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ABSTRACT 

The advent of the digital economy and Industry 4.0 enables financial organizations to adapt their processes and 

mitigate the risks and losses associated with the fraud. Machine learning algorithms facilitate effective predictive 

models for fraud detection for Industry 4.0. This study aims to identify an efficient and stable model for fraud 

detection platforms to be adapted for Industry 4.0. By leveraging a real credit card transaction dataset, this study 

proposes and compares five different learning models: logistic regression, decision tree, k-nearest neighbors, 

random forest, and autoencoder. Results show that random forest and logistic regression outperform the other 

algorithms. Besides, the undersampling method and feature reduction using principal component analysis could 

enhance the results of the proposed models.  The outcomes of the studies positively ascertain the effectiveness of 

using features selection and sampling methods for tackling business problems  in the new age of digital economy 

and industrial 4.0 to detect fraudulent activities.  

Keywords: digital payment; fraud detection; machine learning; Industry 4.0; cybersecurity for Industry 4.0 

I. INTRODUCTION 

Industry 4.0 has facilitated the rise of e-commerce, leading to the proliferation of digital payment [1]. 

Physical and IoT devices are connected with digital systems in Industry 4.0, allowing for better collaboration 

across the ecosystem, enhancing processes, and driving growth [2]. More and more enterprises and industries take 

into account this new industrial revolution. Unfortunately, keeping pace with this growth, the cybercrime rate in 
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digital payments is not far behind. Indeed, significant monetary losses every year due to the growing trend of 

fraudulent transactions urge the financial industry to improve fraud detection systems continuously . There are 

several control steps in a typical fraud detection process, each of which can either be managed by humans or 

automated. Unfortunately, the detection is notoriously tricky and influenced by factors such as money and 

customer spending behaviors. Machine learning algorithms , a leading technological advance for Industry 4.0, 

have presented promising solutions to tackle these problems by enabling providers to optimize their customer 

database with real-time transaction details, automatically detecting fraud and verification methods  [1, 2]. 

Over the past decade, there have been extensive machine learning studies to detect fraudulent 

transactions— one of the popular methods to classify payment transactions is to distinguish fraud using regular 

labels in database training, also known as supervised learning. The popular methods in this field include k-nearest 

neighbors (KNN) [3], decision trees [4], logistic regression [5], and support vector machine (SVM) [6]. These 

learning methods can either be applied separately or assemble models such as random forest to detect fraudulent 

transactions [7]. The supervised approach utilizes labeled historical transactions to build a predictive fraud model, 

which returns the likelihood of any new activity being a fraud. Nevertheless, labeling is time-consuming, and not 

all labels are ready quickly for the learning design [8]. Therefore, there is a light of studies that applied anomaly  

identification, known as unsupervised learning, to detect fraudulent transactions. This approach aims to 

discriminate the data pattern of transactions and interpret outliers as fraud. Hence, unseen fraudulent activities can 

be recognized and do not depend on past labeled transactions . A study in [9] found that unsupervised learnings 

could handle the skewness issues in this field and give high classification result s. Autoencoder, an artificial neural 

network, appears to be a compelling method in Industry 4.0’s fraud detection in recent unsupervised deep learning 

due to its excellent capability to analyze complex, real-time, and large-scale data [10].  

Researchers devote efforts to compare different learning models but mainly focus on the same categorical 

learnings, such as different supervised learning method comparisons. However, little research has evaluated and 

compared supervised and unsupervised learning models in the field [11]. This study addresses this gap by 

evaluating the ability to detect fraudulent patterns of different models ranging from supervised to unsupervised 

learnings. We propose four supervised algorithms, namely logistic regression, KNN, decision tree, random forest, 

and an unsupervised algorithm – autoencoder.  

Furthermore, identifying the best-fit algorithms is still a critical challenge for researchers in this field for 

several reasons. First, digital transactions are highly imbalanced with small proportional fraudulent transactions, 

resulting in inaccurate performance evaluation. Next, finding suitable features, a crucial task to reduce redundant 
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and irrelevant features from the actual dataset, reducing training time, avoiding overfitting, and improving  

learning performance are also concerns [12]. Thus, the effects of different sampling methods to solve skewed data 

and feature selection on the performance of the four proposed supervised learning models are also investigated in 

this study. The dataset about European credit card holders ’ transactions [13] is applied to train and test our 

proposed model in terms of the Area Under the Receiver Operating Curves (AUROC) and average precision. 

This study proposes and evaluates machine learning models to detect fraudulent transactions, which is a 

significant technical matter for financial providers  in the Industry 4.0 era. The comparison comprises classification 

approaches and anomaly detection approach automatically recognizing and distinguishing unusual data from 

financial databases. By doing so, our contributions are fourfold. First, we contribute to this critical issue and 

present practical learning algorithms that generate predictive fraud models adapted for financial business in 

Industry 4.0. Second, our work represents the investigation of feature selection influence, a challenge and critical 

problem affecting detecting fraud. Third, the imbalanced classification issue, a topic that is usually neglected in 

previous comparative studies, is resolved in this study by applying more appropriate performance metrics and 

accessing different effects of oversampling and undersampling techniques. Hence, we can identify an efficient  

and stable model for fraud detection platforms  in the age of Industry 4.0. Finally, this study applies a real 

transactions dataset to analyze the performance of several learning algorithms to recognize fraudulent patterns. 

Although Industry 4.0 accelerates information transparency, there is a scarcity of real-world financial records to 

support the development of a fraud detection system due to confidentiality.  

