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A fully probabilistic control 
framework for stochastic systems 
with input and state delay
Randa Herzallah* & Yuyang Zhou

This paper proposes a unified probabilistic control framework for a class of stochastic systems 
with both control input and state time delays. Both of the stochastic nature and time delays in the 
system dynamics are considered simultaneously, thus providing a comprehensive and rigorous 
control methodology. The problem is formulated in a fully probabilistic framework, where the 
system dynamics and its controller are fully characterised by arbitrary probabilistic models. In this 
framework, the Kullback–Leibler Divergence between the actual joint probability density function of 
the system dynamics and controller and a predefined ideal joint probability density function is used 
to characterise the discrepancy between the two distributions and derive the randomised controller. 
Time delays in the control input and system state are taken into consideration in the optimisation 
process for the derivation of the optimal randomised controller. Besides, the analytic control solution 
of the time delay fully probabilistic control problem for a class of linear Gaussian stochastic systems is 
derived while the successive approximation approach is implemented to deal with the time-advanced 
components in the control law that result from the existence of time delays. The effectiveness of the 
proposed control framework is then illustrated on a numerical example and a real-world example.

Time delay systems are ubiquitous in nature, appearing in a broad range of fields including engineering, math-
ematics, biology, ecology, and physics1. Time delays can be either inherent due to delays in the system compo-
nents or originate from propagation phenomena, material or energy transfer in interconnected systems, data 
transmission in communication systems, or the implementation of feedback loop. While delays might have a 
stabilising effect, they are also normally the main sources inducing oscillations, instability and degrading the 
system performance2,3. From the control point of view, they make the controller design and system analysis 
more complicated. The first effective control scheme for stable time-delay systems is the Smith predictor4. It 
was then extended to control unstable time-delay systems5. Since then, the robust control of time-delay systems 
has attracted a lot of attention. This includes the stabilization and robust control of time-delay systems using 
Lyapunov theory and linear matrix inequality (LMI) tools. Quadratic stablisability and H∞ control has also been 
extensively used for controlling general time-delay systems6–8.

Furthermore, the recent emergence of new technologies and systems such as communication and informa-
tion technologies, network-controlled systems, parallel computation, and multiagent systems emphasises the 
inevitable requirement for the characterisation and consideration of time delays. This has been highlighted in the 
tracking control problem for cloud robotic systems with delayed measurements9 and for droop controlled AC 
microgrid10. Similarly, traffic management systems to mitigate congestion in urban networks requires feedback 
gating control that considers time delays in the traffic system11. For multiagent systems such as drone formations 
for agriculture or surveillance, time-delay, random packet loss, and uncertainty of system model were identified 
to be among the most important challenges for the controller design12.

The demand for stable behaviour of time delay systems motivates the core of this article: to devise a theoreti-
cal and algorithmic framework for a probabilistic control approach that can consider the effect of time delays in 
real world dynamical systems and improve the performance of their behaviour.

However, time delays lead to many challenges, not least of which is how a controller can be designed without 
overreacting to overestimated errors. The challenge is to apply appropriate control actions that address long time 
delays, thus providing acceptable performance under these conditions. In addition to dealing with nonlinear 
behaviour of the system dynamics we have to contend with noise, uncertainty, and stochasticity across the system, 
so conventional deterministic control techniques cannot be employed to direct the behaviour of the time delay 
systems. This implies we need an approach where the system evolution and external control strategies need to 
be developed probabilistically.
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Considering the limitations of the existing control methods, the focus of this article is to introduce the theo-
retical structure for a universal control intervention strategy that can effectively handle the stochastic nature of 
the controlled system and any delays affecting its dynamics. The novelty is in treating the full control problem 
as intrinsically probabilistic, where a probabilistic model is used to characterise the time evolution of the system 
dynamics and a probabilistic controller is devised.

Review of current approaches
Time delays, which normally appear as transportation and communication lags and also arise as feedback delay 
in measurement and closed-loop systems, are commonly encountered in real-life practical systems including 
engineering, chemistry, biology, climatology, and economical systems13–16. Controlling and understanding time-
delay systems have always been very challenging. For these systems, it is important that time delays are incor-
porated in the systems models and that they are considered in the theoritical and control analysis of the closed 
loop system behaviour17. Thus, a large and growing body of research on time delays and their compensation 
methods has been investigated and published. For instance, a graphical methodology to calculate the stabilizing 
values of PI controller parameters for a single-area load frequency control (LFC) system with time delay was 
proposed in18. In16, a sliding mode control design for fractional-order systems with input and state time-delay is 
presented. A delay discretization approach is introduced in19 to improve the tolerable state delay margin of the 
interconnected power system while20 investigated the event-triggered drive-response synchronization control 
for Takagi-Sugeno fuzzy neural networked systems with time delay. Some current results related to the control 
problem of time-delay systems have been summarised in13,21,22.

