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Abstract 

The world is changing, with more systems becoming automated through the Internet of Things (IoT). By the end 

of 2020, 38.5 billion connected devices are expected to be part of the IoT, which is an increase of 25.1 billion  

from 2015. With the digital revolution thoroughly underway, companies have been fully aware that statistical data 

can help their businesses thrive and increase efficiency. In this paper, the design and implementation of an Arduino 

sensor system used to record the temperature and location of Ladle Vessels for metallurgical purposes is presented. 

The Arduino microcontroller has multiple modules connected to it, including a K-Type thermocouple, Global-

Positioning System (GPS) Shield, Real-Time clock, and a Bluetooth module. Additionally, our system was fully 

tested to demonstrate that it could measure 1220 Celsius  for twenty-two hours. Our work can contribute to the 

development of Industrial IoT and smart sensor services. 

Keywords: IoT Sensor System; Temperature and Location of Ladle Vessels; Smart Sensor Systems , Industrial IoT 

(IIoT); Case studies for smart sensors  

1. Introduction 

The Internet of Things (IoT) is expected to become the latest revolutionary change in the technology industry, 

affecting all aspects of everyday life. The IoT has rapidly grown in popularity over the past few years, and by the 

end of 2020, 38.5 billion connected devices could be part of the IoT [9]. Many different industrial sectors are 

interested in the potential of the IoT and how the collection of data can transform their businesses by automating 

tasks [1]. The data recorded from the devices can be useful for interested parties to help make important decisions. 



For example, IoT sensors are becoming more widely used in the healthcare sector to record patient's blood 

pressure, sugar levels and weight, with the data being accessible by physicians anytime. Th is can lead to more 

lives to be saved due to the constant access to the data [2].  

The IoT has several elements: sensors to obtain the data, data processors to analyze the data, and finally, actuators 

that respond to the information by moving and controlling machinery [1]. David Fletcher states that it is "The 

ability of objects to communicate that delivers the power of the IoT" in his paper on the Ev olution of Cyber 

Technologies [3]. The communication between IoT devices is not just intended for data acquisition. In many cases, 

they are meant to perform and complete specific tasks that interact in the physical realm improving efficiency in 

previously manual tasks [1]. One example is used in the transportation sector, where traffic lights are changed 

based upon real-time traffic flow information. The traffic lights can take the information from sensors and alter 

traffic flow based on the data to ease congestion [4]. IoT research and product innovation contribute to the 

development of Industry 4.0. This paper describes a unique case study that has implemented an Industrial IoT 

(IIoT) service to offer real-world solutions and applied research contributions. 

1.1 Problem Overview 

In metallurgy, the temperature of the molten metal entering the casting process affec ts the quality of the result. 

Therefore, the temperature of the ladle vessel should be carefully controlled. Ladles are used to transport molten 

steel to the continuous casting operation, where the liquid is poured into molds to create the casting. The lad les 

must be preheated to decrease thermal shock and damage to the refractory metals [5]. Once the vessel has reached 

the optimal temperature, any extra overheating is redundant and can be costly. Material Processing Institute (MPI) 

is a research and innovation center that develops high-quality bespoke steel castings on a commercial basis. They 

offer a wide range of steel alloys weighing up to six tonnes. As part of the Industry 4.0 initiative, the aim is to 

develop and enhance their current IoT solutions to  examine data from machinery and equipment further. The 



company required a live monitoring solution to accurately record and analyze the ladle shell temperature and 

location during the preheat and transportation phases of the metal making process. The ladle shell has eight unique 

positions around the edge and on top of the vessel, requiring constant monitoring to accurately assess the current 

temperature and location status. To successfully record the temperature for long periods without human 

intervention, the chosen hardware, communication method and programming logic need to be carefully  

considered to optimize power consumption. This is an industrial IoT (IIoT) project designed, implemented and 

tested for the MPI in Middlesbrough, UK. Any system developed for MPI would need to be transferable, reusable, 

and scalable to other locations with minimal effort and adjustments. The network connectivity is weak inside the 

casting area where MPI develops the metals, so both an offline and online solution is required. 