Our findings are vital for gaining insights into the robustness of multiple learning techniques in detecting 

credit card fraud in real-life circumstances. Likewise, as Industry 4.0 is still evolving and new forms of cybercrime 

and fraud keep emerging, our findings might help the association assemble a vastly enhanced fraud detection 

system for financial institutions and online payment providers that can better deal with the skewed data and 

employ more reliable measurements to evaluate the results.  

This paper is organized as follows. It starts with an introduction to the topic.  The next section reviews 

relevant studies in Industry 4.0, followed by the methodology section describing the applied methods and 

workflow of our study. Section 4 presents the experiment and results of the fraud detection model. Finally, the 

findings are discussed, and the implications are provided in Section 5.  

II. INDUSTRY 4.0 

Industry 4.0, also referred to as the fourth industrial revolution, was first introduced in Germany in 2011 

and officially published in 2013 as a German strategic plan to improve production systems to boost national 
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business productivity and efficiency. Industry 4.0 draws a new industrial strategy by integrating the organizations 

to comprehensive technologies related to connectivity, digitalization, and automation [14]. The associated 

technologies comprise but are not limited to big data, data analytics, artificial intelligence (AI), the internet of 

things (IoT), and cyber-physical systems (CPS). Industry 4.0’s goals are to promote operational effectiveness and 

efficiency and achieve a greater level of automatization. 

Industry 4.0 has an undeniable influence on almost every aspect of our daily lives, affecting and changing 

the ways industries work and how individuals and organizations interact with technology. In particular, the digital 

transformation has extensively impacted financial industries in the age of Industry 4.0, with a massive amount of 

digital transactions undertaken every day. Technology advancement for Industry 4.0 has transformed traditional 

banking into financial technology. 

Business works steadily rely on data, and with increasing hacking and unauthorized access,  information 

systems have become more vulnerable. Hence, cybersecurity has become an escalating challenge regarding the 

top business risks and plays a leading role in maintaining business competitiveness within Industry 4.0 [15]. Fraud 

detection is a prominent part of cybersecurity in the Industry 4.0 era [2]. Therefore, strengthening fraud detection 

systems and cybersecurity efforts is essential for any financial institution or payment provider in the new digital 

age. Data science and AI play a significant role in improving cybersecurity, particularly in the digital payment 

fraud detection field. As a result, integrating data science and AI with industry 4.0 will assist financial institutions 

in increasing the effectiveness and efficiency of automated processes  detecting and preventing fraudulent 

activities. 

III. METHODS 

Exploratory Data Analysis (EDA) was applied to explore and understand data. The flowchart of the data 

process is illustrated in Figure 1. First, the data was converted into a data frame during the preprocessing stage 

and checked for miss and duplicated values were. Then, data was prepared for training by normalizing features, 

deleting unused columns, and getting a sample. Because this data was highly imbalanced, 5,000 transactions were 

randomly re-sampled to make the training more efficient and save time. After that, sample data were split into 

training and test sets with a ratio of 80:20. Models were designed, then models were evaluated by training and test 

sets. A set of experiments have been conducted and compared using performance metrics such as AUROC and 

precision. Other performance metrics such as accuracy, sensitivity, and specificity were also provided to support 

the comparison. 
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This section explains the dataset adopted in the study and the five proposed algorithms, specifically 

logistic regression, KNN, decision tree, random forest, and autoencoder. The following methods are also applied 

to the proposed model for supervised learning algorithms. First, the GridSearchCV method is applied with 5-fold  

cross-validation to tune and find the optimal hyperparameters and reduce overfitting. Then, Principal Component 

Analysis (PCA) extracts features, while the Synthetic Minority Oversampling Technique (SMOTE) and Near 

Miss Undersampling methods reconstruct imbalanced training data into a balanced one. The autoencoder model 

is chosen for the unsupervised learning algorithm because of its ability to handle imbalanced data very well. It 

can be trained using one class of data without the data labels. Different epochs and  batch sizes are tried to find the 

optimal solution. 

1. Dataset Description 

This study uses the dataset of September 2013 credit card transactions provided on Kaggle [13]. This 

dataset is widely used to test the proposed learning model by many studies [9], [16] to detect fraudulent 

transactions. It comprised 284,807 transactions, of which 492 were fraudulent. Because of the confidentiality, the 

essential information and detailed features names about the dataset were not revealed. PCA was used to transform 

the other 28 features except for the “Time” and “Amount” features. The “Time” feature was given by the seconds 

elapsed between the first transaction and the current transaction, while “Amount” is the money of the cardholder’s 

purchase. Data was binary classified, and one corresponds to a fraudulent transaction, while zero is a regular one. 

2. Logistic Regression (LR) 

Logistic regression is used for the classification problem by gauging the outcome probability of a 

particular class. The predictions are transformed using the logistic function, which returns probability values 

between 0 and 1. Logistic regression is widely applied for classification tasks [17] and widely adapted for Industry 

4.0 because it is easy to implement, has good accuracy, and is very efficient to train. Itoo et al. [5] indicated that 

logistic regression achieved the best performance in fraud detection compared to Naïve Bayes and KNN. 

Figure 1: Flowchart of the data process 
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Different combinations of algorithms such as “liblinear,” “sag,” and “lbfgs” and regularisation strength 

effects (C values) were employed to find out the optimal method.  

 Lbfgs stands for Limited-memory Broyden–Fletcher–Goldfarb–Shanno and is the defaulted solver in the 

Sklearn Logistic Regression model. This solver used the inverse Hessian matrix, or second partial 

derivatives calculations, to update the gradient evaluations and discard earlier gradients, making the 

computation more effective and memory-saving. 

 Liblinear is a linear classification algorithm supporting logistic regression and is claimed to work well 

with small datasets. It used a coordinate descent algorithm and successively performed approximate 

minimizat ion along coordinate to optimize the problems.  