Despite all these significant efforts that have been investigated, most of the existing research has only consid-
ered either input time delay or state time delay in their models but not both17,20,23, thus limiting their implementa-
tion to real life situations. Moreover, a rich group of literature tried to solve the time delay issue by transforming 
discrete-time systems with time-delays into delay free systems by properly defining new state variables23,37. 
This approach however significantly increases the dimensionality of the controlled system, thus complicates 
the analysis of systems with long time delays and makes large-scale and high dimensional systems numerically 
demanding. Recent work has also addressed non-constant time delays where the time delays are considered 
to vary stochastically24–27. Most of the aforementioned approaches on the other hand were presented under 
the assumption that the dynamics of the systems being considered follow a deterministic description. Such 
an assumption however is not realistic since real-world processes are usually subjected to various sources of 
uncertainties including random noises, functional uncertainties, and disturbances introduced by measurement 
devices and other surrounding environmental conditions. For such systems which involve both high levels of 
uncertainties and input and/or state delays, the controller design becomes much more challenging.

To address the stochasticity of the systems dynamics, a new method which is based on the use of the Kullback 
Leibler divergence between probability density functions is proposed in28,29. This method is referred to as the fully 
probabilistic design (FPD) method. The conventional FPD method has then been applied and extended to various 
classes of stochastic systems in recent decades. For instance, in30, the conventional FPD has been modified and 
extended for a class of stochastic dynamic systems with multiplicative noises while31 has combined FPD method 
with disturbance observer based controller. For systems with delays, the work in32 extended the conventional 
FPD and proposed a Time Delay Fully Probabilistic Design (TDFPD) method for a class of stochastic systems 
with input delays. However, the TDFPD method proposed in32 only considered a single input delay in the system 
dynamics, which is very limiting for real-world applications.

As such, the objective of the current paper is to extend the method in32 by developing a probabilistic control 
framework for a class of stochastic systems that has multiple input and state time delays. Considering the stochas-
tic nature of the class of systems under study, the proposed methodology characterises the dynamics of the system 
using probabilistic models. The framework then adopt and extend the probabilistic design method32 such that 
multiple state and input time delays are taken into consideration in the derivation of the optimal controller. Fol-
lowing this approach the optimal controller will be a randomised controller that minimizes the Kullback–Leibler 
divergence between the joint probability density function (pdf) of the system dynamics and a predefined desired 
joint pdf. As will be seen from further development, the derived fully probabilistic control solution in this paper 
(which will be referred to as the Multiple Time Delay Fully Probabilistic Control (MTDFPC)) has several advan-
tages including the attainment of a closed form randomised optimal controllers, the consideration of systems 
noises and uncertainties in the system of dynamics, and the consideration of systems multiple time delays; all in 
a unified probabilistic framework. Due to the existence of the input and state delays, the obtained randomised 
optimal solutions contain both time-delay and time-advance terms, which is difficult to be solved analytically. 
To address this problem, we adopt the successive approximation approach (SAA)33 to solve the control problem. 
The advantage of this method is that it is suitable not only for small-time delays but also for large-time delays.

To re-emphasise, compared with the existing results on this topic, the contribution of the proposed framework 
in this paper can be summarised as follows. Firstly, considering the stochastic nature of the systems dynamics, 
a fully probabilistic control framework is developed which considers the uncertainties and noises in the system 
dynamics as well as the multiple time delays in the control input and system state. Unlike most of the existing 
literature where the system dynamics are described by deterministic equations, in our framework, the system 
dynamics are completely characteried by pdfs. Secondly, this framework takes both multiple input delays and 
multiple state delays into consideration, extending the TDFPD32 that only considers one single type of delay. The 
consideration of both input and state delays in the system models offers a more general and precise description 
of the real-world system dynamics. This is considered as the main contribution of this paper as only few existing 
proposed control algorithms considered both multiple input delays and multiple state delays. Thirdly, a numerical 
optimal solution can be obtained using the SAA, which provides an explicit control procedure to follow and to 
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implement. Moreover, the SAA is also capable of dealing with systems containing long time delays, thus lifting 
the limitations of some existing methods.

MTDFPC for stochastic systems with input and state delays
This section will formulate the control objective, provide the probabilistic description of the considered class of 
stochastic systems with multiple state and control input delays, and derive the general solution of the MTDFPC 
for this class of systems based on their arbitrary probabilistic description.