1.3 Proposed Solution 

The proposed solution to the problem and the many constraints uses an Arduino microcontroller. Each controller 

will have an attached thermocouple to gather the current temperature and an external communication module, 

such as Bluetooth or WiFi, to transmit the data. To investigate the capability of Arduino microcontrollers in a 

production environment, each Arduino will have some unique modules and functionality. The modules include a 

GPS shield to obtain the current latitude and longitude of the device, a real-time clock to record the exact moment  

the temperature reading was taken and an infrared communication module to allow the user to stop the data 

logging via a remote. The data recorded by the IoT devices will then be displayed through a WPF application 

(.NET Core, Desktop usage only), with the following capabilities: 

1. Display Live Data - Each active device’s data displayed on a graph as a live data feed. 

2. Display Previously Recorded Data - The user can see all the temperatures  and data for each device between 

specified date ranges. 

3. Calculate & Present Statistical Information - Statistical data is calculated for the selected device(s) and 



displayed to the user. The statistical data includes the range, mean average and standard d eviation of the data 

set. 

The WPF application will be responsible for collecting the data outputted by each nearby Arduino with Bluetooth 

communication capabilities every second. The received information will then be sent to a local SQL database if 

the application runs in development mode or to an Azure-hosted SQL database if the application is running in live 

mode. The Arduino devices that communicate using a network connection send the recorded data to an online 

Web API, which, in turn, submits the data to the SQL database hosted on Azure. The WPF application can be 

configured to operate using the local or hosted SQL database with command -line arguments and configuration 

files. In addition to the WPF application, an Android app will be developed to allow remote access to the data. 

The Android application will only display previous data to the user and does not include the live or statistical 

information functionality. 

1.4 Background of Problem 

Previously, MPI recorded the temperature of the shell using a multi-channel thermocouple data logger, which 

allows twelve channels of temperature readings to be stored onto an SD card at a user-specified rate. Even though 

the device was able to successfully and accurately record the temperature data, it had multiple is sues and 

limitations: 

1. Costs - Even the cheapest data loggers can be extremely high, which is a problem due to the harsh 

environment the metal is created. 

2. Damage and Replacement Parts - As the device is a specialist piece of equipment, you cannot easily obtain 

replacement parts, requiring consumers to purchase a new device each time it breaks. 

3. Data Acquisition - The device can only log the data to an SD card inserted into the device. Meaning the 

scalability of such a system is non- existent and requires technologically literate end-users. 



4. Unable to Obtain Other Aspects of Real-Time Data - The multi-channel device can only record temperature 

data and cannot record the current date and time and GPS location of the vessel. 

Other similar projects and research outputs have previously been conducted regarding the attainment of 

temperature data using microcontrollers. This paper structure is as follows. Section 2 describes the methodology 

for our approach and Section 3 presents the design of the system. Section 4 provides details of the full 

implementation and Section 5 narrates the testing and evaluation of our work. Finally, Section 6 concludes our 

paper justifying our contributions.   

2 Methodology 

2.1 The Waterfall Methodology 

The waterfall methodology became the natural fit for the project due to the structure of the task and the different 

actors involved. The waterfall approach follows a set of steps in a specific order, with the first stage analyzing 

and designing, followed by the implementation, and finally testing and evaluating the final creation [7]. At the 

start of the project, a qualitative research interview with MPI was conducted to understand the requirements and 

expectations of the project before any development was undertaken. A mixture of qualitative and quantitative 

techniques was well suited for the project as a detailed specification needed to be established be fore any 

construction could occur. Overall, the waterfall methodology was a good structure to follow for this project as a 

clear understanding of the problem was needed before any development could be undertaken. Initially, a 

specification that later developed into a design proposal was agreed upon by all interested parties. Next, the 

implementation of the system began and continued until all the agreed features were completed to reach a high 

standard. The waterfall methodology worked well for this phase of development due to the limited time frame. 

The waterfall approach gave a structured list of features that needed to be completed for the application to be 

considered usable and did not allow for new features to be added or continuously changed, which would have 



increased the development time considerably. Similarly, engineers from Varna University, Bulgaria, developed 

an Arduino-based device that measured sixteen channels of live temperature data using thermocouples using a 

waterfall approach. The team used the Arduino Uno microcontroller and K-Type thermocouples to receive the 

latest readings from electrically resistive furnaces. The objective was to develop a device that could read the latest 

temperatures and prove the accuracy and precision of the data being recorded [6]. 