 Sag is Stochastic Average Gradient Descent and a breakthrough method in stochastic optimization that 

significantly reduced variance. It is an iterative technique to optimize the sum of a finite number of 

smooth convex functions. Although this method is required to maintain the table of gradients and the 

average gradient values, it is very efficient in terms of time and is usually applied for large datasets.  

 C measures the inverse power of the regularisation influence, i.e., the smaller the value of C is, the greater 

the regularisation effect. There is a trade-off between low-bias and high-variance, so identifying the 

appropriate C value is critical to optimize the model. The C values of 0.01, 0.1, 1, and 100 were used in 

the model design. 

 L2 is named Ridge Regression and used as a regularizer. It adds the “squared magnitude” of coefficients 

depending on the model complexity, so an additional component will be added to penalize the loss 

function.  

The Ridge Regression (l2) can be obtained by maximizing the likelihood function with a penalized  

parameter applied to all the coefficients except the intercept. For a given i instance in an n observations dataset, 

𝑥 𝑖, ,𝑦𝑖  are the feature input and output. The parameters to maximizing the log-likelihood function can be expressed 

as below 

𝑙(𝛽) =  ∑ 𝑦𝑖 log(𝜋𝑖
)

𝑛

𝑖

+ (1 − 𝑦𝑖
) log(1 − 𝜋𝑖

) =  ∑[𝑦𝑖𝑥 𝑖𝛽 − log(1 +  𝑒 𝑥𝑖 𝛽)

𝑛

𝑖

 ] 

where, β is the regression coefficients . The coefficients estimates are the values that maximize the 

following slightly different log-likelihood function where a ridge penalty (l2)  is added to the function. Then, the 

objective function of the logistic regression algorithm can be written as  
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𝑙(𝛽) = ∑[𝑦𝑖 𝑥 𝑖𝛽 − log(1 + 𝑒𝑥𝑖 𝛽 )

𝑛

𝑖

 ] −  λ ∑ 𝛽𝑗
2

𝑝

𝑗=1

 

where, λ is the hyperparameter and p is the weight of β.  In other words, l2 regularization is a quadratic 

function of the weight values. By adding regularization, the model can be optimal and reduce overfitting.  

3. k-Nearest Neighbour Classifier (KNN) 

KNN is non-parametric and instance-based learning based on similarity measures and grouped based on 

a similar manner. First, the distance between the current and input data points is calculated for every data point 

and is sorted in ascending order. Then, the prediction is composed by averaging the result, and k items with the 

smallest distances are chosen. Finally, the most common class among the k nearest neighbors is assigned, and a 

majority vote of its neighbors classifies the input data point. KNN is a classifier with only a proximate local 

function, and all its calculation is delayed until evaluating the model. The KNN algorithm is selected because it 

does not need any training for model generation, so its accuracy does not impact even new data added, suitable  

for real-time fraudulent detection. A comparative study found that KNN performs better than other algorithms  

such as Naïve Bayes to detect fraud on real-life payment transactions [3]. However, it might be costly in terms of 

time and memory when working on an extensive dataset.  

In this study, different metrics such as “Minkowski,” “Euclidean,” and “Manhattan,” and parameter 

tuning for k from 2 to 7 are tried to find the optimal model.  

 “Euclidean” Distance is the shortest distance between two points and is measured as the square root 

of the total of the squared differences between two points. The distance can be expressed as 

𝑑(𝑥, 𝑦) = √∑ (𝑥 𝑖 −  𝑦𝑖 )2𝑛
𝑖=1  

 “Manhattan” Distance is measured as the total of the absolute differences between two points, which 

is calculated as   𝑑(𝑥, 𝑦) = ∑ |𝑥 𝑖 −  𝑦𝑖 |𝑛
𝑖=1  

  “Minkowski” Distance, a generalized form of the two above distance metrics, is computed as  

𝑑(𝑥, 𝑦) = (∑ |𝑥 𝑖 − 𝑦𝑖 |𝑝𝑛
𝑖=1

)
1

𝑝 , where p represents the order of the parameter. 

4. Decision Tree (DT)  

A decision tree, one of the most widely used algorithms, is a non-parametric supervised learning, where 

data is continuously divided based on a specific rule [18]. It builds in the form of a tree structure with a set of if-

then-else decision rules. It begins with a root node, a decision tree, splits into separate branches, connects with 

other nodes, and so on. The outcome is a tree with leaf nodes and decision nodes. Therefore, the decision tree can 

isolate a complicated issue into a simple one due to this tactical strategy of splitting and deciding. The significant 
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advantage of a decision tree is its interpretability and quickly draw insights from the modeling process flow by 

depicting output visualization. Besides, the decision tree is fast and does not need much effort in data 

preprocessing like scaling data. Sahin and Duman [18] indicated that the decision tree model outperforms Support 

Vector Machine (SVM) to solve fraud detection problems. However, the decision tree is easy to overfit if a small 

sample is used. 

 

Figure 2: Decision Tree diagram 

Different combinations of criterion functions such as “Gini” and “Entropy,” the minimum number of splitting 

samples from 2 to 7, and the maximum depth of the tree from 2 to 6 were used to find the best-fit model.  The 

Gini impurity (“Gini”) and entropy are the functions to measure the quality of a split in the decision tree algorithm. 

Precisely, the Gini impurity measures the frequency at which a specific node wrongly classifies the randomly  

chosen element and is defined as  

𝐺𝑖𝑛𝑖 = 1 −  ∑(𝑝𝑖 )2

𝑁

𝑖 =1

 

where N represents the total number of output classes in the set, and 𝑝𝑖  represents the conditional probability that 

the target variable is in class i in the set. 