Control objectives of the MTDFPC problem.  In the fully probabilistic control design method28 the aim 
is to design a randomised controller that shapes the joint pdf describing the closed loop behaviour of the con-
trolled system and makes it as close as possible to a predefined ideal joint pdf. In this method, the discrepancy 
between the two joint pdfs is measured by the Kullback Leibler divergence. The FPD method however insists 
on zero delay between the input and the system state, thus, does not provide optimal solutions for systems with 
delays. As such, this method will be extended in this section to consider stochastic systems with multiple control 
input and state delays.

Consider the following probabilistic description for the considered class of stochastic systems with multiple 
state and control input delays that can be represented at each time instant, t by the following conditional pdf,

where xt ∈ Rn represents the system state, ut ∈ Rm represents the control input, and hi , i = {1, 2, . . . ,N1} and 
Lj , j = {1, 2, . . . ,N2} denote time delays in the state and input respectively. Also, assume that, h = max

︸︷︷︸

i

{hi} and 

L = max
︸︷︷︸

j

{Lj} , then the initial values xi , i = −h, . . . , 0 , uj , j = −L, . . . , 0 , are known.

For the formulation in this paper s(.|.) does not need to be known and does not need to be constrained by 
the Gaussian assumption. Also, note that because of the stochastic nature of the considered class of systems with 
time delays, the probabilistic description of the system dynamics as given in (1) provides a complete specifica-
tion of the present state conditioned on the previous state and present and previous control. To reemphasise, 
the probabilistic description (1) is general and can be characterised from the underlying stochastic evolution 
of the system dynamics. The formulation in this section will be based on this general probabilistic description. 
The results obtained here will then be demonstrated in the following sections on a class of stochastic linear time 
delay systems with additive Gaussian noise. However, this formulation is not restricted by the assumption of the 
additive noise nor it is restricted by the linearity of the system. The noise could be multiplicative and the system 
equation could be nonlinear.

For these stochastic systems, the closed loop behaviour of the system dynamics can be specified by the joint 
probability density function of the system state and control input. This joint pdf of the closed loop dynamics of 
the system provides the most complete description of its behaviour. As such, similar to the conventional FPD 
approach, the objective of the MTDFPC control problem is specified as the design of a randomised control-
ler, c(ut |xt−1, xt−h1 , . . . , xt−hN1

, ut−L1 , . . . , ut−LN2
) that minimises the Kullback–Leibler divergence between the 

joint pdf of the closed loop description of the system dynamics, f (X (t,T)) and a predefined ideal joint pdf 
I f (X (t,T)),

where X (t,T) = {xt , . . . , xT , ut , . . . , uT } is the closed loop observed data sequence, and T ≤ ∞ is a given con-
trol horizon. For stochastic systems with multiple input and state delays given in (1), the joint pdf of the system 
dynamics, f (X (t,T)) can be evaluated using the chain rule34 as follows,

where the pdf s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) describes the dynamics of the observed state 
vector xt , and c(ut |xt−1, xt−h1 , . . . , xt−hN1

, ut−L1 , . . . , ut−LN2
) represents the pdf of the required randomised 

controller as mentioned earlier.
Similarly, the ideal joint pdf of the closed loop data can be factorised as follows,

where the pdf I s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) describes the ideal distribution of the system 
state vector xt , and I c(ut |xt−1, xt−h1 , . . . , xt−hN1

, ut−L1 , . . . , ut−LN2
) represents the ideal pdf of the randomised 

(1)s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

),

(2)D
(
f || I f

)
≡

∫

f (X (t,T)) ln

(
f (X (t,T))
I f (X (t,T))

)

dX (t,T),

(3)
f (X (t,T)) =

T∏

t=1

s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

),

(4)
I f (X (t,T)) =

T∏

t=1

I s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) I

c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

),
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controller. Given the definitions of the joint pdf of the closed loop system and the ideal pdf as specified by Eqs.
(3) and (4) respectively, minimisation of (2) can be obtained recursively by introducing the following definition,

for arbitrary τ ∈ {1, . . . ,T} . Here Xt = (xt , ut) , and − ln(γ (xt−1)) is the optimal performance index.
The definition in Eq. (5) leads to the recursive formula for the cost function specified in the following theorem. 

This recursive formula will be used later for the derivation of the optimal randomised controller.