2.2 Information Security 

The greatest power of the IoT is the ability for many small objects, such as microcontrollers, to communicate 

with larger objects, such as desktop computers and servers, to create a network of devices capable of recording 

data. Security in IoT has to ensure every object in the network can be as strong and protected as possible. If one 

object was compromised, the entire system could become under threat. The ease of access to IoT devices and 

connecting them to networks, mobile devices, and other computers without directly requesting permission creates 

the possibility of high-risk security breaches [8]. With more IoT devices becoming connected than ever before, it 

is vital that careful security considerations and understanding of the risks are recognized before  the deployment 

of any IoT system [9]. An underlying problem with IoT systems is that they have components that capture 

environmental data connected to the microcontroller, which can be sent to external servers for storage. For 

example, the Arduino could record the temperature using the thermocouple and upload the data to a remote server, 

such as the cloud or a nearby windows device. The issue lies with the non -transparent communication between 

these devices and the external data servers. These servers can analyze and redistribute the information without 

the user's direct consent [1]. In 2018, an Amazon Echo recorded a user conversation and then shared it with 

contacts in her address book without direct consent. The situation was deemed to have been a string  of unlikely  

events after the device woke on a keyword and started listening to the conversation, resulting in an indirect 

conversation between the device and the owner. The Echo then distributed the recording to all her contacts [10]. 



With this example, it is important to consider and validate that the data is being sent to the correct locations.  

2.3 Industrial IoT approach 

Cheng et al. [11] explain an Industrial IoT (IIoT) approach centered on 5G to deliver smart manufacturing services. 

They explain the architecture. However, the limitation is the lack of the underlying technologies, such as sensors, 

and how the sensor can cope with memory shortage limitations. Huang et al. [12] explain the use of a blockchain 

system to enhance security. However, such an approach will lead to high implementation costs, since every system 

needs to be on the blockchain system. In the current setting and challenge, not every item is required to be in the 

secure blockchain service. In order to make our work IIoT compliant, operational devices such as sensors can 

have wireless connections only locally with WiFi and 4G/5G and it requires a strong authentication for 

accessibility each time. Automation is possible, such as measuring temperature for 24 hours to minimize the level 

of manual work required.  

2.4 Best Practices when Securing IoT Devices 

Before undertaking the IoT project for Material Processing Institute, several best IoT security practices have been 

identified. 

1. Physical Protection of Devices - IoT devices should be isolated and protected from unauthorized personnel. 

If an intruder gained physical access to the device, they could add or remove critical components that affect the 

usability and security of the device. Furthermore, they could upload different code to dist ribute the data to 

alternative servers that are not authorized. 

2. Firmware & Patch Updates - IoT devices require hardware to monitor the environment surrounding them. 

The hardware attached has to be updated and upgraded when required to prevent malicious attacks, which target 

outdated hardware, from taking place.  

3. Fail-Safe Design - As IoT devices connect to other services using some form of communication technology, 



there must be a fail-safe strategy in place. For example, if the communication connectivity dropped for an alarm 

system, a backup must be in place as lives or property could be in danger. For Material Processing Institute, if the 

Bluetooth connectivity fails temporarily, crucial data could be lost. The loss of data could affect the engineers ' 

decision making during the steel making process and lead to inferior quality steel being produced.  

4. Strong Authentication - In order to connect to a Bluetooth receiver, the encryption key must be known. When 

manufacturers distribute the Bluetooth receivers, they come with default weak passwords such as '1234'. 

Changing these passwords regularly is good practice as it makes it less likely for attackers to gain access. It is 

essential to make it a long length with any password, containing an array of lower, upper, and special characters 

with additional numbers to create a password difficult to crack or guess. 

3 Design of the System 

When the system is in operation, the IoT devices should be located in isolation boxes attached to the ladle vessel. 

A nearby windows computer can display the data from each IoT device. If the IoT device uses a Bluetooth module 

to communicate, the computer will open a network stream and extract it each second.  

 

 

 

 

 

 

 

 

 

 

Figure 1: An activity diagram showing a high-level overview of operations between all applications and layers   

Otherwise, if the IoT device communicates using WiFi, the data is sent to an online Web API. Applications can 



then query the API to present the data to users. The WiFi device that has been developed is a prototype for future 

usage once the network connection has been extended to the ladle vessel area. Therefore, the default method of 

communication is Bluetooth. Bluetooth was identified as the ideal communication method as it uses less battery 

power compared to WiFi and has a suitable, although a weaker, range of communication. See Figure 1 for the 

system design. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The database diagram with all of the tables and their relationships with one another 

Figure 2 shows a database diagram with all of the tables and their relationships, with each component described 

as follows. Table 1 then shows the required hardware components to build the sensors.  