Entropy indicates the randomness or the disorder of the features with the target and plays an essential role in 

calculating Information Gain (IG). For each attribute, the entropy is computed using the below formula  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 1 − ∑ 𝑝𝑖 × log2 𝑝𝑖

𝑁

𝑖=1

 

Then IG can be measured based on entropy as 𝐼𝐺 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑝𝑎𝑟𝑒𝑛𝑡) − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ) . Like Gin i 

impurity, this measure is used to decide which feature to split on at each step in building the tree. IG favors smaller 
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partitions, while Gini usually favors larger partitions. Therefore, Gini impurity is calculated with less computation, 

and it is easy to implement in practice. 

5. Random Forest (RF) 

As stated above, the decision tree is easy to overfit and sensitive to particular data [19]. Ensemble 

methods can unravel these issues by combining predictions from multiple trees to make more accurate predictions 

than a single one. Today, the random forest model is one of the most powerful ensemble models based on decision 

trees and the bagging mechanism. Bagging refers to trained multiple decision trees on various subsamples of data 

called bootstrapping and then followed by aggregation. It grows various classification trees, such that for each 

built tree, random data are run down the tree to compute the proximity for each pair of cases. As such, each tree 

in the forest is unique and has the same distribution. The random fores t algorithm usually shows a great 

generalization as it aggregates different trees ’ decisions. Moreover, it also avoids the overfitting problem of 

complex decision trees. Furthermore, as each tree is built independently, random forest is computationally  

efficient and robust to outliers. Its application has been popular in recent years, especially in fraud detection, 

because it is easy to use and has high-performance results [20]. 

Different combinations of criterion functions, such as “Gini” and “Entropy,” the minimum number of 

splitting samples from 2 to 7, and the maximum depth of the tree from 2 to 6 were used to find the best fit the 

random forest model. 

6. Autoencoder (AE) 

AE is deemed a compelling model in unsupervised learning for Industry 4.0. It is an exceptional neural 

network architecture whose output is the same size as the input. An AE has two phases: an encoder generating a 

compressed coding of the training data and a decoder reconstructing the given input , as illustrated in Figure 3. 

Normal data generally train AE for anomaly detection to obtain the reconstruction error (RE). RE is the difference 

value between the reconstructed and the initial variant. Normal data’s RE is assumed to be more negligible as it 

is similar to the learning data, while the abnormal data one should be higher. Mean squared error (MSE) is applied 

in this study as RE and is computed as the following formula.  

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖)

2𝑛
𝑖=1   (2) 

Where n is the number of data points, and 𝑌𝑖 and �̂�𝑖 are observed and predicted values, respectively. 

Autoencoder was performed well on imbalanced data and outperformed LR in fraud detection [21]. 

Besides, unlike supervised learning, it demonstrated the ability to detect fraudulent transactions without effort in 
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feature engineering, hence, saving time [22]. Therefore, this study proposed an Autoencoder model to evaluate its 

ability to detect fraud by different batch sizes and learn rates.  

Both encoder and decoder layers apply ReLU activation functions, lately rising activation function to 

reduce training loss and improve training time. In addition, L2, or Ridge regression, is applied as a regulariser to 

avoid overfitting issues. Furthermore, Adam optimizer, an extension of Stochastic Gradient Descent, is selected 

in the model compile.  

 

Figure 3: Autoencoder Model 

7. Sampling 

The synthetic minority over-sampling technique (SMOTE) is extensively discussed among the 

oversampling method [23] and is widely applied to deal with skewness in fraud detection issues [20]. 

Oversampling adjusts the data to increase the number of minorities to balance with the majority. It over-samples 

the minorities and creates synthetic samples using k-NN. Once the minority class sample x is selected amount k 

neighbor, the synthetic sample xnew  generated by interpolating between 𝑥 and 𝑥  is illustrated in Appendix 1 and 

follow the formula (3): 

𝑥𝑛𝑒𝑤 = 𝑥 + 𝑟𝑎𝑛𝑑 (0,1)  × (𝑥 ̃ − 𝑥) (3) 

Where rand(0,1) is a random number between 0 and 1 

 SMOTE improves the model’s reliability, convergence speed, accuracy, and efficiency [17]. However, 

this approach had some implications, such as the potential overfitting issues , and the generated data might not 

resemble the initial data. 

Undersampling appears to mitigate the above oversampling issues. For this technique, the majority class 

instances are randomly selected and added to the minority class with a 1:1 ratio. NearMiss is a popular 

undersampling technique to handle imbalanced data [24]. The example of how NearMiss works is presented in 
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Appendix 2. However, NearMiss could discard potentially helpful information essential for building rule 

classifiers and introducing bias to the training set like other undersampling methods. Therefore, in many cases, 

oversampling tends to yield better accuracy and is widely used in fraud detection. 

8. Feature extraction 

Feature extraction is performed to save computational resources and training time. Besides, it has been 

found to avoid overfitting and potentially boost the algorithms ’ performance. Feature extraction is the approach 

where raw data is transformed into features while preserving the information in the original dataset. Principle 

Component Analysis (PCA) is a widely applied feature extraction method in research for reducing the 

dimensionality of the data, optimizing the machine resources while minimizing information loss. The data 

dimensionality is reduced by creating new features from the existing dataset. PCA has been applied in many 

research domains, including machine learning and pattern recognition, for extracting optimal features  [25]. 

Therefore, it is applied in our study to investigate the feature extract effect on models ’ performance. 