Theorem 1  Using the definition given in 5  the minimisation of the Kullback–Leibler divergence 2 can be performed 
recursively to give the following recurrence functional equation,

where,

Proof  The proof is given in the Supplementary Appendix. 	�  �

Solution to the MTDFPC for arbitrary density functions.  The general solution of the optimised 
MTDFPC control problem as obtained from the minimisation of the cost-to-go function defined in Eq. (6) with 
respect to randomised control input, c(ut |xt−1, xt−h1 , . . . , xt−hN1

, ut−L1 , . . . , ut−LN2
) can be shown to be given 

by the following theorem.

Theorem 2  The pdf of the optimal randomised controller minimising the cost–to–go function (6) subject to the 
conditional distribution of the stochastic system, s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1

, ut−L1 , . . . , ut−LN2
) is given by,

 where,

(5)

− ln(γ (xt−1)) = min
c(ut |xt−1,xt−h1

,...,xt−hN1
,ut−L1 ,...,ut−LN2

)

T∑

τ=t

∫

f (Xτ , . . . ,XT |xt−1)

×

[

ln

(

s(xτ |xτ−1, uτ , xτ−h1 , . . . , xτ−hN1
, uτ−L1 , . . . , uτ−LN2

)

I s(xτ |xτ−1, uτ , xτ−h1 , . . . , xτ−hN1
, uτ−L1 , . . . , uτ−LN2

)

)

+ ln

(

c(uτ |xτ−1, xτ−h1 , . . . , xτ−hN1
, uτ−L1 , . . . , uτ−LN2

)

I c(uτ |xτ−1, xτ−h1 , . . . , xτ−hN1
, uτ−L1 , . . . , uτ−LN2

)

)]

d(Xτ , . . . ,XT ),

(6)

− ln(γ (xt−1)) = min
c(ut |xt−1,xt−h1

,...,xt−hN1
,ut−L1 ,...,ut−LN2

)

∫

s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

× c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

[

ln

(

s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

I s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) I c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

)

︸ ︷︷ ︸

≡partialcost =⇒U(xt ,ut )

− ln(γ (xt))−

N1∑

i=1

∫

s(xt+hi |xt+hi−1, ut+hi , xt+hi−h1 , . . . , xt+hi−hN1
, ut+hi−L1 , . . . , ut+hi−LN2

)

× c(ut+hi |xt+hi−1, xt+hi−h1 , . . . , xt+hi−hN1
, ut+hi−L1 , . . . , ut+hi−LN2

) ln(γ (xt+hi ))d(xt+hi , ut+hi )δ(t + hi)

−

N2∑

j=1

∫

s(xt+Lj |xt+Lj−1, ut+Lj , xt+Lj−h1 , . . . , xt+Lj−hN1
, ut+Lj−L1 , . . . , ut+Lj−LN2

)

× c(ut+Lj |xt+Lj−1, xt+Lj−h1 , . . . , xt+Lj−hN1
, ut+Lj−L1 , . . . , ut+Lj−LN2

) ln(γ (xt+Lj ))d(xt+Lj , ut+Lj )δ(t + Lj)

]

d(xt , ut),

(7)δ(t) =

{
0, t = T ,T + 1, . . .
1, t = 0, 1, 2,T − 1.

(8)

c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

=

I c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) exp

[

− β1(.)− β2(.)− β̃3(.)− β̃4(.)

]

γ (xt−1)
,
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for t = 0, 1, . . . ,T , and γ (xT ) = 1 . Also note that the dot argument in the β ’s can be deduced from their correspond-
ing equations. It basically consists of all the variables the are not integrated over.

Proof  The proof of this theorem is given in the Supplementary Appendix. 	�  �

Solution to the MTDFPC for Gaussian probabilistic state space models
Theorem 2 provides the general solution for the considered class of stochastic systems with multiple input and 
state delays that can be described by arbitrary pdfs. This general solution however needs to be evaluated numeri-
cally if the systems distributions contain non-linearity and non-Gaussianity. Nonetheless, the Computation of 
the solution numerically yields high computational costs that increase with the complexity and dimensionality 
of the problem. Therefore, to facilitate the understanding and the derivation of an analytical solution for the 
proposed probabilistic control framework, the solution stated in Theorem 2 will be applied here to a class of 
linear and Gaussian, stochastic dynamical systems that are also affected by multiple input and state delays. This 
class of linear stochastic systems that are driven by multiple input and state delays is described by,

where A is the system state matrix, B is the control input matrix, Ai , i = 1, ...,N1 represent the matrices of 
delayed system state, and Bj , j = 1, ...,N2 denote the matrices of delayed input. In addition, hi , i = {1, 2, . . . ,N1} 
and Lj , j = {1, 2, . . . ,N2} are time delays in the state and input as discussed before. Moreover, εt is a zero mean 
Gaussian noise with covariance Q. As discussed earlier, the effect of the noise, εt on the system state xt means that 
complete specification of the system state can be only achieved through its probability distribution conditioned 
on the current control input and previous state and control input. For the class of linear systems given in (11) 
the generative probabilistic model of the system state can be characterised by a Gaussian distribution as follows,

where µt = Axt−1 +

N1∑

i=1

Aixt−hi−1 + But +
N2∑

j=1

Bjut−Lj is the mean of the system state at time t.