Table 1: Hardware Components  

Hardware Components  

Hardware Part Description 

Arduino Uno The Arduino Uno is used for the versions of the IoT device that  
communicate through Bluetooth . Due to the simplicity of the 
board and the usage throughout other similar projects. 

Arduino WiFi Rev 2 The REV 2 is used to build the IoT device that communicates 
through WiFi and transmits the code directly to the Web API. 

DSD TECH HC-05 The DSD TECH is the chosen Bluetooth module for the project . 
The Bluetooth module can run on either 3.3V or 5V, has a large 
range and can detect if it is connected to other devices. 



DS3231 Real Time Clock The real-time clock allows for accurate date and time recording to 
the latest second.  

RoyalTek ITEAD GPS Sheild The GPS Shield allows for the current latitude and longitude to 
be recorded. 

Type-K Thermocouple The thermocouple allows for extremely high temperatu res to be 
recorded. 

MAX31855K Thermocouple 
Breakout Board 

It allows a connection to be established between the Arduino and 
thermocouple break- outboard. 

Thermocouple Connector PCC-
SMP-K 

The connector connects the thermocouple to the breakout board. 

16GB SD Card It allows for the storage of data when a connection fails. 

LED Lights To indicate if the device is active or sleeping. 

Battery Pack Power supply to the power board. 

KY-022 Infrared IR Sensor 
Receiver 

It receives input requests from the IR remote. 

IR Remote It allows a user to stop the recording of data for the board. 

1. ShellTemperatures  - A table holding information regarding data recordings. Includes the temperature, 

latitude, longitude, date and time, and the device which recorded the data.  

2. ShellTemperatureComments  - The textual comment associated with the data recording if applicable. 

3. ShellTemperaturePositions  - Stores information regarding which part of the ladle shell the data recording 

was taken from, i.e., bottom left, top right, etc. 

4. Positions  - A collection of predetermined positions on the ladle shell that users can choose. 

5. ReadingComments  - A collection of previously entered comments for each shell temperature recorded. 

This table was added to avoid duplication of strings. 

6. SdCardShellTemperatures  - Shell temperature data that was taken from an SD card and not a live recording. 

7. DevicesInfo - A table to store information for each microcontroller that has previously recorded data. 

8. SdCardShellTemperatureComments  - Comments for SD card recorded data. 

3.1 Arduino Design 

During the design phase of the project, it was decided that an  Arduino would be the best solution due to the 

plentiful availability and the low cost of the parts. The thermocouple and data communication module (Bluetooth 

or WiFi) are connected to the Arduino microcontroller and form the IoT device. Additional compone nts are added 



to different core device variations to evaluate and investigate the IoT's benefits in a steel production environment 

[13]. The code that is deployed to an Arduino board is called a sketch and is developed in C++. The sketch must 

include a setup and loop function which provide the following functionality. 

 Setup - The setup function is executed at the start of the program and is the entry point of the code. The 

setup function is intended to set global variables and establish connections [14]. 

 Loop - The loop function is called directly after the setup function has been completed. The loop function 

will continuously be recalled by the compiler and the user can insert a delay command to pause the process 

before repeating it [14]. 

3.1.1 Base IoT Sensor 

A Type-K thermocouple is used for each device in the project because of its ability to record extremely high 

temperatures and low cost. Additionally, the Type-K has plenty of information online and has been used in other 

Arduino projects.  Other thermocouples were considered, such as Type-J or Type-N, but both are more expensive 

and are less commonly used [15]. The Type-K probe is inserted into a thermocouple connector, which is soldered 

onto the thermocouple breakout board. In this case, the breakout board is the MAX31855K, a 14 bit-resolution, 

SPI-compatible serial interface. It acts as a digitizer, converting an analog reading to digital sends the data out 

using the SPI interface. The thermocouple breakout board has five pins that must be connected  to the Arduino 

board. 

Table 2: Hardware for the Base IoT Sensor 

Connecting Breakout Board to Arduino 

Breakout Board Pin Arduino Pin Function 

GND A1 Ground 

VCC A0 Digital pin set to 3.3V 

(Power) 

SCK D13 Clock 

SO D12 Serial Data Out 

CS D10 Chip Select 

 

The SCK, SO and CS pins are the SPI interface pins and must be connected as specified as the Arduino only has 



one SPI output. Each IoT device has a connected DS3231 Real Time Clock Module, which allows for the exact 

date and time the temperature was recorded to be logged. One disadvantage of the module is that the time starts 

from when the code was uploaded. The module takes the time from the uploading device, stores the date and time 

and continuously increments both. Once the power is restarted, the time is reset to the original time the code was 

uploaded and repeats. The Real-Time clock has four pins that must be connected. 