According to Song et al. [25], PCA involves four following steps: 

-  PCA’s correlation/covariance matrix and the eigenvalues and eigenvectors are computed;  

- The eigenvectors V1,…,Vn corresponding to the first n largest eigenvalues are selected ; 

- The feature extraction result’s contribution of the kth feature component is measured as follows: 

𝑐𝑘 =  ∑|𝑉𝑘𝑖
|

𝑛

𝑖=1

 

- The principal components ck is selected and sorted in descending order.  

By doing so, a new dataset, constructed by transposing the eigenvectors and the initial data, is the cross-

product of these two matrices. It decreases the number of features by generating a new and smaller number of 

features that capture a substantial amount of the information in the original data. 

IV. DATA STRATEGY AND EXPERIMENTS 

The study’s data strategy included five stages: loading and preprocessing data, exploring data, preparing 

data for learning model, training data, and evaluating results. Python 3.9  and its supported libraries  were used for 

data strategy, particularly NumPy and Pandas for data manipulation, Matplotlib and Seaborn for data visualization, 

and Sklearn and Tensorflow for machine learning. Five experiments were evaluated using AUROC and average 

precision score to find the best performance model. 

1. Data loading and preprocessing 
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The credit card transaction dataset was downloaded on Kaggle and converted to a data frame for further 

processing. There was no missing value observed in this data; however, 1081 duplicated values were found and 

removed. 

2. Exploratory Data Analysis (EDA) 

Then, EDA was carried out to explore the data. There were more than 283,000 transactions in this dataset, 

and it was highly imbalanced with only 0.17% (473 transactions) fraud; hence, re-sample the data was 

recommended to train efficiently. Data comprised 30 features, including Time, Amount, V1, to V28, which  

distribution was visualized in Figure 4. Compared to the regular transactions, fraudulent transactions usually had 

different distributions across most of the features in this dataset. Besides, Figure 5 illustrates that the transactions’ 

amount in the case showing outliers and without outliers. It was observed that the amount feature was right-

skewed, and regular transactions typically have lower amounts than fraudulent ones.  

 

Figure 4: Features distribution with feature name on the x-axis and density on the y-axis. The red color 

presented fraudulent transactions, and the blue color presented regular transactions.  

 



13 
 

Furthermore, the feature correlation analysis was performed to see the relationship between variables, as 

displayed in Figure 6. The intensity of the color shows the associated value of the relationship. Dark colors 

illustrated positive correlations, while brighter colors  presented negative correlations . Except for Amount and V7 

features, no highly-correlated variables were observed in this data. 

 

    

Figure 5: Fraudulent and regular transactions amount distribution including outliers (see A on the left) and 

excluding outliers (see B on the right).  

 

Figure 6: Correlation matrix 

3. Data preparation for ML: 

A total of 5473 random samples were chosen, including 5,000 random regular transactions and all 473 

fraudulent transactions. “RobustScaler” normalized the “Amount” feature to avoid outliers according to the first 

and third quantile range and get a better model’s generalization. This normalization could transform the instance 

i following the below formula: 

A B 
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𝑥 𝑖 − 𝑄2(𝑥)

𝑄3
(𝑥) − 𝑄1(𝑥)

 

where Q1, Q2, and Q3 represent the first, second, and third quartiles, respectively. 

 Then, the “Time” column was removed due to non-relevance. Once done, the new sample data was 

visualized to check the distribution and feature correlation (Appendix 3,4).  Then, sample data were split into train 

and test sets in a ratio of 80:20. Undersampling and oversampling techniques were employed to convert skewed 

training data to a balanced one for supervised learning models. 

4. Experiments: 

Five different experiments were designed to train and evaluate models. Different approaches were 

applied to tackle the challenges in fraud detection and improve classification performance. Four supervised 

learning algorithms were used on the sample data in the baseline model (experiment 1), then adjusted the 

algorithms with class weight to handle imbalanced data (experiment 2). Under-sampled and oversampled were  

applied to training data in experiments 3 and 4. All supervised models had used 5-fold cross-validation and tuned 

hyper-parameters by grid search (GridSearchCV) to choose the best estimators. PCA extracted ten first principle 

components applied to all supervised algorithms to avoid overfitting and improve training efficiency along with  

the original features. Experiment 5 performed an unsupervised algorithm with different batch sizes and learning  

rates.  

Finally, the experimental results were compared and evaluated using different measures. Although 

accuracy is the most popular measure for the classification problem, it is not enough to measure the model 

performance when the data is significantly imbalanced. For example, the models could get high accuracy by 

focusing on the regular transactions (the majority) and ignoring the fraudulent ones. Therefore, we used two 

widely applied performance measures for imbalanced data: the Area Under the Receiver Operating Curves 

(AUROC) and average precision as the primary performance measures to compare the model results.  

AUROC indicates the ability to distinguish between classes. In other words, the higher AUROC, the 

better model will correctly predict the fraud (positive class) and regular (negative class) transactions . In order to 

compute AUROC, we first plot the receiver operating characteristic (ROC) curve, which is the graph of true 

positive rate (sensitivity) against false positive rate (1 – specificity). Then, AUROC is closely related to the Gin i 

coefficient and calculated using the trapezoidal rule to estimate the area. It takes values from 0 (inaccurate) to 1 

(perfect accurate), where a value of 0.7 – 0.8, 0.8 – 0.9, more than 0.9 suggest acceptable, excellent, and 

outstanding results, respectively.   