As discussed in the previous section, the control objective within the MTDFPC framework can be achieved 
by specifying the appropriate parameters of the ideal distribution that reflects the desired objective. In this 
paper, a tracking problem where the controller is designed to make the state of the system given by (11) follows 
a predefined reference state is considered. Thus, for the probabilistic description of the system given in (12) the 
ideal distribution of the system state is taken to have the following form,

where xr denotes the predefined reference state for the system state to track, and R is the ideal covariance deter-
mining the spread of the state values around the desired reference state.

Similarly, the ideal distribution of the controller is specified as follows,

(9)

γ (xt−1) =

∫

I c(ut |xt−1, ut−h) exp

[

− β1(.)− β2(.)− β̃3(.)− β̃4(.)

]

dut ,

β̃3(.) =

∫

c(ut+hi |xt+hi−1, xt+hi−h1 , . . . , xt+hi−hN1
, ut+hi−L1 , . . . , ut+hi−LN2

)β3(.)δ(t + hi)dut+hi ,

β̃4(.) =

∫

c(ut+Lj |xt+Lj−1, xt+Lj−h1 , . . . , xt+Lj−hN1
, ut+Lj−L1 , . . . , ut+Lj−LN2

)β4(.)δ(t + Lj)dut+Lj ,

(10)

β1(.) =

∫

s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

×

[

ln
s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1

, ut−L1 , . . . , ut−LN2
)

I s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

)

]

dxt ,

β2(.) = −

∫

s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) ln(γ (xt))dxt ,

β3(.) = −

N1∑

i=1

∫

s(xt+hi |xt+hi−1, ut+hi , xt+hi−h1 , . . . , xt+hi−hN1
, ut+hi−L1 , . . . , ut+hi−LN2

)

× s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) ln(γ (xt+hi ))d(xt , xt+hi ),

β4(.) = −

N2∑

j=1

∫

s(xt+Lj |xt+Lj−1, ut+Lj , xt+Lj−h1 , . . . , xt+Lj−hN1
, ut+Lj−L1 , . . . , ut+Lj−LN2

)

× s(xt |xt−1, ut , xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) ln(γ (xt+Lj ))d(xt , xt+Lj ),

(11)xt = Axt−1 +

N1∑

i=1

Aixt−hi−1 + But +

N2∑

j=1

Bjut−Lj + εt ,

(12)s(xt |xt−1, ut , xt−h1−1, . . . , xt−hN1−1, ut−L1 , . . . , ut−LN2
) ∼ N(µt ,Q),

(13)I s(xt |xt−1, ut , xt−h1−1, . . . , xt−hN1−1, ut−L1 , . . . , ut−LN2
) ∼ N(xr ,R),
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where Ŵ is the covariance of the ideal distribution of the controller which indicates the admissible range of the 
optimal control input and ur is the mean of the ideal distribution of the randomised controller which can be 
calculated from the limit of the expected value of the state at time t, E[xt ] as t approaches infinity,

By noting that lim
t→∞

xt = lim
t→∞

xt−hi−1 = xr , and lim
t→∞

ut = lim
t→∞

ut−Lj = ur , one gets,

Given the actual and ideal distributions defined in (12–14), the optimal randomised controller of the considered 
class of linear and Gaussian stochastic systems with multiple state and control input delays can be calculated 
following Theorem 2. This leads to the randomised control solution specified by the following theorem,

Theorem 3  By substituting the ideal distribution of the system dynamics (13), the ideal distribution of the controller 
(14), and the actual distributions of the system dynamics (12) into Eqs. (8–10), the optimal randomised controller 
c(ut |xt−1, xt−h1 , . . . , xt−hN1

, ut−L1 , . . . , ut−LN2
) which minimizes the optimal cost-to-go function (6) is given by,

where,

and where,

with,

and ωt−1 is constant that does not depend on xt−1 or ut,

(14)I c(ut |xt−1, xt−h1−1, . . . , xt−hN1−1, ut−L1 , . . . , ut−LN2
) ∼ N(ur ,Ŵ),

lim
t→∞

E[xt ] = lim
t→∞

(Axt−1 +

N1∑

i=1

Aixt−hi−1 + But +

N2∑

j=1

Bjut−Lj ).