Table 3: Connecting the Real-Time Clock and the DSD Tech HC-05 to Arduino 

Connecting the Real-Time Clock to Arduino 

Real-Time Clock Pin Arduino Pin Function 

GND GND Ground 

VCC 3.3V Digital pin set to 3.3V (Power) 

SDA SDA Serial Clock 

SCL SCL Serial Data 

Connecting the DSD Tech HC-05 to Arduino 

Real-Time Clock Pin Arduino Pin Function 

GND GND Ground 

VCC 5V Digital pin set to 3.3V or 5V (Power) 

Tx Rx (D0) Transmitter to Receiver (Comms) 

Rx Tx (D1) Receiver to Transmitter (Comms) 

 

For the IoT devices that require communication using Bluetooth, the DSD Tech HC-05 is attached to the Arduino 

board. The module comes with a state pin that can be connected to indicate if the microcontroller is 

communicating with any other devices, which is essential for storing the data locally when a drop in connection 

occurs. The Bluetooth module has five pins that must be connected to the Arduino module. 

3.1.2 Added GPS Shield to Obtain Latitude & Longitude with Additional SD Card Slot  

The Arduino Uno only has one set of SPI pins, which the thermocouple is already connected to (D12-D13). Many 

GPS and SD Card modules communicate using the SPI interface. One solution would have been to share the SPI 

interface by changing which SPI device is active on the SPI bus. However, the connection architecture to solve 

the problem would have drastically extended the life cycle of the project. In order to solve the problem, a GPS 

shield with an SD Card slot was obtained and connected atop of the Arduino. The thermocouple and real-time 

clock were then reconnected directly to the shield. The senor and its peripheral hard ware have been shown in 



Figure 3. 

 

Figure 3: All of the connected modules and hardware required to develop the IoT sensor. 

3.2 Desktop Application 

In order to allow users to view the recorded data, a Windows Presentation Foundation (WPF) application was 

developed. Microsoft originally developed WPF for rendering user interfaces in Windows -based applications [16]. 

The WPF application was chosen over other available technologies such as ASP.NET, AngularJS & React as it 

can run locally on a computer and does not require a network connection, which is a key requirement of the 

system. Furthermore, the WPF application could display the information to the end -users to a high and 

professional standard. 

3.2.1 Application Architecture & Structure 

The software should be developed to a high quality and maintainable standard, ideally using recent technologies 

and following modern protocols. After researching online, it was discovered that the recommended architecture 

structure for any WPF application is the Model-View-ViewModel (MVVM) design pattern. The MVVM pattern 

separates the programming logic into three different layers [17]. 

 Model – It refers to the encapsulate application data and it can represent a domain model. For example, a 

model could represent a person with properties, including the person's name, address, age, etc. 



 View - Views are responsible for defining the structure, appearance and layout of what the user sees on the 

screen. In WPF applications, the view should be defined in the XAML (eXtensible Application Markup 

Language), which contains all of the layout code of the view. 

 ViewModel - ViewModels implement properties and commands that the view can bind to. When the 

properties are changed, the view can be notified to make the change visually. The ViewModel is the bridge 

between the View and Model layers and is responsible for handling all interactions between the two.  

The WPF application follows an N-Tier architecture pattern that has been built around the MVVM design pattern. 

Other layers have been included to separate the code further to follow a logical, reusable structure. These 

additional layers are as follows: 

 Repository - The repository layer is responsible for communicating with the database. The layer allows the 

business logic to be decoupled from the data access layer. 

 Data - The data layer contains all the models needed to communicate with the database. These model classes 

are Plain Old C# Objects (POCO). 

 BluetoothService - The BluetoothService is a layer that can search and communicate with nearby Bluetooth 

devices. The BluetoothService, when reading data from the Bluetooth devices, takes the latest output and 

looks for certain keys such as "-temp" and extracts the value adjacent to the key, which in this example 

would be the temperature recorded. 

 Tests  - NUnit tests to validate the correctness of the code. 

 ExcelDataWriter - The excel data writer takes data collection and writes the data to excel files on the local 

computer. 

 CustomDialog - In WPF, the default dialog looks rather old fashioned. The custom dialogue was developed 

to look more professional and is responsible for alerting the users with information and asking for 



confirmation of a request before proceeding further. 