𝐴𝑈𝑅𝑂𝐶 =
𝐺1 +1

2
  (4) 
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Where 𝐺1 = 1 −  ∑ (𝑋𝑘 − 𝑋𝑘 −1)(𝑌𝑘 − 𝑌𝑘−1)𝑛
𝑘=1   (5) 

 Precision is the ratio of accurate predictive positive class (fraud transaction) to all predicted positives 

and estimates the accuracy of the fraud predictions of the model. It ranges from 0 (no precision) to 1 (perfect 

precision) and is measured as the formula below.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (6) 

The confusion matrix (Table 1) is applied to estimate the effectiveness of a classifier and consists of four 

elements, namely true positive (TP), false positive (FP), true negative (TN), and false negative (FN). In our case, 

TP is the number of fraud accurately predicted, while FP is non-fraud transactions miscategorized as fraud. 

Similarly, TN is the normal transaction accurately predicted, and FN is the fraudulent transaction misrepresented 

as normal.   

 

 

Actual 

Predicted 

 Positive Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Table 1: Confusion matrix 

In addition, other measures derived from the confusion matrix such as accuracy, sensitivity, specificity  

are also provided. Accuracy is the ratio of accurate fraudulent prediction executed by the algorithm to the total 

observations to determine its effectiveness in distinguishing the fraud transaction. Sensitivity and specificity 

measure the proportion of correctly identified actual fraudulent transactions (positive class) and regular 

transactions (negative class). Their values range from 0 to 1, where a value of 0 indicates the worst result and 1 

indicates the best one. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑃 +𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (9) 

V. RESULTS 

Before starting the experiment, t-SNE and PCA for the first two components  were used to visualize the 

essence of fraudulent and regular transactions. t-SNE, namely t-distributed stochastic neighbor embedding, is a 

nonlinear dimensionality reduction technique used for data visualization and mapped to a lower-dimensional 
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space (typically two-dimensional plane) from the multi-dimensional data to identify patterns in the details . This 

algorithm is widely applied to visualize high-dimensional datasets and is claimed as the best algorithm for 2D 

visualization in this field. In the t-SNE model, data points are converted based on the joint probabilities, so nearby 

points are represented by similar samples, while different samples represent distant points. Therefore, it is able to 

excellently capture the high-dimensional data’s local structure and reveal global data structure, such as clusters’ 

existence. 

As shown in Figure 7, the data points reflect credit card transactions  in a scatter plot, in which regular 

and fraudulent transactions are represented in blues and red, respectively. The two observed clusters identified by 

t-SNE are plotting on the right chart, while those identified by PCA are on the left. As shown in the below figure, 

t-SNE can distinguish between fraudulent and regular transactions, although there are some similar points. In 

contrast, in the PCA chart, many regular transactions are very similar to fraudulent ones. Therefore, t-SNE, in this 

case, illustrates better performance in fraud recognition than PCA. Besides, some fraudulent samples are still 

mixed in regular ones in the chart below, which can be considered a trade-off of reducing information from the 

dimensional reduction technique. Consequently, we conducted five experiments to investigate the fraud detection 

ability from our proposed models . 

 

Figure 7:  t-SNE and PCA visualization 

1. Experiment 1 – Baseline 

Figure 8 presents the optimal decision tree visualization for fraud detection using the training set. The 

depth of this tree analysis is 5, with a minimum 6 number of samples required at a leaf node. The node id number 

is also provided to distinguish each node. Besides Gini impurity, the probability that the transactions are 

incorrectly classified according to the subset labels ’ distribution is applied to evaluate the quality of splits. Gini 
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value ranges from 0 to 1, where the lower Gini is, the higher chance of the homogeneity of the nodes will be. The 

decision tree starts from the root node with V14 features not exceeding -3.6 as the splitting rule. Out of 4378 

training samples at this node, 314 samples satisfied this rule go to the next decisio n node 1, while samples that 

failed this rule go to decision node 14. This node is labeled as fraud with the Gini value of 0.156. Similarly, the 

process continues to recur on each subset, in which only unselected attributes from the above nodes are conside red. 

The performance results of four supervised learning algorithms in original features and PCA generated 

by classification reports  are shown in Table 2. The precision-recall (PR) curve and ROC curve showing average 

precision scores and AUROC values of the four algorithms are also illustrated in Figure 9 to compare the 

performance of the classifiers. Excellent average precision values are observed from the chart as the closer to the 

upper right concern PR curve is, the better its value is. Besides, as shown in Figure 9, the ROC curve above the 

diagonal line indicates that all algorithms reasonably discriminate to predict fraudulent and normal transactions. 

Besides, the AUROC value is maximized when the ROC reaches the upper left corner, so this experiments ’ chart 

reveals a very good model performance. In fact, all AUROC values derived from the chart are greater than 0.9, 

demonstrating the outstanding test results. 

For the original features, RF yields the best results in terms of AUROC and average precision with the 

value of 0.969 and 0.910, respectively. DT has the worst value of AUROC, while KNN has the worst value of 

precision. Additionally, PCA has improved the performance of LR and KNN. Consequently, a combination of LR 

and PCA results in the best performance overall, with an AUROC value of 0.971. DT gets the worst AUROC 

results in both cases; however, DT is usually applied in practice because of its interpretability  by visualizing the 

operational flow.  

For other performance metrics, the four classifiers in experiment 1 all have accuracy values of more than 

0.98 and specificity values of 1, while the sensitivity values range 0.82-0.86. Hence, experiment 1 has indicated 

excellent results; however, these models are more likely to predict the majority favorably when looking into 

sensitivity and specificity values. The primary purpose is to predict fraud effectively and adapt it for Industry 4.0, 

so action to tackle the above problem is implemented by adjusting the weight of each class, as in experiment 2.  