(15)ur = [(B+

N2∑

j=1

Bj)
T (B+

N2∑

j=1

Bj)]
−1(B+

N2∑

j=1

Bj)
T
[(I − A−

N1∑

i=1

Ai)]xr .

(16)c(ut |xt−1, xt−h1 , . . . , xt−hN1
, ut−L1 , . . . , ut−LN2

) ∼ N(u∗t ,Ŵt),

(17)

u∗t = −ŴtB
TM̄T

t Axt−1 − dt ,

dt = Ŵt [B
TM̄T

t ft + 0.5BTPTt − BTR−1xr + ρ2,t − Ŵ−1ur],

ρ2,t = 0.5

N2∑

j=1

BTj

[

Mt+Lj µ̄t+Lj + PTt+Lj

]

δ(t + Lj),

ρ1,t = 0.5

N1∑

i=1

(Pt+hi + µ̄T
t+hi

Mt+hi )Aiδ(t + hi),

ft =

N1∑

i=1

Aixt−hi−1 +

N2∑

j=1

Bjut−Lj ,

M̄t = Mt + R−1,

Ŵt =

(

BTM̄tB+ Ŵ−1

)−1

,

µ̄t+Lj = Axt+Lj−1 +

N1∑

i=1

Aixt+Lj−hi−1 +

N2∑

d=1

Bdut+Lj−Ld + Būt+Lj ,

µ̄t+hi = Axt+hi−1 +

N1∑

q=1

Aqxt+hi−hq−1 +

N2∑

j=1

Bjut+hi−Lj + Būt+hi ,

(18)− ln (γ (xt−1)) = 0.5xTt−1Mt−1xt−1 + 0.5Pt−1xt−1 + 0.5ωt−1,

(19)Mt−1 = AT

[

− M̄tBŴtB
TM̄t + M̄t

]

A,

(20)

Pt−1 = −2

(

f Tt M̄tB+ 0.5PtB− xTr R
−1B+ ρT

2,t − uTr;tŴ
−1

)

ŴtB
TM̄tA+ 2f Tt M̄tA+ 2ρ1,t − 2(xTr R

−1
− 0.5Pt)A,
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Proof  The proof of this theorem is given in the Supplementary Appendix. 	�  �

Remark 1  Compared to the conventional randomised FPD controller, the mean of the derived randomised 
controller of the MTDFPC method has an extra linear term dt , so does the Riccati Eq. (18) has an extra linear 
term 0.5Pt−1xt−1 . This is the consequence of the presence of the multiple lagged system state and control input. 
Besides, the solutions of the Riccati equation as well as the additional linear term in the mean of the optimised 
control input are dependent upon the delayed and future state and control input.

As has been seen from Eqs. (17–21), both of the solutions of the optimal cost-to-go function and the optimal 
randomised controller require knowledge of future state and control input values, thus bringing challenges to 
solve the problem analytically. To address this issue, the successive approximation approach (SAA) introduced 
in35, will be applied in this paper to obtain the numerical solution of the MTDFPC method. The numerical solu-
tion will be discussed in the next section.

Numerical solution to the MTDFPC using SAA
In this section, the SAA will be implemented to obtain the numerical solution of the MTDFPC problem. Pro-
posed in35, this approach is developed by iteratively solving a sequence of the corresponding non-homogeneous 
linear equations in the LQ control problem where each sequence is worked out as a standard numerical problem. 
Following this approach, the future terms in the optimal control law and corresponding optimality equations 
can be obtained from previous iterations, thus overcoming the requirement of predicting these future values. For 
more details about the SAA, the readers are referred35. The procedure of a slight variation of the SAA for obtain-
ing the approximate numerical solution of the optimal randomised controller is given in Algorithm 1. As can 
be seen from this algorithm, the optimisation problem of the randomised controller needs to be done through 
a number of iterations, K where in each iteration the sequence of randomised control inputs that optimises the 
control objective is obtained from time zero to the final time. Once the first iteration is completed the required 
future state and control input values can be obtained and used in the next iteration. This process continues until 
a convergence is achieved. 