4 Implementation 

4.1 Dependency Injection 

A problem with object-orientated applications is that each class can often be dependent upon other modules, 

which can cause massive problems for developers when making even the smallest of changes. The decoupling of 

objects is ideal in any software application as it allows developers to replace dependencies without changing 

classes that use them. A generic interface called ”IRepository” was developed. For each required repository, a real 

and fake version was created. The real application retrieved data from a real data source and passed it back to the 

calling function. The fake implementation extracted data from an in -memory collection and returned it to the 

calling function, developing two different implementations of each repository for thorough testing of the 

repository layer. If the application was running in development mode, the fake repositories would be added to a 

service collection and injected into the relevant ViewModels. Alternatively, if the application would be running 

in live mode, then the real repositories would be injected into the relevant ViewModels. Adding this feature 

created a more fluid application that was more adaptable and scalable. 

4.2 Communicating Data From The Microcontroller to the WPF Application 

For users to see the live data that is being recorded, it must be transferred to the WPF application. Firstly, the 

WPF application searches for any nearby Bluetooth devices with specific names that the user can determine. The 

user must add the names of the devices to a configuration file to avoid connecting to unnecessary devices and to 

only connect to relevant microcontrollers and not other objects, such as mobile phones. Once the application has 

found all nearby devices, a timer is created and started for each one and executes every second. The executed 

code opens a network stream between the application and the microcontroller and extracts the data from the output 

stream of the device. The string of data is split into a string array at each new line, and the last element in the 



array is selected as this is the latest reading. The latest reading is then converted into a string array, separated at 

each space as to be able to search and extract for specific elements. Each item in the collect ion (except the last) 

is checked to see if it matches a key value, such as ”-temp”. Each key value in the string array is used to match a 

value to a model element. For example, if "-temp" is found, then the next item is the latest temperature reading. 

1. ”-temp” indicates the next element is the latest temperature. 

2. ”-datetime” indicates the next element is the date and time the data was recorded. 

3. ”-lat” indicates the next element is the latitude co-ordinate at which the data was recorded. 

4. ”-long” indicates the next element is the longitude co-ordinate at which the data was recorded. 

Finally, the retrieved data is converted into a POCO object called "LiveDataReading". The object's data is then 

submitted to the SQL database and the process is repeated. 

4.3 Detecting Outliers 

While reading the temperature from a Bluetooth device, an occasional anomaly occurred where the readings 

would drop to zero despite previous recordings being much higher. These results are referred to as outliers. By 

simply making the temperature integer nullable and ignoring any that were null resolved the problem. Nonetheless, 

an outlier detection system was needed to accurately filter out any readings that could potentially be anomalies 

(i.e., considerably less or more than previous readings). The first implementation took the last twenty temperature 

readings for the specified device and calculated the mean average. Then, if the current reading was five degrees 

lower or greater than the calculated average, it was considered an out lier and could be ignored. The problem with 

this solution was it was not fully scientific and allowed for a wide range of error.  

After researching online, the interquartile range was identified as the ideal strategy for determining if the latest 

temperature was an outlier. The new solution took the last twenty temperature readings in order and separated 

them into three quartiles. Quartile One (Q1) is the median of the first half of the data set, Quartile Two (Q2) is 



the middle value of the overall set, and Quartile Three (Q3) is the median of the last half of the set. The median  

of Q1 is subtracted from the median of Q3 to calculate the interquartile range. Finally, the interquartile range is 

multiplied by a constant value and subtracted from Q1's median and added to Q3's median to generate a lower 

and upper bound. If the current temperature is less than the lower bound or greater than the upper bound, it is an 

outlier and ignored. After some trial and error testing, the constant value multiplier was set at 1.75 as it accurately 

determined outliers. Smaller and larger constant values were tested, but more inaccurate determinations occurred. 

Overall, the strategy using the interquartile range was much more effective at removing possible outliers as the 

bounds could dynamically change based upon the data set it was given instead of being hard -coded to specific 

values—this dynamic change allowed for more accurate detection with more scientific foundations.  

4.4 Connection Status Bar 

Located at the top of the window is the connection status bar, which indicates the connection status of the current 

Bluetooth device being recorded. Four main statuses can occur during the application's life cycle.  

1. Connecting - The background is orange, with a message indicating to wait  for the connection to the 

Bluetooth device to be completed. 

2. Connected - The background is green with a message indicating that the application has connected to the 

Bluetooth device and is receiving data. 

