2020.110502
https://doi.org/10.1016/j.forsciint.2020.110502
https://doi.org/10.1016/j.scijus.2017.06.005
https://doi.org/10.1093/lpr/mgaa006
https://doi.org/10.1201/9780367527709
https://doi.org/10.1201/9780367527709
https://doi.org/10.1214/20-STS805
https://doi.org/10.19080/JFSCI.2017.06.555693
https://doi.org/10.19080/JFSCI.2017.06.555693
https://doi.org/10.1201/9780367527709
https://www.elsevier.com/books/encyclopedia-of-forensic-sciences/houck/978-0-12-823677-2
https://www.elsevier.com/books/encyclopedia-of-forensic-sciences/houck/978-0-12-823677-2
http://forensic-voice-comparison.net/encyclopedia/
https://doi.org/10.1016/j.fsisyn.2022.100223


Forensic Science International: Synergy 5 (2022) 100272

19

[59] F. Zernike, Beugungstheorie des schneidenver-fahrens und seiner verbesserten 
form, der phasenkontrastmethode, Physica 1 (1934) 689–704, https://doi.org/ 
10.1016/S0031-8914(34)80259-5. 

[60] M.R. Teague, Image analysis via the general theory of moments, J. Opt. Soc. Am. 
70 (1980) 920–930, https://doi.org/10.1364/JOSA.70.000920. 

[61] A. Khotanzad, Y.H. Hong, Invariant image recognition by Zernike moments, IEEE 
Trans. Pattern Anal. Mach. Intell. 12 (5) (1990) 489–497, https://doi.org/ 
10.1109/34.55109. 

[62] D.R. Iskander, M.J. Collins, B. Davis, Optimal modeling of corneal surfaces with 
Zernike polynomials, IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 48 
(2001) 87–95, https://doi.org/10.1109/10.900255. 

[63] M. Sun, J. Birkenfeld, A. de Castro, S. Ortiz, S. Marcos, OCT 3-D surface topography 
of isolated human crystalline lenses, Biomed. Opt Express 5 (2014) 3547–3561, 
https://doi.org/10.1364/BOE.5.003547. 

[64] S.V. Pinhasi, R. Alimi, S. Eliezer, L. Perelmutter, Fast optical computerized 
topography, Phys. Lett. 374 (2010) 2798–2800, https://doi.org/10.1016/j. 
physleta.2010.04.05. 

[65] N. Vretos, N. Nikolaidis, I. Pitas, 3D facial expression recognition using Zernike 
moments on depth images, in: Proceedings of the 18th IEEE International 
Conference on Image Processing, 2011, pp. 773–776, https://doi.org/10.1109/ 
ICIP.2011.6116669. 

[66] C. Teh, R.T. Chin, On image analysis by the methods of moments, IEEE Trans. 
Pattern Anal. Mach. Intell. 10 (1988) 496–513, https://doi.org/10.1109/34.3913. 

[67] S.O. Belkasim, M. Shridhar, M. Ahmadi, Pattern recognition with moment 
invariants: a comparative study and new results, Pattern Recogn. 24 (1991) 
1117–1138, https://doi.org/10.1016/0031-3203(91)90140-Z. 

[68] M.-K. Hu, Visual pattern recognition by moment invariants, IEEE Trans. Inf. Theor. 
8 (2) (1962) 179–187, https://doi.org/10.1109/TIT.1962.1057692. 

[69] J. Flusser, On the independence of rotation moment invariants, Pattern Recogn. 33 
(2000) 1405–1410, https://doi.org/10.1016/S0031-3203(99)00127-2. 

[70] J. Flusser, T. Suk, Rotation moment invariants for recognition of symmetric 
objects, IEEE Trans. Image Process. 15 (2006) 3784–3790, https://doi.org/ 
10.1109/TIP.2006.884913. 

[71] K. Pearson, On lines and planes of closest fit to systems of points in space, Lond. 
Edinb.Dublin Phil. Mag. J. Sci. 2 (1901) 559–572, https://doi.org/10.1080/ 
14786440109462720. 

[72] H. Hotelling, Analysis of a complex of statistical variables into principal 
components, J. Educ. Psychol. 24 (6) (1933) 417–441, https://doi.org/10.1037/ 
h0071325. 

[73] R.A. Fisher, The use of multiple measurements in taxonomic problems, Ann. Eug. 7 
(1936) 179–188, https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. 

[74] C.R. Rao, The utilization of multiple measurements in problems of biological 
classification, J. Roy. Stat. Soc. B 10 (1948) 159–203. http://www.jstor.org/stabl 
e/2983775. 

[75] S.J.D. Prince, J.H. Elder, Probabilistic linear discriminant analysis for inferences 
about identity, in: Proceedings of the IEEE 11th International Conference on 
Computer Vision, 2007, pp. 1–8, https://doi.org/10.1109/ICCV.2007.4409052. 

[76] P. Kenny, Bayesian speaker verification with heavy tailed priors, in: Proceedings of 
Odyssey 2010: the Speaker and Language Recognition Workshop, 2010 paper 014, 
https://www.isca-speech.org/archive_open/odyssey_2010/od10_014.html. 

[77] N. Brümmer, E. de Villiers, The speaker partitioning problem, in: Proceedings of 
Odyssey 2010: the Speaker and Language Recognition Workshop, 2010, 
pp. 194–201. https://www.isca-speech.org/archive_open/odyssey_2010/od10 
_034.html. 

[78] A. Sizov, K.A. Lee, T. Kinnunen, Unifying probabilistic linear discriminant analysis 
variants in biometric authentication, in: P. Fränti, G. Brown, M. Loog, F. Escolano, 
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