(21)

ωt−1 = −2

{

0.5

[

f Tt (Mt + R−1)B+ 0.5PtB− xTr R
−1B+ ρT

2,t − uTr;tŴ
−1

]T(

BT (Mt + R−1)B+ Ŵ−1

)−1

×

[

f Tt (Mt + R−1)B+ 0.5PtB− xTr R
−1B+ ρT

2,t − uTr;tŴ
−1

]

− 0.5f Tt (R−1
+Mt )f

T
t − 0.5uTr;tŴ

−1ur

+ (xTr R
−1

− 0.5Pt )(Axt−1 + ft )− 0.5ωt − 0.5tr(MtQ)− 0.5xTr R
−1xr + 0.5tr(Q(Q−1

− R−1))

−

N1∑

i=1

[

0.5µ̄T
t+hi

Mt+hi (Axt+hi−1 +

N1∑

q=1,hi �=hq

Aqxt+hi−hq−1 + Būt+hi +

N2∑

j=1

Bjut+hi−Lj )+ 0.5ωt+hi + 0.5tr(Mt+hiQ)

+ 0.5tr(Mt+hi�t+hi )+ 0.5Pt+hi (Axt+hi−1 +

N1∑

q=1,hi �=hq

Aqxt+hi−hq−1 + Būt+hi +

N2∑

j=1

Bjut+hi−Lj )

]

δ(t + hi)

−

N2∑

j=1

[

0.5(Axt+Lj−1 + Būt+Lj +

N1∑

i=1

Aixt+Lj−hi−1 +

N2∑

d=1,Ld �=Lj

Bdut+Lj−Ld )
TMt+Lj µ̄t+Lj

+ 0.5Pt+Lj (Axt+Lj−1 + Būt+Lj +

N1∑

i=1

Aixt+Lj−hi−1 +

N2∑

d=1,Ld �=Lj

Bdut+Lj−Ld )+ 0.5ωt+Lj + 0.5tr(�t+Lj B
TMt+Lj B)

]

δ(t + Lj)

}}

.
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Experiment
In this section, the proposed control algorithm is tested on one numerical simulation and one practically related 
simulation to demonstrate the effectiveness of the proposed control method.

Numerical example.  Consider the following three-order delay stochastic system,

where, A =

[
0.9 0.02 0

0 0.92 0.01

−0.05 −0.52 0.75

]

 , B =

[
0

0

0.1

]

 , A1 =

[
0.01 0.004 0.01

−0.1 −0.04 −0.01

−0.06 −0.01 0.02

]

 , B1 =

[
0

0

0.1

]

,

A2 =

[
0.03 0.006 0.01

−0.03 −0.02 −0.01

−0.04 −0.03 0.02

]

 , B2 =

[
0

0

0.08

]

.

In addition, εt is Gaussian noise with the following distribution εt ∼ N(0, 0.02I3×3) , where I3×3 is the identity 
matrix of size 3. This example was used in33 to demonstrate their theoretical development of LQRs for systems 
with multiple input and state delays.

In this simulation study, the input time delays are set as L1 = 15 , L2 = 20 while the state delays are h1 = 15 , 
h2 = 12 . Moreover, the initial state vales are given as x0 = [0.6;−1.5; 3] , xt = [0, 0, 0]T , t = −max{h1, h2},

−max{h1, h2} + 1, ...,−1 while ut = 0, t = −max{L1, L2},−max{L1, L2} + 1, ..., 1 . The reference state for the 
system to track is given as [0.06;−0.1; 0.4] . Furthermore, the SAA control loop is set to be K = 10.

To validate the performance of the MTDFPC derived in this paper, the results are compared to the results 
obtained from the traditional FPD. The simulation results are given in Figs. 1, 2 and 3, where the blue solid line 
represents the state responses controlled by MTDFPC, the red dashed line is the state controlled by traditional 
FPD, and the yellow dotted line stands for their corresponding state references. From these figures, it can be 
seen that compared with the system state controlled by traditional FPD ,the state controlled by MTDFPC can 
always track their corresponding reference states, even with the presence of the noise and the multiple state and 
input delays. On the contrary, the state controlled by the traditional FPD shows large tracking errors. Based 

(22)xt = Axt−1 + A1xt−h1−1 + A2xt−h2−1 + But + B1ut−L1 + B2ut−L2 + εt ,
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Figure 1.   State x1 by MTDFPC, State x1 by FPD and reference xr(1).
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Figure 2.   State x2 by MTDFPC, State x2 by FPD and reference xr(2).
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Figure 3.   State x3 by MTDFPC, State x3 by FPD and reference xr(3).
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on the above results, it can be concluded that compared with traditional FPD method, the proposed MTDFPC 
algorithm can achieve a much better tracking performance aiming at stochastic systems that are affected by 
multiple state and control input delays.