3. Failed - The connection to the Bluetooth device has failed and displays a message accordingly. The 

application will try to reconnect, although a user may need to intervene if a more critical error has occurred. 

4. Pause & Stopped - The user has pressed the stop button in the application or has used the IR Remote to 

stop the Bluetooth device. This triggers the connection status bar to turn grey. 

The connection status bar shows the connection status of the currently selected device on the Live Data screen 

and is viewable from all different (usage of ”but” implies a negative) screens in the application to give the user 



constant updates. 

4.5 Intelligent processing 

Between section 4 and section 5.3, the design, system development and implementation have been explained. 

Intelligent processing can be achieved by following the structured design and development process. In order to 

make this a highly-efficient process, an additional algorithm for sensors is shown in Table 4. 

Table 4: An algorithm to run intelligent processing smoothly 

read( ); 

record( ); 

If record(temp) <=1250; 

update( ); 

output( ); 

end; 

else 

  alarm( ); 

output( ); 

stop( ); 

exit; 

 

We first perform the reading of the temperature and then record the current temperature. If the temperature does 

not go beyond 1250 C, it will update its current temperature and send the reading to output. Until the sensor 

reaches its bottleneck, it can trigger the alarm, send everything to output and stop the process. Even we can install 

additional memory and sensors cannot take too complicated algorithms. This solution effectively ensures our 

sensors can measure temperature, record and return the outputs until it reaches the bottleneck. 

4.6 Displaying Live Data 

Once the application has been loaded, the user is presented with the live data screen where the data currently 

being recorded from each Bluetooth device is displayed. The display consists of a graph that plots each of the 

temperatures on the Y-Axis against the Date and Time on the X-Axis and a live data feed, which shows all of the 

recorded data as a list output. The data feed for each device can be viewed by selecting the device from the drop -



down menu. Furthermore, the devices' data feed can be stopped and started by pressing the corresponding buttons 

directly below. The user can add additional information to each record, such as comments or a position tag. Finally, 

at run time, the user can search for new devices currently not being monitored by the syste m by pressing the 

"Search For Devices" button. See Figure 4. 

 

 

 

 

 

 

 

 

Figure 4: The live data recording screen of the WPF application. 

4.7 Displaying Historical Data 

Another feature that the user can engage with is the Historical Data view, where the user can view previously 

recorded data from different devices. 

 

 

 

 

 

 

 

 

Figure 5: The data recorded from one Arduino device during the live trial. 

The data is displayed using a graph and data feed. Comments can be added, updated, or deleted against each data 



recording. The displayed data can be exported to Excel via a button press, shown in Figure 5.  

4.8 Calculating Statistical Information 

The statistical report view collects all the data readings between a start and end date for a selected device and 

calculates statistical information based upon the temperature. The statistics include the mean, median, mode, 

range, interquartile range, mean deviation and standard deviation of the data. The user can then export the data to 

Excel, shown in Figure 6. 

 

 

 

 

 

 

 

 

Figure 6: The report screen where users can see statistical data. 

4.9 Web API and Android Application 

To allow the Arduino boards to submit the data using a network connection, an endpoint needed to be developed 

that was hosted on the web. The initial idea was to develop an Azure or AWS IoT service, which is both cloud-

hosted platforms used to communicate with IoT devices. However, this was not feasible as synchronizing the data 

between the existing SQL database and these services would have been challengin g and too time-consuming. The 

settled upon solution was a .NET Core Web API hosted on Azure, which allowed communication to the existing 

SQL database. The Web API allows the Arduino devices to submit the data readings, and then users can retrieve 

it by connecting it to a GET endpoint, as shown in Figure 7. The API added a layer of abstraction between the 

calling application and database and allowed for more reusability in the future.  



Figure 7: An activity diagram explaining the submission process from the calling application, the Web API, and 

the SQL database. 

5 Testing and Evaluation of our Solution 

5.1 Preliminary & Automated Testing 

Throughout the development of the project, extensive manual testing was carried out to check and evaluate that 

the system was working as expected. With each test, if the functionality could work as expected, the performance 

of the application was recorded inside a document and signed off from the sprint backlog. To further verify the 

correctness of the code and automatically check if the code is behaving as expected, 115 NUnit tests were 

developed. Each unit test defines a set of mock data, passes the data into a function that returns a result, and 

finally asserts the result against what is expected and will either pass or fail. The functionality that has been 

evaluated using unit tests includes all calculations, the outlier detector, sorting algorithms, and database 

interaction, which covers a large percentage of the application's total functionality. 