  Experiment 1 Accuracy AUROC Average 

Precision 

Sensitivity Specificity 

Original 

features 

  

  

  

LR  0.98 0.950 0.909 0.84 1.00 

KNN 0.99 0.905 0.824 0.85 1.00 

DT 0.98 0.902 0.839 0.82 1.00 

RF 0.98 0.969 0.910 0.83 1.00 

PCA 

  

LR 0.99 0.971 0.927 0.84 1.00 

KNN 0.99 0.933 0.865 0.86 1.00 
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DT 0.98 0.900 0.858 0.83 1.00 

RF 0.98 0.960 0.921 0.83 1.00 

Table 2: Experiment 1 Performance Results  

 

 

2. Experiment 2 – Adjusted class weights  

Figure 8: Experiment 1 Decision tree visualization 

Figure 9: Experiment 1 Precision-Recall Curve and ROC Curve. (A) Original features case, (B) PCA 
case 

B 

A 
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The ratio of regular to fraudulent transactions 10.71 was adjusted to the minority class as class weight. 

As presented in Table 3, RF has the highest AUROC value of 0.957, while LR has the highest average precision 

value of 0.915 for the original features. Features selection models improve the average precision values and 

AUROC values of most algorithms. Overall, RF using PCA shows the best result in experiment 2: the AUROC 

of 0.969 and an average precision score of 0.925. Moreover, it is observed that compared to experiment 1, the 

adjustment of class weight in experiment 2 could improve the performance of supervised algorithms as well as 

enhance the sensitivity of the models, which measures the proportion to detect fraud correctly. See Figure10. 

  Experiment 2 Accuracy AUROC Average 

Precision 

Sensitivity Specificity 

Original 

features 

  

  

  

LR         0.98        0.955   0.915            0.89           0.98  

KNN        0.99        0.905   0.824            0.85           1.00  

DT        0.97        0.952   0.859            0.87           0.98  

RF        0.98        0.957   0.906            0.84           1.00  

PCA 

  

  

  

LR        0.98        0.966   0.919            0.88           0.98  

KNN        0.98        0.933   0.865            0.84           1.00  

DT        0.98        0.939   0.870            0.84           0.99  

RF        0.98        0.969   0.925            0.85           1.00  

Table 3: Experiment 2 Performance Results  

 

 

 

3. Experiment 3 – NearMiss Undersampling 

Figure 10: Experiment 2 Precision-Recall Curve and ROC Curve. (A) Original features case, (B) PCA case 

B 

A 
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NearMiss Undersampling technique is applied in experiment 3. Table 4 highlights that RF applying PCA  

has the highest AUROC values while LR got the highest precision score in both cases. Among the four models, 

the performance of RF is the most powerful, while KNN and DT have the lowest results in full features and PCA. 

Except for the RF model, PCA does not show the performance enhancement in this experiment. See Figure 11. 

  Experiment 3 Accuracy AUROC  Average 

Precision 

Sensitivity Specificity 

Original 

features 

  

  

  

LR        0.98        0.972   0.928            0.82           1.00  

KNN        0.98        0.909   0.836            0.84           0.97  

DT        0.98        0.916   0.842            0.82           0.98  

RF        0.98        0.952   0.896            0.83           1.00  

PCA 

  

  

  

LR        0.98        0.970   0.927            0.81           1.00  

KNN        0.98        0.909   0.831            0.83           1.00  

DT        0.98        0.903   0.834            0.83           1.00  

RF        0.98        0.976   0.927            0.83           1.00  

Table 4: Experiment 3 Performance Results  

 

4. Experiment 4 – SMOTE Oversampling 

 

SMOTE Oversampling is implemented in experiment 4. Table 5 indicates that RF algorithm results are 

in the best performance in full features cases and PCA. In addition, AUROC, average precision score, and 

Figure 11: Experiment 3 Precision-Recall Curve and ROC Curve. (A) Full features case, (B) PCA case  

B 

A 
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sensitivity are significantly enhanced when employing PCA with the oversampling method. Overall, RF using 

PCA gives the best outcomes: the AUROC of 0.972 and an average precision score of 0.921, while KNN and DT 

are still the lowest results in experiment 4. See Figure 12. 

  Experiment 4 Accuracy AUROC  Average 

Precision 

Sensitivity Specificity 

Original 

features 

  

  

  

LR        0.97        0.930   0.883            0.90           0.98  

KNN        0.98        0.902   0.825            0.85           0.99  

DT        0.97        0.871   0.718            0.85           0.98  

RF        0.98        0.955   0.898            0.85           1.00  

PCA 

  

  

  

LR        0.97        0.948   0.906            0.88           0.98  

KNN        0.98        0.905   0.805            0.87           0.99  

DT        0.96        0.931   0.878            0.90           0.97  

RF        0.98        0.972   0.921            0.87           0.99  

Table 5: Experiment 4 Performance Results  

  

5. Experiment 5 - Autoencoder 

An autoencoder model is designed with two encoder layers with 14 and 7 nodes, respectively. Differen t  

combinations of batch sizes and the learning rate are tried to get the optimal result. Table 6 illustrates that the 

decrease in batch size and increased learning could improve model performance in the AUROC value. 

Figure 12: Experiment 4 Precision-Recall Curve and ROC Curve. (A) Full features case, (B) PCA case  

B 

A 
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Furthermore, it is observed that the regular class ’s MSE value ranges from 0.867 – 0.904, while the MSE value 

of fraud is much higher, ranging from 4.976 – 5.010. Therefore, as shown in Figure 13, a flexible threshold of 3 

is chosen to identify the fraud transaction. We also reconstruct errors using MSE for different classes and plot in 

Figure 13. The model detects anomalies as points where the reconstruction error is  greater than a threshold of 3 

because the normal transactions are likely to have lower error values. Therefore, data points with higher errors 

tend to indicate they are fraud data with higher possibilities , and thus saving more effort in finding fraudulent data. 