Electric heater system.  To demonstrate the effectiveness of the proposed MTDFPC algorithm on real 
world systems, this section discusses the results of the implementation of the proposed algorithm to an indus-
trial electric heater model which was used in36,37. The system structure is given in Fig. 4. From Fig. 4, it can be 
seen that the heater involves five heating zones, each equipped with an electric heater and their own thermo-
couple to measure its temperature profile. The system state are the temperatures in each zone which are donated 
by x̃1, ..., x̃5 while control inputs are the electrical current signals applied to each zone of the heater which are 
donated by ũ1, ..., ũ5 . The control objective is to maintain the temperature profile of the process at their pre-set 
operating points x̄1 to x̄5.

A state-delayed nominal discrete tracking-error based model for this system was obtained in37 in the fol-
lowing form,

where the system matrices are given by,

In addition, the state and control vectors are defined as,

where x̃1 to x̃5 are each heater’s temperature as introduced and x̄1 to x̄5 represent their operating points that they 
need to follow, similarly, ũ1 to ũ5 stand for the control electric current in each zone and ū1 to ū5 are their corre-
sponding operating points. The system state xt in Eq. (23) is the tracking error of each zone, indicating that the 
control objective here is to make sure the system state stays around zero. Moreover, εt is Gaussian noise repre-
senting the uncertainties and disturbance that the system is affected by. The distribution of εt is given as follows,

where I5×5 is the identity matrix of size 5. In this simulation study, the state delay is taken to be d = 15 while 
the initial value of state is taken to be x0 = [−0.2, 0.5, 1,−0.4, 0.9]T , and xt = [0, 0, 0, 0, 0]T , t = −d + 1, ...,−1 . 
The SAA control loop is set to be K = 3 . As introduced earlier, the reference state are zero in this case, 
xr = [0, 0, 0, 0, 0]T.

Following the procedure provided in Algorithm I, the system state response are given in Figs. 5, 6, 7, 8 and 9. From 
these figures, we can see that despite the influence of the noise and the state delays, the designed local randomised con-
trollers have successfully brought all the states to zero, indicating that all the heaters’ temperatures are following their 

(23)xt = Axt−1 + A1xt−d + But + εt ,

(24)

A =








0.97421 0.15116 0.19667 −0.0587 0.07144
−0.01455 0.88914 0.26953 0.11866 − 0.22047
0.06376 0.12056 1.0049 −0.03491 − 0.02766
−0.05084 0.09254 0.28774 0.82569 0.02570
0.01723 0.01939 0.29285 0.03544 0.87111







,

A1 =








−0.01000 −0.08837 −0.06989 0.18874 0.20505
0.02363 0.03384 0.05282 −0.09906 − 0.00191
−0.04468 −0.00798 0.05618 0.00157 0.03593
−0.04082 0.01153 −0.07116 0.16472 0.00083
−0.02527 0.03878 − 0.04683 0.05665 − 0.03130







,

B =








0.53706 −0.11185 0.09978 0.04652 0.25867
−0.51718 0.73519 0.57518 0.40668 − 0.12472
0.29469 0.31528 1.16420 −0.29922 0.23883
−0.20191 0.19739 0.41686 0.66551 0.11366
−0.11835 0.16287 0.20378 0.23261 0.36525







.

(25)
x = [x̃1 − x̄1, x̃2 − x̄2, x̃3 − x̄3, x̃4 − x̄4, x̃5 − x̄5]

T ,

u = [ũ1 − ū1, ũ2 − ū2, ũ3 − ū3, ũ4 − ū4, ũ5 − ū5]
T ,

(26)εt ∼ N(0, 0.03I5×5),

Figure 4.   Structure diagram of electric heater.
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operating points. The results illustrate that the proposed algorithm achieved a satisfactory performance for the electric 
heater system that involves noises and state delays.

Conclusion
In this paper, the optimal randomised control problem for stochastic discrete-time systems that are affected by 
multiple control input and state delays has been considered. Probabilistic state-space models are exploited to 
characterise the dynamics of the system and a MTDFPC control framework is developed by considering the 
multiple delays of the system state and control input into the derivation of the optimal randomised controller. 
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Figure 5.   State x1 and reference xr(1).
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Figure 6.   State x2 and reference xr(2).
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Figure 7.   State x3 and reference xr(3).
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Moreover, the analytic optimal control law for a class of linear Gaussian stochastic systems is obtained and its 
numerical solution is evaluated using the SAA method. Finally, one numerical example and one practical example 
demonstrated the effectiveness of the proposed MTDFPC framework for stochastic systems that are affected by 
multiple delays and randomness.
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