5.2 Live Deployment Testing 

On 9 March 2020, at 11:32 AM, the Arduino devices and applications were deployed and successfully recorded 

the ladle shell temperature for a twenty-two hour period until 10 March 2020 09:32 AM. One Arduino Uno’s 

attached thermocouple was connected to the lower outer edge of the vessel. The other thermocouple was inserted 

into the top of the vessel. Over the twenty-two hours, both Arduino's began at thirteen degrees and gradually rose 

until the ladle was fully heated. The lower thermocouple temperature rose to two hundred and two degrees while 

the top thermocouple rose to 1217 C◦. Figure 8 shows the temperature measurement results. We also have a safety 

measure. When the temperature is above 1250 C, it will stop measuring and trigger the alarm. 



 

 

 

 

 

 

 

 

 

Figure 8: the data recorded from the thermocouple recording the top section of the ladle vessel.  

Overall, the live trial was a success as the system managed to record the temperature for the entire period without 

any connection issues. However, after reviewing the data, one of the devices' early recordings shows that the 

temperature fluctuated between thirteen degrees and twenty-five degrees for the first hour. It was later realized 

that old data from the SD card was being transmitted to the application, but it did not have a recorded date and 

time associated with it. Therefore, the application assigned it to the computer's current date and time and submitted 

it to the database leading to inaccuracies. 

5.3 Evaluation and Discussion 

5.3.1 Difficulties and Challenges 

One major problem that was overcome during the development process was reading data from the SD card. The 

difficulty with the task was two-fold. Firstly, the WPF application already had a thread for each device to capture 

the live data, so it seemed redundant to create a second thread for each device to check if SD card data was then 

transmitted. Therefore, the SD card data and live data needed to be outputted together.  The Arduino library  

available to read the SD card data only had the inbuilt functionality to read each line individually and could not 

remove it once read. The second issue was that the Bluetooth connection could drop while reading the data from 

the SD card. If this event occurred, then the line (position) inside the SD card tha t had been reached would be 



forgotten. Once the connection is resumed, the data extraction from the SD card would start at the beginning 

again, as there is no functionality available to jump to a specific position. The solution was to output the live and 

SD card data simultaneously at the same moment. In order to overcome the connection dropping during the data 

reading of the SD card, a loop was added inside the function reading the SD card to write to the text file if the 

Bluetooth connection failed. Overall, the solution to the problem took a considerable amount of time to achieve 

and much longer than I anticipated. 

5.3.2 Improvements, Future Development & Research 

One future improvement in our research is to add a service layer inside the WPF application to communicate with 

the database. When the application runs in development mode, the service layer would call the repository layer 

to engage with the database. If the application was running in live mode, the service layer would call it the online 

Web API to query the database. Adding the service layer would make the code more manageable and allow for 

further scalability [18]. When Web APIs are deployed online, it is important that they are secure and unauthorized 

personnel cannot access sensitive data. With the API we have developed, anyone with some programming  

knowledge could easily query the API as there is no security in place currently. If anyone tries to send or retrieve 

data from the API, they could do so without any credentials. Without validating the user's identity, a major security 

issue has been exposed to the general public and attackers. To solve this problem, and IdentityServer should be 

developed that requires users to register, log in, and pass a token to the endpoint to validate their ident ity. As 

aforementioned, the development of similar Arduino recording systems is almost nonexistent, which could be an 

intriguing subject for future research. It is primarily investigating and developing Bluetooth topology in 

production environments.  

6. Conclusion  

Overall, the Arduino system and WPF Application were developed to a high standard and provided all of the 



functionality required in the specification. The successful delivery of the project is reflected in the live deployment, 

as the system did not falter during the data logging process. Authors have demonstrated that the IIoT service 

provides a strong case study of implementing Industry 4.0 disruptive technologies for the Material Processing 

Institute. Our research contributions come in two aspects. First, the development of the IIoT sensor and smart 

service. Second, the real-world solutions of the smart sensors to measure the temperature of an oven for a 

manufacturing firm. It can measure the extremely high temperature periodically and also demonstrate our 

performance evaluation. Our future work will include improving our sensors to measure the temperature of 

extreme conditions, such as liquid nitrogen or in regions of high or low temperature, since our sensor can measure 

up to 1250 C as the highest level and the possible -200C as the lowest level. We will also improve the capabilities 

of our sensors so that it can be used in other smart services.   
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