For overall results, experiment 5b indicates the optimal result in both AUROC and average precision score with  

the value of 0.947 and 0.809, respectively.   

Experiment 5 5.a 5.b 5.c 

 Batch sizes  25 16 16 

 Epochs  80 80 80 

 Learning rate  0.001 0.001 0.100 

 Fraud class MSE  4.978 4.976 5.010 

 Normal class MSE  0.878 0.867 0.904 

 AUROC  0.945 0.947 0.948 

 Avg precision  0.808 0.809 0.804 

 Acuracy  0.96 0.96 0.96 

 Sensitivity  0.82 0.81 0.81 

 Specificity  0.98 0.98 0.98 

Table 6: Experiment 5 Performance Results  

 

Figure 13: Reconstruction error of experiment 5b 

6. Findings summary and discussion 

The performance of the five experiments is summarized as in Figure 14. The models could achieve more 

than 96% accuracy, 81% sensitivity, and 97% specificity. In most cases, the AUROC values of the proposed 

model are higher than 0.9. The effects of undersampling and oversample are different for each algorithm. 
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 For LR algorithms, the model with original features and undersampling method (experiment 3) had 

the highest results of 0.972 for AUROC and 0.928 for average precision. In contrast, the model with  

original features and oversampling method had the lowest performance (AUROC: 0.930 and average 

precision: 0.883). All LR algorithms in the four experiments achieve a high accuracy of more than 

97%.  

 For KNN algorithms, the models with features selection in experiments 1 and 2 (without applying 

any sampling method) have the highest performance values of AUROC and the average precision 

score of 0.933 and 0.865, respectively.  

 DT model in experiment 2 with original features has the highest AUROC value of 0.952, while the 

model applying oversampling method and PCA has the highest average precision value of 0.878 

compared to DT models in other experiments. 

 RF algorithm has proved to be the best (performing) algorithm for fraud detection with an accuracy 

of 98% and the highest performance results of 0.976 for AUROC and 0.927 for average precision 

for the model applying undersampling and feature selection. 

Overall, compared to baseline models, the performances of oversampling models are less favorable  in 

terms of AUROC value. The integrating undersampling approach achieves better performance when handling 

skewed data than the oversampling and adjusting class weights. Except for the DT undersampling model, feature 

selection using PCA could enhance the AUROC values. RF is the superior performance model across performance 

metrics, followed by LR. RF with PCA and undersampling achieve the highest AUROC value of 0.976, while LR 

in full features case and undersampling has the highest average precision score  value of 0.928.  

Furthermore, autoencoder, unsupervised learning, has consistently achieved good performance with the 

accuracy of 96% through different batch sizes and learning rates. Besides, its results are better than DT and KNN 

in terms of AUROC. Finally, DT has the worst results, particularly when applying oversampling method. However, 

as a trade-off, it has the highest sensitivity, which indicates the ability to detect fraud correctly. 
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VI. CONCLUSION 

 Digital payment fraud and fraudulent activities  have severe impacts on financial businesses and society, 

particularly with the popularity of mobile payments, digital wallets, payment cards, and contactless cards in the 

age of Industry 4.0. Significant efforts have been made to tackle such issues. Intelligent approaches such as 

machine learning algorithms have been successfully utilized  and adapted to recognize fraudulent activities 

automatically for Industry 4.0. This study proposes and evaluates the learning models to detect fraudulent 

transactions. Therefore, the main contributions are identifying an effective learning model to predict fraud through 

a comparative study and assessing the proposed models with real credit card activities data. Our study is essential 

to mitigate the risks of uncertainty and undesirable financial loss suffered by customers and payment providers in 

the Industry 4.0 era. Secondly, adjustment of hyperparameters automation for supervised learning algorithms is 

employed to improve fraud classification and reduce times and resources considerably in modeling. There are 

four supervised learning algorithms applied in the evaluation.  In order to estimate the impact of features selection 

on classification performance, feature engineering and analysis are conducted. Then, the outcomes have been 

tested with the appraisal of each model addressed. Finally, we also address and propose appropriate solutions for 

the data skewness matter by considering the effects of oversampling and undersampling techniques . Accuracy is 

not sensitive to skewed data, so not appropriate as a parameter in this study as it cannot provide a conclusive 

interpretation. Consequently, we used AUROC  and precision as the determining metrics to reach a particular 

judgment. Various methods were brought together to recognize fraudulent activities , and such comparison of these 

five models (logistic regression, KNN, decision tree, random forest, and autoencoder)is novel and attractive in 

literature. Results suggested that the integration undersampling  method – NearMiss could improve the models ’ 

performance.  

Figure 14: (A) AUROC (B) Average Precision by Experiment and model  
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APPENDICES 

APPENDIX 1: SMOTE Example 

The below picture illustrated the application of SMOTE to generate synthetic samples (a, b, c, d, e) for the 

minority class x1 by using k =5 nearest neighbor x2, x3, x4, x5 with the minority class sample x1.    

 

 

APPENDIX 2: NearMiss Example 

We implemented NearMiss (version 3) in our study. This undersampling technique comprised two steps and 

was presented in the below picture. First, a given nearest number of minority class was chosen for each majority 

class instance (i.e., corresponding to the highlighted rectangle samples in the below plot with k =3). Next, each 

short-listed sample’s average distance was calculated, and the largest average distance to the k nearest neighbors 

are selected. In the below example, the majority class  with the green dash line was the selected one. 
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APPENDIX 3: New sample data distribution 
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APPENDIX 4: New sample data correlation 

 

 


